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Samenvatting

Software is niet statisch. Telkens er nieuwe eisen gesteld worden aan een ap-
plicatie of een nieuwe technologie in gebruik wordt genomen moet de imple-
mentatie van een programma aangepast worden. Wanneer een programmeur
de opdracht krijgt deze aanpassingen te maken aan een applicatie is het be-
langrijk dat hij voldoende begrijpt hoe de software werkt. Deze informatie
wordt hem verschaft door de documentatie van de software. Hier echter
kunnen er problemen opduiken: vaak lopen documentatie en implementatie
niet meer synchroon en kan de programmeur de documentatie niet meer
gebruiken om te weten te komen hoe de applicatie in elkaar zit. De oorzaak
van dit probleem is te vinden bij de hedendaagse ontwikkelingsomgevingen:
ze bieden niet de mogelijkheid om gemakkelijk documentatie te maken die
mee zal evolueren wanneer de implementatie veranderd.

In deze thesis stellen we de Software Views Inducer voor. Deze tool
laat de gebruiker toe om op een simpele manier documentatie te creeëren
uit Smalltalk code. Bovendien is deze documentatie robuust: wanneer er
aanpassingen in de broncode worden gemaakt kan de documentatie semi-
automatisch bijgewerkt worden. We toetsen de kwaliteiten van onze tool
door te demonstreren hoe we met onze tool documentatie kunnen maken
voor ”design patterns” en tonen aan dat deze documentatie synchroon blijft
wanneer we de implementatie van de patronen aanpassen.
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Abstract

During its lifetime software has to evolve to meet new requirements or to
work with new technology. It is important for a developer who has to change
the implementation of a piece of software to have good insights into the ap-
plication. To this extent, having high-quality documentation is invaluable.
This documentation can also be a source of problems: in many cases it
happens that the documentation is no longer synchronized with the imple-
mentation which renders it useless to a developer who has to make adapta-
tions to the implementation. We can situate the cause of this problem with
modern day development environments: they do not offer support for eas-

ily creating documentation that is robust when the implementation changes.

In this dissertation we propose the Software Views Inducer, a tool for cre-
ating documentation from Smalltalk code. Our tool does not only allow to
easily create this documentation by simple drag & drop operations, but also
offers documentation that is robust with respect to changes: whenever the
implementation is adapted, the documentation can be semi-automatically
brought back up-to-date. We validate these claims by using our tool to
create documentation for design patterns and show that our documentation
remains up-to-date when changes to these design patterns are made.
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Chapter 1

Introduction

This thesis is about the problems that may occur when the documentation

and the implementation of software are no longer synchronized. We will

introduce a new technique that allows the creation of documentation that

is robust with respect to changes in software while keeping it simple for a

developer to create it. To accomplish this we are going to use some techniques

from machine learning.

1.1 Problem Statement

Software is not static. During the lifetime of an application, changes are
constantly necessary to fix bugs, make the software compatible with new
technology, implement new or changed requirements, . . . Whenever changes
to the application have to be made, a developer needs to have sufficient
insights into the implementation to be able to execute the necessary adap-
tations. The original software is almost never written by a single program-
mer. In most situations the application is developed by a complete software-
engineering team. For this team, it is considered good practice to keep ex-
tensive documentation of the written software. It is not unthinkable that
the developer who has to make the changes was not a member of the original
engineering team. Even if the developer was, it is unlikely that he knows
every little detail of the implementation. To help the developer gain the
necessary insights, the documentation of the piece of software is important.

This documentation can be the subject of a lot of problems. In an extreme
case it can have gotten lost over time and the developer has to start from
scratch to understand how the application works. In most cases the docu-
mentation is no longer synchronized with the implementation. If a developer
uses this outdated documentation, then he may obtain faulty insights into
the software which makes it impossible to make the necessary changes. This
can happen for a number of reasons. In the early phases of the development
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process, the software engineering team starts with creating a blue-print of
the application (this is called the design). This design is considered an
important part of the documentation. It gives a view of the software by de-
scribing which entities construct the software and how they work together.
When the programmers start writing the application, the design is used to
direct the implementation. While implementing the software, it may happen
that the ideas from the design appear not to suffice to make the program
work. The developers will encounter places where they need to make (of-
ten ad-hoc) changes to the design in order to fix these problems. When this
happens, updating the design documentation is often forgotten or neglected.

Once the documentation is out of sync with the implementation a cascade
of problems will arise. If a developer starts with an application with al-
ready outdated documentation and makes changes to it without reflecting
these changes back into the documentation, then over time the quality of
the documentation will diminish even more until at a certain point in time
the documentation is useless. This is quite a large problem with respect to
building software since it makes it difficult to produce a system that is easy
to adapt and that keeps being easy to adapt after it has been changed a
couple of times.

One could argue that the cause of this problem is situated with the develop-
ers who are lazy and negligent since they do not update the documentation
every time they change the implementation. In fact this is more a conse-
quence than a cause of the problem. The job of updating the documentation
is tedious for the developer and can be in some way automated. The real
problem is the way software gets documented: composing high-quality doc-
umentation and, especially, keeping it up-to-date with the implementation
are not a part of the development process. Most modern integrated develop-
ment tools do not offer the developer a way to easily create documentation
that keeps being consistent when the implementation is changed.

A lot of research effort has already been put in creating a system for better
documentation. We can distinguish two different kinds of tools:

• A first kind of tool allows a developer to create documentation easily
from the source code but it does not offer possibilities to keep that
documentation automatically synchronized with the implementation.
This kind of tool also lacks the possibility of expressing the intention
behind the documentation: even if the system is documented correctly
and the documentation is up-to-date, it sometimes remains hard for a
developer to understand what is meant by a certain piece of documen-
tation. An example of this approach is creating UML diagrams with
tools like Rational Rose.
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• A second kind of tools are robust with respect to changes in the im-
plementation and allow the expression of the intention behind the
documentation, but they require a developer to express the design
in a special kind of language or other formalism. This process can be
error-prone and quite tedious since it requires the programmer to have
extensive knowledge about the application. A good example of this
technique is Intentional Views [MMW02a], which we will discuss in
the next chapter. Most tools in this category are academic research:
there are no industrial tools that allow the co-evolution of design and
implementation.

1.2 Proposed Solution

In this dissertation we will introduce a new documentation tool that helps
a developer to create documentation out of source code that is easy to keep
in sync with the implementation. We want to create a tool that:

• Offers an easy way to document software: the developer can create
documentation from the source code by means of simple operations
(eg. drag & drop) without having to know about the complex imple-
mentation details.

• The obtained documentation is more robust with respect to changes
in the implementation and will evolve together with the source code.

We accomplish this by offering a tool with the following functionality:

• The developer manually documents the software with the tool.

• The tool will extract information out of the documentation that gives a
description of the structures and relationships in the source code. The
tool then uses this information to update the documentation when
changes in the implementation occur.

To extract this information out of the source code we are going to use some
techniques from the area of Machine Learning [Mit97]. More specifically, we
are going to apply Inductive Logic Programming (ILP) to our problem. ILP
is a method that allows the creation of first-order logic rules out of examples
plus background information. It is a mature technique that has proven to be
useful in fields like molecular biology and also in other disciplines of software
engineering.

1.3 Outline of the dissertation

In the rest of this document we are going to explain our technique and
we are going to validate it by means of a few experiments. The structure

3



of this dissertation is the following: in chapter 2 we will take a look at
two other documentation techniques and we will discuss their benefits and
disadvantages. We will take a look at how we can improve on them. Chapter
3 gives an introduction to Logic Programming and the logic language SOUL.
It will also take a look at Logic Meta Programming and give a few examples
of it by means of SOUL. We start chapter 4 with an overview of the more
theoretical background concepts behind logic programming to allow us to
give an introduction to Inductive Logic Programming. We will also take
a look at a few ILP algorithms. In chapter 5 we will take a look at the
Software Views Inducer, the tool we built in the context of this dissertation.
We will also briefly discuss its implementation and design decisions. Chapter
6 will describe the experiments we have conducted in order to validate our
technique. We will take a look at some related work in chapter 7 and we
will finish this dissertation with chapter 8 where we will draw conclusions
from the experience we gained during this research. We will take a look at
some future work which might be done to improve our technique and make
it more applicable to real-life situations.
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Chapter 2

Software Documentation

Techniques

In this chapter we take a look at two different techniques for creating doc-
umentation for a piece of software, namely Software Classifications and In-

tentional Software Views. We discuss the advantages and disadvantages of
both techniques and take a look at how we can use the advantages of both
for creating a good documentation technique.

2.1 Software Classifications

Software Classifications is an approach introduced by De Hondt [DH98] in
his dissertation. The idea behind this approach is to offer a developer an
easy way to create documentation that can be used to understand the soft-
ware. To this extent the notion of a Software Classification is used. Such
a classification is a simple container which is used to hold software entities
as its items. The same entity can be an element of multiple classifications.
Software Classifications is more then a model for representing documen-
tation, it is also a technique for creating that documentation. There are
four different methods for classifying software artifacts, as discussed in De
Hondt’s work:

• Manual classification The developer manually puts software entities
in a classification. This is the simplest way to create classifications.

• Virtual classifications The items of the classification are obtained
by using a feature of the development environment. An example of
this in Smalltalk is creating a classification out of a given protocol.
The classification will then for instance contain all the methods of
that protocol.

• Classification with advanced navigating tools A developer often

5



Visitor

visitConcreteElementA(elementA)
visitConcreteElementB(elementB)

ConcreteVisitor1

visitConcreteElementA(elementA)
visitConcreteElementB(elementB)

ConcreteVisitor2

visitConcreteElementA(elementA)
visitConcreteElementB(elementB)

Element

accept(Visitor v)

ConcreteElementA

accept(Visitor v)
operationA()

ConcreteElementB

accept(Visitor v)
operationB()

v  visitConcreteElementA(self) v  visitConcreteElementB(self)

Figure 2.1: UML diagram of the visitor pattern

wants to create a classification containing elements with a certain re-
lationship. Special navigation tools (like for instance class browsers)
can be used to guide the developer through the code based on certain
relationships. While browsing the code the developer then can decide
which elements belong to a classification.

• Classification by means of method tagging The idea behind this
way of creating classifications is that a developer knows the methods
where he/she makes changes to the code. We can make the information
about these places implicit by tagging the methods to which changes
are made. A classification can then be generated out of these tags.

2.1.1 Example of the usage of Software Classifications

Now let us take a look at how we can use Software Classifications to cre-
ate documentation for a piece of code. As an example we are going to
document the Visitor design pattern [GHJV95] by means of classifications.
The visitor design pattern is a behavioral pattern that is used to create a
looser coupling between a hierarchy of objects and the operations that are
defined on that hierarchy. Since we will also use this example again in a
later chapter, we will take a more in-depth look at it. If we look at figure
2.1 we can see a UML class diagram of the pattern. The object hierarchy on
which we want to implement an operation is represented by the abstract class
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Element and its subclasses ConcreteElementA and ConcreteElementB. The
operations on the hierarchy are implemented by the Visitor class and its
subclasses. These subclasses of Visitor implement a method for each type
of Element in the hierarchy (we can see the visitConcreteElementA and
visitConcreteElementB methods). This method implements the behavior
of the operation on that specific Element. The subclasses of Element all
implement an accept method. This accept method takes a Visitor as its
argument and will call the method on the Visitor corresponding with the
kind of Element. This is the so-called double dispatch: the executed method
will not only be selected by dispatching on the kind of Visitor, but is also
dependent on the kind of Element. The advantage of this pattern is that
adding new operations can easily be done by subclassing the Visitor class
and implementing the behavior in the methods.

To document this pattern using Software Classifications we create the fol-
lowing classifications:

• AbstractVisitor

• ConcreteVisitors

• AbstractProduct

• ConcreteProducts

• AcceptMethods

We then will put software entities in the corresponding classifications. For
example, we put all the classes that implement an action of the element hi-
erarchy in the ConcreteVisitors classification. All the methods on elements
of the hierarchy that implement the acceptance of a visitor and will call
the corresponding method on that visitor will be put in the AcceptMethods

classification,. . .

The obvious advantage of this technique is that creating the documenta-
tion is easy: we manually classified the elements of a Visitor pattern. In the
tools that implement Software Classifications this can be done by drag &
drop. Software Classifications also have a few major disadvantages:

• An important aspect of documentation tools is wether the created
documentation is robust to changes: every time the implementation
changes, the documentation should change too. If we take a look at
the robustness of the documentation we created we see that, if we add
for instance a new ConcreteVisitor or delete a ConcreteProduct, we
will have to manually update the elements of the classification. This
is exactly the kind of problem we want to avoid when making changes
to a piece of software.
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• Also, we do not know if we have documented all the correct elements
of a classification. It might happen that we have forgotten to classify
a few ConcreteProducts. This may lead to incomplete documentation.

• Design patterns are well-known and widely understood software struc-
tures so a developer who looks at the classifications we made can get
a good idea of what is meant with the documentation. However, if we
document lesser known things with Software Classifications, the tech-
nique does not offer a way to give clear insights into the intention of
the classifications. In such a case, the developer would have to browse
the elements of a classification and try to reveal what they have in
common to be able to understand the piece of software. This is not
always a trivial task.

2.2 Intentional Software Views

Intentional Software Views [MMW02a] are an extension to the software
classifications we described above. The main difference between the two
techniques is that intentional views will use a description of the software
entities that belong to the classification instead of just enumerating all the
elements in the classification. An interesting feature of Intentional Views is
that they allow us to create multiple views for the same classification. This
allows us to create better documentation since we can use these multiple
views to check the mutual consistency of our views. We then can use this
information to validate that the views are correct. Before we are going to use
Intentional Views to create documentation for the Visitor pattern, we are
going to make the reader a bit more familiar with the concept by means of a
small example. Suppose we want to document the set {1,2,3,4,5}. We define
a view by providing a high-level description of the items in the view. As we
already mentioned earlier, we can have multiple descriptions for the same
concept. For our simple example we could have for instance the following
descriptions:

• The integer larger than 0 and smaller than 6.

• The difference of the set {1,2,3,4,5,6,7} and the set {6,7}

• . . .

Notice that if we use the two descriptions above to generate the elements
in the view, we would obtain in both situations the same set. Now that we
have provided the reader with an intuition for Intentional Views, let us take
a look at how we can use them to document the Visitor pattern.
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2.2.1 Documenting the Visitor Pattern

Now let us apply Intentional Views to create documentation of the Visitor
pattern. For every classification we created in the section about Software
Views, we will provide a View for which we give an executable description.

• AbstractVisitor Class from which all the ConcreteVisitors inherit.
This class specifies the interface for the ConcreteVisitors (a method
corresponding to every ConcreteProduct).

• ConcreteVisitors Classes that inherit from the AbstractVisitor and
that implement an operation on the elements of the hierarchy.

• AbstractProduct Abstract class for the elements of the hierarchy.

• ConcreteProducts Classes that inherit from the AbstractProduct
class and that implement a method for accepting a Visitor. These
classes are the elements of the hierarchy on which we want to define
operations.

• AcceptMethods These methods are implemented on the ConcreteProd-
ucts. They implement the double-dispatch:, given a ConcreteVisitor,
they will call the method corresponding with the ConcreteProduct on
which they are implemented on the Visitor.

If we want to know which software elements belong to the view, we can use
the description to calculate them out of the source code. We can notice the
following advantages of this approach:

• The documentation we presented here is robust with respect to changes.
If we for instance add a new operation to the hierarchy by implement-
ing a new ConcreteVisitor, and we re-calculate the elements then the
new class will appear as an element of the view. With Intentional
Views, it is easy to keep the documentation up-to-date with the im-
plementation.

• Although we are not sure that the description we provided will include
all the intended elements,the chance that the resulting documentation
is incomplete will get smaller. If we can provide a good description
of a view, we can not erroneously forget a software entity. By using
multiple descriptions for the same view, and checking that every de-
scription results in the same set of elements, we can limit this problem
even further.

• One of the problems of Software Classifications is that the intention
behind the documentation got lost. We do not have this problem with
Intentional Views. If a developer takes a look at the description, he/she
will immediately understand what is meant with it: the description
reveals the intention behind the view very well.
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Software Classifications Intentional Views

Easy to document X

Complete X

Robust documentation X

Intention present in documentation X

Table 2.1: A comparison of Software Classifications and Intentional Views

Intentional Views also have a few downsides:

• In this example we have provided the descriptions in natural language.
In practice, a developer will have to write a description in some kind of
formal language (in a later chapter, we will take a look at an example
of such a language). Besides from the fact the developer has to learn
this language, writing this description can be error-prone, as is with
writing any computer program. If the developer does not give a correct
description of the elements he/she intends to be in the view, then the
resulting documentation will be faulty.

• The developer needs to have extensive structural knowledge about the
elements of the view that is being described in order to write down the
high-level relationships between these elements. In a lot of cases this
will make it very hard to write a description since the relationships
between the elements are not always as clear to see. Intentional Views
also leads to a chicken-or-the-egg situation: in order to create docu-
mentation that will help us to better understand a software system,
we already have to know a lot about the software we are trying to
write a description for.

2.3 Conclusions

If we take a look at table 2.1 we see a comparison between Software Clas-
sifications and Intentional Software Views. Both approaches are interesting
techniques for creating documentation but they differ in the quality of docu-
mentation and the ease of creating it. If we take a look at the comparison we
can see that both approaches are in fact complementary. In this dissertation
we will show how we can create a documentation tool that unites the advan-
tages of both Software Classifications and Intentional Software Views. The
tool we will introduce allows the user to easily create documentation with-
out having to possess extensive knowledge about the relationships between
the elements of the documentation. Also, the documentation is more robust
with respect to changes in the implementation and allows a developer to see
the intention behind the documentation without too much difficulties. In
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this chapter we only discussed these two approaches for creating documen-
tation since they are relevant for describing the tool we developed. We did
not encounter any industrial tools which are integrated in the development
environment and allow the creation of robust documentation. In chapter
7 we will discuss other (academic) approaches for solving the problem of
outdated documentation
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Chapter 3

Logic Programming and

Logic Meta Programming

In this chapter we take a look at the Logic Programming paradigm. By
means of a logic programming language,SOUL, and some examples, we will
explain the basic concepts of such a language. Furthermore we discuss the
topic of Logic Meta Programming.

3.1 Logic Programming

Before we take a look at how we can write programs in a logic programming
language, we are going to discuss the logic programming paradigm. In order
to do this, let us compare it with some other programming paradigms:

• Imperative programming The typical property of imperative lan-
guages is that programs written in them have some sort of state. A
program is written by specifying a number of steps which, at time of
execution, manipulate that state of the program. Programs in both
procedural as object-oriented languages are generally written in im-
perative style. Examples of this paradigm are C++, C, Pascal, Java,
. . .

• Functional programming This paradigm can best be compared
with mathematical functions. The language allows the construction
of functions which transform a given entity and will result in a new
entity. A program is written by specifying a chain of transformations.
LISP and Scheme are both examples of functional programming lan-
guages (if we not consider the destructive operations). An example of
a pure functional language is Haskell.

• Logic Programming The Logic Programming paradigm is based on
first-order predicate logic. Programs in a logic language are written
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by specifying the base knowledge that is available about a problem
and the relationships between this knowledge as so-called facts. The
part of the program that will derive new information out of these facts
consists out of rules. These rules are used to deduce new facts out of
already existing ones. Examples of such languages are PROLOG and
SOUL.

We will now take a closer look at Logic Programming (LP), the paradigm we
are interested in. One of the advantages of LP is that the programs written
in it are easy to understand. Programs written in a logic programming
language specify what is needed to be computed instead of how it has
to be computed. In the following section we will take a look at the basic
concepts of a logic language by looking how logic programs are written in
such a language: SOUL.

3.2 Logic Programming with SOUL

Many implementations of logic languages exist, of which PROLOG [DEDC96]
is probably the most famous [Fla94].
The Smalltalk Open Unification Language (SOUL) is a PROLOG-like logic
language developed by Roel Wuyts at the Programming Technology Lab in
the context of his PhD-research [Wuy01]. SOUL is implemented in the
object-oriented language Smalltalk [GR89].

3.2.1 Syntax of SOUL

We are going to show the syntax of SOUL by means of some examples. Con-
sider the following situation: we have some information about a set of people
and know who is the parent of who. Suppose we want to write a small pro-
gram that will calculate the grandparent relationship between those people.
We can express this as the following SOUL program:

parent(jim,bob).

parent(bob,julie).

parent(bob,eric).

grandParent(?x,?y) if

parent(?x,?z),

parent(?z,?y).

The first three lines of our example express some base knowledge we have
about our example (namely that jim is a parent of bob, that bob is a parent
of julie,. . . ). We call this information facts. The last three lines of our
example form a rule that defines the grandparent relationship. Variables in
this rule start with a question mark (?). Notice that this rule does not say
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how we have to compute the grandparent relationship. It gives a definition
of it: someone (?x) is the grandparent of someone (?y) if there is another
person (?z) such that person ?x is the parent of ?z and ?z is the parent of ?y.
As the reader will remark, this logic program is a very intuitive definition of
the problem we want to express. If we want to know who is a grandparent
of who we would pose a query to the SOUL interpreter. In this case the
query would look like:

if grandparent(?x,?y).

The logic language will then process the query (in a later chapter we will
take a brief look at how this is done) and will output:

{?x → jim, ?y → julie}
{?x → jim, ?y → eric}.

Above we can find the variable bindings that the logic language will return.
Not only a single solution is returned. Instead the query will result in a set
of variable bindings for every possible solution. Every such binding exists
out of a variable name and a value for that variable. If we take a look at our
example we see that if we take as value for ?x jim and for ?y julie, then
this pair would be a correct result of the grandParent relationship: if we
look at our example we see that julie is a grandchild of jim. Now that we
have shown the basic notions of LP with SOUL, we will explore some other
features of the language. SOUL also has a native data structure: the list.
The following example shows how we can implement the append of two lists.

append(<>,?Y,?Y).

append(<?X | ?Xs>,?Y,<X | Z>) if

append(?Xs,?Y,?Z).

The first rule expresses the base case: the append of the empty list (<>) to
another list ?Y is the list ?Y . The second rule is the recursive definition of
the append: we can append two lists by taking every element but the first
one from the first list and appending it to the other list. This recursive step
can be seen in the body of the second rule where the append predicate will
call itself. Since the first list of the append will get smaller every step, we
will reach the base case at some time. Notice that lists are written down
between < and > and the elements are separated by a comma. We also see
a list of the form <?X | ?Y>. The part before the | is bound to the first
element (the head) of the list, the part after it is bound to a list containing
the rest of the elements (the tail). Let us illustrate this with an example:
<1,2,3>. If we unify this list with <?X | ?Y> then ?X will bound to 1
and ?Y will be bound to <2,3>. As the reader already may have noticed,
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the append program does not consist out of a single rule but has two rules
who describe the problem. SOUL will try every rule when constructing a
solution. These rules will be applied in order of specification (from top to
bottom). If we would pose a quey like if append(<1>,<2>,?x) then SOUL
will try to apply the first rule (the base case). Since our query and the head
of the first rule can never be the same (the <> can never match the < 1 >)
the second rule will be tried. This second rule can be matched with the
query and the body of the rule will be called.

Lists are not the only data-structure we can use in SOUL. SOUL also sup-
ports the notion of functors.

successor(0,s(0)).

successor(?x,s(?x)).

To explain this example we are going to define our own notation of natural
numbers and the successor relationship on those number. We represent a
number unary: the number 3 is represented by s(s(s(0))). We say that s(?x)
is the successor of ?x (so we add a 1 to a number by adding an extra s to
the representation). For example, the successor of s(s(0)) (the number two)
is s(s(s(0))) (three). If we take a closer look at the two rules that describe
the successor, we see that they contain function symbols in the arguments
of the rule. These function symbols are called functors. Functors can be
compared with normal predicates, except that they never get evaluated and
thus only have a structural meaning.

minimum(?x,?y,?x) if smallerThen(?x,?y),!.

minimum(?x,?y,?y).

This last example is a implementation of a rule that computes the mini-
mum of two numbers. Suppose we want to find the minimum of 3 and 5.
We would pose the query if minimum(3,5,?x). As we already discussed
with the append example, all the matching rules will be tried when finding a
solution so the variable ?x in this example will bind to 3 and ?y to 5. But if
we run this query in SOUL, we would only get the value 3 as a result. This is
because of the cut-operator ”!” which we can find in the first rule. The effect
of this operator is that when it is encountered none of the other possibilities
of the rule with the same head (the part of a rule before the ”if”) will be
tried while proving the query. Also all the alternatives of the literals before
the cut will be pruned. If we take a look at our example, SOUL will first try
the first rule (which matches) and the body of that rule will be evualted.
We see that smallerThen(3,5) will succeed and that we reach the cut. The
effect of the cut is that all the alternatives of the minimum rule (in this case
only the second rule) will not be tried and that the example only has one
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output, namely the number 3. Cuts are mostly used in logic languages to
optimize the programs written in them by canceling out alternatives of a
rule. A programmer should always be weary when using cuts, since in some
cases they change the pure logic meaning of the program. This example is
one of those cases: if we omit the cut-operator then the minimum predicate
will have a totally different output. We explained the cut operator here since
its understanding is important when we will discuss the implementation of
our induction algorithm in a later chapter.

3.2.2 Using Smalltalk code in SOUL

3.2.2.1 Smalltalk terms

SOUL offers a certain symbiosis between itself and the underlying Smalltalk
environment in which it is implemented. The programmer can make use of
Smalltalk entities from within a SOUL program by using Smalltalk terms

[DMBM02]. Smalltalk terms are represented by Smalltalk code (with pos-
sible logic variables) denoted between ’[’ and ’]’.

getFirstOutCollection(?collection,?first) if

equals(?first,[?collection at: 1]).

The above predicate takes a Smalltalk collection as input and will bind the
value of the first element of that collection to the variable ?first. When the
predicate is called the ?collection variable should be bound to a Smalltalk
object (namely an object that implements the at: selector). The value of
the ?first variable is also a Smalltalk object. This example shows that we
can use Smalltalk entities in SOUL programs and that Smalltalk terms can
contain logic variables which will be substituted in the Smalltalk code.

3.2.2.2 Smalltalk clauses

We can extend the idea of using Smalltalk terms in a logic program to using
Smalltalk clauses. These clauses do not differ much from Smalltalk terms.
The only difference between the two is that Smalltalk clauses do not need
to appear in a logic clause. Instead they can be used as such a clause. This
property implies that they have to evaluate to a boolean.

greaterThan(?x,?y) if

[?x > ?y].
writeString(?string) if

[Transcript show:?string.true].

The two examples above use Smalltalk clauses. Notice that with the second
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predicate (writeString) we explicitly have to specify the true at the end
of the clause since the Smalltalk clause has to evaluate to a boolean.

3.2.3 Quoted terms

The last peculiarity of SOUL we will discuss are Quoted terms. Quoted
terms can be compared to strings with the exception that every occurrence
of a variable will be replaced by the binding of that variable (much like the
quotations in Scheme). Quoted terms are denoted between ’{’ and ’}’.

generateStPrint(?class,?code) if

equals(?code,

{Transcript show:?class asString}).

The above predicate will generate a string representation of Smalltalk code
for printing the name of a class on the Transcript. This shows a great use of
Quoted terms: code generation. Soul will not evaluate the Smalltalk code in
the quoted term but will substitute the values of the variables in the term. If
we for instance launch the query if generateStPrint([Object],?code)

then the variable ?code will bind to {Transcript show:Object asString}.

3.3 Logic Meta Programming

3.3.1 Definition

We define Logic Meta Programming (LMP) as [PRO]:
the use of a Logic Programming Language at Meta level to reason about and

manipulate programs built in some underlying base language. With this we
mean in our context that we are going to write logic programs that will rea-
son about and adapt programs written in an object oriented language. LMP
is a technique that is developed at the Programming Technology Lab(PROG)
where research is being done on how LMP can be used to create state-of-
the-art software development support tools.
The logic programming part of this definition should be clear by now. We
say that LMP is a meta programming approach since the support tools are
at the meta level with respect to the source code they reason about or make
changes to.

3.3.2 Applications

LMP has already been used for a lot of different applications in the context
of creating development support tools, but we can put all of them in one of
the following five categories:
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SOULMLISmalltalk

Figure 3.1: The representational mapping in SOUL

• Verification of source code (eg. conformance checking, coding con-
ventions [MMW01],design models [Wuy98], architectural description
[Men00a]

• Extraction of information out of source code (eg. code metrics [MD01]

• Transformation of source code (eg. refactoring,translation,evolution
[MT01].

• Generation of source code [Wuy01]

• Aspect Oriented Programming [Bri00] [DVD99]

3.4 Logic Meta Programming with SOUL

As we already discussed in a previous section, a strong interaction is possible
between SOUL and the language it is implemented in: Smalltalk. This is
not a coincidence. In fact, SOUL was designed to be a LMP-language.

3.4.1 Representing Smalltalk entities in SOUL

Before we can show how meta programs can be written in SOUL, we should
take a look at the way Smalltalk terms are represented in SOUL. Most of the
Smalltalk entities can be represented by a logic representation of their parse
tree. For instance, the Smalltalk statement self add: 1 will be trans-
lated into the SOUL term <send(self,#add:,1)>. A Smalltalk entity like
a class, which does not have a parse tree representation is represented by a
functor with five arguments: the class, its name, the names of its arguments,
the names of its temporary variables and the statements of the class.

SOUL has to have access to the Smalltalk entities. To achieve this a meta-
language interface (MLI) is used (see figure 3.1). Every time SOUL needs a
Smalltalk element, it will call the MLI that will return the SOUL represen-
tation of the element. The usage of an MLI allows that SOUL can easily be
ported to use a different meta-level language.
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Figure 3.2: The different layer of LiCoR

3.4.2 An Example

In the following simple example will show how we can write meta programs
using SOUL. The given rule can be used to obtain all the subclasses of a
given class.

subclass(?subclass,?class) if

member(?subclass,[?class allSubclasses]).

This predicate uses a Smalltalk term to compute a collection of all the sub-
classes of ?class and then applies the member predicate to that collection.
The effect of the member predicate when it is applied on a collection is that
its output variable will be bound to all the items of that collection.

3.4.3 Library for Code Reasoning

SOUL is equipped with a large collection of predicates for meta program-
ming. This collection is called the Library for Code Reasoning or LiCoR
for short. LiCoR is designed as a set of layers (see figure 3.2) [Wuy01].
The predicates in each layer are grouped by functionality and use only the
predicates from the lower layers. Let us take a look at these layers:

• Logic Layer This layer implements all the basic logic functionality.
We can find predicates here for adding, substracting,. . . of numbers.
For list manipulation like append, length,. . . For doing type checking
on arguments of predicates (like the var predicate that checks wether
something is a variable) For adding (assert) and deleting(retract) facts
and rules from the logic database and for doing basic logic program-
ming operations like pattern matching.

• Representational Layer Since we want to reason in SOUL about
Smalltalk code, we need to represent Smalltalk entities in SOUL. This
is done by the predicates in the representational layer which convert
Smalltalk entities into SOUL entities (this process is called reification).
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layer group some predicates

logic layer arithmetic add,sub,greatThan,. . .
list handling append, length, member, flatten,
type checking var ,atom,ground
repository handling assert,retract
pattern matching patternMatch, . . .

representational layer base predicates class, method,hierarchy

basic layer parse tree traversal isSendTo, assignmentStatements,
classUsed, returnStatments

typing instVarTypes, collectionElementType
flattening classChain, flattenedMethod
code generation generateClass, removeClass
accessing methodName,methodClass,

methodStatements
auxiliary rootClass,understands,abstractClass

design layer prog. conventions accessor,mutator
design patterns compositePattern,visitor, abstractFactory

Table 3.1: The layers with their groups and some predicates

The predicates in this layer communicate with the MLI. It contains
predicates for getting information about a class (class predicate), a
method (methodName, methodArguments,. . . ) , a parse tree of a
method body (methodStatements), . . .

• Basic Layer This layer contains a set of auxiliary predicates which
factor out commonly used functionality when reasoning about code.
Let us discuss a few predicates from this layer. isSendTo is used to
retrieve information about which methods are sent in a part of a parse
tree. The instVarTypes returns the types of the instance variables of
a class,. . .

• Design Layer Here are predicates for programming conventions, de-
sign patterns, . . . In this layer we can find the visitor predicate, which
can be used to check wether a structure of classes is an instance of the
visitor pattern.

All these layers are also subdivided in a number of groups which contain
predicates with some common functionality. For a short overview of the
layers with their groups and most important predicates, see table 3.1.

3.4.4 An application of LiCoR

We already discussed the Visitor design pattern in section 2.1.1. Now let us
write a SOUL program that expresses the relationships between the classes
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and methods that make up an instance of the visitor design pattern [Wuy01].

visitor(?visitor,?element,?accept,?visitSelector) if

1. class(?visitor),

2. classImplements(?visitor,?visitSelector),

3. class(?element),

4. classImplementsMethodNamed(?element,?accept,?acceptBody),

5. methodArguments(?acceptBody,?acceptArgs),

6. methodStatements(?acceptBody,

<return(send(?v,?visitSelector,?visitArgs))>),

7. member(variable([#self]),?visitArgs),

8. member(?v,?acceptArgs).

We added numbers in front of every line so that we can explain the example
more easily. The lines 1 and 3 check wether the binding of the ?visitor
and ?element variable are classes. Line 2 uses the classImplements predi-
cate to check wether the Visitor implements the visitSelector (in the
UML diagram this corresponds to checking wether the Visitor implements
visitConcreteElementA and visitConcreteElementB). Line 4 and 5 ex-
tract the body and arguments from the method implemented on Element

with as name the binding of ?accept. Lines 6, 7 and 8 check wether this
body consists out of a statement which sends the message ?visitSelector to
a visitor with ”self” as an argument.

The program we obtained can be used for a whole range of applications
(which we will not discuss any further, since it would lead us outside the
scope of this dissertation):

• Detecting instances of the design pattern in a piece of source code

• Verifying that an instance of a pattern is still consistent with its im-
plementation

• Generating a template implementation of an instance of the pattern

3.5 SOUL and Intentional Views

In chapter 2 we discussed Intentional Software Views. We mentioned that if
we want to define a view, we have to express a description of that view in a
formal language. We already showed that SOUL offers a lot of functionality
for writing programs that reason about other programs. Now this is exactly
the kind of programs we want to write if we want to express the description of
an Intentional View. In chapter 2 we created a few views for documenting
the Visitor design pattern. Here we will write down the descriptions of
those views with SOUL. In the previous section we already wrote a SOUL
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program that expresses the Visitor pattern. To write SOUL rules for these
Intentional Views, we will use variations of this program. Let us take a
look at the description of two views: ConcreteVisitors and AcceptMethods.
Writing a SOUL program for the other views is similar to the programs we
provide here.

• ConcreteVisitors(?class) if

class(?class),

AbstractVisitor(?abstractvisitor),

subclass(?class,?abstractvisitor).

Although the rule we provide here is quite naive (we say that every
subclass of an AbstractVisitor is a ConcreteVisitor), it is a quite good
description of the ConcreteVisitors view.

• AcceptMethod(method(?class,?selector)) if

class(?class),

ConcreteProducts(?class),

classImplementsMethodNamed(?class,?selector,?methodbody),

methodArguments(?methodbody,?acceptargs),

methodStatements(?methodbody,

<return(send(?v,?visitorselector,?visitargs)>),

member(variable([#self]),?visitargs),

member(?v,?acceptArgs).

The rule we provide here is very similar to the rule we created in the
previous section. We say that a method is an AcceptMethod if it is
implemented on a ConcreteProduct and if it has a double-dispatch
(this information is encoded in the literals that express that the body
of the method exists out of one statement that exists out of the return
of sending a message to the visitor with #self as argument.

Now let us take a look at what we can do with these rules. If we want to
calculate all the elements of an Intentional View, we simply pose a SOUL
query. If we would for instance like to know all the accept methods, we would
launch the query if AcceptMethod(?methods). The rule we provided can
also be used to let the documentation evolve whenever the implementation
changes. Suppose we would implement a new ConcreteVisitor and we would
re-calculate the elements in the ConcreteVisitors view, then the rule would
also detect the new visitor: our description of the view is independent of
the implementation of the visitor. Using the SOUL description for a view
results in more robust documentation. Also, if we take a look at the rules,
it is relatively easy to see what is meant by them. The intention behind the
documentation is clear to a developer who reads the rules. The above ex-
ample also illustrates the major disadvantage of Intentional Software Views:
in order to create a description for a view, a developer has to know the
language SOUL. Also the developer has to know a lot about the high-level
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relationships in the software in order to be able to express this information
in SOUL.

3.6 Summary

In this chapter we have studied the basic principles behind logic program-
ming languages by means of the SOUL language. We discussed the notion
of Logic Meta Programming and took a look at how we can write logic
meta programs with SOUL and the LiCoR library. In the context of our
research, we will use Logic Programming as the programming paradigm in
which we implement the Induction algorithm (which we will discuss in the
next chapter). Logic Meta Programming is important for our tool since we
need to extract information out of the source code and also since we want
an expressive formalism for describing our documentation. We also showed
the relationship between SOUL and Intentional Software Views. We argu-
mented that SOUL is an excellent medium for writing down the description
of a view. At the end of chapter 2 we stated that we want to make a tool
that allows the easy creation of robust documentation. We can now address
the problem we are going to solve in our tool in a more concrete manner.
The greatest disadvantage of Intentional Views is that the developer man-
ually has to provide a description for a view and thus has to know about
SOUL and about the structural information of the elements in the view. In
our tool we are going to extract a SOUL program out of a classification au-
tomatically and use this program as the intentional description for the view.
In the next chapter we will discuss how we can extract a logic program out
of a collection of software artifacts.

23



Chapter 4

Inductive Logic

Programming

In the previous chapter we discussed the topic of logic programming by
means of the language SOUL and a set of examples. In this chapter we
take a look at the theoretical foundations of logic programming. With this
theory as background we discuss the topic of inductive logic programming

(ILP), a technique from the domain of machine learning. Finally we take
a deeper look at two examples of ILP algorithms:FOIL and Relative Least

General Generalization.

4.1 Logic Programming Theory

This section gives a short introduction to logic programming theory. We
do not give an in-depth overview of the subject but limit ourselves to the
concepts that are useful for explaining Inductive Logic Programming and
ILP-algorithms. For a more extensive treatment of the subject we refer
to [Fla94] and [Llo87].
We start this section by introducing some terminology we will use in the
rest of this section. We will then take a look at the syntax of the building
blocks of logic programs: Horn Clauses. Since we are not only interested in
what logic programs look like but also want to know what they mean we
finish this section by taking a look at the semantics of logic programs by
taking a brief look at model theory and proof theory.

4.1.1 Terminology

In the course of this chapter the reader will encounter a few terms related
to logic programming theory and predicate logic. In this subsection we give
the definition of a few relevant terms. It is not the intention that the reader
looks at these terms now, but that he refers to this list whenever a term is
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encountered that is not all clear.

Predicate A predicate consists out of a predicate symbol (a constant) and
a number of arguments (the arity of the predicate). A predicate has
a truth value true or false. Take a look at the predicate sum(1,2,3).
The predicate symbol here is sum, the arity is 3 and if we interpret the
predicate as ”the third argument of the predicate is the sum of the
first two arguments” then the truth value is true.

Truth value of a clause A Horn clause can be true or false. This value
is dependent on the truth values of the predicates in the clause.

And,or and implication The ∧ is the and-operator. The clause A ∧ B
is true if and only if A and B are both true. The ∨ is called the or-
operator. The clause A ∨ B is true if either A or B are true. Finally
we have the implication (→). The clause A → B is true if A and B
have both the same truth value or if A is false and B is true. We can
rewrite the implication A→ B as the clause ¬A ∨B.

soundness We say that a logic program is sound if everything we can de-
duce from it is true

completeness A logic program is complete if it covers all positive examples

consistency If a logic program does not cover any of the negative examples,
we say it is consistent.

derivation, deduction Clause C2 is derivable from clause C1 (C1 ` C2) if
we can get clause C1 from clause C2 by applying rewrite operators to
C2.

logic consequence Clause C2 is a logic consequence of C1 (C1 |= C2) if
every model of C1 is a model of C2.

4.1.2 The syntax of logic programs

In the previous chapter we gave a practical look at how logic languages work
by studying the SOUL language. Here we will take a more formal look at
logic programs. We define programs in a logic programming language as a
collection of Horn clauses. The following grammar gives a formal definition
of such a Horn clause. To define the grammar we will use the following
conventions: productions between [ and ] may be omitted. For example a[b]
produces the string a or the string ab. A ∗ means that we may repeat the
production zero or more times. If we take for instance i∗, this can produce
the strings like the empty string but also i,ii,iii,. . . The | symbol is equiv-
alent with an ’or’. If we encounter for example a|b, this can produce two
strings namely the string ’a’ or the string ’b’.
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clause := head [← body]
body := atom
body := [atom [∧ atom]∗]
atom := predicate[(term [,term]∗)]
term := variable | constant | list
variable := ? identifier
constant := identifier
identifier := ”a single word”
list := < [term]∗ >

The best way to illustrate this syntax is by means of an example. Con-
sider the following set of clauses to express the grandparent relation:

grandparent(?x,?y) ← parent(?x,?z) ∧ parent(?z,?y).

parent(?x,?y) ← father(?x,?y).

parent(?x,?y) ← mother(?x,?y).

father(jim,bob).

mother(ellen,louise).

father(bob,louise).

mother(mia,ellen).

Notice the similarities between the Horn Clauses and the syntax of SOUL.
Now let us see how the concepts we have used to define a clause can be
mapped onto our example.

• clause In our example parent(?x,?y) ← father(?x,?y) is a clause.

• atom parent(?x,?z) and father(jim,bob) are examples of an atom.
Atoms are predicates which consist out of an identifier(here parent and
father) and an arbitrary number of terms: the arguments.

• terms As we already saw in the grammar, a variable and a constant
are instances of a term.

• variable ?x, ?,y and ?z are examples of variables.

• constant In our example jim, bob and louise are constants.

• list Although there are no lists in our example, we are still going to
give an example of a list since it is used in later sections. <1,2,3>
represents the list containing the numbers 1, 2 and 3.

We can have two different kinds of clauses: rules and facts. An example of a
rule is grandparent(?x,?y) ← parent(?x,?z) ∧ parent(?z,?y). Rules
consist of a head (the conclusion) and a body (the preconditions). A fact
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is a Horn clause without a body (like for instance father(bob,louise). A
fact is always true (more on truth values in the section about model theory).
A special case of a clause is the empty clause false ← true. The empty
clause is represented in most literature by the symbol 2.

4.1.3 Properties of logic languages

Now that we have introduced the basic syntactical concepts of a logic lan-
guage, we are going to discuss a few properties of these languages that are
important for our further discussion.
We say that a clause or atom is grounded if it contains no variables (eg.
parent(mia,louise)).

Let V ariables be the set of all the variables in a logic program P and
let Literals be the set of all the terms that occur in a clause C of a logic
program P . A substitution Cθ is a mapping V ariables→Literals in which
we change every occurence of variable ?x in C into literal l. We note this
as: θ = {?x/l}. For example: C = parent(jim,?x), θ = {?x/bob}, Cθ =
parent(jim,bob). We say that a substitution θ is a unifying substitution
of clauses C1 and C2 if C1θ = C2θ. So θ = {?x/jim,?y/bob} is a unifying
substitution of father(?x,bob) and father(jim,?y).

4.1.4 Model theory

We have already discussed the syntax of the logic language consisting out
of Horn clauses. Now let us take a look at the semantics. In order to make
it easier to determine the truth value of a Horn clause, let us rewrite the
clause such that the implication of removed. Consider the following general
Horn clause:
H ← L1 ∧ L2 ∧ · · · ∧ Ln. In order to know its meaning, we want to assign
a truth value to this clause by assigning a value to each of the literals. We
are going to rewrite it by replacing the implication with a disjunction (the
terminology in section 4.1.1 shows how this is done).
We then get: H ∨ ¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Ln. We see that this last clause is
true if the head is true or if the negation of one of the literals from the body
is true. The reader can verify that this is correct by comparing the truth
values of our clause with those of the implication. If we now want to know
wether a Horn clause is true we associate with every Li a truth value and
check wether the entire clause is true or false.

Before we take a look at the semantics of our example from the previous
section, we have to introduce a few new concepts.
The Herbrand Universe UP of a logic program P is the set of all the
grounded terms in the program P. In case of the example from the previous
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section UP = {jim,bob,louise,mia}.

We define the Herbrand Base BP of a program P as the set of all the
grounded atoms in P. The elements of the Herbrand Base are all possible
combinations of predicates and constants. The Herbrand Base of our exam-
ple is:
BP = {grandparent(jim,jim),· · · , parent(jim,louise), mother(louise,louise),· · · }.
It is easy to see that the Herbrand Base can be quite large.

We can make a mapping between the elements of the Herbrand Base and the
values {true, false}. We call this mapping the Herbrand Interpretation
IP of a program P. Since we would have to specify for every element of a
very large set if it is true or false, we are going to use the inverse relation
in practice: we only write down the elements of BP of which we say that
they are true (formally this is written down as I−1

P (true)). For the rest of
the elements of the Herbrand base we assume that they are mapped to false.

Finally, we say that M is a model for a program P if M is a subset of
interpretation I and that all the clauses of P are true with respect to M.
Applied to our example we can find the following models:
M1 = {grandparent(jim,louise),father(jim,bob),father(bob,louise),

mother(mia,louise)}
M2 = {mother(mia,louise),mother(ellen,mia),grandparent(ellen,louise)}
M1 and M2 are not all of the models of P. There can be many more
models (in some logical languages there can even be an infinite number of
models). Note that we can conclude from the two models that jim and ellen
are grandparents of louise.

4.1.5 Proof Theory

Calculating the models from the Herbrand Base is not a realistic approach
for finding correct interpretations of a logic program. It takes too much
time to compute and in some cases, when the Herbrand Base is infinite,
it is impossible. Instead we want to use proof theories that allow us to
derive new, correct clauses from a program by using deductive operators.
Resolution is the operation we use to do this. We define resolution [Rob65]
as follows:

P ∨ L

¬L ∨R

P ∨R

The part above the horizontal line is the begin situation, the part beneath
it is the conclusion. We illustrate resolution by means of an example:
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if grandparent(jim,?y)

if parent(jim,?z),parent(?z,?y)

if father(jim,?z),parent(?z,?y)

if parent(bob,?y)

if father(bob,?y)

empty clause

grandparent(?x,?y) if parent(?x,?z),parent(?z,?y)

[?x/jim,?y/?y]

parent(?x,?y) if father(?x,?y)
[?x/jim,?y/?y]

father(jim,bob)
[?x/jim,?y/?y,?z/bob]

parent(?x,?y) if father(?x,?y)

[?x/jim,?y/?y,?z/bob]

father(bob,louse)
[?x/jim,?y/louise,?z/bob]

Figure 4.1: Derivationtree of the example

Clause 1: grandparent(?x,?y) ← parent(?x,?z) ∧ parent(?z,?y).
Clause 2: parent(?x,?y) ← father(?x,?y).
Clauses 1 and 2 are equivalent to the following set of clauses (when we
rewrite the implication):
Clause 1: grandparent(?x,?y) ∨ ¬parent(?x,?z) ∨ ¬parent(?z,?y).
Clause 2: parent(?x,?y) ∨ ¬father(?x,?y).
Notice the literals ¬parent(?x,?z) from clause 1 and parent(?x,?y) from
clause 2. We can find a unifying substitution {?z/?y} so that the two literals
are equal (not considering the negation in one of them). When we apply
this substitution to the clauses we can rewrite clause 2 and get the following
set of clauses:
Clause 1: grandparent(?x,?y) ∨ ¬parent(?x,?z) ∨ ¬parent(?z,?y).
Clause 2: parent(?x,?z) ∨ ¬father(?x,?z).
Now take:
P = grandparent(?x,?y) ∨ ¬parent(?z,?y).
R = father(?x,?z)

L = parent(?x,?z).
If we now apply our definition of resolution we get as result the following
clause: grandparent(?x,?y) ∨¬father(?x,?z) ∨¬parent(?z,?y). We
can turn this clause back into a Horn clause by introducing an implication:
grandparent(?x,?y) ← father(?x,?z) ∧ parent(?z,?y).
Resolution is sound: if we can obtain a clause C out of a program P by
means of resolution, then we can also say that C is a logic consequence of P
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(formally this is written down as P ` C → P |= C).

Now we are going to take a look at how we can use resolution to find an-
swers to a logic query. Consider the following technique: suppose we want
to prove C. Instead of trying to reach C by using resolution we are going to
try to prove ¬C. If we obtain the empty clause 2 while proving ¬C, then we
have reached a contradiction (the empty clause can be interpreted as false
← true, which can never be true) and we can conclude that C is valid. If
C contains variables, then we can use the substitutions of the proof to get
the values for which C holds. This technique to construct proofs is called
proof by refutation. Note that we can do this since resolution is sound: if we
apply the resolution operator to a clause, then the new obtained clause is a
logic consequence of the original one. This is a necessary condition since we
can not construct a correct proof if we are not sure that every step in the
proof is also correct.

Now let us take a look at how we would apply this to our example. Figure
4.1 shows a complete refutation tree for finding all the persons ?y who have
jim as a grandparent. We start with the query ”if grandparent(jim,?y)” (the
”←” of the Horn clause is represented by the word ”if” in the figure). This
clause is equivalent to the Horn clause: false ← grandparent(jim,?y).
We can read this clause as ”there exists no ?y so that jim is the grandparent
of ?y” or less formal as ”jim has no grandchildren”. By doing a few reso-
lution steps we come to the empty clause which means we have reached a
contradiction and have proven the oppositive of the clause namely that ”jim
does have grandchildren”. At each step the unifying substitutions have also
been supplied. If we take a look at these substitutions we can see that every
binding for ?y is a possible solution of the query. In this case is louise the
only grandchild of jim.

4.2 Inductive Logic Programming

4.2.1 Definition of Inductive Logic Programming

We should start this section by stating the kind of problems that inductive
logic programming tries to solve. A good definition can be found in [BG95].

Given:

• A set of possible programs P

• A set of positive examples E+

• A set of negative examples E−

• A logic program B so that ∃ e+ ∈ E+ : B 6` e+
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Then: find a logic program P ∈ P such that the program B ∪ P is complete
and consistent.

The program B that we give the induction algorithm as an input is the
background knowledge we have about the problem: it is a collection of rules
and/or facts which express the knowledge we already know about the prob-
lem. We state that at least one of the positive examples is not a logic
consequence of the background information. If this would not be true, then
we would already have a program P that covers all the positive examples
(it is clear that P = B). The set P is often called the hypothesis space: it is
an infinite set that contains all the possible, correct Horn clause programs.
The program P we want to find is an element of the hypothesis space that
extends the background program B and covers all the positive examples E+

while not covering any of the negative ones E−.
If we compare induction with deduction (deduction is the process of deriv-
ing new clauses out of existing ones as described in section 4.1.5) we see
that they share the following property: let T be a logic program and E a
consequence that we can deduce out of T, then E is a logic consequence of
T.
Formally this is written down as: T|= E. In the context of ILP we can
rephrase this as B ∪ H |= E+ and B ∪ H 6|= E− with B the background
knowledge, E+ and E− the sets of positive and negative examples and H
the hypothesis we want to induce. If we want to express the relationship
between induction and deduction we can say that induction is the inverse of
deduction.

4.2.1.1 An example

As an example, suppose we want to induce a program for expressing the
granddaughter relationship.

P = the collection of all correct Horn Clauses.
E+ = { grandDaughter(sharon,victor),

grandDaughter(julie,victor) }
E− = { grandDaughter(ellen,victor) }
B = { father(bob,tom), father(victor,ellen)

father(bob,sharon),female(sharon),

mother(ellen,julie),mother(ellen,sharon),

female(ellen),female(julie), ... }
P = { grandDaughter(?x,?y) ← female(?x),father(?z,?x),father(?y,?z),

grandDaughter(?x,?y) ← female(?x), mother(,z,?x),father(?y,?z)

... }.
The set E+ consists out of a number of examples of the relationship for which
the truth value is true (they are correct instances of the grandDaughter re-
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Most specific

Most general

More general

Figure 4.2: a visual representation of the hypothesis space

lationship). E− contains one example for which the relationship is false. In
the collection B we can find all the background information about the exam-
ples we have: it contains facts which represent information about persons
and the relationship between these persons. B is the logic program we want
to extend so that it also has the notion of the granddaughter relationship.
The program P that is obtained by induction contains the rules that can be
used to express the granddaughter relationship. Notice that all the positive
examples are covered by the program P ∪ B while the program does not
cover any of the negative examples.
In this section we did not yet specify how we can induce clauses. The follow-
ing sections will give an explanation on how this is done. In these sections we
will reuse the grandDaughter example that is described above or a variation
on it.

4.2.2 Properties of Inductive Logic Programming Algorithms

In this section we will briefly take a look at two properties of ILP algorithms:
top-down vs. bottom-up and the representation of background knowledge.

4.2.2.1 Top-down vs. Bottom-up

As we already mentioned earlier the idea behind ILP is to find a hypothesis
that matches our problem by searching the Hypothesis Space for it. If we
take a look at how most algorithms do this, we can classify them in two
groups: top-down and bottom-up algorithms.

• Top-down algorithms start with the most general possible hypothesis
(a hypothesis which states that everything is true) and will make this
hypothesis more specific in every step of the algorithm.
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• Bottom-up algorithms do the oppositive of this: they start with the
most specific rule (a rule which covers no example) and will make it
more general.

Notice that the elements of the Hypothesis Space (as depicted in figure 4.2)
form a lattice: for every couple of hypothesis there exists another hypotheses
that is more general or more specific than the two hypothesis. This property
will be important for one of the induction algorithms we will discuss later
on.

4.2.2.2 Representation of the background knowledge

We can represent the background knowledge the algorithm takes as an input
in two possible ways: extensional and intensional.

• Extensional background knowledge is represented by a collection of
facts. These facts define a model of the background we want to use
in our algorithm. Suppose, given a set of examples, we want to in-
duce the grandparent relationship as discussed in section 4.1.2. Our
positive and negative examples will be expressed by means of facts
like grandparent(jim,louise), grandparent(bob,jim), ... The
background information would be:
B = { father(jim,bob), mother(ellen,louise), father(bob,louise),

mother(mia,ellen), parent(jim,bob),parent(ellen,louise),

parent(mia,ellen), ...}.
If we take a look at the background we also see that all the elements
are facts.

• Intensional background knowledge differs from extensional in the fact
that it is a description of some of the knowledge instead of an enu-
meration of facts. The background information is represented by a
collection of Horn clauses. Applied to our example this gives the fol-
lowing background:
B = {parent(?x,?y) ← father(?x,?y),

parent(?x,?y) ← mother(?x,?y),

father(jim,bob), mother(ellen,louise), mother(mia,ellen),...}.
The background information does not consist solely out of rules: some
of the background information can not be expressed as a rule, but are
instead data that is written down as facts.

Note that we can easily create the extensional background out of the inten-
sional. This can be done by generating all the facts that correspond with
the results of the rules in the background information, given the facts in the
background as input.
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FOIL(TargetPredicate, P redicates,Examples)
1 Pos← Positive Examples
2 Neg ← Negative Examples
3 Learned rules← {}
4 while Pos
5 do Learn a NewRule
6 NewRule← rule that predicts TargetPredicate with no precondition
7 NewRuleNeg ← Neg
8 while NewRuleNeg
9 do Add a new literal to specialize NewRule

10 Candidate literals← generate candidate new literals, based on Predicates
11 Best literal ← argmax Foil Gain(L,NewRule) with L ∈ Candidate literals
12 add Best literal to preconditions of NewRule
13 NewRuleNeg ← subset of NewRuleNeg
14 that satisfies NewRule preconditions
15 Learned rules← Learned rules + NewRule
16 Pos← Pos− {members of Pos covered by NewRule}
17 return Learned rules

Figure 4.3: the FOIL algorithm in pseudo-code

4.3 Induction Algorithms

In this section we will have a look at two different approaches for inducing
Horn clauses. The first approach is FOIL, a top-down algorithm. The second
one is relative least general generalization, which is a bottom-up approach.

4.3.1 FOIL

The first algorithm we will take a look at is FOIL [Qui90]. The pseudo-code
for the algorithm can be found in figure 4.3. FOIL is a quite naive algorithm
that starts with a general rule and will add literals to that rule until it no
longer covers any of the negative examples. It will create a (sometimes
extremely large) collection of literals which it will consider for addition at
each step. To actually choose which literal gets added, a heuristic is used.
If we take a look at the algorithm we see it consists out of two loops. The
outer loop will add a new rule to the set of hypothesis Learned rules. It
starts with the most specific hypothesis (nothing is true) and will generalize
it in each step. It searches the hypothesis space in a bottom-up fashion.
The outer loop will keep adding new rules until the set of rules covers all
the positive examples.
The inner loop will construct the new rules. To do this it starts with the
most general rule (the rule that states that everything is true: for example
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parent(?x,?y) states that everybody is the parent of somebody) and will
add new literals to it until none of the negative examples are covered. This
piece of the FOIL algorithm does a general-to-specific (top-down) search of
the hypothesis space. We are now going to take a more detailed look at how
FOIL creates candidate literals and we will also discuss the performance
measure Foil Gain which it uses to select the best literal that is added to
the rule.

4.3.1.1 Creating Candidate Literals

When making the current rule more specific FOIL creates, a set of new
literals which may be considered for adding to the rule.
Suppose the current rule is of the form: P (?x1, ?x2, . . . , ?xk)← L1, . . . , Ln.
The following literals Ln+1 are then considered for adding:

• Q(?v1, ?v2, . . . , ?vr) with Q ∈ Predicates and where ∀ ?vi with 1 <
i < r are either new variables or variables that can be already found
in the rule. Also ∃ ?vj with 1 < j < r such that ?vj is a variable that
is already part of the rule. The set Predicates consists out of all the
predicate names that are considered for adding to the rule. This is
the place where we can use the background information we have of the
problem in finding a solution: we supply the predicates that appear in
the background information as the elements of Predicates.

• Equal(?xj , ?xk) with ?xj and ?xk variables that are present in the
rule.

• The negation of the literals from the two above forms.

To show how this works in practice, consider the following example [Mit97].
Suppose we want to learn the GrandDaughter relationship. We are given

a set of predicates FOIL can use (in this case Female and Father, the
predicates which occur in the background knowledge) and we have a set of
positive and negative examples. We would start with the most general rule
GrandDaughter(?x, ?y)←. This rule implies that every ?x is a granddaugh-
ter of ?y. In figure 4.4 we can see a subset of the literals that FOIL considers
to add. Suppose that FOIL choses Father(?y, ?z) as the next literal to add.
The rule will then become GrandDaughter(?x, ?y) ← Father(?y, ?z). In
the next step FOIL will consider all the literals from the previous step plus
also a few new ones and their negation (see figure 4.4).
Suppose that FOIL choses Father(?z, ?x) in this step. During the next itera-
tion FOIL will then choose the literal Female(?y). The hypothesis will then
become: GrandDaughter(?x, ?y)← Father(?y, ?z), Father(?z, ?x), F emale(?y).
As the reader can see, this rule is a correct definition of the granddaughter
relationship. The rule does not cover any negative examples so FOIL can

35



Clause so far Considered Literals

1 grandDaughter(?x,?y) ← equal(?x,?y), female(?y),
female(?x), father(?x,?y)
father(?y,?x), father(?x,?z)
. . . , ¬female(?x)
¬father(?x,?y), . . .

2 grandDaughter(?x,?y) ← father(?y,?z) all from first step +
female(?z), equal(?z,?x),
equal(?z,?y),. . .
+ negation of these literals

3 grandDaughter(?x,?y) ← father(?y,?yz), all from 2nd step +
father(?z,?x) female(?w), equal(?x,?w),

equal(?w,?w), . . .
+ negation of all these literals

Figure 4.4: the clause so far and the literals considered by FOIL for addition
to the clause

remove the positive examples this rule covers and can start over again with
the remaining examples to create another rule.

4.3.1.2 FOIL Gain

Now let us take a look at how FOIL decides which literal gets added each
iteration. FOIL uses a performance measure called FOIL Gain to select
the literal that is added to the rule. FOIL Gain is defined by the following
equation:

FOIL Gain(L,R) = t

(

log2

p1

p1 + n1

− log2

p0

p0 + n0

)

(4.1)

FOIL Gain(L,R) calculates the performance of adding literal L to rule R.
Let R′ be the rule that is created by adding literal L to rule R. To measure
the performance of a rule, FOIL will generate all the possible bindings of a
rule. A binding of a rule is a combination of all the constants with all the
variables in a rule. A binding is called positive if there exists a corresponding
fact in the background data.

• p0 are all the positive bindings in rule R.

• n0 are all the negative bindings in rule R.

• p1 are all the positive bindings in rule R′.

• n1 are all the negative bindings in rule R′.
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Female(?y) Father(?x, ?z)

t = 1 t = 1

p0 = 1 p0 = 1

n0 = 15 n0 = 15

p1 = 1 p1 = 1

n1 = 15 n1 = 80

Gain = 0 Gain = −2, 33

Table 4.1: The FOIL Gain calculated for two possible literals

• t are all the positive bindings of R which are still positive after adding
L to R.

This definition will become clearer to the reader if we apply it to our exam-
ple. Suppose the input data consists out of the following facts:
GrandDaughter(Sharon, V ictor), Father(Bob, Sharon)
Father(Bob, Tom), Female(Sharon), Father(V ictor,Bob)
FOIL will start with the most general rule: GrandDaughter(?x, ?y)←.
Since the constants in our example are Victor, Sharon, Bob and Tom we can
generate bindings of the form {?x/Bob, ?y/V ictor}, {?x/Tom, ?y/Bob}, . . . .
Of these 16 possible bindings only {?x/V ictor, ?y/Sharon} is a positive one
(since GrandDaughter(Sharon, V ictor) is the only fact that corresponds
with a binding), the 15 other are negative.
In table 4.1 we can see a table with the values for FOIL Gain for the
Female(?y) and Father(?x, ?z) as L and GrandDaughter(?x, ?y)← as R.
We want to maximize the information we can gain by adding a literal so
we choose the candidate literal with the highest Foil Gain. In this example
FOIL will choose Female(?y) as the next literal to add.

4.3.2 Relative Least General Generalization

The other technique we will take a look at is called Relative Least General

Generalization. It is based on the observation that induction is in fact the
opposite operation of deduction and that inverse deduction operators can be
used to induce clauses. Plotkin [Plo70] [Plo71] was the first to notice that
generalization could be used as such an inverse deduction operator.
Relative Least General Generalization works by taking two examples and
applying a generalization operator on them so that we obtain a clause that
is strictly more general than the two examples. This clause suffices in a lot
of cases to also cover other positive examples. This process is repeated until
no more positive examples remain.
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4.3.2.1 Definitions

If we want to induce clauses by generalization it is important that the clause
we find is not overly general. If we for instance always would take as the
generalization of two clauses the most general clause (”everything is true”),
we would not be able to induce useful rules. In fact, given two clauses c1 and
c2 we want to find the clause c which is the most specific clause that is more
general than c1 and c2. So we should take a look at a few definitions which
allow us to determine which of two clauses is the most general/specific. Let
us take a look at the following definition:
θ-subsumption: Clause C θ-subsumes (or is more general than) a clause
D if there exists a substitution θ such that Cθ is a subset of D (Cθ ⊆ D).
Example: The clause element(?x, ?v) ← element(?x, ?z) θ-subsumes the
clause element(?x,<?y|?z >) ← element(?x, ?z) with θ = {?v/ <?y|?z >}.
There exists a relation between θ-subsumption and logical consequence,
namely: if C θ-subsumes D then D |= C (we will not prove this prop-
erty since it is out of the scope of this dissertation).

Notice that the hypothesis space as depicted in figure 4.2 forms a lattice.
We can see that for every pair of clauses their exists a unique clause that is
minimal more general than the two clauses. This leads us to the following
definition:
Least general generalization: C is the least general generalization (lgg)
of D if C θ-subsumes D and for every other clause E such that E θ-subsumes
D it is also the case that E θ-subsumes the clause C.
If we want to compute the lgg C of a set of clauses S we can do this by
computing the lgg of every clause in S.

4.3.2.2 Anti-unification

Let us define the anti-unification of two terms as follows.
Term C is the anti-unification of terms C1 and C2 if we can find substitu-
tions θ1 and θ2 such that C = C1θ1 = C2θ2 and θ1 and θ2 are so chosen that
for all other θi and θj holds that C1θi and C2θj are more general than C.
What we concrete try to obtain by anti-unifying two terms is a term that
shares all the commonalities of the two terms and generalizes the differences
between them. An example will make this definition easier to understand:

C1 ≡ 2 * 2 = 2 + 2
C2 ≡ 2 * 3 = 3 + 3
C ≡ 2 * X = X + X
θ1 = {2/X}
θ2 = {3/X}.
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When we will take a look at the implementation of rlgg in a later chap-
ter, we will discuss more detailed how we can compute the anti-unification
of two terms.

4.3.2.3 Computing the Least General Generalization

We are now going to take a look at how we can compute the lgg of two
clauses.
Suppose we have the clauses C1 ← A1, A2, . . . , An and C2 ← B1, B2, . . . , Bm.
We define the clause C which is the lgg of the two clauses as:

• The head of clause C is obtained by calculating the anti-unification of
the heads of the original clauses,namely C1 and C2.

• The body C is constructed by anti-unifying ∀ Ai with 1 < i < n with
∀ Bj with 1 < j < m.

4.3.2.4 Relative Least General Generalization

We now have a method for generalizing a set of clauses. In practice this is not
very useful since we also want to incorporate some background knowledge
while creating a generalizing clause. To solve this problem we are going to
make use of the relative least general generalization (or rlgg for short). The
rlgg of two positive examples is the lgg of the examples with respect to a
(partial) background model B. We can express this more formally as:

rlgg(e1, e2, B) = lgg(e1 ← B∧, e2 ← B∧).

Notice that this approach for inducing clauses does a specific-to-general
search of the hypothesisspace (bottom-up).

4.3.2.5 An example with a lot of redundant literals

Suppose we have the following set of examples:
append(<1,2>,<3,4>,<1,2,3,4>), append(<a>,<>,<a>)

append(<>,<>,<>), append(<2>,<3,4>,<2,3,4>)

When we compute the rlgg of append(<1,2>,<3,4>,<1,2,3,4>)and append(<a>,<>,<a>)

with the set of examples as background information we obtain the following
clause:
append(<?x|?y>,?z,<?x|?u>) ← append(<2>,<3,4>,<2,3,4>),

append(?y,?z,?u),append(<?v,?z,<?v|?z>)

append(<?k|?l>,<3,4>,<?k,?m,?n|?o>),append(?l,?p,?q),

append(<>,<>,<>),append(?r,<>,?r),append(?s,?p,?t),

append(<?a>,?p,<?a|?p>),append(?b,<>,?b),append(<a>,<>,<a>),

append(<?c|?l>,?p,<?c|?q>),append(<?d|?y>,<3,4>,<?d,?e,?f|?g>),

append(?h,?z,?i),append(<?x|?y>,?z,<?x|?u>),
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append(<1,2>,<3,4>,<1,2,3,4>).

As the reader may notice, the above rule contains a lot of unnecessary liter-
als. This problem is also discussed in [MF90] we is stated that the clauses
that are induced by generalization can contain an extremely large number
of (redundant) literals. If we have a background model M and n examples
then the maximum number of literals in the created clause can be |M |n +1.
A sufficiently large background model and/or a lot of examples can make
the creation of the clause intractable [Bun88]. Besides from the obvious
deletion of examples (literals without variables in general) from the clause,
a few other methods also have been proposed for reducing the number of
literals in the induced clause.

4.3.2.6 Reducing the size of the clauses

The first method for limiting the number of literals in the clauses is ij-

determination [MF90]. The idea behind this technique is to put a (weak)
limitation on the hypothesis language: the clauses that are inducible are
limited in the way that a maximum depth and degree is set on the variables
that appear in the clause. This limitation prevents a combinatorial explo-
sion in the number of literals in an induced clause. We are not going to
discuss the theory behind this technique in more detail since this would lead
us out of the scope of this dissertation. Instead we will try to explain the
main concept of ij-determination by means of a few examples.
Take a look at the clause double(?A,?B) ← plus(?A,?A,?B). We say that
this clause is 12-determinate: the variable ?B is dependent from 2 values,
namely two times the variable ?A. We say that the variable ?B is at depth
1 since the variable ?A on which it is dependent occurs in the head.
The clause grandfather(?A,?B) ← father(?A,?C), father(?C,?B) is 21-
determinate: the variables ?B and ?C are both only dependent on a single
variable, therefore the degree of the clause is 1. The depth of this clause is
2 since the variable ?B is dependent on the variable ?C which has degree 1.
If we put a limitation on the depth (i) and the degree (j) of the inducible
clauses, we can decrease the number of literals that appear in the body of
the induced clause.

The clauses we obtain through induction can also be negative-based reduced.
Suppose we have a clause A ← B1, . . . , Bn. We search the first literal Bi

from B1, . . . , Bn so that the clause A ← B1, . . . , Bi does not cover any neg-
ative examples. We then reduce the clause to A ← Bi, B1, Bi−1 in the same
manner and iterate the process until further reduction does not make the
size of the clause smaller .

The last method of clause reduction we are going to discuss is called func-
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Figure 4.5: the functional graph of the example

tional reduction. Shapiro [Sha83] was the first to add an additional con-
straint to Horn clauses by describing the arguments of a clause as input or
output variables. Take for example the literal plus(?x,?y,?z). We then
say that ?x and ?y are input variables and ?z is an output variable. We can
use this idea to reduce clauses. We do this by creating a functional and/or-
graph out of the unreduced rlgg. We will represent this and/or-graph as a
set of Horn clauses. For every literal l in the body of the clause with input
variables v1, . . . , vn and output variables u1, . . . , um we create a set of Horn
clauses {(v1 ← u1, . . . , um), . . . , (vn ← u1, . . . , um)}. For every input vari-
able i in the head of the clause we add a fact i. If we search this graph we
can obtain a set of variables which we can use to reduce the induced clause.
Let us demonstrate the use of functional reduction by means of an example.
Suppose that after applying relative least general generalization we obtain
the following clause for the grandfather relationship:
grandfather(?X,?Y) ←

father(?X,?Z),
father(?Z,?Y),
father(?X,?A),
father(?B,?C).

We see that only the first two literals of the body are necessary, the last two
are redundant. The father predicate expresses the ”... is the father of ...”
relationship. We say that the mode of the father predicate is father(out,in):
the first variable is an output variable, the second one an input variable.
When we create the Horn clauses according to the way we described above
we get the following set of clauses:

?Z ← ?X
?Y ← ?Z
?A ← ?X
?C ← ?B.

These clauses correspond to the graph in figure 4.5. If we now take a
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FOIL RLGG

Search direction Top-down Bottom-up

Search approach Hyp. space search Inv. Deduction

Ex. implementation FOIL GOLEM

Table 4.2: A summary of the discussed ILP approaches

look at the graph and we take all the nodes starting from the nodes that
represent the variables from the head of the clause, we see that only the
variables ?X, ?Y and ?Z are necessary for computing the grandfather rela-
tionship and thus can we prune the last two literals of the clause. We then
obtain the following clauses as the result:

grandfather(?X,?Y) ←
father(?X,?Z),
father(?Z,?Y).

4.3.3 Summary

In this chapter we have discussed the theoretical background behind logic
programming. We also looked at Inductive Logic Programming and gave
an overview of a few approaches for ILP, namely FOIL and relative least
general generalization. Table 4.3.3 shows an overview of these approaches
and their properties. We are going to use ILP in the context of our research
to extract a description out of the documentation and use that description to
make sure that the documentation can evolve whenever the implementation
does.

42



Chapter 5

Software Views Inducer

In this chapter we will take a look at Software Views Inducer, the tool we
created in the context of this dissertation. We show how we can use the
techniques like ILP and LMP which we discussed in previous chapters in
order to develop a tool for creating documentation. We will discuss the
implementation of this tool and take a look at an example usage of it.

5.1 Description of the tool

In the Software Views Inducer tool we combine the advantages of both soft-
ware classifications [DH98] and Intentional Views [MMW02a]. By making
use of software classifications we want to make the creation of documenta-
tion out of a Smalltalk image easier for the developer. Instead of having to
write hard SOUL rules, a developer can document a system by simple drag &
drop operations. The tool then extracts an intentional description out of the
software entities the developer has classified. Whenever there are changes
made to the software, this description can be used to semi-automatically
update the documentation. Our tool also makes it easier for a developer
to understand the high-level structures in the documentation since they are
made explicit in the description.

• The developer documents the software by creating classifications and
classifying software entities that belong to these classifications.

• The tool will analyze the software artifacts in the classifications and
will generate background information facts for these artifacts. To do
this the logic meta programming capabilities of SOUL will be used.
In a work-floor ready tool, we would allow the tool to analyze the
elements of a classification on a whole range of features (like for in-
stance subclasses, message sends,. . . ) without the developer having to
specify which ones are considered. In our implementation of the tool
we allow a developer to choose which kinds of features are used when
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Figure 5.1: a screenshot of the StarBrowser with 3 Learned Classifications

analyzing the software entities. This is done for performance reasons
and for allowing us to better control the experiments.

• The tool creates a set of logic rules by means of inductive logic pro-
gramming that describe the software entities in such a classification
with respect to the types of background information the developer has
provided.

• Whenever the source code is changed, these rules can be used to calcu-
late which software artifacts belong to the classification and thus keep
the documentation and the implementation synchronized.

The Software Views Inducer is nowhere near being a work-floor-ready tool,
but it is stable enough and offers enough functionality to allow us to conduct
some experiments. The following sections give a high-level view of some of
the design decisions we had to make while implementing the tool and will
give an example of the usage of it.

5.2 Making classifications and classifying entities

The classifications we use in our tool do not differ conceptually from the ones
that are used in software classifications [DH98] as we discussed in chapter 2.
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Different tools already have been created that implement software classifica-
tions. For creating the classifications in the Software Views Inducer we have
extended such an existing tool, namely Roel Wuyts’ StarBrowser [Wuy].
The StarBrowser allows the easy creation of classifications and implements
the classification of software entities out of the Smalltalk image by means of
drag & drop. The reason why we chose to extend the StarBrowser is that it
is more than just a tool: it is a complete framework for writing tools that
make use of classifications. We extended the StarBrowser with a new kind of
classification: the Learned Classification. Although the StarBrowser allows
the classification of almost all types of items that may occur in a Smalltalk
image, we restrict the types of items we can put in such a classification. We
only allow items that can be relevant for software documentation:

• Classes

• Methods

• Statements from the body of methods

It is clear that when creating documentation we want to classify classes and
methods. We also included the classification of statements, but we are not
going to use them in our experiments. Statements might be useful when
documenting cross-cutting concerns, but this is outside of the scope of this
dissertation. Other Smalltalk entities like protocols, categories, . . . can also
be interesting as documentation but we can omit these since they are basi-
cally nothing more than a container of classes or methods. The StarBrowser
already supplies the functionality for classifying classes and methods. Since
the functionality for classifying statements is not implemented in the Star-
Browser, we had to adapt the StarBrowser and the Refactoring Browser
(this is the standard object browser in VisualWorks [Cin], the Smalltalk en-
vironment we use). Figure 5.1 shows a screenshot of the StarBrowser with
three Learned Classifications. On the left hand side of the screenshot the
reader can see the classifications (in this case: classes, methods and state-

ments). Each of these classifications contain a certain number of software
entities from within the Smalltalk image. On the right hand side a class
browser is opened on the currently selected item.

5.3 Choice of Induction algorithm

As we already stated above, we want to use an ILP algorithm to create
a set of logic rules out of the items of a classification and the background
information. In section 4.3 we discussed a few approaches to ILP. We are
now going to take a look at which approach best fits our problem. First let
us take a look at our situation. We have:
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• A relatively small amount of positive examples. The developer who
creates documentation will only classify a limited number of software
artifacts. The developer expects from the tool that it will find a rule
that also detects the other elements of the classification.

• A small or usually non-existent amount of negative examples. It is
not natural for a developer to have to say which parts of the software
do not belong to a certain part of the documentation. The only way
our tool might obtain negative examples is that the rule obtained out
of the classification also covers some faulty software artifacts and that
the developer will mark them as such.

• A large collection of background information about the examples.

If we now take a look at the different ILP algorithms we can make the
following observations:

• FOIL uses the collection of negative examples to guide its search of
the hypothesis space. If we recall how the FOIL algorithm works,
we see that the algorithm will keep adding candidate literals with
the highest FOIL Gain until the clause no longer covers a negative
example. When there are no negative examples available, which is
common in our situation, FOIL will only be able to induce the most
general clause (namely that everything matches the target predicate).

• Relative Least General Generalization (RLGG) uses the set of
positive examples to induce the clauses and therefore fits our needs
better. As already discussed in section 4.3.2.5, the amount of can-
didate literals in the clause grows exponentially with the number of
examples and the size of the background information. This influences
the overall performance of the RLGG approach since a lot of candidate
literals are considered for adding to the rule and we have to prune the
resulting rules due to this large number of (redundant) literals.

The key factor in our decision of an ILP algorithm is the fact that we do
not have (a lot of) negative examples. Therefore relative least general gen-
eralization is the only inductive logic programming technique we discussed
which we can apply to our situation.

5.3.1 Implementation of RLGG

We did not start from scratch when implementing the RLGG algorithm.
In [Fla94] an implementation of RLGG can be found. This implementation
puts a limitation on the clauses that can be induced. It only allows restricted
clauses: clauses for which all the variables that occur in the body of the
clause also occur in the head. Although this limitation significally increases
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the performance of the algorithm by decreasing the possible number of candi-
date literals, it makes it impossible to induce clauses like the grandfather re-
lationship (grandfather(?x,?y) if father(?x,?z), father(?z,?y)) be-
cause the variable ?z which is necessary to express the grandfather predicate
does not appear in the head of the clause. Since this puts a serious restriction
on the kind of clauses that are inducible, we changed the implementation so
that the restriction no longer applies. As we discussed in 4.3.2.5, the clauses
which are generated by relative least general generalization contain a lot of
redundant literals. We solve this problem by pruning the obtained clauses
by means of functional reduction and negative reduction. We will give a
more high-level overview of the implementation of the induction algorithm.
For the complete source code and a discussion of it we refer to appendix B.
Our induction algorithm works as follows:
The developer provides the tool with the following input:

• The positive examples in the classification

• Optionally: some negative examples.

• A set of background information which should be taken into account
by the induction algorithm and which will extract facts that express
this information out of the positive examples.

The algorithm will then follow the next steps:

1 Create, given the examples, facts that represent the background in-
formation applied to the examples. Let us explain this by means of
an example. Suppose that the developer has classified a class ClassA.
Since our tool takes into account all the subclasses of classes in a
classification as background information, it will calculate all these sub-
classes. Suppose for our example that ClassA has one subclass namely
ClassB. Our tool will extract this knowledge by means of the SOUL
predicate subclass and generates a fact subclass([ClassA],[ClassB]).
This is the extensional background information for the relative least
general generalization.

2 The algorithm will take the first two positive examples and calculate
the relative least general generalization of the examples with respect
to the background information.

3 The clause will be reduced by means of functional and negative based
reduction.

4 The positive examples which are covered by the reduced clause will be
removed.

5 If there are no positive examples left, then return the set of clauses.
Else repeat from step 2.
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5.3.2 Extraction of the background information

The induction algorithm needs as an input a collection of facts which express
the background information we have about the examples in the classification.
The choice of background information is very important: it will determine
which predicates will be used in the induced rules and will thus have a
large influence on the overall quality of the rules we find. To extract this
background information out of the examples we are going to analyze them.
We do this by making use of the facilities SOUL and LiCoR offer us. Our
tool will, given an input example, use SOUL predicates to determine the
information that holds for this example and to generate a fact that expresses
this information. The Software Views Inducer considers the following SOUL
predicates when analyzing the examples in the classification:

• classInNamespace(?class,?namespace) Every class in Smalltalk
belongs to a namespace.

• protocolmethod(?class,?selector),?protocol) A developer can group
a number of methods implemented on the same class in a protocol.

• instVar(?class,?variable) The instance variables of a class.

• subclass(?subclass,?class) All the classes that inherit from a class.

• classImplementsMethodNamed(?class,?selector) The selectors
of the methods implemented on a class.

• methodArguments(?class,?selector,?arglist) The arguments of a
method.

• methodStatements(?method,?statements) The statements in the
body of a method.

• superclass(?superclass,?class) The class from which a certain class
inherits.

• classInCategory(?class,?category) All the classes in Smalltalk be-
long to a category.

• methodWithAssignment(?method,?assignment) All the state-
ments in the body of a method which make an assignment to a vari-
able.

• variablesUsed(?method,?variables) All the variables that are ref-
erenced in the statements of a method.

• methodWithSend(?method,?receiver,?message,?arguments) All
the messages that are sent in the body of a method.
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class method statement

namespace X

protocols X X

inst. vars. X

subclasses X

method names X X X

arguments X

statements X X X

superclass X

category X X

var. assign. X X

var. used X X

message sends X X

method calls X

overr. methods X

hierarchy X

other class. X X X

Table 5.1: The applicability of the background information

• isSendTo(?receiver,?message,?method) Methods who get called
from within other methods.

• overriddenMethod(?method,?overriddenmethod) Methods who
override other methods in the class hierarchy.

• hierarchy(?root,?class) All the superclasses of a class except Object.

• other classifications In certain cases it is interesting to find the links
between a number of classifications. To allow our tool to detect these
links, we can also include the elements of the other classifications as
background information while inducing a rule.

This set of types of background information is not very large, but as we
will see later on when we are conducting a few experiments, it suffices for
inducing rules which are good enough. It is not a limitation of our tool since
the tool offers a framework for creating new kinds of background information
(see appendix A for more information about this framework). As we already
discussed, we can have 3 kinds of elements in the Learned Classifications:
classes, methods and statements. It is clear that not all of the background
information as described above is applicable to each kind of classification
element. The subclass relationship for instance can not be applied to a
statement, nor can method arguments be applied to a class. Table 5.1 gives
an overview of the applicability of all of the background information we have
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Figure 5.2: a screenshot of the classification of our example

implemented in the tool. If the user of the tool selects a kind of background
information that is not applicable to the items of the classification, then this
information will be ignored.

5.4 Example usage of the Software Views Inducer

In this section we give an example of how we can use the Software Views
Inducer. It is not the intention of this section to demonstrate which rules
we can learn out of a classification of software entities nor is it the intention
to demonstrate the evolution of documentation. We show the workings of
the Software Views Inducer so that the reader can get insights in how the
experiments in the following chapter were conducted. Consider the following
(trivial) example: the classes TestClass1 and TestClass2 which share the
following properties:

• An instance variable var1.

• A method method1 which does a return of self and is part of the
protocol testprotocol.

• Both classes are part of the Test namespace and are in the category
SoftwareViewsInducerTest.

We start with creating a Learned Classification named ’testTool’ and clas-
sify the two classes as the elements of the classification (see screenshot 5.2).
We right-click on the classification and chose the ’Induction’ option. The
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Figure 5.3: a screenshot of the inductionwindow

Induction Window will now open on the classification and we select the
background information namespace, protocol, statements, instance variables

and category and click on the induce button to let the system induce a rule
for the examples. We get the following rule (also see the screenshot 5.3):

testTool(?element) if

classInCategory(?element,{SoftwareViewsInducerTest}),
instVar(?element,[#var1]),

classInNamespace(?element,[Test]),

statement(return(variable([#self])),?element,[#method1:]),

protocol(?element,[#testprotocol]),

class(?element)

This rule is the same as the one we can find in the screenshot, except that
we renamed the variables so that it is easier to read (the induction algo-
rithm will not introduce variables with a logic name like ?element, but will
instead use variable names like ?var030). If we use the testTool predicate
we obtained out of the induction algorithm to pose a query, we get two
possible bindings for ?element namely TestClass1 and TestClass2, which are
the elements of the classification we started out with.
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5.5 Summary

In this chapter we have introduced the Software Views Inducer, the tool
we created in the context of this dissertation. This tool wants to provide
a trade-off between the advantages of Software Classifications as they are
used in the work of De Hondt [DH98] and the advantages of Intentional
Software Views [MMW02a]. We have taken a look at our situation and have
argumented why relative least general generalization is the best algorithm to
solve our problem. We also showed how we can use logic meta programming
in our tool to extract the background information out of the documentation.
We also gave an overview of which kinds of background information are
supported by the tool. The goal of our tool is to help a developer to easily
create documentation that is robust when the software changes. In the next
chapter we are going to validate these claims by conducting and discussing
a few experiments.
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Chapter 6

Experiments

In this chapter we validate the claims we made in the previous chapter. We
will start with showing that the software views inducer is able to derive
a set of logic rules from a classification and that these rules contain the
intentional information about the classified software entities. We will then
take a look at a small case study of how we can use the software views inducer
to create robust documentation and how to evolve the documentation when
the implementation changes.

6.1 Inducing rules for documenting design pat-

terns

The first aspect of our technique we want to research is the quality of the
rules that can be induced from a classification. In our experiments we will
document a few design patterns [GHJV95]. We choose design patterns since
they are widely used and generally easy to understand. They are interesting
to take a look at since they impose high-level structural relationships be-
tween the elements of the pattern. In our experiments we will try to extract
these relationships out of the documentation. Also, design patterns already
have been used as a way to document software, so inducing rules out of
instances of a pattern can result in useful documentation.

6.1.1 Design Patterns

Design Patterns originated from an engineering point of view on software
construction. When a problem is encountered while writing a piece of soft-
ware, the developers can apply some sort of template solution in a lot of
cases. This can best be compared with an engineer who has to design a
bridge: although it is a specific problem the engineer will make use of stan-
dard constructions and materials which are applicable to bridge building.
A design pattern is a construction a software developer can use for solving
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a particulate problem. A design pattern consists out of a name, a problem
domain to which it is applicable, the structural description of the pattern
and the consequences of applying it. It is clear that we can only express
the structure of the pattern in our documentation. This structure can be
described by a set of roles and the collaborations between these roles. The
roles are the participants (usually classes or methods) of a design pattern.
With collaborations we mean how the participants of a design pattern work
together to solve the problem. For example, the messages that the partici-
pants send to each other are part of the collaborations.

6.1.2 The Visitor Design Pattern

6.1.2.1 The pattern

In this section we will take a look at the visitor design pattern and how it is
structured and works. We already used the visitor pattern in section 2.1.1
as an example of an application of LiCoR. The visitor pattern is used to
allow a looser coupling between an object hierarchy and the operations on
that hierarchy. Now let us take a closer look at the different roles which
belong to the visitor pattern:

• Visitor: All the concrete Visitors inherit from this class.

• ConcreteVisitor: Subclasses of Visitor which implement an opera-
tion on the hierarchy. For every element of the hierarchy, a separate
method is implemented on the ConcreteVisitor which implements the
behavior for that Element.

• Element: Abstract class from which all the ConcreteElements inherit.

• ConcreteElement: These classes implement an accept method which
will accept a ConcreteVisitor and call the correct method on that
Visitor.

Every different operation on the object structure (which consists out of Con-

creteElements) is implemented on a different ConcreteVisitor. An operation
is applied to a structure by calling the accept method on the structure with
the visitor as argument. The accept method will then call the method cor-
responding with itself on the visitor with ’self’ as an argument (this is called
the double dispatch).

6.1.2.2 The experiment

As for an experiment, we are going to document an instance of the visitor
pattern. In the implementation of SOUL a visitor is used to define the
operations on the objects which represent Soul terms (see figure 6.1). If we
fill in the roles of this instance then the Visitor is SimpleVisitor, Element
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TermVisitor

SimpleVisitor

cutVisit:
compoundVisit:
variableVisit:
smalltalktermVisit:

CompoundTermVisitor

compoundVisit:

FixVisitor

variableVisit:
smalltalktermVisit:

NamedVariableVisit

variableVisit:
smalltalktermVisit:

AbstractTerm

accept:

Compoundterm

accept:

Variable

accept:

TermSequence

accept:

Figure 6.1: UML class diagram of the Soul Visitor

is AbstractTerm, the subclasses of SimpleVisitor are ConcreteVisitors

and the subclasses of AbstractTerm are ConcreteElements. In light of this
experiment, we create two classifications containing the following software
entities which can be found in figure 6.1:

1. a classification named Visitors which contains the ConcreteVisitors,
namely the classes CompoundTermVisitor, FixVisitor and NamedVariableVisitor.

2. a classification named acceptMethods containing all the methods on
the ConcreteElements (these all implement a selector #accept and are
implemented on the ConcreteElements).

If we use as background for the Visitors classification all the possible kinds
of background information that are applicable to classes, we get the follow-
ing rule:

Visitors(?class) if

class(?class),

classInNamespace(?class,[Soul]),

classInCategory(?class,{Soul-Kernel},
hierarchy(?class,[Soul.TermVisitor]),

hierarchy(?class,[Soul.SimpleVisitor]),

methodOverridden(?class,method([Soul.SimpleVisitor],?overriddenmethod)).

The rule above gives a description of the elements in the classification. It
expresses that every class in the Soul namespace and Soul-Kernel category
that overrides methods on SimpleVisitor and that is somewhere in the
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inheritance chain SimpleVisitor - TermVisitor is an element of Visitors.
Not only did we extract information about the location of the class in the
image (namespace and category), we also extracted structural information:
all the visitor classes are part of the same inheritance hierarchy (the hierar-
chy predicate will detect all the common superclasses and thus detects that
all the Visitors have two common parents) and override methods on one of
their common superclasses.
Let us take a look at the quality of this rule. If we would extend the
SOULVisitor with a new kind of visitor and we do not violate the naming
conventions (putting the new visitor in the Soul-Kernel category and in the
Soul namespace), then our rule is able to detect the new visitor. Our rule
is not overly general: since it makes use of this naming information, the
rule will not detect any Visitor classes from other instances of the design
pattern. When we discussed Intentional Views we manually supplied a rule
for describing the Visitors view. If we look back at that predicate we can
see that the rule we induced here shows many resemblances with the rule
written by a human. Notice that the rule we induced is not a general rule
for detecting Visitors. It can only be used to detect the Visitors that are
part of the SoulVisitor.
Now let us take a look at the second classification. The rule we get when
inducing while limiting the background information to protocol, method
name, message sends, arguments, statements, variables used and method
calls is:

acceptMethods(method(?class,[#accept:])) if

1. isSendTo(?class,[#accept:],?visitorselector),

2. statement(return(send(

variable(aVisitor,?visitorselector,<variable(self)>))),

?class,[#accept:]),

3. argument(?class,[#accept:],1,variable(aVisitor)),

4. methodWithSend(?class,[#accept:],send(variable(aVisitor)),

?visitorselector,<variable(self)>),

5. classImplements(?class,[#accept:]),

6. protocol(method(?class,[#accept:],visitor).

Let us explain the meaning of this rule. Literals 1 and 2 express that
the statement of the body of an acceptMethod contains a message send
to a variable named aVisitor with as one argument self. Literal 3 states
that the method only has one argument and that this argument is called
aVisitor. In literal 5 we can see that the acceptMethod is implemented on
a selector named #accept:. Finally, literal 6 expresses that the method is
implemented on protocol visitor.
We can see that the induction algorithm extracted the information based
on naming conventions (using a variable aVisitor, implementing on pro-
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tocol visitor,. . . ) as well as the structural information: we can see that
the double dispatch is also present in the rule. Notice that this rule again
shows close resemblance with the rule for the visitor pattern we manually
wrote at the end of section 2.1.1 and used in the Intentional View. We
should also remark again that the rule we found here is only useful for the
SoulVisitor: it is not general enough for detecting acceptMethods of other
instances of the design pattern. The rule contains a bit of redundancy: the
information that the accept method calls a visitorselector method with itself
as argument is encoded multiple times in the rule. This duplication in the
rule is the result of overlapping background information. The statement
predicate will detect that all the methods in the classification implement a
statement that expresses the sending of a message with self as argument.
The methodWithSend predicate will detect a sort-like commonality of the
items in the classification. Otherwise from making the rule a bit longer and
perhaps harder to read, this redundancy does not introduce any problems.

6.1.2.3 Inducing a more general rule

In the previous section we showed that our tool is able to induce rules that
cover the intention of the visitor design pattern pretty well. We also discov-
ered that our rules are only applicable to one certain instance of the design
pattern: since we only provided examples from that instance of the pattern,
instance-specific information was extracted out of the examples. In the con-
text of software documentation, this is not a disadvantage: we only wanted
to create documentation for the SoulVisitor. So if we would obtain a rule
that is capable of detecting eg. accept methods of other instances of the
visitor pattern then it would not be useful for documenting the SoulVisitor.
To demonstrate that our tool is capable of inducing more general rules than
the ones we obtained in the previous section, we conducted the following
experiment:
We created a classification named generalAcceptMethods and classified ac-
cept methods of two instances of the visitor pattern. To do this we used
the accept methods of the SoulVisitor and the accept methods of the Star-
BrowserVisitor (the StarBrowser also uses a visitor pattern in its implemen-
tation). We obtained the following rule:

generalAcceptMethods(method(?class,?selector)) if

argument(?class,?selector,[1],variable(?visitor)),

methodWithSend(?class,?selector,send(variable(?visitor),

?visitorselector,<variable([#self])>)),

classImplements(?class,?selector),

classInCategory(?class,?category),

statement(return(send(variable(

?visitor),?visitorselector,<variable([#self])>)),
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Figure 6.2: a UML case diagram of the Abstract Factory design pattern

?class,?selector).

The rule above looks a lot like the rule from the previous section, with
the exception that it no longer contains instance-specific information. If we
use the rule above to calculate the elements in the classification, we obtain
all the accept methods in the Smalltalk image. Although we argumented
that the rule from the previous section has a lot in common with the rule we
manually wrote, we can now conclude that this more general rule resembles
the hand-written rule even more closely.

6.2 Abstract Factory Design Pattern

6.2.1 The pattern

The Abstract Factory pattern is used when in a piece of software it is im-
portant that different families of objects can be used. The best example
of this is the use of GUI toolkits (like Qt or GTK). The developer wants
to create an application that is independent of the graphical toolkit that is
used. This can be done by abstracting the way how objects of the toolkit
are instantiated. If we take a look at the class diagram in figure 6.2 we see
how this pattern is used. We can distinguish the following roles:

• AbstractFactory: This abstract class specifies an abstract method
for every different kind of element that has to be produced.

• ConcreteFactory: These subclasses of AbstractFactory implement
methods that return an instantiation of a ConcreteProduct.
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Figure 6.3: a UML case diagram of the SOUL factory

• AbstractProduct: The abstract class from which the products which
are instantiated by a ConcreteFactory inherit from.

• ConcreteProduct: The implementation of the products of the Con-
creteFactory.

If we look at the class diagram again, we can see that we have two fami-
lies of objects: family one which consists out of ConcreteProduct1-A and
ConcreteProduct1-B, family two out of ConcreteProduct2-A and ConcreteProduct2-B.
Suppose now if we want to use the first family of objects, we instantiate a
ConcreteFactory1whose methods will initialize object from the first family.
If we want to use the second family, we use an instance of ConcreteFactory2.
Notice that we can write our code which uses the products independently
from the chosen family.

6.2.2 The experiment

For the experiment we are again going to take a look at an instance of the
design pattern. If we take a look at the implementation of SOUL, we see
that a factory is used to create objects which are related to Horn clauses. In
the class diagram (6.3) we see that only one family of objects is used. Notice
that for this one family two root classes or used (we have two instances of
the AbstractProduct role, namely AbstractTerm and HornClause). Since
we have only one family of objects, we also have only one ConcreteFactory

(StandardFactory) which inherits from the AbstractFactory (Factory). To
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create documentation for this instance of the design pattern we create two
classifications:

1. A classification named concreteProducts which contains all the Con-

creteProducts. In our example this are the classes which inherit from
AbstractTerm and HornClause.

2. A classification with as name factoryMethods in which we put meth-
ods implemented on StandardFactory. For every kind of ConcreteProd-

uct there is such a method. This method returns an instance of that
ConcreteProduct.

If we induce a set of rules for the concreteProducts classification with as
background knowledge protocols, instance variables, namespace, method
names, class hierarchy and category we obtain the two following rules:

concreteProducts(?class) if

class(?class),

classInCategory(?class,{Soul-GrammarClauses}),
classInNamespace(?class,[Soul]),

hierarchy([Soul.HornClause],?class),

protocol(?class,[#printing]).

concreteProducts(?class) if

class(?class),

classInCategory(?class,{Soul-GrammarClauses}),
classInNamespace(?class,[Soul]),

hierarchy([Soul.AbstractTerm],?class),

protocol(?class,[#printing]),

classImplements(?class,[#printing:]),

classImplements(?class,[#printOn:]).

The first rule expresses that every class in the hierarchy of HornClause

which is in the Soul namespace and the Soul-GrammarClauses category and
which implements the #printing protocol is a concreteProduct. If we take
a look at the second rule we can see that it expresses almost the same thing,
with the exceptions that all the classes are in the AbstractTerm hierarchy.
The first thing we notice is that our tool detects two possible rules for the
concreteProducts classification. If we take a look at the diagram in figure
6.3, we see that there are two root classes (AbstractProducts) for the prod-
ucts of the factory, namely HornClause and AbstractTerm. Our tool will
see that some of the ConcreteProducts are subclasses of the first Abstract-

Product and some are subclasses of the second one and thus produces two
rules.
If we look at the rules we see that they do not contain much structural
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information. This is what we excepted: other than a common superclass
and some naming conventions, ConcreteProducts generally have not a lot in
common. Still, the rules we found here are not worthless when having to
evolve the documentation. If a developer makes changes to the implemen-
tation or adds a new product, the naming conventions like for instance the
fact that all products in our example implement a protocol #printing: will
help keeping the documentation up-to-date. Although naming conventions
are not as robust as structural information, they are invaluable when creat-
ing software that is easy to understand. Notice again that the rule we found
here is not a general rule for detecting concreteProducts but is limited to
one instance of the the pattern: the SOULFactory.
The rule which is obtained by using our induction tool on the factoryMeth-

ods classification is more interesting. As background information we use the
namespace, category, method names, message sends, assignments, state-
ments and overridden methods. We also include the elements of the con-
creteProducts classification as background information. The rule we get is:

factoryMethods(method([Soul.StandardFactory],?selector)) if

factoryProduct(?product),

statement(return(variable(?product)),

[Soul.StandardFactory],?selector),

classImplements([Soul.StandardFactory],?selector),

methodOverridden([Soul.StandardFactory],?x,

method([Soul.Factory],?selector)).

This rule expresses that every method implemented on StandardFactory

which returns a factoryProduct is a factoryMethod.
If we take a look at the above rule, we can see that a lot of structural
information about the factory methods is present:

• The methods on the ConcreteFactory override a method on the Ab-
stractFactory.

• All the methods exist out of one statement which returns a variable
?product.

• This variable ?product is a factoryProduct (for this predicate we in-
duced a rule in the beginning of the experiment).

The rule we obtained fits the intuitive definition we would give of a facto-

ryMethod : a method that is implemented on a factory and that returns a
factoryProduct. An interesting property about the rule we induced here is
that it puts a link between two classifications. The factoryMethods predi-
cate detects that every method in the classification returns an element of an-
other classification: the factoryProducts classification for which we induced
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Figure 6.4: a UML class diagram of the Observer design pattern

a rule earlier in this section. In contrast from the rule for factoryProducts,
this rule is almost entirely based on structural information instead of naming
conventions. As is with the rule for factoryProducts, this rule is limited to
one instance of the factory design pattern namely the Soul Factory. This is
a consequence of the fact that we only documented artifacts of this instance.
With the visitor pattern we showed that it is possible to induce a more gen-
eral rule out of multiple instances of a design pattern. Of course, the same
thing can be done with the factory pattern (we omit this experiment since
it is almost identical to the visitor experiment).

6.2.3 The Observer Design Pattern

6.2.3.1 The Pattern

The last pattern we will take a look at is the Observer Design Pattern. It is
used in situations where objects are dependent on the state of other objects.
A good example of an observer is the Model-View-Controller architecture as
is used in many cases to construct the interactions between an application
and the graphical user interface. The interface of the application only wants
to change when the internal state of the underlying application changes. We
can distinguish the following roles in the pattern:

• Subject: This is the class from which all the ConcreteSubjects in-
herit. It contains a list of observers and offers the facilities for observer
management.

• ConcreteSubjects: These classes implement the behavior of the ap-
plication and call the notify method every time their state changes.

• Observer: This class is the interface of the ConcreteObservers.

62



Buffer

putAll:

clear

SimpleBuffer

put:

get

OptimizedBuffer

expand:

put:

get

putAll:

SynchronisedBuffer

put:

get

putAll:
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• ConcreteObserver: These classes are interested in the state of a
ConcreteSubject. They implement the update method which synchro-
nizes the state of the Observer and the Subject.

A UML class diagram can be found in figure 6.4. Whenever a ConcreteOb-

server wants to observe a ConcreteSubject, it will use the attach method on
the subject to register itself as an observer. Whenever the Subject makes a
change to its state, it will call the notify method. This method will send an
update message to all the observers which will synchronize their state with
the state of the Subject.

6.2.3.2 The experiment

This experiment differs from the previous ones: we do not want to make
classifications in order to document an instance of the pattern. Instead we
are going to induce a rule which expresses the places where a state change
in the Subject occurs. The state changes in a Subject are the tricky part
when implementing the observer pattern: every time when a method makes
a change to the internal state of the object, the notify message has to be
called in order to signal the Observers of the change. It is easy to see that
this can be very error prone since every method which makes a state change
has to call the notify method and when this is forgotten one time, it can lead
to an inconsistency between Subject and Observer. It also makes the code
which implements the Observer pattern harder to understand and debug.
For the experiment (that is also described in [TBKG03]), consider a buffer
that is implemented as is shown in figure 6.5. In the diagram we have only
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written down methods that do a state change. If we create a classification
named stateChanges and classify all the methods on our implementation of
a buffer, we can induce the following rules:

1. stateChange(method(?class,?selector)) if

classImplementsMethod(?class,?selector),

statement(assign(variable(?var),?expression),

?class,?selector),

instVar(?var,?class).

2. stateChange(method(?class,?selector)) if

classImplementsMethod(?class,?selector),

statement(send(variable(content),#addFirst:, ?expression),

?class,?selector).

3. stateChange(method(?class,?selector)) if

classImplementsMethod(?class,?selector),

statement(send(variable(content),#removeLast:, ?expression),

statement(return(?exp),?class,?selector),

?class,?selector).

4. stateChange(method(?class,?selector)) if

classImplementsMethod(?class,?selector),

statement(?statement,?class,?selector),

statement(send(variable(#self),?message, ?args),

?class,?selector),

stateChange(method(?class,?message)).

Now let us take a look at these four rules:

• Rule 1 expresses that a method that assigns a value to an instance
variable is a statechange.

• Rules 2 and 3 state that methods which send the #addFirst: or
#removeLast: selector to the variable content make state changes.

• In rule 4 we can find that a method that recursively calls a state
changing method is also a state changing method.

The rules are able to describe the intention of a state change (especially rules
1 and 4 which describe the assignment to a variable or the recursive call of a
state changing method). Notice that they are general enough to detect state
changes in classes outside of the buffer example. Rules 2 and 3 on the other
hand are too restrictive to do this: they hard-code the fact that two methods
in the buffer implementation send a message to the content variable. Rule
3 also expresses that method has to contain a return statement. The reason
why we obtain these two rules which can not be used to detect state changing
in general is because they are specific to our implementation of the buffer.
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seconds SOUL seconds PROLOG

Visitors 80 4
acceptMethods 7 0,7

concreteProducts 70 3,6
factoryMethods 18 1,2

AdapterMethods 1 0,2
AdapteeMethods 2 0,5

stateChange 90 5

Table 6.1: the execution times of the induction algorithm for each induced
classification

6.2.4 Discussion

The rules as shown in the experiments are literally the output of the algo-
rithm. The only change we made to them was renaming the variables in
order to make the rules more human readable. After studying the induced
rules we remarked that the information they contain is a mix of:

• Naming conventions

• Structural information

The ideal information we want to extract for creating robust documenta-
tion are the high-level structural relationships between the elements in the
classification. Since we include background information like protocol names,
method names, the category of classes,. . . our tool also detects naming con-
ventions. One can consider this a limitation of our tool. If the developer
who makes changes does not follow these conventions, then the changes will
not be reflected back into the documentation. In practice however, it is good
programming style for a developer to respect naming conventions since they
make it easier for other programmers to understand the code. Since our tool
can extract these naming conventions out of the source code, they become an
active part of the documentation. In some cases (like the concreteProducts

classification) there is no real structural information that can be induced out
of a classification and the naming conventions are the only documentation
we have got.
We opted for creating documentation for design patterns since they are a
well-understood example and contain a lot of high-level structures. From
the experiments we can conclude that our rules are able to capture the in-
tention behind the elements of a classification. The rules sometimes contain
a little bit of redundancy, but this does not change the overall quality of the
rules much. In case of the visitor and factory pattern we induced rules that
are instance specific. They are too restrictive to be used to detect instances
of the design patterns but are good as documentation for one instance of the
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pattern. By obtaining rules for the state changes in the observer pattern
and by inducing a rule for the generalAcceptMethods we showed that our
tool is also capable of detecting more general rules.

Now let us discuss the disadvantages of our tool and some problems we
have encountered. In the first column of table 6.1 we can see execution
times of the induction algorithm implemented in SOUL for each classifica-
tion. As the reader can see, this is one of the largest weaknesses of our tool.
When the amount of background information increases, the time needed to
calculate the rules for the classification increases from a couple of seconds to
over a minute. We tried to solve this problem by using the PROLOG logic
kernel instead of SOUL. This is more of a workaround than a solution since
the integration between the PROLOG kernel and our tool does not work
optimally. Using the PROLOG kernel reduced the execution time of for
instance the stateChange classification from 90 seconds down to 5 seconds.
As a consequence of this speed problem we also had to put some limitations
on our induction algorithm.
The resulting rules we obtain out of a classifcation are dependent on the
order of the examples in the classification. In the experiments we have put
the examples in such an order that the rules were optimal. This is not a
problem of relative least general generalization or ILP in general. Implemen-
tations of induction algorithms like for instance GOLEM [MF90] solve this
problem by computing the rlgg of one example with respect to a set of other
examples and choosing the best rule. If we would want to implement this
in SOUL, the number of rlgg-operations would increase significantly. This
would make our algorithm a lot slower which would render it impossible for
us to induce rules in an acceptable amount of time.
We also noticed that the quality of the rules is dependent on the number
of elements in the classification and the size of the background information.
If we do not provide enough examples for our algorithm then the rules we
obtain are overly general of specific. The other problems we addressed with
our tool are a consequence of the implementation. Too general or too specific
rules are a common problem of machine learning approaches. We can allevi-
ate this problem by turning our documentation tool into a semi-automatic
system, but this has not been tested yet.

Although we have showed here that the rules we obtain out of the Soft-
ware Views Inducer contain relevant and non-trivial information about the
software we are trying to document, we have not yet used these rules to
evolve the documentation of a piece of software. In the next section we are
going to take a look at how we can do this.
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6.3 Using Software Views Inducer to evolve the

documentation

In this section we will take a look at an example of how we can use the
Software Views Inducer to evolve the documentation of a piece of software
when changes to the implementation have been made. We will use a simple
case study: we already induced rules for the Visitors and the AcceptMethods

classification of the SOULVisitor. We will now adapt the SOULVisitor and
see if our rules are able to detect the changes.

6.3.1 Visitors

First let us start with checking which visitors are detected with the rule
we induced in the previous section. If we launch the SOUL query if

Visitors(?element)we get the following bindings for the variable ?element:

• Soul.FixVisitor

• Soul.CompoundTermRenamingVisitor

• Soul.VariableAndUnderscoreVariableVisitor

• Soul.NamedVariableVisitor

We now extend the SOULVisitor by adding a new class Soul.TestVisitor.
We implement this class by:

• Creating a subclass of SimpleVisitor

• Implementing a few visitmethods on this class so that it does dummy
operations with the elements.

• We follow the coding conventions: the class is defined in the Soul
namespace and the Soul-Kernel category.

If we now recalculate the elements of the Visitors classification then the
Soul.TestVisitor appears in the results.

6.3.2 AcceptMethods

We are now going to do a similar operation with the AcceptMethods. First
we compute all the accept methods by using the AcceptMethods-predicate.
This results in:
method(Variable,#accept:) method(DelayedVariable,#accept:)

method(UnderscoreVariable,#accept:) method(Cut,#accept:)

method(UnaryMessageFunctor,#accept:) method(TermSequence,#accept:)

method(SmalltalkTerm,#accept:) method(QuotedCodeTerm,#accept:)

method(CompoundTerm,#accept:) method(UppedObject,#accept:)

method(Constant,#accept:) method(KeywordFunctor,#accept:)

method(method(UppedObject,#accept:)
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Note that the methods we find here are not only the ones we classified when
we created the rule, but also other correct methods which are detected by
our rule.
For checking wether the rule can detect changes in the implementation we
are going to adapt the SoulVisitor in two ways:

• Creating a new concrete product class TestProduct that follows the
coding conventions and implements an accept method.

• Removing the accept method on the Cut class.

If we run the AcceptMethods predicate again we will have a new accept
method method(TestProduct,#accept:). Also, the accept method on the
Cut class is no longer a part of the elements of the classification.

6.3.3 Discussion

With this little experiment we show that the rules we have induced with
the Software Views Inducer are able to evolve the documentation when-
ever changes are made to the implementation. In the two experiments we
conducted here we adapted the implementation of the SOUL language and
checked wether our rules were able to detect those changes. We can con-
clude that our rules detect the correct elements of the classification before
we made changes. By using the rule we were also able to bring the docu-
mentation back up-to-date.
We have not tested our approach on a large system with a huge class hi-
erarchy. This is due to the fact that our current implementation lacks the
performance to conduct experiments like this in a reasonable amount of time.
Notice that the possibility of updating the documentation is related to the
quality of our rules: if the rules are too specific then they will not be able
to detect changes in the implementation. If our rules are too general then
it might happen that we falsely detect elements as part of a classification.

6.4 Conclusion

The goal of this chapter was to show that the rules we obtain with the
Software Views Inducer are rich enough to reveal the intention behind the
documentation and are useful for keeping documentation and implementa-
tion synchronized. In the first part of the chapter we looked at the quality
of the rules we obtain by induction and can conclude that the rules extract
information that is based on naming conventions and structural properties
(like inheritance information, message calls, statements,. . . ). The rules we
obtained in most cases showed similarities with hand-written rules for the
same problem and in general succeed reasonably well in revealing the inten-
tion behind the classification.
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In the second part of the chapter we used the rules we induced for the Visi-
tor pattern to evolve the documentation when the implementation changes.
We can conclude that the rules we obtain with our tool are able to correctly
update the documentation whenever changes are made to the implementa-
tion. In this chapter we also discussed the problems we encountered with
our tool, namely the speed issues with SOUL and the problem with the
order of the artifacts in the classification. We also noticed that the quality
of our rules is strongly dependent on the number of examples and the back-
ground information. This is not a consequence of our implementation but
rather a problem of machine learning techniques. As we already discussed,
we believe that a semi-automatic tool can help alleviate this problem.
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Chapter 7

Related Work

In this chapter we will take a look at related research which addresses the
same problem as we do in this dissertation.

7.1 Co-evolution of documentation and implemen-

tation

In chapter 2 we already discussed Software Classifications [DH98] and In-
tentional Software Views [MMW02a], which are an extension to Software
Classifications. Besides from these two approaches, research has been done
on how documentation and implementation can be co-evolved. In his PhD
thesis, Wuyts [Wuy01] not only introduces the logic meta programming lan-
guage SOUL and the predicate library LiCoR which we have used in the
implementation of Software Views Inducer, he also uses SOUL to direct the
co-evolution of design and implementation. The design of a piece of soft-
ware can be considered a part of the documentation. We can look at it as
an abstraction of the implementation. If we could make a causal link be-
tween the design and the implementation, we could make sure that they are
synchronized. Wuyts solves this problem by manually expressing the design
as a SOUL program. Every time changes are made to the implementation,
we can bring the design back up-to-date by using this logic program. This
work is closely related with our tool. The Software Views Inducer extends
the idea of this work by inducing the SOUL rules which are used to evolve
the documentation.

Tourwé [Tou02] proposes another interesting technique for co-evolving de-
sign and implementation which makes use of LMP. The design of a program
can be documented by means of design patterns. Every design pattern
consists out of a number of meta-patterns. A collection of high-level trans-
formations has been defined on these meta-patterns which can be used to
evolve the software and update the documentation by checking for broken
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design structures.

The last LMP solution we discuss here is [Men00b]. Mens proposes an
expressive language for describing the architecture of a piece of software
and the mapping onto the software entities in the implementation. This
language allows the definition of multiple views on the architecture of the
system. Each such architectural view concentrates on a given part of the
structure of the software. Along with the language, an algorithm is speci-
fied that can be used to check the conformance between the implementation
and the architectural views. The differences which are found by this check
can then be used to update the documentation.

Reflexion models [MNS95] are a somewhat different approach for keeping
documentation and implementation in sync. Reflexion models offer a lan-
guage to describe the design of a piece of software. They will return the
differences between that design description and the actual implementation
of the application. These differences can then be used to synchronize the
design with the implementation.

7.2 Code Browsing Approach

Another approach for making adaptations in a poorly documented piece of
software are code browsing tools. These tools allow the developer to easily
understand which pieces of code belong together to implement some func-
tionality such that making changes becomes easier. Their main goal is to
make it possible for a developer to browse cross-cutting code: code that can
not be put in one module of the system, but instead is scattered throughout
the software. A first tool that was introduced was Aspect Browser [GKY99].
This tool allows the developer to browse the code making use of coding con-
ventions like method names and variable names (doing a text-based analy-
sis). It is clear that when the coding conventions are only partially followed
(or not at all), that the Aspect Browser is not very useful. The Aspect
Mining Tool [HK01] overcomes this disadvantage by not only browsing the
code based on the naming conventions, but also doing a type-based analy-
sis. Text-based and type-based analysis are complementary techniques. The
Aspect Mining Tool showed that using the combination of both can lead to
interesting results.

Robillard and Murphy introduced another technique: the Feature Explo-
ration and Analysis Tool (FEAT) [RM02]. They propose a formalism for
expressing the cross-cutting code in a software system: Concern Graphs.
The nodes of such graphs are the classes, methods and fields of the applica-
tion; the edges express the relationships between the nodes: method calls,
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read and writes of variables, class hierarchy relationships,. . . Also the map-
ping from the Concern Graph onto the source code is defined. The FEAT
tool uses a Concern Graph to allow the developer to browse the source code.
To this extent a set of operations (like expanding all the methods in a class,
returning all the dependencies of a node,. . . ) are implemented which the
developer can use to walk through the Concern Graph and thus browse the
code.

The last code browsing tool we will take a look at is JQuery [JDV03].
JQuery wants to unite the advantages of hierarchy browsers and query lan-
guages. Hierarchy browsers allow the navigation of the code for a particular
relationship (a class hierarchy browser for instance shows the inheritance
relationship). The downside of hierarchy browsers is that they are rather
limited in terms of expressiveness and that a developer has to switch tools to
get a different view on the software. Query languages (of which SOUL might
be considered an example) do not have this limitation. The problem with
query languages is the impossibility of getting all the information a devel-
oper wants with a single query, so the developer writes a query, looks at the
result, writes another query and so on. The exploration path which connects
these queries gets lost and the developer will soon loose an overview about
the software. JQuery combines the functionality of hierarchy browsers and
query languages by implementing a tool that offers hierarchical browsers
build on top of a query language.

7.3 Using Machine Learning Techniques in Soft-

ware Engineering

We are not the first to use machine learning techniques in the field of soft-
ware engineering. In fact, for over two decades research has been conducted
how techniques from artificial intelligence, which already have proven their
use in other fields, can be applied to the software development process.

Zhang and Tsai give an overview of most of this research in [ZT02]. Since
there are many different approaches to Machine Learning, we will limit our-
selves to taking look at how Inductive Logic Programming can be used
throughout the software development process. Cohen and Devanhu use ILP
in the process of software quality prediction [CD97]. They made a compar-
ative study of which ILP method best can be used when predicting software
faults for C++ programs.

A large part of the software engineering process is the maintenance phase.
During this phase the software is adapted to meet new requirements the
client imposes, to use other technologies and to correct bugs. This last part,
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when faults are removed out of the software, is called the corrective mainte-
nance. Like with all other phases of the development process, a cost has to be
determined for the bug fixing. Although experienced maintainers are able to
give an accurate estimation of the cost, the whole process remains informal,
error-prone and poorly documented and thus hard to replicate. [dALM98]
takes a look at how ILP (and Decision Tree Learning) can be used to learn
models which can be used for cost estimation.

When having to make a change to an application, one of the biggest problems
a developer may encounter is the need to understand how the application
works. We already took a look at code browsing tools that can be used for
this extent. Another approach for understanding a piece of software is pro-
posed in [Coh95] where inductive logic programming is used to extract the
specifications (which can bring insights into the software) out of the source
code.

Another important aspect of developing software is testing the application
to check wether it functions correctly. This is mostly done by writing a
collection of programs which check if the output of a part of the software
corresponds with the expected value. This can be a tedious job: if the in-
tended output is changed or it new functionality is added the test cases have
be to updated. [BG96] proposes a system where ILP is used to derive test
cases out of a program.
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Chapter 8

Conclusions

8.1 Problem Summary

During its lifetime a piece of software gets changed a lot of times due to
maintenance tasks or new needs that are imposed on the application. When
a developer has to make changes, a decent understanding of the system is
necessary and thus high-quality documentation is needed. However, in a lot
of cases, the required documentation can suffer from a number of problems.
One of the most common problems is that whenever a programmer makes
changes to the implementation of a piece of software, updating the documen-
tation is often omitted of forgotten. This will result in documentation that
is out of sync with the implementation and thus useless for a developer who
has to understand a system in order to adapt it. The cause of this problem
is the way documentation is created nowadays: it is not an integrated part
of the development process and development tools almost never offer decent
support for it. Two interesting ways of documenting an application are clas-

sifications and views. They allow a developer to create documentation for a
piece of the code by grouping software entities. Approaches that make use
of these techniques can be classified as:

• Tools that put the emphasis on making it easy for a developer to create
documentation. The downside of these approaches is that the docu-
mentation that is created is not very robust with respect to changes in
the source code and also that it is not always clear what the original
developer intended with it. e.g. Software Classifications [DH98]

• Tools that are robust and encapsulate the intention behind the doc-
umentation rather well, but imply that the developer has extensive
knowledge about the software that is documented. They also require
the developer to express the documentation in some kind of language,
which can be error prone and in many cases hard to do. e.g. Inten-

tional Software Views [MMW02a].
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8.2 Contributions

In this dissertation we have introduced the Software Views Inducer docu-
mentation tool. This tool unites the benefits of both approaches we men-
tioned above. It is based on the StarBrowser [Wuy], an implementation of
the ideas proposed in [DH98]. This allows our tool to offer a developer an
easy way to document an application by creating classifications and putting
software entities in these classifications by means of simple drag & drop op-
erations. The documentation that is created with the StarBrowser is not
robust with respect to changes and does not have a description of its inten-
tion. The Software Views Inducer, however, creates documentation that is
robust and that gives a good description of the elements in the classification
by extracting an intentional SOUL description out of the classification. To
offer this functionality we used relative least general generalization, an al-
gorithm from the domain of Inductive Logic Programming, to extract logic
rules written in the language SOUL from the classifications the developer
has made. These rules describe high-level relationships between the elements
of the classification and thus provide the developer with clear information
about the artifacts that are documented. More importantly, these rules
are then used to update the documentation whenever the implementation
changes.

We have validated our claims by conducting a few experiments with the
Software Views Inducer. As a small case study we used the tool to create
documentation for instances of design patterns. We opted to use design pat-
terns since they are well-understood and contain a large number of high-level
structural relationships. A first set of experiments were executed to check
wether the rules we obtain out of instances of patterns are able to reveal the
intention behind the documentation. These experiments showed us that our
tool is able to detect naming conventions as well as structural information
(like for instance inheritance information, message calls,. . . ). We also took
a look at the information that is contained in the obtained rules. We can
conclude that these rules are in a lot of cases very similar to hand-written
rules for the same concept or give a good description of the intuition some-
one might have of the design patterns.
We also conducted a second experiment to validate the claim that the rules
we extracted can be used to evolve the documentation of a piece of soft-
ware. To do this we used the rules we obtained for an instance of the visitor
design pattern from the first set of experiments. We used these rules to cal-
culate the elements which belong to the classifications and compared these
elements with the software artifacts that were detected after we made some
changes to the implementation. From this experiment we can conclude that
our tool is able to create documentation that is more robust with respect to
changes in the implementation.
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Although we can conclude from our research that the Software Views In-

ducer can be successfully used to easily create documentation that is robust
and we feel that we have proven the claims we made in this dissertation, we
also encountered a few problems. Our implementation of the ILP algorithm
is rather limited. Putting the items in the classifications in a different order
can result in the induction of a totally different set of rules. This is not
a general problem of algorithms which are based on rlgg like GOLEM but
is rather a consequence of the speed problems we encountered with SOUL.
Changing our implementation in such a way that the order of the items
would not make any difference would imply a considerably larger amount of
generalization operations which would make it impossible to conduct exper-
iments in a reasonable amount of time.
We should also be careful that the rules we obtain are not too general or too
specific. Although we did not have encountered any problems as such in our
experiments, we are aware that they might happen. These problems become
less probable if the number of software artifacts in the classifications and
the number of background information increase. We could make the number
of examples larger by making our tool semi-automatic and requiring input
from the user from time to time. We can make sure that our tool has enough
background information by using a larger number of predicates for analyzing
and extracting this information out of the examples.

8.3 Future work

Besides from improving the implementation of our ILP algorithm and ex-
tending the tool with new kinds of background information, we can also
propose a few other topics which may be interesting to research in the con-
text of this work.

When writing logic programs, the order of the clauses in the body of the
rule is important for the overall performance of that rule. In our current im-
plementation of the ILP algorithm we do not make any assumptions about
the performance of the rule we induce. Since we want to use this rule to
calculate the elements of a classification, it might be interesting to make
sure that the rule is optimal.

For now the tool is used by creating a classification, classifying software
artifacts and calculating and using rules for evolving the documentation.
We could also adapt the tool so that the developer is guided while creating
the documentation so that the process of classifying the artifacts becomes
incremental. While the developer is classifying software entities the tool
could create a rule in the background and calculate all the artifacts which
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are covered by the rule and offer this list to the developer as a set of possi-
ble items also to consider to add to the classification. This technique would
make it even easier for a developer to document a software system and would
help minimizing the possibility of obtaining too general or too specific rules.

A number of SOUL rules have been written manually to detect all the in-
stances of a design pattern in a Smalltalk image. The problem with these
rules is that they are based on the text-book form of the design pattern and
do not detect an instance of the design pattern if the developer deviated
too much from this form. Although it is too much work to write rules that
detect all these variations of a pattern by hand, we could try to do this by
applying ILP to the problem.

In this dissertation we only used our tool to create documentation for object
oriented style software. It might also be interesting to see how we can ap-
ply our tool for documenting cross-cutting concerns as in Aspect Oriented
Programming and using these rules to learn crosscuts or pointcuts.

We only considered ILP as the learning algorithm to extract information
out of classification. Perhaps the use of other learning techniques (like for
instance analytical learning [Mit97]) can result in better or more interesting
results.
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Appendix A

Background Information

Framework

In this appendix we are going to take a look at how the framework for back-
ground information in the Software Views Inducer works. This framework
allows a developer to easily add a new kind of background information. We
are going to demonstrate its functionality by showing step by step how we
can implement the subclass background feature. The class diagram in figure
A.1 shows the base class of the framework,AbstractFeature and the methods
that are relevant for adding new kinds of background information. We will
start by saying which methods need to be implemented on a background
feature class in order to have it work and what the methods are supposed
to do

• name This method returns a string that is the name of the background
information

• getFeatureClass: This method implements the behavior for the fea-
ture on classes

• getFeatureMethod: This method implements the behavior for the
feature on methods

• getFeatureStatements: This method implements the behavior for
the feature on statements

• createFeature:element In this method the representation of the
background fact is generated.

If the getFeatureClass:, getFeatureMethod: or getFeatureStatements: meth-
ods do not get overridden then the standard implementation (the feature is
not applicable to this kind of element) will be used.
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AbstractFeature

getFeatures:
runQuery:variable:
name
getFeatureMethod:
getFeatureClass:
getFeatureStatement:
startBackground:
background
returnBackground

CategoryFeature

name
getFeatureMethod:
getFeatureClass:
getFeatureStatement:
createFeature:element:

InstanceVarFeature

name
getFeatureClass:
createFeature:element:

Figure A.1: a UML class diagram of the implementation of background
features

A.1 Implementing the subclass background fea-

ture

As an example we will now guide the reader through the implementation of
the subclass background information. We will start by creating a subclass
of the AbstractFeature class which we will call SubclassFeature. In this
class we implement the name method to return the string ’Subclasses’. The
next method we will implement is createFeature:element:. This method has
two arguments: the first is a s string containing information about the back-
ground, the second one is the classification element to which it is related.
The method has to return a representation of the fact that the induction
algorithm uses. The framework offers the following methods on the Ab-

stractFeature class for easily doing this:

• startBackground: This method has as an argument the predicate
name we want to use in the output fact. It will start a new background
fact.

• addClass: Adds the argument (a class) of the method to the list of
arguments of the fact.

• addSelector:

• addLiteral:

• returnBackground A method that will return the generated fact.

For our subclass example we want to generate facts that look like
subclass([RootClass],[Subclass]). The code for the createFeature method
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looks like this:

createFeature: aSubclassString element:aClass

self startBackground:’subClass’.

self addClass:aClass.

self addLiteral:aSubclassString. "this is already a string"

↑self returnBackground

What this method does is start the creation of a fact with as name subClass.
Add the class of the element in the classification of which we are calculating
the background information as the first argument. Then add the subclass
of this class as the second argument of the fact. Subclass is only applicable
to classes, so the only method left for us to define in order to get subclass
information of the classes in a classification as background information while
inducing is getFeatureClass:. This method has to return a collection of
background facts. A standard method to do his has been supplied and
can be used while implementing the getFeatureClass:method namely create-

Features:element. The createFeatures:element: method takes as input the
element of the classification and the output of the query and will use the cre-

ateFeature:element method that is overridden by the developer to generate
a collection of facts. Since SOUL is used a lot to extract background knowl-
edge out of the elements, an abstraction (the runQuery:variable method)
has been created which lets the implementor of the background knowledge
use SOUL queries easily. This method has two arguments: the first argu-
ment is a string containing the SOUL query, the second argument is the
name of the variable which will contain the output of the query. Let us take
a look at how we would implement the getFeatureClass: method:

getFeatureClass: aClass

| subclasses |
subclasses := self runQuery:

’if subclass([’,aClass asString,’], ?subclass’ variable:’subclass’.

↑self createFeatures: subclasses element:aClass.

We now have implemented the subclass background information. The next
time a developer uses the Software Views Inducer, subclass will appear in
the list of available types of background information.

A.2 Overview

We finish the appendix by giving a summary of how a developer can imple-
ment a new type of background knowledge:

1. Create a subclass of AbstractFeature.
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2. Override the name method on this class to return the name of the
background information.

3. Override the createFeature:element: method in order to create a logic
fact for the background information. Use the abstractions like start-
Background: addLiteral:, addClass:, . . . to do this.

4. Override the getFeatureClass:, getFeatureMethod: and getFeatureState-
ment: methods. Use the createFeatures:element: method in the body
of these methods to return a collection of facts. If a SOUL query is
needed, the runQuery: method canbe used.
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Appendix B

Implementation of Relative

Least General Generalization

In this appendix we will take a look at the actual implementation of relative
least general generalization in SOUL. We will start this overview of the code
with the most top-level predicates and will work our way down until we get
at the low-level implementation details.

B.1 The main predicate of the induction algorithm

induceRlgg(?Poss,?Negs,?Model,?Clauses) if

append(?Poss,?Model,?BG),

covering(?Poss,?Negs,?BG,<>,?Clauses).

covering(<>,?N,?M,?H,?H) if !.

covering(?Poss,?Negs,?Model,?H0,?H) if

constructHypothesis(?Poss,?Negs,?Model,?Hyp),!,

removePos(?Poss2,?Model,?Hyp,?NewPoss),

covering(?NewPoss,?Negs,?Model,<?Hyp | ?H0>,?H).

covering(?Poss,?Negs,?Model,?H0,?H) if

append(?H0,?Poss,?H).

The induceRlgg predicate is the interface to the algorithm. It is given a
set of positive examples, a set of negative examples and some background
knowledge and it will return a set of clauses which cover the examples. Note
that we append the positive examples to the background information and
use this extended version of the background in the algorithm. This is done
so that we can induce recursive rules. The covering predicate will construct
a hypothesis and will remove the positive examples from this hypothesis. It
will then recursively call itself with the remaining positive examples as argu-
ment. When no new hypothesis can be constructed, the covering predicate
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will append all the remaining positive examples to the output clauses of the
algorithm: these examples can be considered as exceptions.

B.2 Constructing the hypothesis

constructHypothesis(<?E1,?E2 | ?Es>,?Negs,?Model,?Clause) if

rlgg(?E1,?E2,?Model,?Cl),

reduce(?Cl,?Negs,?Model,?Clause),!.

constructHypothesis(<?E1,?E2 | ?Es>,?Negs,?Model,?Clause) if

constructHypothesis(<?E2 | ?Es>,?Negs,?Model,?Clause),!

constructHypothesis will create a new hypothesis out of the first two pos-
itive examples and the background model and will reduce this new clause.
If no new clause can be constructed with the first two examples, then
constructHypothesis will try again with the second and the third exam-
ple.

rlgg(?e1,?e2,?m,<?head | ?body>) if

antiunify(?e1,?e2,?head,<>,?s10,<>,?s20),

rlggBodies(?m,?m,<>,?body,?s10,?s1,?s20,?s2,?v).

rlggBodies(<>,?b2,?b,?b,?s1,?s1,?s2,?s2,?v) if !.

rlggBodies(<?l | ?b1>,?b2,?b0,?b,?s10,?s1,?s20,?s2,?v) if

rlggLiteral(?l,?b2,?b0,?b00,?s10,?s11,?s20,?s21,?v),

rlggBodies(?b1,?b2,?b00,?b,?s11,?s1,?s21,?s2,?v).

rlggLiteral(?l1,<>,?b,?b,?s1,?s1,?s2,?s2,?v) if !.

rlggLiteral(?l1,<?l2 | ?b2>,?b0,?b,?s10,?s1,?s20,?s2,?v) if

samePredicate(?l1,?l2),

antiunify(?l1,?l2,?l,?s10,?s11,?s20,?s21),

!, rlggLiteral(?l1,?b2,<?l | ?b0>,?b,?s11,?s1,?s21,?s2,?v).

rlggLiteral(?l1,<?l2 | ?b2>,?b0,?b,?s10,?s1,?s20,?s2,?v) if

not(samePredicate(?l1,?l2)),

rlggLiteral(?l1,?b2,?b0,?b,?s10,?s1,?s20,?s2,?v)

Rlgg will compute the least general generalization of two examples with
respect to the background model. It will create a clause with as head the
anti-unification of the two examples. The body of the new clause will consist
out of the anti-unification of all the literals in the background model with,
again, all the literals in the background. This will result in a set of clauses
which express the commonalities between the input examples.
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B.3 Anti-unification

antiunify(?T1,?T2,?T) if

antiunify(?T1,?T2,?T,<>,?S1,<>,?S2),!.

1. antiunify(?T1,?T2,?T1,?S1,?S1,?S2,?S2) if

[?T1 asString = ?T2 asString],!.

2. antiunify(?T1,?T2,?V,?S1,?S1,?S2,?S2) if

subslookup(?S1,?S2,?T1,?T2,?V),!.

3. antiunify(?T1,?T2,?T,?S10,?S1,?S20,?S2) if

nonvar(?T1),

nonvar(?T2),

functor(?T1,?F,?N),functor(?T2,?F,?N),!,

createfunctor(?Temp,?F),

antiunifyargs(?N,?T1,?T2,?T,?Temp,?S10,?S1,?S20,?S2).

4. antiunify(?T1,?T2,?V,?S10,<subst(?T1,?V)|?S10>,?S20,<subst(?T2,?V)|?S20>)

if newVar(?V),!.

antiunifyargs(0,?T1,?T2,?TNew,?T,?S1,?S1,?S2,?S2) if

equalsStructureList(?TNew,?T),!.

antiunifyargs(?N,?T1,?T2,?T,?Temp,?S10,?S1,?S20,?S2) if

greater(?N,0),

sub1(?N,?N1),

argat(?N,?T1,?A1),

argat(?N,?T2,?A2),

antiunify(?A1,?A2,?A,?S10,?S11,?S20,?S21),

addargument(?Temp,?A,?NewT),

antiunifyargs(?N1,?T1,?T2,?T,?NewT,?S11,?S1,?S21,?S2),!

Antiunify will create, given two terms, a new term that is minimal more
general than the two given terms. This predicate has for every separate case
a different rule.

1. The two terms are equal. The anti-unification is then equal two the
terms.

2. The two terms are literals for which there already exists a variable.

3. The two terms are function symbols. A new functor will be created
with the same function symbol and as arguments the anti-unification
of the arguments of both terms.

4. The two terms are not equal, are not functors and there does not exist
a variable yet that is the anti-unification of the terms. A new variable
will be introduced.
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B.4 Reduction of clauses

reduce(<?Head |?B0>,?Negs,?M,<?Head,?B>) if

nonVarElements(?B0,?M,?B1),

reduceFunctional(?Head,?B1,?B2),

reduceNegs(?Head,?B2,<>,?B,?Negs,?M).

The reduce predicate will reduce the obtained clauses by first eliminating all
the literals without variables in the body of the clause, then by functional
reduction of the clause and finally by negative based reduction.

B.4.1 Removing the examples out of the body

nonVarElements(<>,?Model,<>).

nonVarElements(<?L | ?Rest>,?Model,<?L | ?Other>) if

not(varElement(?L,?Model)),!,

nonVarElements(?Rest,?Model,?Other).

nonVarElements(<?L | ?Rest>,?Model,?Other) if

nonVarElements(?Rest,?Model,?Other).

nonV arElements will remove all the literals from the body which do not
contain variables (eg. the examples). These literals will not add any knowl-
edge to the rule.

B.4.2 Functional Reduction

We are not going to discuss the SOUL code of functional reduction here. In
the chapter about Inductive Logic Programming, the matter of functional
reduction has already been discussed thoroughly and giving an overview of
the code would not help bringing a better understanding of the subject.
When using functional reduction it is important that the correct modes for
the predicates have been specified. For each predicate we want to use in
the induced rules we have to express which variables are input variables and
which ones are output variables. Let us take a look at a few examples:

• mode(statementIn,<out,in,in>) Normally the statement predicate
looks like statementIn(?statement,?class,?method). We see that
the class and the method are the input and that the statement is the
output of the predicate.

• mode(classInNamespace,<in,out>)The classInNamespace(?class,?namespace)
predicate returns the namespace of a class, given a class as input. It
is clear that the class is the input and the namespace is the output.

If there is no mode specified for a predicate, the algorithm will not remove
any literals from the body of the clause which contain that predicate: the
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algorithm assumes then that it is not safe to reduce those literals.

B.4.3 Negative based reduction

reduceNegs(?H,?B,?In,?B,<>,?M) if !.

reduceNegs(?H,<?L | ?B0>,?In,?B,?Negs,?M) if

append(?In,?B0,?Body),

not(coversNeg(<?H,?Body>,?Negs,?M,?N)),!,

reduceNegs(?H,?B0,?In,?B,?Negs,?M).

reduceNegs(?H,<?L | ?B0>,?In,?B,?Negs,?M) if

reduceNegs(?H,?B0,<?L | ?In>,?B,?Negs,?M).

reduceNegs(?H,<>,?Body,?Body,?Negs,?M) if

not(coversNeg(<?H,?Body>,?Negs,?M,?N))

The reduceNegs predicate will try to remove a literal from the body by
checking if the rule without that literal does not cover a negative example.
If none of the negative examples are covered by the reduced rule, then the
literal that was removed was redundant in the clause. To allow this kind
of reduction, we need some negative examples. If no negative examples are
available, this kind of reduction will be skipped.

B.5 Other predicates

In this section we will take a look at some predicates which are used in the
implementation of rlgg and which are not trivial to implement.

B.5.1 coversEx

coversEx(<?Head,?Body>,?Example,?Model) if

try(and(equals(?Head,?Example),

checkBody(?Body,?Model))).

checkBody(<>,?Model).

checkBody(<?First | ?Rest>,?Model) if

grounded(?First),

member(?First,?Model),!,

checkBody(?Rest,?Model).

checkBody(<?First | ?Rest>, ?Model) if

member(?X,?Model),

equals(?First,?X),

checkBody(?Rest,?Model).

We say that example is covered by a rule by trying every substitution that
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equals the head of the rule with the example and by checking if all the lit-
erals in the body of the rule also occur in the model. This predicate is used
by the removePoss predicate and in negative based reduction.

B.5.2 samePredicate

samePredicate(?t1,?t2) if

equalsStructureList(?t1,<?functor | ?args1>),

equalsStructureList(?t2,<?functor | ?args2>).

We do not take a look at this predicate because of its functionality (checking
wether to terms have the same predicate symbol), but because of its imple-
mentation. In the source code for rlgg we have to construct and manipulate
SOUL terms in a few places. The implementation of samePredicate shows
how we can do this by using the equalsStructureList predicate, which is
part of SOUL.

87



Bibliography

[BG95] F. Bergadano and D. Gunetti. Inductive Logic Programming:

From machine learning to software engineering. MIT Press.,
1995.

[BG96] F. Bergadano and D. Gunetti. Testing by means of induc-
tive program learning. ACM Trans. Software Engineering and

Methodology, 5(2):119–145, 1996.

[Bri00] J. Brichau. Declarative composable aspects. In OOPSLA Work-

shop:Advanced Separation of Concerns, 2000.

[Bun88] W. Buntine. Generalized subsumption and its applications to
induction and redundancy. Artificial Intelligence, 36(2):149–
176, 1988.

[CD97] W. Cohen and P. Devanbu. A comparative study of inductive
logic programming for software fault prediction. In 14th Inter-

national Conference on Machine Learning, 1997.

[Cin] Cincom. Cincom visualworks. website.
http://www.cincom.com/scripts/smalltalk.dll/.

[Coh95] W. Cohen. Inductive specification recovery: understanding soft-
ware by learning from example behaviours. Automated Software

Engineering, 2(2):107–129, 1995.

[dALM98] M. de Almeida, H. Lounis, and W. Melo. An investigation
on the use of machine learned models for estimating correction
costs. In International Conference on Software Engineering,
pages 473–476, 1998.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Stan-

dard Reference Manual. Springer-Verlag, 1996.

[DH98] K. De Hondt. A Novel Approach to Architectural Recovery in

Evolving Object-Oriented Systems. PhD thesis, Vrije Univer-
siteit Brussel, 1998.

88



[DMBM02] W. De Meuter, J. Brichau, and K. Mens. Soul Manual, 2002.

[DVD99] K. De Volder and T. D’Hondt. Aspect-oriented logic meta
programming. In Meta-level architectures and reflection, Sec-

ond International Conference, Reflection ’99, pages 250–272.
Springer-Verlag, 1999.

[Fla94] P. Flach. Simply Logical - Intelligent Reasoning by Example.
John Wiley and Sons, 1994.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-

terns, Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[GKY99] W.G. Griswold, Y. Kato, and J.J. Yuan. Aspect browser: Tool
support for managing dispersed aspects. In First Workshop on

Multi-Dimensional Separation of Concerns in Object-oriented

Systems - OOPSLA 99, 1999.

[GR89] A. Goldberg and D. Robson. Smalltalk-80, The Language.
Addison-Wesley, 1989.

[HK01] J. Hannemann and G. Kiczales. overcoming the prevalent de-
composition in legacy code. In Workshop on Advanced Separa-

tion of Concerns, International Conference on Software Engi-

neering, 2001.

[JDV03] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. In International Conference on Aspect

Oriented Software Development 2003, 2003.

[Llo87] J.W. Lloyd. Foundations of Logic Progamming. Springer-
Verlag, 1987.

[MD01] T. Mens and S. Demeyer. Evolution metrics. In Int. Workshop

Principles of Software Evolution, Vienna, 2001.

[Men00a] K Mens. Automating Architectural Conformance Checking by

means of Logic Meta Programming. PhD thesis, Vrije Univer-
siteit Brussel, 2000.

[Men00b] K Mens. Automating architectural conformance checking by

means of logic meta programming. PhD thesis, Departement
Informatica, Vrije Universiteit Brussel, 2000.

[MF90] S. Muggleton and C. Feng. Efficient induction of logic programs.
In First Conference on Algorithmic Learning Theory, 1990.

[Mit97] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

89



[MMW01] K. Mens, I. Michiels, and R. Wuyts. Supporting software devel-
opment through declaratively codified programming patterns.
In Int. Conf. Software Engineering and Knowledge Engineering,
2001.

[MMW02a] K. Mens, T. Mens, and M. Wermelinger. Maintaining software
through intentional source-code views. In Int. Conf. Software

Engineering and Knowledge Engineering, pages 289–296. ACM
Press, 2002.

[MMW02b] K. Mens, T. Mens, and M. Wermelinger. Supporting software
evolution with intentional software views. In Int. Workshop

Principles of Software Evolution, 2002.

[MNS95] G. Murphy, D. Notkin, and K. Sullivan. Software reflexion
models: Bridging the gap between source and high-level models.
In SIGSOFT 1995, Third ACM SIGSOFT Symposium on the

Foundations of Software Engineering, pages 18–28. ACM Press,
1995.
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