
Using a logic language to express cross-cutting through dynamic joinpoints.

Kris Gybels∗

Programming Technology Lab - Vrije Universiteit Brussel
kris.gybels@vub.ac.be

Abstract

Aspect languages are generally comprised of a cross-
cut language and an action language, with the cross-
cut language describing joinpoints in a cross-cut pro-
gram. It is desirable for the cross-cut language to be
powerful enough so that cross-cuts and actions can be
clearly separated and so that the cross-cut language is
extendible with new types of joinpoints. The latter is es-
pecially needed for languages such as Smalltalk where
there are few programming constructs and programming
conventions are common practice. Therefore we present
a cross-cut language which is based on a logic meta lan-
guage and which uses a dynamic joinpoint model.

1. Introduction

An aspect language is a programming language
that provides constructs for modularizing concerns that
cross-cut a system’s modularity in a principled way [8].
The idea is to allow for the separate implementation
of cross-cutting concerns, which are also known as as-
pects, and the main modules of a system. This improves
the overall comprehensibility and evolvability of a sys-
tem’s implementation. Combining aspects and modules
is done by an aspect weaver.

Aspect languages have evolved from being concern-
specific to concern-generic [7]. Concern-generic aspect
languages have the benefit that a single aspect language
can be used to capture many different concerns. With
concern-specific languages a new aspect language and
weaver need to be developed for every new type of con-
cern. Concern-specific languages have the benefit how-
ever of providing constructs which capture a concern
more clearly than is possible with a concern-generic lan-
guage.

Many concern-generic aspect languages are based on
a low-level approach where an aspect language consists
of two separate languages: across-cut languageand an
action language. The cross-cut language is used to de-
scribe points in modules that are cross-cut by an aspect.
These points are also refered to as joinpoints, because

∗Research Assistant of the Fund for Scientific Research Flanders,
Belgium (F.W.O.)

they are the points at which the weaver will join the as-
pects and modules. The action language then describes
the aspect’s influence on the modules at those joinpoints.

In order for a low-level aspect language to be truly
generic, both the cross-cut language and action language
it consists of should be generic. Making both of the lan-
guages generic and not just one of either improves the as-
pect programmer’s ability to clearly separate cross-cuts
and actions. We will not go into this any further as the
benefit of such separation was previously pointed out by
Douence et al. [9].

In this paper we concentrate on the genericity of the
cross-cut language, as action languages are already often
based on an existing generic programming language. We
advocate the use of a cross-cut language based on logic
programming to achieve genericity. Logic programming
languages have two properties that make it interesting for
expressing cross-cutting. The first is that logic languages
have a declarative or descriptive nature: cross-cutting is
preferably described rather than computed, which makes
it easier to read an aspect. Descriptive languages have
been used in a number of low-level aspect languages. In
most cases however, genericity of the language was lim-
ited by the fact that it was not Turing Complete. This is
the second interesting property of logic languages in that
they combine declarativeness with Turing Completeness.
This allows to perform arbitrary computation - or in logic
termsreasoning- in order to determine points of cross-
cutting.

Genericity in the cross-cut language also depends on
the joinpoints the aspect weaver provides. Diverse types
of joinpoints have so far been used, but in general a dis-
tinction can be made between static and dynamic join-
points. Static joinpoints are defined in terms of points
in a module’s source code, while dynamic joinpoints are
defined in terms of points in a module’s execution. An
example illustrating the difference is the use of method
definitionsversus methodexecutionsas joinpoints. The
use of dynamic joinpoints allows for more powerful
cross-cut expressions as data that is only available at run-
time, such as arguments passed to a method, can be used
in the description of cross-cutting.

We constructed an aspect language for Smalltalk to
explore the ideas described above. The language was
named Andrew [3]. Andrew’s joinpoint model and core
cross-cut language are based on the ones found in As-

1

pectJ1 [5].
The particular logic language we used in our ap-

proach is a logicmetalanguage. The meta aspect of the
language refers to its capability for reasoning about pro-
grams. We show how this property further enhances the
genericity of the cross-cut language by showing how it
can be used to extend the cross-cut language with new
types of joinpoints without having to change the weaver.

In the remainder of this paper we will first explain
the cross-cut language. Then some experiments with the
language are shown. In the final sections we discuss
work that is related to ours, future work that we need
to do and our conclusions.

2. Expressing cross-cutting in Andrew

In this section we introduce our cross-cut language
which is embedded in a logic language. First, the join-
point model of the language is briefly explained. Then
the basic primitives of the language and how they are
used to write cross-cut expressions are described.

2.1. The joinpoints

We have used a dynamic joinpoint model where join-
points are key events in the execution of a program writ-
ten in an OO language. We specifically used Smalltalk
as the OO language. There are a few different types of
joinpoints: the sending of a message, the reception of a
message by an object, the accessing and updating of the
state of an object and the execution of Smalltalk blocks.

Each joinpoint has some relevant, possibly run-time,
data associated with it. A message reception joinpoint
for example is associated with the name of the received
message and the arguments that are passed with the mes-
sage.

2.2. The language

2.2.1 The logic language

The particular logic language we used is QSOUL [11,1],
a simple variant of PROLOG. There are a few syntac-
tical differences between the two. Variable names in
QSOUL start with a question mark rather than a capi-
tal letter. Lists are written using pointy brackets rather
than square brackets. Also the syntax for rules is a bit
different as can be noticed in the examples later on.

The QSOUL language was specifically designed for
doing meta programming about Smalltalk programs. To
this end QSOUL uses a language symbiosis between it-
self and the Smalltalk system in which it is implemented.
Basically this allows Smalltalk expressions to be embed-
ded in logic expressions, which is done by putting the
expression between square brackets. Smalltalk objects
can also be bound to logic variables. The mechanism

1AspectJ version 0.8

is further explained in [11]. The example uses of this
mechanism in this paper are simple enough to be under-
stood right away.

There is a rich set of standard predicates for QSOUL
which are designed to reason about Smalltalk programs.
We will introduce a few of these predicates which will
be used in the examples later on.

• classNamed(?class, ?name)
This predicate associates a class object with it’s
name.

• methodStatement(?method, ?statement)
This predicate is used to describe that ?statement
must be a statement from a method. We do not
go into the details of how Smalltalk methods and
statements are represented in QSOUL, it suffices to
know they can be manipulated using some of the
predicates presented here and in the next section.

• messageSendStatement(?statement, ?receiver,
?message, ?arguments)
This predicate can be used to extract the receiver
expression, the message and the expressions for
the arguments from a message send statement. The
message is simply a Smalltalk symbol representing
a selector, the arguments is a list of Smalltalk
expressions.

• classMethodInProtocol(?class, ?selector, ?protocol)
Describes that a class method with the selector ?se-
lector from a class is associated with a protocol
(also known as method category) in that class.

• instanceMethodInProtocol(?class, ?selector, ?pro-
tocol)
Similar to the predicate above, but for instance
methods rather than class methods.

2.2.2 Expressing cross-cutting

The core of the cross-cut language consists of a few ba-
sic logic predicates. These are used to write cross-cut
expressions, which are simply logic queries about join-
points. This is explained in this section in more detail.

For each type of joinpoint there is a primitive predi-
cate. All of these predicates take at least one argument:
the joinpoint. Additional arguments are used for the data
that is associated with joinpoints. A summary of the
predicates is given below:

• reception(?jp, ?selector, ?arguments)
Used to express that ?jp is a message reception join-
point, where the message with selector ?selector is
received with the arguments in the list ?arguments.

• send(?jp, ?selector, ?arguments)
The joinpoint ?jp is a message send joinpoint where
the message with selector ?selector is sent and
passed the arguments in the list ?arguments.

• reference(?jp, ?varName, ?value)
The joinpoint ?jp is a reference joinpoint where the
variable with name ?varName is referenced at the
time it has the value ?value.

• assignment(?jp, ?varName, ?oldValue, ?newValue)
The predicate used for assignment joinpoints,
where ?varName is the name of the variable being
assigned, ?oldValue is the value of the variable be-
fore the assignment and ?newValue is the value of
the variable after the assignment.

• blockExecution(?jp, ?args)
The joinpoint ?jp is a Smalltalk block execution
joinpoint, where ?args is a list of arguments that
were passed to the block.

There are also a few predicates which relate join-
points to their execution context or their corresponding
location in the source code:

• associatedJoinpoint(?jp, ?statement)
This predicate provides for a link between
QSOUL’s capabilities for reasoning about source
code and the dynamic joinpoint model used by our
cross-cut language. Basically it associates a state-
ment with the execution points of that statement.

• within(?jp, ?class, ?selector)
As all executable code in Smalltalk is written in
methods, all joinpoints occur in the context of a
method. This predicate associates joinpoints with
the class and the selector name of the methods in
which they occur.

• inObject(?jp, ?object)
All code is also executed in the context of some ob-
ject. This predicate associates joinpoints with the
object in which they occur.

As is always the case in logic programming, the pred-
icates can be used in multiple ways. By specifying the
values for the data arguments we can pose conditions on
joinpoints. By using unbound variables as arguments to
the predicates we can extract the data values associated
with a joinpoint.

We stress that in contrast with the predicates in the
previous section which deal with a program in terms of
its source code, the predicates on joinpoints deal with a
program in terms of its execution. For example with the
messageSendStatement predicate ?arguments is a list of
Smalltalkexpressions, while in the reception predicate
?arguments is a list of actualobjectspassed around at
runtime.

Cross-cut expressions are written as logic queries
about joinpoints. These logic queries thus need to make
use of the primitive predicates on joinpoints. Other logic
predicates can ofcourse also be used. When resolved,
the query binds a specified variable to joinpoints which
are then said to match the query. An example cross-cut
expression is:

?jp matching
reception(?jp, ?msg, ?args),
member(?msg, <[#test:], [#bla:]>)

The cross-cut expression above can be read in natural
language as: “all reception joinpoints where the received
message is one oftest: or bla: ”.

3. Experiments performed

In this section we discuss some experiments per-
formed with the cross-cut language presented in the pre-
vious section. The first two experiments show that our
approach allows to easily extend the cross-cut language
with new types of joinpoints whose definition depends
on the ability to recognize the use of Smalltalk program-
ming conventions. A third experiment shows the use of
dynamic information in cross-cut expressions.

3.1. New types of joinpoints

A general problem in writing an aspect weaver for the
Smalltalk programming language lies in the fact that the
language has few different primitive constructs. Rather,
Smalltalk offers the programmer a few but very flexi-
ble constructs from which more specific constructs are
built simply by use of programming conventions. An
example is the lack of the constructor construct which is
known by Java and C++ programmers. Smalltalk pro-
grammers rather use the convention of using a combina-
tion of a class method and instance method to implement
the same object creation and initialization concept. The
two methods are typically tagged by putting them in the
method categories ’instance creation’ and ’initialization’
respectively.

Extending the weaver so that it can provide more
types of joinpoints may require the weaver to become
aware about Smalltalk programming conventions. Sup-
pose we wish to add a new primitive type of joinpoint to
the cross-cut language presented earlier: variable initial-
ization joinpoints. These are similar to variable assign-
ment joinpoints, the difference being that they occur in
the context of an initialization method execution. In or-
der for our weaver to recognize this situation, it needs to
be able to recognize the use of the constructor program-
ming convention.

In principle, the recognition of programming conven-
tions can be built into the weaver. The problem however
is that programming conventions are open to change or
personal preference, so the recognition of these program-
ming conventions must be open to change as well.

We will now demonstrate how our cross-cut language
can be used to extend the cross-cut language with two
new types of joinpoints from within the language, so that
no hard-coded extension to the weaver is needed.

3.1.1 Variable initialization joinpoints

The first new type of joinpoints we will be adding are
the variable initialization joinpoints. Adding a new type
of joinpoint requires defining a new logic predicate. A
definition in natural language was given above, which
can be easily translated to a logic rule:

Rule initialization(?jp, ?class, ?varName, ?initVal) if
assignment(?jp, ?varName, ?preInitVal, ?initVal),
within(?jp, ?class, ?selector),
instanceInitializationMessage(?class, ?selector)

The first condition in the rule serves to ensure that ?jp
is indeed an assignment joinpoint, while the second and
third rule deal with recognizing the constructor program-
ming convention. The within predicate is used to get at
the method in whose context the assignment occurs. The
instanceInitializationMessage predicate is then used to
check whether this method is an initialization method.
We are left to define this last predicate:

Rule instanceInitializationMessage(?class, ?selector) if
classMethodInProtocol(?class, ?selector,

[’instance creation’]),
instanceMethodInProtocol(?class, ?selector,

[’initialization’])

The above should be fairly straightforward to under-
stand.

Note that it is easy to allow for different variable ini-
tialization conventions in the same application. Suppose
we are reusing some code written by someone who uses
a slightly different convention, namely to name the in-
stance creation protocol ’creation’. We can handle this
situation by simply defining a second rule for the instan-
ceInitializationMessage predicate inadditionto the first:

Rule instanceInitializationMessage(?class, ?selector) if
classMethodInProtocol(?class, ?selector,

[’creation’]),
instanceMethodInProtocol(?class, ?selector,

[’initialization’])

Ofcourse if the variation on the convention is more
involved than a simple renaming of protocols we would
have to define a second rule for the initialization predi-
cate to express the other convention.

3.1.2 Exception handling joinpoints

The second new type of joinpoints are the exception han-
dling joinpoints. In Smalltalk, exception handling is
done through the use of the on:do: message. The mes-
sage can be sent to a Smalltalk block which is then exe-
cuted. If an exception is thrown while the block is exe-
cuting and the class of this exception is the one specified
as the argument to the on: part of the on:do: message,
then the block given as argument to the do: part will be
executed. Note though that this convention is the one

specified by the ANSI, there are other conventions for
exception handling in Smalltalk as well2.

Rule exceptionHandlerExecution(?jp, ?exClass, ?exObject) if
methodStatement(?method, ?statement),
messageSendStatement(?statement, ?receiver, [#on:do:],

<?exClassName, ?blockStatement>),
associatedJoinpoint(?jp, ?blockStatement),
blockExecution(?jp, <?exObject>),
classNamed(?exClass, ?exClassName)

The first condition in the above rule simply states that
we want the variable ?statement to be bound to a state-
ment in some method. The second condition then states
that the statement must be a message send statement in
which the message on:do: is sent, the expressions for the
arguments are also bound to some variables. The third
condition transforms from a statement to a joinpoint us-
ing the associatedJoinpoint predicate, in the case of a
block creation expression the associated joinpoint is the
point in the program’s execution where that block is ac-
tually executed. Finally the fourth and the last conditions
simply get some extra information about the exception
being handled: the class of the exception and the actual
exception object that was thrown.

3.2. Dynamic joinpoints

In the following rather simple example we show the
use of dynamic information in the expression of cross-
cutting. The example encapsulates a constraint checking
concern in a banking application. A typical constraint on
a bank account is that one cannot withdraw more money
than is actually on the account. In implementation terms
this means that we want to generate an error at those
points in the program’s execution where the withdraw:
message is sent to an instance of the Account class where
the amount argument of the message is greater than the
account’s balance. These points can be easily captured
in our cross-cut language:

?jp matching
reception(?jp, [#withdraw:], <?amount>),
inObject(?jp, ?account),
greaterThan(?amount, [?account balance])

The first condition of the cross-cut captures the join-
points where a withdraw: message is sent to some object,
it also extracts the single argument that is sent from the
joinpoint. The second condition gets the object in whose
context the reception joinpoint occurs, which would be
the account object receiving the message. The final con-
dition simply states that the withdrawn amount should
be greater than the account’s balance. Notice the use of a
Smalltalk expression to get the account object’s balance
in the final condition.

2Before exception handling was standardized, different Smalltalk
vendors provided different exception handling mechanisms. Some still
support their own mechanism in addition to the standardized one.

While we restrict our attention in this paper to the
cross-cut language, we will show here how the above
cross-cut expression is used in combination with an ac-
tion in our aspect language. Actions consist of Smalltalk
code that is to be executed before or after joinpoint spec-
ified by a cross-cut expression.To generate an error at
the joinpoints described by the cross-cut expression we
would write:

before ?jp matching
reception(?jp, [#withdraw:], <?amount>),
inObject(?jp, ?account),
greaterThan(?amount, [?account balance])

do
Smalltalk error: ’withdrawing more than is allowed’

The above says that before3 the joinpoints that match
the cross-cut expression are actually executed, an error
is generated.

4. Related work

This section reports on related work. We first discuss
the effect of the use of dynamic information in cross-cut
expressions on the ability to clearly separate cross-cuts
and actions. Next an overview of the use of logic meta
programming in aspect-oriented programming is given.

4.1. Separation of cross-cuts and actions

As stated in the introduction the core of our cross-cut
language and the joinpoint model are based on the ones
found in AspectJ [5]. Until recently AspectJ did not al-
low the use of dynamic information on joinpoints in the
cross-cut expressions, but it could be used in the action
language. We note that the newest version of AspectJ4

has been extended to allow for the use of runtime infor-
mation in the description of cross-cutting as well.

When one tries to encapsulate the withdrawal con-
straint in the banking application using the older As-
pectJ, part of the cross-cut will have to be be imple-
mented in the action language. This is because the com-
paring of the account’s balance versus the amount be-
ing withdrawn involves values that are only available at
runtime and also because the cross-cut language has no
means of comparing values.

The phenomenon of having cross-cut expressions be-
ing expressed in the action language due to the limita-
tion of a cross-cut language was previously pointed out
by Douence et al. [9] in the context of an e-commerce
application. They also argued in favor of more clearly
separating cross-cuts and actions by making the cross-
cut language more sophisticated. We have shown an-
other example of how an existing cross-cut language can
be made more expressive.

3A replace semantics would be better here, but is not currently
available in our system.

4Since AspectJ version 1.0alpha1, which introduced the if pointcut.

4.2. Aspect-Oriented Logic Meta Programming

A few different researchers have been working on the
use of logic meta programming in the field of aspect-
oriented programming (AOLMP). The focus of each of
these works is however different. This difference is re-
lated to the different usages of logic meta programming
itself, we give a brief overview of AOLMP to give the
reader some insight:

Kris De Volder constructed the TyRuBa logic meta
programming language with the goal of using it to gen-
erate (Java) programs. His application of this system
to AOP [10] focused on using it as a general frame-
work for implementing aspect weavers as these are often
implemented as source-to-source transformers. He also
showed that LMP is a good formalism for expressing as-
pects.

The QSOUL/AOP effort is another application of
LMP to AOP researched by Johan Brichau. His work
extends that of De Volder by exploring further the use of
LMP for the construction of domain-specific aspect lan-
guages and the problem of interaction between different
aspects. In his QSOUL/AOP system aspect languages
can be rapidly constructed by implementing a weaver
which reduces expressions in the new language to as-
pects in an existing language. This results in the con-
struction of a tree of aspect languages. Besides this ver-
tical combination the system also allows for using logic
rules to express the horizontal combination of aspects to
solve the aspect interaction problem.

The author’s work so far has been concentrated on
the construction of the one specific aspect language pre-
sented in this paper. This work has also focused more on
the use of LMP to reason about and extract information
or patterns from the program that is cross-cutted to be
used in the expression of cross-cutting than the other two
researchers have. Though this research has been done in-
dependently from QSOUL/AOP it should be possible to
combine the two by implementing Andrew as one of the
languages in the QSOUL/AOP language tree. Plans to
perform this experiment are underway.

5. Future work and points of discussion

In this section we report on possible areas of future
work for our research. These are topics that can serve as
points of discussion on the workshop.

The most important area of research we currently en-
vision is how our aspect language can be used to fur-
ther decouple aspects from the programs they cross-cut.
Kersten and Murphy previously stated that decoupling
an aspect from the components it cross-cuts makes the
aspect reusable accross applications [4]. In studying
AOP we have unfortunately come accross a problem
we have dubbed the ”enumeration problem”. Points of
cross-cutting do not just occur at random but are gener-
ally related by some pattern. However when a cross-cut

language lacks the mechanisms needed to express this
pattern one has to resort to simple enumeration of oc-
curences of that pattern in a cross-cut component. This
obviously couples the aspect to that specific component.
An example of this problem can be found in a publica-
tion by Lippert and Lopes [6]. In this paper we presented
a few examples of the use of LMP to express patterns in
code. The strength of LMP in this area has been exten-
sively demonstrated before [11]. However this needs to
be researched further as the link to AOP presents some
unresolved questions: such as how to effectively make
the aspects reusable or how to handle patterns from slip-
ping through the detection rule. This topic is discussed a
bit more extensively in chapter 7 of the author’s licenti-
ate’s dissertation [3].

The use of dynamic joinpoints has so far not been
fully explored. While demonstrated in this paper as
allowing a clearer separation of actions and cross-cuts,
the use of dynamic joinpoints also applies to the de-
coupling point of the previous paragraph: dynamic join-
points present more information from components to as-
pects than static joinpoints do so they make it easier to
express a pattern. However we currently seek more ex-
amples to demonstrate this.

A final point to investigate is the use of our approach
in the context of another cross-cut language than As-
pectJ’s. We think that any cross-cut language can po-
tentially benefit from more powerful pattern matching
constructs.

6. The full system

We note again that we have constructed a complete
aspect language for Smalltalk but have concentrated in
this paper on its cross-cut language. The action language
of the aspect language is simply Smalltalk itself. The
full aspect system, including a simple GUI environment,
is available on the web [2].

7. Conclusion

In this paper we presented a cross-cut language based
on a logic meta language and on a dynamic joinpoint
model, where runtime information about joinpoints can
be used in the description of cross-cutting. The use of a
meta language allows one to easily extend the joinpoint
model with new types of joinpoints whose definition is
open to change and without the need to adapt the as-
pect weaver. We showed some examples of adding new
joinpoints whose definition involved recognizing the use
of programming conventions. Because of the use of
a declarative language the definition of the new join-
pointsdescribesthe programming convention rather than
how it is recognized. Finally, we showed how dynamic
joinpoints aid in clearly separating cross-cut expressions
from actions.

References

[1] J. Brichau and W. D. Meuter. Qsoul manual (draft).
http://prog.vub.ac.be/poolresearch/qsoul/QSOULManual.pdf.

[2] K. Gybels. Andrew aop website.
http://prog.vub.ac.be/˜kgybels/andrew/.

[3] K. Gybels. Aspect-Oriented Programming using a Logic
Meta Programming language to express cross-cutting
through a dynamic joinpoint structure. Licentiate’s the-
sis, Vrije Universiteit Brussel, 2001.

[4] M. Kersten and G. C. Murphy. Atlas: A case study in
building a web-based learning environment using aspect-
oriented programming. InProceedings of the ACM Con-
ference on Object-oriented Programming, Systems, Lan-
guages, and Applications, pages 340–352. ACM, 1999.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Grisworld. Getting started with As-
pectJ.

[6] M. Lippert and C. V. Lopes. A study on exception detec-
tion and handling using aspect-oriented programming.
In Proceedings of the 22nd International Conference on
Software Engineering. ACM Press, 2000.

[7] W. D. Muynck. Aspect-Oriented Programming: a survey
of current research. State-of-the-art article submitted for
the course Capita Selecta from Computer Science in One
Year Master of Science in Computer Science EMOOSE
1999-2000, 2000.

[8] X. PARC. Aspect-oriented programming faq.
http://www.lifl.fr/˜renaux/recherche/aop/faq.html.

[9] M. S. Ŕemi Douence, Olivier Motelet. Sophisticated
crosscuts for e-commerce. InProceedings of the work-
shop on Advanced Separation of Concerns, 2001.

[10] K. D. Volder. Aspect-oriented logic meta programming.
In Proceedings of the Second International Conference
on Metalevel Architectures and Reflection, volume 1616
of Lecture Notes in Computer Science. Springer-Verlag,
1999.

[11] R. Wuyts.A Logic Meta Programming Approach to Sup-
port the Co-Evolution of Object-Oriented Design and
Implementation. PhD thesis, Vrije Universiteit Brussel,
2001.

	. Introduction
	. Expressing cross-cutting in Andrew
	. The joinpoints
	. The language
	The logic language
	Expressing cross-cutting

	. Experiments performed
	. New types of joinpoints
	Variable initialization joinpoints
	Exception handling joinpoints

	. Dynamic joinpoints

	. Related work
	. Separation of cross-cuts and actions
	. Aspect-Oriented Logic Meta Programming

	. Future work and points of discussion
	. The full system
	. Conclusion

