
Building Composable Aspect-specific Languages
with Logic Metaprogramming

Johan Brichau
∗

Vrije Universiteit Brussel
Pleinlaan 2

B-1050 Brussel, Belgium

johan.brichau@vub.ac.be

Kim Mens
Université catholique de

Louvain
Place Sainte-Barbe 2

B-1348 Louvain-la-Neuve,
Belgique

kim.mens@info.ucl.ac.be

Kris De Volder
University of British Columbia

309-2366 Main Mall
V6T 1Z4 Vancouver, BC,

CANADA

kdvolder@cs.ubc.ca

ABSTRACT
The goal of aspect-oriented programming is to modularize
crosscutting concerns (or aspects) at the code level. These
aspects can be defined in either a general-purpose language
or in a language that is fine-tuned to a specific aspect in con-
sideration. Aspect-specific languages provide more concise
and more readable aspect declarations but are limited to a
specific domain. Moreover, multiple aspects may be needed
in a single application and combining aspects written in dif-
ferent aspect languages is not an easy task.

To solve this combination problem, we represent both as-
pects and aspect languages as modularized logic metapro-
grams. These logic modules can be composed in flexible
ways to achieve combinations of aspects written in differ-
ent aspect-specific languages. As such, the advantages of
both general-purpose and aspect-specific languages are com-
bined.

1. INTRODUCTION
The idea of separation of concerns [16] is that the implemen-
tation of all concerns in a software application should be
cleanly modularized. Today’s existing programming tech-
niques have succeeded to support the separation of concerns
principle at the code level to a reasonable degree. How-
ever, some concerns cannot be modularized using the exist-
ing modularizations and tend to crosscut with other con-
cerns. Common examples of such concerns are synchronisa-
tion, persistence and error-handling. Aspect-oriented pro-
gramming (AOP) [8] modularizes such crosscutting concerns
as aspects. These aspects are expressed in one or more as-
pect languages and they are composed with the rest of the

∗Research assistant of the Fund For Scientific Research -
Flanders (Belgium)

program by an aspect weaver.

An aspect language designed to express a specific kind of
aspect is highly desirable because it results in more concise
and more intentional aspect declarations, making it easier
to write aspects. A testament to this is the fact that many
of the first aspect languages were aspect-specific [11, 6, 10]
and not general purpose. On the other hand, aspect-specific
languages are very powerful within their specific scope but
they can only be applied to the specific aspect they were de-
signed for. Because of this, many AOP-related techniques
[7, 15, 1] offer a general-purpose aspect language which al-
lows to express many kinds of aspects as well as combina-
tions and interactions between them. The latter becomes
more complex when the aspects are implemented in differ-
ent aspect-specific languages.

Our approach to AOP is based on logic metaprogramming
(LMP) [20, 21, 14, 12, 13]. In a previous paper [4], we ex-
plored the use of LMP as an open and extensible aspect-
weaver mechanism that facilitates the specialization of a
general-purpose aspect language and, as such, facilitates the
building of aspect-specific languages (ASLs). In this paper
we focus on the combinations and interactions between as-
pects written in different ASLs. We extend the work in
[4] and introduce logic modules to encapsulate aspects and
implementations of ASLs. These logic modules provide a
composition mechanism that allows us to combine aspects
or implement interactions between aspects written in dif-
ferent ASLs. This is made possible because all our ASLs
share the same Prolog-like base language. In other words,
we obtain a modular aspect-weaver mechanism that offers
the generality of a general-purpose aspect language with-
out loosing the ability and advantages of defining aspects in
aspect-specific languages. In addition, we offer a means of
composing and regulating the interactions among different
aspect-specific languages.

In section 2, we introduce a software application that is used
as a running example throughout the remainder of the pa-
per. In section 3, we describe what an aspect language em-
bedded in a logic language looks like and how it supports
modularization of crosscutting concerns. Section 4 explains
how ASLs are implemented and section 5 shows how aspect



composition and interaction issues are handled. We briefly
introduce a prototype research tool for our approach in sec-
tion 6. Sections 7 and 8 discuss future and related work.

2. CASE: THE CONDUIT SIMULATOR
2.1 Basic Functionality
A conduit system can be built using 4 types of conduits:
pipes, sources, sinks and joins. An example of a conduit-
system is shown in figure 1 and a simplified class diagram
of the implementation is shown in figure 2.

Figure 1: A Conduit-system.

Conduit
fill

Pipe
fill
drain: anInt

Join
fill
drain: anInt

Sink
fill

Source
fill
drain: anInt

Figure 2: Class diagram of the Conduit Simulator.

Each type of conduit is implemented by a single class. A
conduit-system is built by linking each conduit to an incom-
ing conduit from which it should receive fluid1. The basic
behaviour is implemented in two methods:

#drain: Each drainable conduit (source, pipe and join) un-
derstands the message #drain: which can be used to
drain an amount of fluid from it.

#fill The #fill method of each conduit tries to fill the
conduit by draining the incoming conduit(s). A source
conduit fills itself based on a profile.

All conduits simultaneously run a looping process that exe-
cutes the #fill method, i.e. conduits are active objects that
continuously drain their incoming conduit(s). As a result,
fluid will flow from sources to sinks.

2.2 Crosscutting Functionality
Making the Conduit Simulator work correctly requires us to
deal with some crosscutting concerns.

1Join conduits are linked to two incoming conduits.

2.2.1 Synchronizing and Order of Execution
A conduit can only be drained after each time it has been
able to fill itself. Therefore, the #fill and #drain: methods
can only be executed in alternating order.

This can be done by inserting synchronisation code at the
beginning and at the end of both these methods. Obviously,
this leads to tangled functional and non-functional code. In
the rest of the paper, we will refer to this aspect as the ‘order
of execution’ aspect.

2.2.2 User Interface (UI)
We also need to visualize the real-time simulation. There-
fore, we create views for each type of conduit and use an Ob-
server design pattern to couple them. The code for this pat-
tern also crosscuts the implementation of all conduit types.

2.2.3 Logging
For debugging purposes, we want to log the execution of
the #drain: and #fill methods, which also amounts to the
introduction of code in the beginning and at the end of those
methods. Once again, this would tangle logging code with
functional code. Also, this addition requires the insertion
of very similar code in many places. It is also important to
note that writing to the log should also be synchronized.

In the following section, we explain how to write the logging
aspect in a general-purpose aspect language (implemented
using our LMP approach) and ellaborate on building aspect-
specific languages for all aspects of the conduit simulator in
section 4.

3. ASPECTS IN A LOGIC LANGUAGE
In LMP, we use a logic programming language to reason
about object-oriented base programs. The metalevel de-
scription of the base-language program consists of logic facts
and rules [20]. In the context of AOP, the logic language also
serves as the surrounding medium in which we embed our
aspect languages. This provides a general framework for
declaring and implementing aspects.

3.1 Aspects as Logic Modules
An aspect language is specified as a set of logic predicates,
as is shown in table 1 for a general-purpose ‘advice’ aspect
language. An aspect in this aspect language is implemented
as a set of logic declarations of these predicates, contained
in a logic module. An example aspect is shown in figure 3
(this is only a first and simple version of the aspect that will
be improved in later sections). The logic inference engine
becomes the weaver, which gathers all the logic declarations
that are present in such a module. The weaver (for a par-
ticular aspect language) understands the declarations and
knows how to weave the aspect into the base program. In
the code fragments, all predicates that are part of an aspect
language are shown in bold.

We first provide some details about the syntax of our logic
language:

• We have a special logic term (delimited by curly braces:
‘{‘ and ‘}’) to embed base program text in the logic



declarations. This term can even contain logic vari-
ables in a similar way compound logic terms can con-
tain them (their use is explained later, also see [4]).

• Logic variables start with a question mark (e.g. ?vari-
able).

• The modules basically encapsulate logic declarations.
Each logic declaration belongs to a module and is only
visible in the module where it is defined.

• Modules can be composed to use declarations of an-
other module or to make declarations in one module
visible in another module. How this is done is ex-
plained later.

Predicate Description

adviceBefore(?m,?c) Execute code fragment ?c before ex-
ecuting method ?m

adviceAfter(?m,?c) Execute code fragment ?c after ex-
ecuting method ?m

Table 1: A simple advice aspect-language (similar
to advices in AspectJ).

adviceBefore(method(Pipe,drain:),{ Logger log: 'Enter Pipe>>drain:' for: thisObject}).
adviceAfter(method(Pipe,drain:), { Logger log: 'Exit Pipe>>drain:' for: thisObject}).
adviceBefore(method(Pipe,fill),{ Logger log: 'Enter Pipe>>fill'for: thisObject}).
adviceAfter(method(Pipe,fill), { Logger log: 'Exit Pipe>>fill' for: thisObject}).
adviceBefore(method(Join,drain:),{ Logger log: 'Enter Join>>drain:' for: thisObject}).
adviceAfter(method(Join,drain:), { Logger log: 'Exit Join>>drain:' for: thisObject}).
adviceBefore(method(Join,fill),{ Logger log: 'Enter Join>>fill' for: thisObject}).
adviceAfter(method(Join,fill), { Logger log: 'Exit Join>>fill' for: thisObject}).

Simple Logging Aspect

Figure 3: Logging aspect in the advice aspect lan-
guage

The aspect shown in figure 3 implements the logging for the
conduit-system in the aspect language defined in table 1.
The Logger class keeps a log for each conduit. The logic
declarations inform the weaver that some code fragments
must be executed before and after the methods #drain: and
#fill in the classes Pipe and Join. Technically, the weaver
gathers all adviceBefore and adviceAfter declarations and
weaves the code fragments in the indicated methods. The
thisObject keyword is understood by the weaver and is a
reference to the object in which the code fragment is exe-
cuted.

3.2 Logic Pointcuts
An aspect describes where or when its functionality should
be invoked in terms of joinpoints. Pointcuts are sets of join-
points. In our approach, joinpoints are specific points in the
base program’s code2.

2Some experiments with dynamic joinpoints in LMP have
been conducted [5]

The primitve example above expressed an aspect by directly
applying advices to individual joinpoints. Adequately ex-
pressing aspects also requires a mechanism to abstract over
sets of joinpoints (pointcuts) and factor out commonalities
between aspect-code applied over all of them [3]. This in-
volves (1) a pointcut mechanism to characterize sets of join-
points, (2) a mechanism of parameterization that allows
the aspect’s code to have joinpoint-specific behavior. In
the LMP approach, both these mechanisms are supported
through the use of logic rules. We now discuss each mecha-
nism in more detail.

3.2.1 Defining Pointcuts
Part of the implementation of the observer pattern (for the
UI-aspect) is the insertion of code at well defined joinpoints,
that triggers the observable’s update mechanism (hence, up-
dating the UI). Defining a separate advice fact for each of
those joinpoints would result in a lot of code duplication,
because the advice is identical for each joinpoint. A better
way to define the UI-aspect is through the use of logic rules,
which are a way to define a set of similar of facts.

adviceAfter(?method,{ dependents do: [:each | each update] }) if
changesState(?method).

changesState(method(?class,fill)) if
subclass(Conduit,?class),
classImplementsMethod(?class,fill).

User Interface Aspect

Figure 4: Logic module implementing the UI-aspect.

The implementation of the ‘update’ part of the UI aspect is
shown in figure 4. The first logic rule declares adviceAfter
facts for each joinpoint that is matched by the pointcut de-
fined by changesState declarations. The second logic rule
defines this pointcut as the #fill method of each subclass
of Conduit. The subclass and
classImplementsMethod predicates are part of a predefined
logic library of predicates to reason about Smalltalk code
(see [20]).

This example was particularly easy, because the code is iden-
tical for each joinpoint of the pointcut. However, an aspect
becomes significantly more complex if the code requires vari-
ations dependent on the specific joinpoint.

3.2.2 Joinpoint-Dependent Variations
The logging aspect in figure 3 is an example of an aspect that
inserts a pattern of code containing joinpoint-dependent vari-
ations, i.e. the name of class and selector. We can capture
these variation points using logic variables, embedded in the
code pattern. Using this technique, we can implement a
more generic logging aspect, as is shown in figure 5.

The code pattern in the adviceBefore and adviceAfter

declarations is now parameterized by logic variables ?class
and ?selector. The weaver uses the inference engine to



adviceBefore(method(?class,?selector), { Logger log: 'Enter ?class>>?selector' for: thisObject }) if
logMethod(?class,?selector).

adviceAfter(method(?class,?selector),{ Logger log: 'Exit ?class>>?selector' for: thisObject }) if
logMethod(?class,?selector).

logMethod(Pipe,drain:).
logMethod(Pipe,fill).
logMethod(Join,drain:).
logMethod(Join,fill).

Improved Logging Aspect

Figure 5: Logic module implementing the logging
aspect.

substitute them with their specific bindings, dependent on
the joinpoint that the advice is woven into.

We have now explained what an aspect language embedded
in a logic language looks like and how it is suited to describe
crosscutting concerns that should be woven in the base pro-
gram code. We now elaborate on the use and composition
of logic modules to implement and use aspect-specific lan-
guages.

4. ASPECT-SPECIFIC LANGUAGES
Aspect languages are implemented through logic rules in
logic modules. These rules define the meaning of an as-
pect language in terms of a more primitive aspect language.
This eases the implementation of ASLs because weavers for
them do not have to be implemented from scratch. Typi-
cally, we have a primitive aspect weaver that implements a
low-level, general-purpose aspect language on which other
aspect-specific languages can be built. In the following sub-
sections, we illustrate this with the construction of two as-
pect languages for logging and ‘order of execution’ in our
conduit simulator. Both of these aspect languages are de-
fined in terms of the more general-purpose advice aspect
language.

Logging Aspect Language
Predicate Description

logMethod(?c,?m) Log the execution of the method ?m
in class ?c.

Table 2: A simple logging aspect language.

The logging aspect of figure 5 already defined a simple as-
pect language for logging. The aspect language consists of
a single predicate and is shown in table 2. The first two
rules in figure 5 define the meaning of the logging aspect lan-
guage in terms of the advice aspect language. The remaining
facts constitute the implementation of the aspect. But the
logic module in figure 5 contains both the logging aspect it-
self and the implementation of the logging aspect language.
To facilitate reuse of the implementation of the aspect lan-
guage, we prefer to separate the aspect implementation from
the aspect language’s implementation. To achieve this, we
split this module in an aspect language module and an aspect
definition module and provide a composition mechanism to
compose both modules.

The logic rules that implement the logging aspect language
are placed in a separate aspect-language module. But now,
these logic rules should gather the required logMethod dec-
larations in a separate aspect-definition module, which de-
pends on the particular application in which the aspect
language is used. Therefore, we parameterize the aspect-
language module using a module-variable, which can be
bound to a specific aspect-definition module (containing logMethod

facts) in the context of a particular application. In the code
fragments, all module-variables are shown in italic.

The actual composition of the modules is defined by a logic
program or in a visual composition tool (such as in [2]).

Logging Aspect Language

adviceBefore(method(?class,?selector),{Logger log: `Enter ?class>>?selector' for: thisObject}) if
?logaspect.logMethod(?class,?selector).

adviceAfter(method(?class,?selector),{Logger log: `Exit ?class>>?selector' for: thisObject}) if
?logaspect.logMethod(?class,?selector).

?logaspect

Figure 6: Aspect-language module implementing
the logging aspect language.

Figure 6 shows the aspect-definition module for the logging
aspect language implemented in terms of the advice aspect
language. The logMethod declarations will be gathered in
the logic module that is bound to the ?logaspect module-
variable. Hence, the ?logaspect module-variable param-
eterizes this logic module with another logic module. In
the implementation of a particular application, we can bind
the module-variable with an aspect definition module imple-
menting a logging aspect, such as the one shown in figure
7.

logMethod(Pipe,drain:).
logMethod(Pipe,fill).
logMethod(Join,drain:).
logMethod(Join,fill).

Logging Aspect

Figure 7: Logging aspect that is understood by the
logging aspect language implemented in figure 6.

While this example is rather simple, the use of ASLs is
particularly interesting for aspects that can be reused in
many different contexts (such as synchronization, distribu-
tion, . . . ) and where the code of the aspect is more compli-
cated. The ASL shields the developer from the burden of the
implementation while still enabling him to tailor the func-
tionality of the aspect (to the extent that the ASL allows
it).

‘Order of Execution’ Aspect Language
The above logging aspect language only allows to specify
joinpoints for the logging aspect. The ‘order of execution’
aspect is much more interesting because the aspect language



we constructed for it provides ‘hooks’ that allow us to add
behaviour to the aspect. The logic module shown in figure
8 is an aspect-definition module, implementing an aspect
for our conduit simulator in the ‘order of execution’ aspect
language. This language consists of three logic predicates,
described in table 3. The last two predicates define hooks
that allow the user of the aspect language to specify addi-
tional code that will be inserted in the implementation of
the aspect.

Predicate Description

executionOrder(?list) The ?list argument of this pred-
icate is a list of methods that
should be executed in mutual
exclusion and in order of oc-
curence in the list. After the
last method in the list is ex-
ecuted, the first method can
again be executed.

onBlock(?m,?c) Execute code ?c when the
method ?m is blocked by the
synchronisation guards.

onStart(?m,?c) Execute code ?c when the
method ?m is given permission
to execute by the synchronisa-
tion guards.

Table 3: ‘Order of Execution’ aspect language.

Part of the ‘order of execution’ aspect itself is shown in
figure 8. In figure 9, part of the aspect-language module
implementing the ‘order of execution’ ASL for the aspect in
figure 8 is shown.

executionOrder([method(Pipe,fill),method(Pipe,drain:)]).
executionOrder([method(Source,fill),method(Source,drain:)]).
executionOrder([method(Join,fill),method(Join,drain:)]).

'Order of Execution' Aspect

Figure 8: ‘Order of execution’ aspect that is under-
stood by the ‘order of execution’ aspect language of
table 3.

We have shown how to build aspect-specific languages on
top of a more general-purpose aspect language. These ASLs
can be reused as black-box entities in many different de-
velopment contexts through the use of logic rules in logic
modules. We do not claim that the actual implementation
of an ASL is a simple process. One still has to design an
appropriate language and implement its semantics in terms
of another (more low-level) aspect language. Also, the fact
that all ASLs in LMP remain embedded in the same logic
language, obviously bears some advantages as well as disad-
vantages. On the one hand, it ensures a common medium
to express the composition of all aspects in these aspect-
languages. On the other hand, no aspect-specific syntax is

adviceBefore(?jp,{ globalSema wait. (semaphores at: ?position)
waitAndExecute:[?onBlock. globalSema signal].

?startCode }) if
orderDependence(?jp,?position,?nextPosition,?blockCode,?startCode).

adviceAfter(?jp,{ (semaphores at: ?nextPosition) signal }) if
orderDependence(?jp,?position,?nextPosition,?blockCode,?startCode).

orderDependence(?jp,?currentPos,?nextPos,?blockCode,?startCode) if
?orderAspect.executionOrder(?list),
computePositions(?list,<?jp,?currentPos,?nextPos,?blockCode,?startCode>).
. . .

'Order of Execution' DSAL

Figure 9: Part of the aspect-language module im-
plementing the ‘Order of Execution’ ASL.

possible. However, we feel that the advantage is far more
greater than the disadvantage because the combination of
multiple aspects can raise many subtle and difficult issues
that should be tackled by the programmer [9, 19].

5. COMPOSITION AND INTERACTION
Combining multiple aspects in a single application can raise
problems that do not exist when the aspects are considered
in isolation. For example, in our conduit simulator, combin-
ing the logging aspect with the ‘order of execution’ aspect
poses some complications:

A: Logging of methods that are ‘ordered’. How do we
log methods that may block because of the ‘order of
execution’ aspect?

A1 Do we log entry to a method before or after check-
ing the guards?

A2 How do we log the fact that a method blocks?

B: Reducing synchronisation overhead for logging. To
synchronize the Logger class, we use a synchronisation
aspect. But the ‘order of execution’ aspect also syn-
chronizes methods of each conduit and the log itself is
different for each conduit. This means that if logging is
only executed in the critical sections that are created
by the ‘order of execution’ aspect, that it is safe to
omit a supplementary synchronisation aspect. On the
other hand, in some cases, we also might want to log
other methods of a conduit than #drain: and #fill.
In those cases, we do need proper synchronisation for
the log aspect.

B1 How do we automatically apply a synchronisation
aspect to the logging aspect?

B2 How do we reduce the amount of synchronisation
code to be executed, based on interaction with
the ‘order of execution’ aspect?

In the following subsections, we show how logic modules can
be used to implement the aspect-combination complications
mentioned above.



5.1 Combining Aspects
Aspects are combined using aspect-combination modules. A
combination module is a logic module that is parameterized
with several other modules and contains rules that describe
how the functionality of these other modules is to be com-
bined. This composition mechanism can be used to compose
aspect-definition modules, as well as aspect-language mod-
ules. The aspect combination module then acts as their
composition and therefore it is the only module to be handed
to the weaver. This is illustrated in figure 10.

Combination Module

Weaver

Module Module

Figure 10: Composing logic modules to combine As-
pects.

Dominates Combination Module
The aspect-composition problem A1 (order of the aspects)
could be solved by prioritizing the aspects. This is a general
solution which requires no domain-specific knowledge of the
aspects themselves. Therefore it can be handled by a gen-
eral type of prioritization rule. Figure 11 shows part of the
‘dominates’ combination module that prioritizes the advices
generated by the aspect-language modules for logging and
‘order of execution’. The rule that handles adviceAfter is
identical. In figure 12, we show how the ‘dominates’ combi-
nation module is used to ensure that the ‘order of execution’
aspect (dominating aspect) is executed before the logging
aspect (dominated aspect).

Dominates Combination Module

adviceBefore(method(?class,?method),{ ?domcode ?infcode }) if
?dominatedAspect.adviceBefore(method(?class,?method),?infcode),
?dominatingAspect.adviceBefore(method(?class,?method),?domcode).

...

?dominatedAspect ?dominatingAspect

Figure 11: The Dominates combination module to
prioritize an aspect.

Wrapper Combination Module
Another kind of aspect-combination module is required for
problem B1, where we merely want to wrap synchronisation
code around the logging code. Using the previous ‘domi-
nates’ combination module, would result in wrapping syn-
chronisation code around the entire method, instead of only
around the logging code. Figure 13 shows part of a ‘wrap-
per’ combination module that produces the desired result.
The rule fetches the before and after advice of the ‘wrap-
per’ aspect for every before advice of the ‘internal’ aspect
and concludes a combined before advice. This combined
before advice contains the ‘internal’ aspect’s before advice,

Dominates Combination

Weaver

Logging ASL Order ASL

Logging Aspect Order Aspect

?dominated ?dominating

Figure 12: Combining Logging and Order of Execu-
tion.

surrounded with the ‘wrapper’ aspect’s advices. In our par-
ticular case, the ‘wrapper’ aspect is the synchronisation as-
pect and the ‘internal’ aspect is the logging aspect. Once
again, rules that handle adviceAfter predicates are similar
and are omitted. Also, for simplicity, we do not include the
implementation of this synchronisation aspect here.

Wrapper Combination Module

adviceBefore(method(?class,?method),{ ?wrapbefore ?code ?wrapafter}) if
?internalAspect.adviceBefore(method(?class,?method),?code),
?wrapperAspect.adviceBefore(method(?class,?method),?wrapbefore),
?wrapperAspect.adviceAfter(method(?class,?method),?wrapafter).

. . .

?internalAspect ?wrapperAspect

Figure 13: The Wrapper combination module to
wrap an aspect’s advices around another aspect’s
advices.

Completely solving problem B and A2 requires some more
interaction aspects. These are explained in the following
section.

5.2 Interacting Aspects
Logging when a method blocks (problem A2), is concep-
tually more difficult, it cannot be solved simply using the
‘dominates’ or ‘wrapper’ combination module. It requires
an explicit specialization of one of the aspects to adapt to
the other one. This requires knowledge about both aspects
and is most easily expressed in aspect-specific terms. In our
approach, we make use of such high-level declarations and
define intuitive logic rules that implement an interaction.

An aspect interaction module is implemented as a logic mod-
ule, parameterized with module-variables. The difference
with combination modules is that they do not combine sev-
eral aspects in one aspect but implement a dependency or
interaction between aspects. In other words, they modular-
ize a crosscutting aspect. Interaction modules contain logic
rules that are triggered by one aspect and add logic declara-
tions to the other aspect. Furthermore, interaction modules
do not compose aspects. To succesfully compose aspects
that require an interaction, the interaction module should
be used together with a combination module, as shown in
figure 14.



Combination Module

Weaver

Module
Interaction

ModuleModule

Figure 14: Composing logic modules to implement
interactions between aspects.

Log methods that block
The logic module in figure 15 is an aspect interaction mod-
ule that implements the desired interaction between the log-
ging aspect and ‘order of execution’ aspect to solve problem
A2. The logic rule adapts the ‘order of execution’ aspect
by adding an additional onBlock declaration to it for each
method that needs to be logged and ‘ordered’. This is speci-
fied by starting the conclusion of the logic rule with a module
variable, which will be bound to the ‘order of execution’ as-
pect module. As such, the rule makes it’s conclusion visible
in this module. The rule in figure 15 adds an onBlock decla-
ration to the ‘order of execution’ aspect if the method needs
to be logged and ‘ordered’.

Interaction Module for Logging and
'Order of Execution' Aspects

?orderaspect.onBlock(method(?class,?method),{ Logger log: '?class>>?method blocks'. }) if
?logaspect.logMethod(method(?class,?method)),
?orderaspect.executionOrder(?list),
member(?list,method(?class,?method)).

?logaspect ?orderaspect

Figure 15: Interaction to log methods when they
block.

Synchronising the log
Another interaction module is required for problem B. In
this example, the synchronisation aspect does not include
a pointcut definition. Instead, it should fetch its pointcut
definition from the logging aspect. The following logic rule
could be used to implement such an interaction:

?syncaspect.synchronize(?method) if
?logaspect.logMethod(?method).

However, the logic rule above is too simple to tackle problem
B2, which requires a more complex interaction module that
also needs to interface with the ‘order of execution’ aspect.
Since the log is different for each conduit and the ‘order of
execution’ aspect synchronizes the #drain: and #fill of
each conduit, it is safe to omit the synchronisation code of
the log if logging only occurs in the critical sections of these

methods. As we have seen in section 5.1, in the combination
aspect for the ‘order of execution’ and logging aspects, log-
ging code is ‘dominated’ by the ‘order of execution’ aspect’s
code.

The interaction module implementing this functionality uses
the rule shown in figure 16. It specifies the pointcut of the
synchronisation for the logging code. This pointcut contains
all methods that need to be logged under the condition that
all these methods are not a subset of the methods that are
wrapped with the ‘order of execution’ aspect. Indeed, if it
would be a subset, the pointcut is empty because in that
case synchronisation of the log is already done by the ‘order
of execution’ aspect.

To completely solve problem B, the interaction module should
also be used with the dominates and the wrapper combi-
nation modules (from section 5.1), using the composition
structure as shown in figure 17.

Interaction Module for Logging, Sync. and
'Order of Execution' Aspect Languages

?syncaspect.synchronize(method(?class,?method)) if
?logaspect.logMethod(method(?class,?method)),
findall(?aMethod,?logaspect.logMethod(?class,?aMethod),?allLoggedMethods),
?orderaspect.executionOrder(?orderedMethods),
member(method(?class,?method),?orderedMethods),
not(subset(?allLoggedMethods,?orderedMethods)).

...

?logaspect ?orderaspect?syncaspect

Figure 16: Interaction to reduce synchronisation
overhead.

Dominates Combination

Weaver

Synchronisation Order of Execution

Interaction Module

Logging

Wrapper Combination

?dominated ?dominating

?wrapperAspect ?internalAspect

Figure 17: Composition of logic modules to solve
problem B.

6. TOOL SUPPORT
The SOUL/Aop system [2] is a prototype aspect-weaver that
implements our logic metaprogramming approach to AOP
in Smalltalk. It provides a hard-coded basic aspect language
on which we can build our own ASLs using the techniques
explained in this paper. The experiment in this paper was
conducted using SOUL/Aop.

The basic aspect language (table 4) supports wrapping of



methods with aspect code as well as the definition of aspect-
instance variables. Furthermore, the aspect code (defined in
wrap declarations) can contain two special keywords (original,
thisObject) that respectively allow access to the wrapped
method and the executing object with which the aspect is
woven.

Predicate Description

wrap(?m,?code) Wrap/shadow the method ?m
with ?code

instvars(?list,?scope) Declares a list ?list of aspect-
instance variables of which the
scope is defined as ?scope. How
this scope is specified is out of
the scope of this paper (more in
[2]).

Table 4: Basic SOUL/Aop aspect language.

7. FUTURE WORK
Although the experiment with the conduit simulator is rather
small, it was chosen specifically to illustrate how the LMP
approach can be used to implement combinable ASLs. This
approach will now be used to experiment with the many
complex and interesting problems that can arise when com-
bining aspects as well as aspect languages.

For the reason above, the logic modules have a flexible com-
position mechanism, which could even be more flexible when
we extend it with the ability to override predicates in a logic
module. For now, the ability to express interaction issues
between ASLs is limited in terms of the expressiveness of
the ASLs themselves. For example, the interaction to solve
problem A2 relies on the onBlock predicate of the ‘order of
execution’ ASL. Overriding of predicates would allow an in-
teraction aspect to change the implementation of the ASL
itself. As such, an interaction module itself could also have
added the onBlock predicate to the ‘order of execution’ ASL.

Furthermore, the LMP approach presented in this paper
uses static joinpoints, which are locations in the source code.
LMP has also been used to express crosscutting on a dy-
namic joinpoint model [5]. The issue remains open wether
this joinpoint model can be easily merged with the LMP
approach we discussed.

8. RELATED WORK
In [4], we explained how to use logic metaprogramming as
a technology to implement extensible aspect weavers. How-
ever, no means for modularization of aspects and aspect lan-
guages was discussed, nor did we address the combination
and interaction of aspects and aspect languages.

AspectJ [7] is an aspect-oriented extension to Java. Aspects
are written like normal java classes, extended with point-
cuts and advices. The dominates keyword accomplishes the
same as our dominates combination. However, a combina-
tion such as the wrapper combination is harder to achieve
because pointcuts cannot refer to advices. The modulariza-
tion of interactions between aspects (or crosscutting aspects)
is not yet supported. AspectJ also features the definition of
abstract aspects through the use of abstract methods and

abstract pointcuts. This allows to write aspects that can be
reused and adapted and hide much of the implementation
from the reuser. This is somewhat similar to what ASLs
accomplish. But all combinations and interactions need to
be expressed in general-purpose terms and not in more in-
tuitive, aspect-specific terms.

An approach to validate combinations of aspects is pre-
sented in [9]. Aspects are augmented with specifications
that describe the mutual exclusiveness or dependencies with
other aspects. This allows to detect or prevent some faulty
combinations of aspects. The approach provides a conflict-
detection mechanism, but does not discuss how conflicting
aspects could be combined.

In JAC (Java Aspect Components) [17], aspects can be
wrapped around objects at run time. The precedence of
wrapping is addressed by an explicit composition aspect
written in a general-purpose language. Other adaptations
to aspects, such as the interactions we discussed, are not
addressed in this technique. An advantage is that the com-
position aspect can use dynamic information to decide on
the composition.

In [18], a number of approaches to modularize crosscutting
concerns are combined in a hybrid system. This system
allows a developer to use the most applicable approach for
the implementation of a given concern. Interactions between
the different concerns are possible because the different ap-
proaches have been integrated in a (general-purpose) object-
oriented approach.

9. CONCLUSION
In this paper we explained how aspect-specific languages can
be implemented and combined using a logic metaprogram-
ming approach. Logic metaprogramming provides a uni-
form and intuitive mechanism that reconciles the ability to
build aspect-specific languages with the ability to compose
aspects. The common logic medium facilitates the combi-
nation and interaction of aspects written in different aspect-
specific languages. Furthermore, the logic modules that gov-
ern the interactions and combinations can use aspect-specific
terms, which allows an intuitive description of the desired
combination and interaction of the aspects involved.

10. REFERENCES
[1] L. Bergmans, M. Aksit, and B. Tekinerdogan. Aspect

composition using composition filters. In Software
Architectures and Component Technology: The State
of the Art in Research and Practice, pages 357–382.
Kluwer Academic Publishers, 2001.

[2] J. Brichau. SOUL/Aop aspect weaver.
http://prog.vub.ac.be/research/aop/soulaop.html.

[3] K. De Volder. Code reuse, an essential concern in the
design of aspect languages? Position Paper on
Workshop on Advanced Separation of Concerns at
ECOOP 2001, 2001.

[4] K. De Volder and T. D’Hondt. Aspect-oriented logic
meta-programming. In Meta-Level Architectures and
Reflection, Second International Conference,



Reflection’99, volume 1616 of LNCS, pages 250–272.
Springer-Verlag, 1999.

[5] K. Gybels. Expressing crosscutting on a dynamic
joinpoint structure using logic meta programming.
Graduation thesis, Vrije Universiteit Brussel, 2001.

[6] J. Irwin, J.-M. Loingtier, J. Gilbert, G. Kiczales,
J. Lamping, A. Mendhekar, and T. Shpeisman.
Aspect-oriented programming of sparse matrix code.
In ISCOPE, volume 1343 of LNCS. Springer-Verlag,
1997.

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In Proceedings of ECOOP 2001, LNCS.
Springer-Verlag, 2001.

[8] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, ECOOP ’97 — Object-Oriented
Programming 11th European Conference, Jyväskylä,
Finland, volume 1241, pages 220–242. Springer-Verlag,
New York, NY, 1997.

[9] H. Klaeren, E. Pulvermueller, A. Rashid, and
A. Speck. Aspect composition applying the design by
contract principle. In Proceedings of the Second
International Symposium on Generative and
Component-Based Software Engineering, volume 2177
of LNCS, pages 57–69. Springer-Verlag, 2000.

[10] C. V. Lopes and G. Kiczales. D: A Language
Framework for Distributed Programming. PhD thesis,
College of Computer Science, Northeastern University,
1997.

[11] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A
case-study for aspect-oriented programming. Technical
Report SPL97-009P9710044, Xerox PARC, February
1997.

[12] K. Mens. Automating Architectural Conformance
Checking by means of Logic Meta Programming. PhD
thesis, Vrije Universiteit Brussel, 2000.

[13] K. Mens, I. Michiels, and R. Wuyts. Supporting
software development through declaratively codified
programming patterns. In Proceedings of the 13th
SEKE Conference, pages 236–243. Knowledge Systems
Institute, 2001.

[14] T. Mens and T. Tourwe. A declarative evolution
framework for object-oriented design patterns. In
Proceedings of Int. Conf. on Software Maintenance.
IEEE Computer Society Press, 2001.

[15] H. Ossher and P. L. Tarr. Hyper/J: multi-dimensional
separation of concerns for Java. In Proceedings of
ICSE 2000, pages 734–737, 2000.

[16] Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15(12):1053–1058, 1972.

[17] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible and efficient solution for
aspect-oriented programming in Java. Submitted to
the Reflection Conference, 2001.

[18] A. Rashid. A hybrid approach to separation of
concerns: The story of SADES. In Proceedings of the
3rd International Conference on Meta-Level
Architectures and Separation of Concerns Reflection
2001, volume 2192 of LNCS, pages 231–249. Springer,
2001.

[19] P. L. Tarr, M. D’Hondt, L. Bergmans, and C. V.
Lopes. Workshop on aspects and dimensions of
concerns: Requirements on, and challenge problems
for, advanced separation of concerns. In ECOOP
Workshop reader, volume 1964 of LNCS, pages
203–240. Springer-Verlag, 2000.

[20] R. Wuyts. Declarative reasoning about the structure
of object-oriented systems. In Proceedings of
TOOLS-USA ’98, 1998.

[21] R. Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design
and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.


