
Using Declarative Metaprogramming To Detect

Possible Refactorings

Tom Tourwé Johan Brichau∗ Tom Mens†

{tom.tourwe,johan.brichau,tom.mens}@vub.ac.be
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

1050-Brussel-Belgium

July 19, 2002

Abstract

In this paper, we advocate the use of declarative metaprogramming to
detect violations of important (object-oriented) design guidelines and best
practices. This is particularly useful for detecting when a design should
be refactored, and which refactorings in particular should be applied. As
we will show, a declarative environment incorporating metaprogramming
capabilities is very well suited for detecting such violations and providing
information for possible refactorings.

1 Introduction

Many design guidelines and best practices have been proposed over the years,
with the specific intent of promoting good object-oriented design principles [1,
10]. At the same time, much research has been devoted to identifying refactor-
ings, e.g. high-level transformations, that can help in transforming an inflexible,
lowquality design into a more flexible one [4, 9]. Although some primitive tools
exist [5], recognizing when a design guideline is violated, and when refactor-
ings may thus be necessary, remains a manual process, as is identifying which
refactorings in particular could be used to remedy the situation.

In this paper, we advocate the use of declarative metaprogramming (DMP) [3,
11] to fill in this gap. The declarative nature of DMP allows us to accurately ex-
press design guidelines in a straightforward and intuitive way. Moreover, explicit
metaprogramming enables us to reason about the source code of an application
so as to actually verify whether it does not violate any of those guidelines.

In what follows, we will present an example of how declarative metapro-
gramming can be used to detect defective designs. We will achieve this by using
the SOUL declarative metaprogramming environment [11], both as a medium
to describe the conditions for defective designs, and as a test case for these
conditions.

∗Research assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)
†Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

1



2 Why Declarative metaprogramming

Design guidelines are actually rules that the implementation of an application
should adhere to. Most of these rules are quite simple and can often be expressed
in a straightforward way in natural language. The Law Of Demeter for instance,
is stated as follows: ”an operation O of class C should call only operations of the
following classes, called preferred supplier classes: the classes of the immediate
subparts (computed or stored) of the current object, the classes of the argument
object of O (including the class C itself) and the classes of object created by
O” [6]. Other rules are expressed in quite a similar way [7, 8]. In order to actively
verify such rules, they have to be specified programmatically. This is quite
cumbersome to achieve in current-day standard programming languages, such
as C++ and Java. First of all, these languages are not particularly well suited
to express rules per se. Second, most of the current-day standard programming
languages do not have adequate meta-programming capabilities (with Smalltalk
being the exception that proves the rule).

SOUL on the other hand, is a logic programming language that is tightly
integrated with the standard (Smalltalk) development environment. Logic lan-
guages naturally allow to express rules, by mere definition. Furthermore, the
tight integration allows SOUL to reason about and manipulate programs writ-
ten in Smalltalk, and does make SOUL perfectly well suited for metaprogram-
ming purposes. Moreover, it also means that the SOUL environment is always
synchronized with the development environment. Another advantage of using
SOUL is the declarative nature of the logic paradigm. It has already been shown
that logic programming languages are particularly well suited for metaprogram-
ming, because they allow meta programs to be specified in an intuive way [2].

The SOUL programming language is actually a Prolog-dialect with some
extensions to allow Smalltalk expressions to be evaluated as part of a logic
program. These extensions allow to reify and represent all information from
the Smalltalk image as logic facts. SOUL comes with an extensive library of
logic programs that reason about this information to conclude more high-level
information, such as the existence of design patterns.

3 Detecting Design Guideline Violations

3.1 Inappropriate Interfaces

Good interfaces are extremely important when designing flexible and reusable
object-oriented systems. Any situation in which the interface of a class is inap-
propriate, incomplete or unclear should thus be avoided at all costs.

As a concrete example, consider the AbstractTerm hierarchy depicted in
Figure 1. This hierarchy shows part of the implementation of the SOUL envi-
ronment. As can be observed, the CallTerm, CompoundTerm, SmalltalkTerm
and QuotedCodeTerm classes each provide an implementation for the terms
method, whereas all other classes (including AbstractTerm) do not. This situ-
ation creates a problem when we want to extend the AbstractTerm hierarchy
with a new class. It is not directly clear from the design which subclasses of
AbstractTerm should provide an implementation for the terms method, and
which subclasses should not. A developer confronted with this situation should

2



AbstractTerm

CompoundTerm

Cut

CallTerm
terms

CompoundTerm
terms

SmalltalkTerm
terms

QuotedCodeTerm
terms

NativeClause

Figure 1: An example of an inappropriate interface

thus know exactly what he is doing.
To correct the design, two different solutions are possible. Either an inter-

mediate superclass is inserted between the original superclass and all subclasses
that share the interface. This newly introduced superclass should then provide
the shared interface. Another option is to extend the interface of the original
superclass with the interface shared by the subclasses. This also exposes the
interface to subclasses that did not originally provide it, however, which may
not be desired.

3.2 Problem Statement

The above mentioned problem occurs whenever some (but not all) of the sub-
classes of a class share an interface, that is not provided by that class itself.
Detecting such situation manually is not as straightforward as it may seem,
however. Standard browsers included in current-day programming environments
only offer a local and narrow view of the source code. Developers thus often
lack a more general overview, that would allow them to identify such prob-
lems. Appropriate tool support is thus clearly indispensable, and this is where
declarative metaprogramming comes in.

3.3 Detecting The Problem

Using SOUL, we can easily detect this situation by implementing the following
logic rules.

implementingSubclasses(?superclass,?selector,?subclasses) if
subclassImplements(?superclass,?selector, ?),
not(classImplements(?superclass,?selector)),
findall(?subclass,

subclassImplements(?superclass,?selector,?subclass),
?subclasses).

The implementingSubclasses predicate calculates all subclasses of a given
superclass that implement a particular selector which is not implemented by the
superclass itself. The rule is implemented in terms of two auxiliary predicates,
classImplements and subclassImplements. The latter predicate is implemented
as follows:

subclassImplements(?superclass,?selector,?subclass) if
subclass(?subclass,?superclass),
classImplements(?subclass,?selector)

3



It uses the subclass and classImplements predicates that are part of the li-
brary of logic rules in SOUL that consult the implementation to retrieve the
requested information. The subclass predicate checks whether there exists a
direct inheritance relation between two classes, while the classImplements pred-
icate checks whether a class implements a particular selector.

What remains is verifying whether the set of subclasses that is calculated
by the implementingSubclasses predicate does not contain all subclasses of the
given class. This simply boils down to comparing sets for equality:

inappropriateInterface(?superclass,?selector,?subclasses) if
implementingSubclasses(?superclass,?selector,?subclasses),
not(allSubclasses(?superclass,?subclasses))

We can now use SOUL to detect inappropriate interfaces in our implemen-
tation. Therefore we invoke the following query, which will return the design
violation we mentioned:

if inappropriateInterface([AbstractTerm],?selector,?subclasses)

3.4 Discussion

The above discourse clearly shows that declarative metaprogramming is very
well suited to express the problem of inappropriate interfaces. Moreover, the
rules presented above not only detect the situation of inappropriate interfaces,
but also convey information about the interface that is shared by the subclasses,
and those subclasses themselves. This can prove valuable when a particular
refactoring has to be applied.

Using the above rules, we were able to identify several interface conflicts
in the implementation of the SOUL environment. All reported conflicts were
effectively real conflicts that needed to be solved in order to end up with a
better and more suitable design. The information gathered by the logic rules
was instrumental in applying the necessary refactorings.

We envision a programming environment where several of these ’design
guidelines violations’ can be detected using declarative metaprogramming. De-
pending on the detected violations, a range of refactorings can be proposed to
the developer, who can choose the appropriate one to be applied. This linking
of violations to the correct refactorings remains to be investigated, but once
again, the declarative metaprogramming environment could prove to be ideal
to express such information.

4 Conclusion

In this paper, we have shown the usefulness of a declarative meta-programming
approach for detecting violations of important design guidelines and best prac-
tices. We demonstrated that the declarative nature of such an approach allows
us to define the conditions under which such violations occur in a straightfor-
ward and intuitive way. Moreover, we illustrated that explicit metaprogramming
capabilities are absolutely essential for such an approach.

While we have only shown one, rather simple, example of a design guideline
violation, we believe the approach is general enough to detect all sorts of other
violations as well, even on a much complexer scale. Further experiments in this

4



direction are mandatory, however. It is our firm believe that such an approach
could be a first step towards tool support for detecting not only when a design
should be refactored, but also which particular refactorings it should undergo.

References

[1] Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, 1997.

[2] James R. Cordy and Medha Shukla. Practical metaprogramming. Technical
report, Software Technology Laboratory, Queen’s University, 1992.

[3] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis,
Departement Informatica, Vrije Universiteit Brussel, 1998.

[4] Martin Fowler. Refactoring: Improving the design of existing code. Addison
Wesley Longman, 1999.

[5] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. Automated sup-
port for program refactoring using invariants. In Proc. Int’l Conf. Software
Maintenance, pages 736–743. IEEE Computer Society Press, 2001.

[6] Karl Lieberherr and Ian Holland. Assuring good style for object-oriented
programs. IEEE Computer Society, pages 38–48, 1989.

[7] Barbara H. Liskov and Stephen N. Zilles. Programming with abstract data
types. SIGPLAN Notices, 9(4):50–59, 1974.

[8] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
1988.

[9] W.F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, 1992.

[10] Arthur J. Riel. Object-Oriented Design Heuristics. Addison-Wesley Pub-
lishing Company, April 1996.

[11] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis, De-
partement Informatica, Vrije Universiteit Brussel, 2001.

5


