
ECOOP 2002 Workshop Report:
Sixth Workshop on Tools and Environments for

Learning Object-Oriented Concepts

Organizers
Isabel Michiels1, Jürgen Börstler2 and Kim B. Bruce3

Edited by
Isabel Michiels, Jürgen Börstler and Kim B. Bruce

1 PROG, Vrije Universiteit Brussel, Belgium
2 Ume̊a University, Sweden

3 Williams College, Massachusetts, USA

Abstract. The objective of this workshop was to discuss current tech-
niques, tools and environments for learning object-oriented concepts and
to share ideas and experiences about the usage of computer support to
teach the basic concepts of object technology. Workshop participants
presented current and ongoing research.
This was the sixth workshop in a series of workshops on learning object-
oriented concepts.

1 Introduction

The primary goal of learning and teaching object-oriented concepts is to enable
people to successfully participate in an object-oriented development project.
Successfully using object-oriented technology requires a thorough understanding
of basic OO concepts. However, learning these techniques, as well as lecturing
about these concepts has proven to be very difficult in the past. Misconceptions
can occur during the learning cycle and the needed guidance cannot always be
directly provided.
The goal of this workshop was to share ideas about innovative teaching ap-
proaches and tools to improve the teaching and learning of the basic concepts of
object technology rather than teaching a specific programming language. Teach-
ing tools could be either tools used in environments or specific environments for
learning OO, as well as any kind of support for developing OO learning applica-
tions themselves.
In order to develop useful results regarding the issue of understanding object-
oriented concepts, the workshop wanted to focus on the following topics:

– approaches and tools for teaching design early;
– intelligent environments for learning and teaching;
– frameworks/toolkits/libraries for learning support;



– microworlds;
– different pedagogies;
– top-down vs. bottom-up approach;
– design early vs. design late;
– topic presentation issues;
– frameworks/toolkits for the development of teaching/learning applications .

This was the sixth in a series of workshops on issues in object-oriented teach-
ing and learning. Previous workshops were held at OOPSLA’97 [1, 2], ECOOP
’98 [3], OOPSLA’99 [4], ECOOP’00 [5] and OOPSLA ’01 [13], and focused on
project courses, classroom examples and metaphors, and tools and environments.

2 Workshop Organization

This workshop was designed to gather educators, researchers and practition-
ers from academia and industry who are working on solutions for teaching basic
object-oriented concepts. To get together a manageable group of people in an at-
mosphere that fosters lively discussions, the number of participants was limited.
Participation at the workshop was by invitation only. Eighteen participants were
selected on the basis of position papers submitted in advance of the workshop.

The workshop was organized into two presentation sessions (all morning),
two working group sessions (afternoon) and a wrap-up session, where all work-
ing groups presented their results. The presentations were split up in a long
presentation session, where more elaborate papers with demonstrations were
presented, and a short presentation session, where the other participants could
present their position about the workshop topic. Table 1 summarizes the details
of the workshop program.

To gather some input for the working group sessions participants were asked
before the workshop to think about some controversial topics in teaching object-
oriented concepts.

3 Summary of Presentations

This section summarizes the main points of all workshop presentations. More
information on the presented papers can be obtained from the workshop’s home
page [14].
Glenn D. Bank (Lehigh University, USA) gave an overview on the usage of
the multimedia framework CIMEL to supplement computer science courses. To
show how CIMEL supports learning-by-doing by means of interactive quizzes
and constructive exercises, Glenn gave a short demonstration of a module on
Abstract Data Types (ADTs). The module contained advanced multiple-choice
questions, where help and feedback is provided by multimedia personae. Fur-
thermore the module supports the successive construction of a concrete ADT by
pointing-and-clicking. A case study with 72 students showed that the multimedia
contributes significantly to objective learning and helps students design ADTs



Table 1. Workshop program

Time Topic

9.25 am WELCOME NOTE
9.30 am Teaching Abstract Data Type Semantics with Multimedia presented by

Glenn D. Blank
10.00 am Thinking in Object Structures: Teaching Modelling in Secondary Schools

presented by Carsten Schulte
10.30 am Contract-Guided System Development by Vasco Vasconcelos
11.00 am COFFEE BREAK
11.30 am Supporting Objects as An Anthropomorphic View at Computation or

Why Smalltalk for Teaching Objects? presented by Stephane Ducasse
11.45 am Extreme Programming Practice in the First Course presented by Joseph

Bergin
12.00 am Teaching Encapsulation and Modularity in Object-Oriented Languages

with Access Graphs presented by G. Ardourel
12.15 am A New Pedagogy for Programming presented by Jan Dockx
12.30 am Teaching Constructors: A Difficult Multiple Choice presented by Noa

Ragonis
12.45 am PIIPOO: An Adaptive Language to Learn OO Programming presented

by R. Pena
1.00 pm LUNCH BREAK
2.30 pm A Measure of Design Readiness: Using Patterns to Facilitate Teaching

Introductory Object-Oriented Design presented by Tracy L. Lewis
2.45 pm Teaching Object-Oriented Design with UML - A Blended Learning Ap-

proach by Ines Grützner
3.00 pm Split into working groups
3.05 pm First Working group session
4.00 pm COFFEE BREAK
4.30 pm Second Working group session
5.30 pm Wrap-up session

to solve a problem. Currently modules on Inheritance and ADTs are available.
Materials for a CS0 course are under development. Glenn noted as a drawback
that designing new multimedia lectures is expensive. Topics must therefore be
chosen carefully to make its use cost effective.
Carsten Schulte (University of Paderborn, Germany) reported on results from
the LIFE3 projects, which investigates teaching concepts for object oriented
programming in secondary schools. He proposed an apprentice-based learning
approach that combines top-down and bottom-up teaching techniques with ac-
tive learning. UML is used as a visual programming/ modelling language. Their
approach is supported by CRC card modelling and FUJABA, an environment
that supports static and dynamic modelling using UML ([KNNZ 00]). Consis-
tent models can be directly executed from within FUJABA by means of complete
Java code generation. This allows teachers and learners to concentrate on object-
oriented concepts and the modelling of objects and their interactions. Executable
models are used early on to support active learning. Carsten mentioned the ab-



sence of source code as the major advantage of their approach. Students learn to
think in object structures and are able to communicate design/ modeling ideas
in terms of objects and their interaction. They talk objects and concepts, not
code. Preliminary results from an empirical study are very promising.

Vasco Vasconcelos (University of Lisbon, Portugal) reported on a three-course
sequence focusing on design-by-contract and quality (here: correctness). Each
course is accompanied by a group project. Pre- and postconditions are embed-
ded into Java code (@pre/@post) and tools are used to generate Java code
monitoring the assertions.
In their first course students are introduced to the basic concepts of impera-
tive languages, plus objects and classes. Their second course focuses on (formal)
correctness proofs. Object-oriented analysis and design, inheritance and poly-
morphism are delayed until the last course in the sequence.
The main drawback of this approach is that students have difficulties in doing
analysis and design for problems involving more than a couple of entities. How-
ever, students are now able to reason about algorithms within the context of
more complex systems than before. Vasco noted that students run quite early
into limitations of the specification language. He also highlighted the importance
of tools to monitor assertions while programs are running. The tools currently
available are mostly immature and not aimed at undergraduate students.

Stéphane Ducasse emphasized in his talk that a language for teaching object-
oriented programming should support the anthropomorphic metaphor promoted
by this paradigm. He demonstrated that all the cultural aspects of the Smalltalk
language, i.e., the vocabulary and the syntax, fully support the object metaphor
of objects sending and receiving messages. The syntax of Smalltalk allows one
to read code as a natural language.
In addition, he stated that also the programming environment should support
the metaphor. He showed that Smalltalk environments offer an important prop-
erty they named liveness or object proximity that promotes the anthropomorphic
perception of objects. By providing excerpt from a forth coming book, he showed
how Squeak with the Morphic framework reinforces this ability to perceive ob-
jects as living entities [15, 16].

Joseph Bergin (Pace University, USA) discussed the applicability of eXtreme
Programming (XP) practices in introductory computer science courses. His in-
terests were not in XP per se, but in good practices and pedagogics to improve
teaching.
His experiences show that most XP practices can be applied in some form in in-
troductory courses. However this requires some changes to course management.
Teachers must encourage students to work together (pair programming) and pro-
vide assignments that can be developed incrementally, embracing correction and
re-grading (small releases, continuous integration and refactoring). Furthermore
the teacher must be available all day for questions for example by means of an
interactive web site (on-site customer). Planning is supported by time recording
in small notebooks á la PSP (planning game). Test first programming is sup-



ported by the tool JUnit [12], which is introduced at the beginning of the course.
Other XP practices are more straightforward.

Gilles Ardourel started his talk by pointing out several issues one must face
when teaching object-oriented languages: they are evolving fast, provide only in-
formal documentation and can be quickly obsolete. He believes that even when
teaching a specific language, you can prepare your students to changes and give
them a broader view on languages by using language-independent notations to
describe language mechanisms.
The author encountered these issues when teaching access control mechanisms
in statically typed class-based languages. These mechanisms manage implemen-
tation hiding and define interfaces adapted to different client profiles. At his
university, they use access graphs as a language-independent notation for teach-
ing encapsulation and modularity in object-oriented languages.
In access graphs nodes represent classes or a set of classes, and arrows (labelled
by sets of properties) represent accesses from one node to another. They ex-
plained code examples with graphs of allowed accesses in a class hierarchy, then
they used graphs of accesses allowed by an access control mechanism to describe
the mechanisms.
This notation has shown to provide a clear and unambiguous view on access
control, and helped students in understanding the mechanisms. They discussed
the definitions of the mechanisms and the implication on their code, asked for
comparisons with other languages, and provided more feedback. They learned
access control easily with some examples about implementation hiding, modu-
larity or substitutability.
Finally, he concluded by stating that he advocates the language-independent
description of OOPL mechanisms (thus introducing language design topics in a
programming course) and the use of visualization techniques for improving OO
teaching.

Jan Dockx explained a new pedagogy for programming used at the Catholic
University of Louvain, Belgium. The course is mainly based on good Software
Engineering Practices as discussed in the contract paradigm by B. Meyer, ex-
tended with behavioral subtyping. Java is used as the example language, but
the presenter emphasized that object-oriented concepts are far more important
and independent of any given language. In the past, they had a more traditional
approach, with first a course on the science of programming, followed by an
algorithms and data structure course.

Noa Ragonis’ talk started by addressing the difficulties that arise when teach-
ing constructors in object-oriented programming (OOP). She presented different
structures of declarations for constructors, their semantic context, their influence
on programming, and aspects of students’ comprehension. They found that the
version of declaring a constructor by initializing all attributes from parameters
is preferred, even though it seems difficult to learn. Other simpler styles caused
serious misconceptions with the students.
She pointed out that instantiation is a central concept because it parallels exis-
tence of an object in the real world, a metaphor that is often used in teaching.



Constructors and instantiation are complex concepts, which are difficult to learn
and teach, but we can’t avoid them and talk about objects without talking about
their instantiation. A further complication arises in the instantiation of a class
that includes attributes of another class.
From their experience and research in teaching OOP to novices the authors
found that using the professional style of declaring a constructor to initialize
attributes from parameters, allows them to emphasize the following good OOP
principles:

– The constructor is very important, so it is better to expose it than to conceal
it,

– Initializing an object with values for its attributes is more in accordance
with the real world,

– Creation of simple objects before creation of composite class objects is also
more in accordance with the real world,

– Initializing values to attributes in the constructor method avoids access to
default values,

– In OOP, you have to learn parameters very early (for mutators), so the
parameter mechanism in these paradigms is not an extra demand,

– Assigning values to parameters in each instantiation emphasizes the creation
of different objects with the same or different values,

– Learning this constructor pattern in simple classes makes it easier to un-
derstand composite classes, and to understand that their attributes are the
objects and not the attributes of the objects.

Rosalia Pena talked about their use of a pedagogical language, called PI-
IPOO, that is used throughout the curriculum for teaching any programming
paradigm, thus a language that evolves when teaching another paradigm. Their
aim is to minimize the preoccupation of the student with semantic/syntactic
details that demand a new language study while one is acquiring the tools of
the new paradigm. This evolution of the pedagogical language reinforces the di-
achronic conception of the programming constructors, providing continuity. So,
PIIPOO keeps some programming constructors from Pascal, is OO compatible,
adapts and/or removes other constructors, and incorporates new ones required
for the OO paradigm.
Moreover, their language drives the novice to use properly the OO environment,
avoiding misunderstandings. PIIPOO undertakes so few syntactic and semantic
changes as possible to deal with the new way to tackle problem solving,allowing
a better concentration on concepts first.
The presenter concludes that once the students’ mind is set on the OO world,
it is easier to undertake the study of a commercial language, to understand its
peculiarities and have a better understanding of the language characteristics.

Tracy Lewis talked about a research program to tackle the problem of teaching
introductory object-oriented design. A design readiness aptitude test has been
developed to measure the cognitive state where one is able to understand design
abstractly. The idea is (this was still work in progress) that an instrument will



be developed for gradually discussing design decisions using programming and
design patterns, based on the level of the design readiness measurement. The
pedagogy is rooted in learning-by-doing and based on minimalist instruction,
constructivism and scaffolded examples.

Ines Grützner (Fraunhofer IESE, Germany) proposed a blended-learning ap-
proach for on-the-job training, intermixing traditional classroom education with
e-learning approaches. Using traditional classroom education only causes prob-
lems because of often tight project schedules, short development cycles and a
heterogeneous audience. Pure e-learning approaches on the other hand, lack
social communication and expert guidance. Furthermore, developing e-learning
courses is often quite expensive.
In the proposed blended-learning approach, online courses are used in the begin-
ning of a training period in order to bring all trainees to a common knowledge
and skills level. Traditional classroom education can then be used for teaching
advanced concepts, as well as for performing group work and practical exer-
cises. A transfer program developed according to this blended-learning approach
consists of the following steps:

– Kick-off meeting of all participants, their teachers, and tutors
– Online learning phase to provide knowledge and skills in applying UML
– Traditional course on object-oriented design with UML
– Final project work

The approach has been used in training developers and managers in using
the Unified Modeling Language (UML).
Results show that the approach solves typical problems of both classroom and
online education. By using online-courses in pre-training phases it can be assured
that all participants have achieved a minimum experience level before the class-
room training starts. As a consequence, the duration of classroom training can
be shortened. Social communication is supported, since trainees already know
each other as well as their trainers from the pre-training phases.
She concluded that both approaches have their strengths and weaknesses but the
synergy effects when used in combination clearly outweigh the isolated benefits
of the approaches.

4 Discussion

Before the workshop, participants were asked to think about challenging, contro-
versial topics they wanted to discuss. This resulted in an interesting discussion
by email just before the workshop. Some of these points will be presented in
this section, as well as some introductory controversial topics presented by the
organizers of the workshop. At the workshop, we organized a vote for selecting
3 subjects to discuss in 3 work groups.



4.1 Controversial topics

To start up a lively discussion, Kim and Jürgen had prepared a few controversial
topics, which are briefly presented below:
Inheritance considered harmful
Kim started by pointing out the keys to a basic understanding of objects: state,
methods and dynamic dispatch. This means that class definition and use as well
as method invocation need to be explained early on. The explanation of dynamic
dispatch (inclusion polymorphism) however should not rely on sublassing. Sub-
classing involves many new concepts like protection mechanisms, constructors
and the ‘super’ construct, etc and is much too complicated for beginning stu-
dents to grasp. Therefore should subclassing not even be mentioned early on.
In Java for example interfaces support dynamic dispatch as well and are much
cleaner a concept than general subclasses. In fact, subclassing boils down to
code reuse, which is normally taught at a later stage in the curriculum, and it
is pretty complicated. We should therefore avoid introducing inheritance at the
very beginning.
No magic please
Jürgen discussed principles for successful early examples. The traditional “Hel-
loWorld” example has been critisized a lot lately [19]. But “HelloWorld” and its
variations are not only bad examples of object oriented programs, they are also
bad examples by means of the “no magic” measure. With “magic” we refer to
examples or topics that are made more complex than necessary, for example by
involving several new and possibly interelated concepts. Such examples involve
for example language idiosyncrasies, like public static void main (String[] args)
and the usage of overly complex library classes (e.g. input handling) early on.
No concepts must be introduced using flawed examples, for example exemplifi-
cations using exceptions to general established rules. Java strings for example
are not real objects, since String objects cannot be modified. The main method
is not a real method, since there are no messages sent to it and its parameters
seem to be supplied by superior forces. This list can be made much longer and
educators have to think twice before presenting seemingly simple examples.

Just before the workshop we launched an e-mail discussion to get some input
for the planned working group sessions. The following two sections are organized
around two statements that caused quite heated discussions.

The object-oriented paradigm should be taught from the very beginning
Stéphane argued against this statement, since students might not get the full pic-
ture of what programming is about. There are situations where other paradigms
might be better suited. With Java however you can do “everything,” so why
bother about other paradigms. He proposed to use a functional language like
Scheme to start with. Joe opted that the possibility of designing a curriculum
from scratch is not a freedom that every teacher has. At his university, this is
certainly the case, so he can only use Java and he is doing the best he can.
When the discussion went into the details of pedagogical/academic examples,



Jan reacted that students should be confronted with the “real stuff” instead of
“playing with turtles” (using Squeak). He claimed instead that programming in
the small is no longer relevant. More focus should be put on design issues in-
stead of pure programming concepts. He questions whether it is really necessary
to have a more intuitive first programming course.
It doesn’t matter which language you use to teach object-orientation
Stéphane disagreed completely. He strongly believes that for teaching OO, the
primary aspect that a language should support is the anthropomorphism with
the OO paradigm and simplicity. Joe agreed on this, but he argued that you
shouldn’t teach procedural programming as a prelude to OO. Procedural is not
a good first paradigm mainly because it is tied too much to a certain machine
model that is not essential and that builds bad habits of thought. Furthermore
it is harder to unlearn something than to learn a new concept from scratch. Ros-
alia argued that many students actually have a procedural background, whether
you like it or not. She feels that procedural and OO are just different ways to
solve problems, and both must be faced anywere, so between procedural/OO or
OO/procedural she would choose the first option. Joe disagreed by saying that
a procedural mindset actually hinders students from thinking OO. The more
succesfully you teach the procedural approach, the harder it will be for students
to learn OO later.

As a summary from the presentations, discussions and the email comments, we
came up with the following list of working group topics:

– Is programming in the small still relevant?
– Diachronical walk through the paradigms.
– Problems of large system development.
– Definition of a student-oriented curriculum and of a student-friendly presen-

tation of topics.
– What does objects-first mean?
– When and how should we introduce the main method for novices?
– Programming is a skill (learned through apprenticeship with a master) not

a science (which can be studied). Should this change?
– The role of visual presentation (UML).
– Extreme programming in the first course?
– Teaching assertions in the first course?

These questions were discussed under the following headers: Can XP practices
be taught in the first course, Should assertions be taught in the first course and
What does objects-first really mean?

4.2 Can XP practices be taught in the first course?

The aim of this discussion group was to examine to which extent the 11 key
ideas of XP could be used beneficially in early computer science courses.
Out of the 11 key ideas mentioned above, the group picked out 4 of the ideas
and discussed their relevance for education:



– testing: Testing is considered to be very important and it can be seen as
a form of specification, but less formal. We also believe that writing test
themselves, the student learns a lot about the code part that he/she is writ-
ing the test for, so writing tests makes students think about the(ir) code.
Using Tools like Junit or Sunit for student assigments could be beneficial for
students, although someone made the remark that Junit tests are very hard
to read.

– the Planning Game: Students need to see how to plan their time for finalizing
a student project, because they are not mature enough to do this themselves
an important issue to learn because this fits well with the idea of small
releases in companies.

– pair programming: Pair programming can be a big help for students which
also helps in developing social skills. However, a serious lack of social skills
to begin with can form a real problem for the success of pair programming.

– small releases: goes together with the planning game. It is important as a
skill, but also as a teaching strategy. We need to help students for finding
a plan for their projects to enable small releases, depending on the level of
maurity of the student (first year or last year student for example)

– refactoring: We agreed that there is a contradictory part here: XP always
supports the saying if it isn’t broken, don’t fix it, but if you don’t do it, your
code becomes dirty. Students should at least be taught to clean up their
code. But when do you clean up your code, at the end of a small release, or
at the beginning of the next?

We certainly believe that these XP practices can make a significant contribution
in learning object-oriented concepts. There is an upcoming half-day workshop
on this topic at OOPSLA 2002 [18].

4.3 Should assertions be taught in the first course?

The second working group discussed the objects-first approach to CS 1 as well
as the use of assertions in CS 1.
Objects-First It was agreed that good scaffolding is essential to an objects-first
approach because students need good first examples. Ideally one would like to
arrange examples so that all parameters, instance variables, etc., are themselves
objects. It is useful to avoid primitive types initially as much as possible. It
was suggested that if you want to do objects-first, Smalltalk is good, because
everything is an object. In discussing the use of students acting out roles as
objects, it was pointed out that a difficulty with such an approach to objects-
first is that students don’t always follow scripts! It may require the presence of
a referee to get them to behave. The group also discussed particular tools as an
aid to the first few weeks of an introductory course. Blue Jay may help avoid
the magic of static void main, etc., when starting, but it was felt that the Blue
Jay developers may need to provide more examples. Karel may also be good
environment for starting. Girls seem to enjoy it as much as boys.
Assertions in the First Course The use of assertions in the first course was
controversial. To be successful, it was felt that students need to read lots of



assertions before they are ready to write their own. It was also felt that in many
cases quantifiers are needed in order to really express assertions. Yet these cannot
be part of the language (e.g., Eiffel, Java), and thus must be simply treated as
special comments, with little or no language support. Another criticism was that
methods in the first course are often too simple to have meaningful assertions,
though there was general agreement that assertions can be useful in preparation
for writing loops, and they often help in understanding boundary conditions. In
brief, an invariant essentially specifies the loop. However, the concern of many
participants was why introduce a topic in CS 1 that is a stretch when there are
already too many topics!

4.4 What does objects-first really mean?

This group started with the question What is a student-oriented curriculum?
The possible answer might be that a student-oriented curriculum/course is one
where the students are prepared to fit the course (instead of the other way
around). To develop a student-friendly presentation you need to know your au-
dience. The more uniform your audience and the better you know your students,
the easier is it to find the ”right” level of presentation.
They went on to discuss teaching approaches/materials. Participants pointed
out that there is an apparent lack of interesting, well-designed and well-coded
examples. Students get to see very few exemplary non-trivial examples. On the
other hand, it is very difficult to use large examples, since students do not like
to work with existing programs. Most of them have difficulties giving up control
and rely on existing code, especially when the code was developed by other stu-
dents. Scaffolding (as proposed in Tracy’s approach) is an essential technique to
cope with these problems.
The group also liked the idea of using metaphors for teaching purposes and spent
some time trying to find/define a few. However, it turned out to be more difficult
than expected to find convincing metaphors.

5 Conclusions

The objective of this workshop was to discuss current tools and environments
for learning object-oriented concepts and to share ideas and experiences about
the usage of computer support to teach the basic concepts of object technology.

Ongoing work was presented by a very diverse group of people with very dif-
ferent backgrounds, which resulted in a broad range of topics like tool support,
environments, courses, teaching approaches, languages for teaching, etc...

Summarizing what was said in the debate groups, we conclude that :

– we want to first focus on teaching the concepts, learning novices how to think
in an object-oriented way,



– the controversial topic inheritance considered harmful didn’t appear to be
so controversial after all since everyone agreed that inheritance shouldn’t be
the first topic taught in a computer science course,

– using XP practices for a computer science course might have significant
benefits, especially testing and small releases. We agreed that students should
be taught to write tests, and we agreed that by writing tests themselves, they
learn a lot about the software they are writing the tests for as well,

– building on the objects-first approach, we agreed that good first examples are
essential and ideally that the parameters and instance variables we use are
all objects. This led us to propose using a pure object-oriented language like
Smalltalk for teaching purposes since it fully mirrors the object paradigm of
objects sending messages to other objects,

– using assertions was controversial: although we agreed that using assertions
could be useful in preparation for topics, like writing loops, people agreed
that it takes a lot of time for students being able to use them properly and
that it is best therefore to concentrate first on the list of more important
object-oriented concepts.

6 List of Participants

The workshop had 20 participants from 12 countries. Eighteen participants came
from academia and only two from industry. All participants are listed in table 2
together with their affiliations and e-mail addresses.

References

1. Bacvanski, V., Börstler, J.: Doing Your First OO Project–OO Education Issues in
Industry and Academia. OOPSLA’97, Addendum to the Proceedings (1997) 93–96

2. Börstler, J. (ed.): OOPSLA’97 Workshop Report: Doing Your First OO Project.
Technical Report UMINF-97.26, Department of Computing Science, Ume̊a Uni-
versity, Sweden (1997) http://www.cs.umu.se/~jubo/Meetings/OOPSLA97/

3. Börstler, J. (chpt. ed.): Learning and Teaching Objects Success-
fully. In: Demeyer, S., Bosch, J. (eds.): Object-Oriented Technology,
ECOOP’98 Workshop Reader. Lecture Notes in Computer Science,
Vol. 1543. Springer-Verlag, Berlin Heidelberg New York (1998) 333–362
http://www.cs.umu.se/~jubo/Meetings/ECOOP98/

4. Börstler, J., Fernández, A. (eds.): OOPSLA’99 Workshop Report: Quest
for Effective Classroom Examples. Technical Report UMINF-00.03,
Department of Computing Science, Ume̊a University, Sweden (2000)
http://www.cs.umu.se/~jubo/Meetings/OOPSLA99/CFP.html

5. I. Michiels, J. Börstler: Tools and Environments for Understand-
ing Object-Oriented Concepts, ECOOP 2000 Workshop Reader, Lec-
ture Notes in Computer Science, LNCS 1964, Springer, 2000, p. 65-77.
http://prog.vub.ac.be/~imichiel/ecoop2000/workshop/

6. Burns, A., Davies, G.: Concurrent Programming. Addison-Wesley (1993)
7. Goldberg, A.: What should we teach? OOPSLA’95, Addendum to the Proceedings.

OOPS Messenger 6 (4) (1995) 30–37



Table 2. Workshop participants

Name Affiliation E-mail Address

Isabel Michiels Vrije Universiteit Brussel, Bel-
gium

imichiel@vub.ac.be

Jürgen Börstler Ume̊a University, Sweden jubo@cs.umu.se
Kim Bruce Williams College, USA kim@cs.williams.edu
Rosalia Peña University Alacala Henares,

Madrid, Spain
rpr@uah.es

Khalid Azim Mughal University of Bergen, Norway khalid@ii.uib.no
Laszlo Kozma Eötuös Lorand University,

Hungary
kozma@ludens.elk.lu

Jan Dockx Katholieke Universiteit Leuven,
Belgium

Jan.Dockx@cs.kuleuven.ac.be

Vasco Vasconcelos University of Lisbon, Portugal vv@di.fc.ul.pt
Ines Grützner Fraunhofer Institute for Exper-

imental Software Engineering,
Kaiserslautern, Germany

gruetzne@iese.fhg.de

Gilles Ardourel LIRMM, Montpellier, France ardourel@lirmm.fr
Carsten Schulte University of Paderborn, Ger-

many
carsten@uni-paderborn.de

Tracy Lewis Virginia Tech, Virginia, USA tracyL@vt.edu
Joe Bergin Pace University, USA jbergin@pace.edu
Noa Ragonis unizmann institute of Science,

Nettovot, Israel
Glenn Blank Lehigh University, Betlehem,

PA
glenn.blank@lehigh.edu

Martine Devos Avaya Research, USA mmdevos@avaya.com
Stéphane Ducasse Software Composition Group,

University of Berne, Switzer-
land

ducasse@iam.unibe.ch

Kristen Nygaard Department of Informatics,
University of Oslo, Norway

kristen@simula.no

Boris Mejias Vrije Universiteit Brussel, Bel-
gium

bmejias@vub.ac.be

Andres Fortier Universidad Nacional de La
Plata, Argentina

andres@sol.info.unlp.edu.ar

8. Manns, M. L., Sharp, H., McLaughlin, P., Prieto, M.: Capturing successful prac-
tices in OT education and training. Journal of Object-Oriented Programming 11
(1) (1998)

9. Stein, L. A.: Interactive Programming in Java. Morgan Kaufmann (2000)
10. Pedagogical Patterns pages. http://www-lifia.info.unlp.edu.ar/ppp/

http://csis.pace.edu/~bergin/PedPat1.3.html

11. European Master in Object-Oriented Software Engineering.
http://www.emn.fr/MSc/

12. JUnit home page. http://www.junit.org



13. OOPSLA01 workshop. http://www.cs.umu.se/%7Ejubo/Meetings/OOPSLA01/
14. ECOOP 2002 Workshop homepage. http://prog.vub.ac.be/ecoop2002/ws03/
15. Squeak homepage. http://www.squeak.org,
16. http://www.iam.unibe.ch/~ducasse/WebPages/NoviceProgramming.html

17. Köhler, H.J., Nickel, J, Niere, J., Zündorf, A.: Integrating UML Diagrams for
Production Control Systems, Proceedings of the 22nd International Conference on
Software Engineering (ICSE), Limerick, Ireland, June 2000, pages 241-251.

18. OOPSLA ’02 Workshop on Extreme Programming Practices in the First CS1
Courses. http://csis.pace.edu/˜bergin/XPWorkshop/ http://www.oopsla.org

19. Westfall, R.: Hello, World Considered Harmful. Communications of the ACM 44
(10), Oct 2001, 129-130.


