
Using the Prototype-based Programming Paradigm

for

Structuring Mobile Applications

Jessie Dedecker∗and Wolfgang De Meuter
(jededeck | wdmeuter)@vub.ac.be

Vrije Universiteit Brussel
Department of Informatics

Pleinlaan 2 - 1050 Brussels - Belgium

October 27, 2002

Abstract

Many mobile agent systems have been devel-
oped in the last decade in the form of APIs for
existing languages or as brand new languages.
Although such mobile agents have many bene-
fits, they have not yet conquered the internet.
This is partly because programming such mo-
bile agents is not a straightforward task. There
is a need for languages that better structure
such mobile agent applications. In this po-
sition paper we want to advocate the use of
prototype based paradigm as a basis for pro-
gramming such mobile agents.

1 Introduction

Many mobile agent systems have been devel-
oped in the last decade in the form of APIs
for existing languages or as brand new lan-
guages. Mobile agent systems are autonomous
programs that can decide to move from one
machine to another in the network.

Mobile agents have many interesting proper-

∗Research Assistent of the Fund for Scientific Re-
search - Flanders, Belgium (F.W.O.)

ties [CHK97] such as support for weak clients
(i.e. mobile phones), support for disconnected
operations, robust remote interactions, ... De-
spite these benefits, they have not yet con-
quered the internet. This is partly because de-
signing and programming such mobile agents is
not a straightforward task. There is a need for
languages that allow the programmer to better
structure such mobile agent applications.

2 Why Prototypes?

The object-oriented paradigm is usually asso-
ciated with class based languages. There is
an alternative based on prototypes where all
objects are self sustaining, so they do not de-
pend on a class for their behavior. Objects are
created ’ex nihilo’ (out of nothing, that is by
putting attributes together) or by cloning ex-
isting objects rather than instantiating them
from a class. In class-based languages objects
share their behavior via the class, while in pro-
totype based languages objects can share both
behavior and state via delegation. This kind
of delegation should not be confused with the
delegation pattern, better known as the deco-

1



Printing object

print { ... }

getString "hello"

Client object

getString "bye"

delegatesTo

Printing object

print { ... }

getString "hello"

Client object

getString "bye"

delegatesTo

print
{delegatesTo

.print}

Real Delegation Delegation Pattern

Figure 1: Real Delegation vs. Delegation Pat-
tern

rator pattern, from [GHJV94]. We illustrate
the difference with following example: Con-
sider a printing object that puts some string
on the screen when the message print is re-
ceived. The string that is to be printed on
the screen is retrieved via self.getString in the
method body associated with the print mes-
sage. One difference by looking at the code
of the objects is that in the delegation pattern
the message print is manually invoking a send
of the message print to its parent, while this
happens transparently in real delegation. An-
other more important difference is the outcome
of sending the message print to the client ob-
ject. In real delegation the string bye will be
printed on the screen, while with the delegation
pattern the string hello will be printed on the
screen. The reason for this is that with real
delegation the self is bound to the sender of
the message, while with delegation pattern the
self is rebound to the receiver of the message
with each message that is sent.

In the remainder of this section we shortly
discuss some of the advantages.

2.1 No Classes

A prototypical object does not depend on a
class definition to find its behavior. In class-
based mobile agent systems this has a number
of disadvantages:

• whenever an object decides to migrate we
need to decide whether we will migrate the
class definition with the object. Leaving
the class definition behind has some dis-
advantages:

– severe performance penalties, be-
cause each time the migrated object
receives a message it needs to use the
network to obtain the behavior asso-
ciated with that message.

– partial failures, when the network
connection between the class object
and the migrated object fails or the
machine with the class object fails we
cannot process anymore message for
that object since it cannot access its
behavior.

• when we decide to migrate the class defini-
tion with the migrating object we get the
same problems if multiple instances exist
on the old machine, unless we decide to
migrate all the instances.

• making copies of the class object makes
it impossible to update the class object
with new behavior at run-time (as the
changes will not be propagates to all of its
instances). This restricts the adaptabil-
ity of the software to new environments,
which is a must for mobile agents that are
put into unknown environments. Also the
class variables become a problem when we
start replicating classes on different ma-
chines.

In the discussion above we have omitted the
problem of inheritance, which would compli-
cate the problems further. When objects do

2



not depend on classes for their behavior we
have less problems migrating the objects into
new environments.

2.2 Cloning

We already discussed that new objects in pro-
totype based languages are created ’ex nihilo’
or by cloning. Cloning is an interesting op-
eration for distributed applications, because it
allows to create replica’s with a simple com-
mand. Replica’s are used to overcome partial
failures. Such partial failures are an inherent
problem to distributed computing and each se-
rious distributed applications should consider
them.

There exist several variations for the cloning
of objects:

• shallow clone:
takes a copy of the state of the object and
shares the behavior with the object from
which it was cloned by means of delega-
tion.

• deep clone:
takes a copy of both the state and the be-
havior of the object.

Shallow clones would introduce many of the
problems we discussed as with class-based
agent systems, although in some cases they
can be interesting (i.e. when groups of objects
are always migrating together). Deep clones
on the other hand create fully independent ob-
jects that can migrate freely between different
machines. We think that the cloning operators
are a good basis to start with for mobile agent
systems, but they should be further extended
so that different types of cloned objects can be
created depending on some parameters.

2.3 Reflection and Meta-
Architectures

In a world where everything is represented as
an object, classes are also represented as ob-
jects such as in Smalltalk. These class ob-
jects also need a class object to exist, these
class objects in turn again depend on other
class objects to exist, and so on... This phe-
nomenon is called infinite regression and makes
the meta-architecture of class-based languages
more difficult to grasp. Prototype based lan-
guages have meta-architectures that are easier
to understand, because we do not have infinite
regression as objects do not depend on classes,
caused by the classes.

Mobile agent systems could benefit from a
good and easy-to-use meta-architecture, be-
cause they can be used to separate concerns
in mobile agent applications. We could for
example make use of the meta-architecture to
separate the mobility concerns or replica man-
agement from the other code, by implementing
these concerns at the meta-level.

2.4 Dynamic Typing

Many of the prototype-based languages are
dynamically typed. This is important when
we are programming agents for open dis-
tributed systems, such as the internet, where
agents have to interact with unanticipated
other agents. The reflective properties of the
language can be used to discover the interfaces
of new environments and new agents that an
agent encounters when migrating.

3 Conclusion

We believe that these four ingredients that
are present in most prototype-based object-
oriented languages form a good foundation to
program and organize mobile program. In
future work we will adapt and extend the

3



paradigm with language constructs that en-
hance the structuring and development of such
programs.

References

[CHK97] D. Chess, C. G. Harrison, and
A. Kershenbaum. Mobile agents:
Are they a good idea? In J. Vitek
and C. Tschudin, editors, Mobile
Object Systems - Towards the Pro-
grammable Internet, Lecture Notes
in Computer Science, pages 25–47.
Springer-Verlag, Berlin Germany,
1997.

[GHJV94] Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlis-
sides. Design Patterns: Ele-
ments of Reusable Object-Oriented
Software. Addison Wesley, Mas-
sachusetts, 1994.

4


	Introduction
	Why Prototypes?
	No Classes
	Cloning
	Reflection and Meta-Architectures
	Dynamic Typing

	Conclusion

