AOP using Reflection in Smalltalk
The MetaclassTalk Experiment

Noury Bouragadi
Computer Science Laboratory (CSL)
Ecole des Mines de Douai

,m QOutline

=

= What is AOP?

= What is Reflection?

= What is MetaclassTalk?

m AOP Using MetaclassTalk

France = Conclusion
,m ,m From OOP to AOP
= =
m AOP is a new paradigm for building programs
e Led to AOSD
What is AOP?

m AOP does not discard OOP
e but, AOP is not bound to OOP

m AOP addresses 2 OOP limitations
e Code tangling
e Cross-cuting

An E-Buiseness Application

== =~

Client D (\?Iitrlbutlo,j:) lg‘l m
= AL

= S
{ Synchronization)
2 P

- —

Client 2
& (@(@ Ar==9kEs
@é Client 3 o ‘D_e&zu? _Bank

,m Code Tangling

= RemoteObject subclass: #Book
instanceVariableNames: 'title author pricelock' ...
initialize
lock := Semaphore forMutual Exclusion

super initiaize
"self start port listner = remote communicattion + marshaling”
"register into aname registry"

price

[currentPrice|
self halt.
lock critical: [currentPrice := price].

“currentPrice

price: newPrice
lock critical: [price := newPrice.
Transcript cr; show: self printString.].

Transcript cr; show: 'DataBase price: ', ("myDataBae priceFor: self") printString.

Cross-cutting

Distribution

— _ Persistence
el

AOP

Aspects

Synchronisation

Persistency

Distribution

Weaving

Base Code

———
Program

AOP Concepts

= Base Code
e Most functionalities

m Aspect
e Unit of code that describes a single "global" property
e Examples: Remote communication, Synchronization, ..

= Join points
e Points of the base code execution flow
e Example: sending message m to object o

= Weaving
“) . o e

What is Reflection?

Structure of a Computational System

11

software & hardware .
requiresa
representation

kept coherent

reasons & acts upon

interpreter,
(virtual) machine,
peripheral...

reasons & actsupon

13 14

A Reflective System Definitions

m Reflection : Ability of a System to
e observe itself
> Reason on itself
e change itself
> Alter its structure (program)
> Alter its behavior (executor)

= Reify : Represent some concept as an explicit entity
e Building blocks of program and executor

= A Reflective Language
e Language which constructs and "interpreter" are reified

15 16
A System in OOPLs OO0 Reflective Languages
m Executor = (virtual) machine, interpreter, ... = Reification = representing entities as objects
e language semantics e e.g. classes = instance of other classes: Meta-Classes
e program loading & compilation
e memory management mare = Meta-object
. ... or e is an object
less e controls one or more base-objects
= Program reified > i.e. responsible of the execution of messages, field accesses, ...
e classes, methods, fields, messages ... 1 e MOP = Meta-Objects Protocols
-
= Data Degree of = Two programming levels
e objects : bank, clients, accounts, ... Reflection e executor =» meta-level = meta-objects
program =» b 5
17 18
Example of Meta-Object Usage - 1 Example of Meta-Object Usage - 2
LohileiaOl “writealog in somefile’ LohileiaOl “writealog in somefile’
receive: aMessage “execute the right method” receive: aMessage “execute the right method”
log log 4
meta-object meta-object Log file
- Message sayHello received
/ |I T Ie meta, || on 6th june a 2pm
% Hello VUB!!!! sayHello CONSole}
Hello VUB!!!

B,

-~

19

The Meta Link

m Meta-link = link objects to their meta-objects
e Granularity = object
e Sibiling objects linked to different meta-objects

m An object can be linked to many meta-objects
e Meta-objects should cooperate

m A meta-object can be shared
e i.e. linked to many base-objects

,ﬂ Reflective Towers & Infinite Regression

=

m Meta-meta-objects [Primitive meta-level |

e Meta-objects O
e control other meta-objects 2

| |
m Meta-meta-objects are objects

e controlled by meta-meta-meta-objects

e Infinite tour
m Stopping the infinite regression
e Primitive/Default meta-object

X

21

Reflection is Useful

= Development tools
e Browser, Debugger, Code Generators, ...

= Run-time Flexibility
e Quality of Service, Unplanned Evolution, ...

m Adapt and Extend the Language

e Mixin based inheritance, Asynchronous Communication,
Lazy memory allocation...

= Ease Software Development
e Generic Code & Reuse

e Separation of Concerns

=

What is MetaclassTalk?

B,

-~

23

A Reflective extension of Smalltalk

m Explicit metaclasses
e New kinds of classes
e Class properties

M etaclass SmallTalk
\@/
= Meta-object (MOP) MetaclassTalk
e Objects structure management
e Message dispatch

= Goal
e Easing Experiments
e Various Programming Paradigms

MetaclassTalk " Conceptual” Kernel

isinstanoeof""'u
'o »

=
RLLLI

.
®ennt

default
meta-object,

25

MetaclassTalk MOP

= reading instance variables (atlV:of:)

= writing instance variables (atlV:of:put:) meta-object
= sending messages (send:...) .
®m receiving messages (receive:...) meta-object

method lookup (lookupFor:...)

= method evaluation (apply:...) meta-obj ect

Decomposition of a Message Dispatch

receive: #foo:bar: e
frc')m: ol lookupFor: #foo:bar:
tor 02 superSend: false

arguments: #(valuel value2)

originClass: C2

send: #foo:bar: arguments: #(valuel value2
from: o1
to: 02 £
EREMERD Method:Evaluation

foo: valuel bar: value2

27

Example of Message Sending Control

- send: selector from: sender to: receiver argu...
LogMetzObled Transcript cr; show: 'Sending msg ', selector.
send.... —] Asuper send: sdlector
receive. from: sender

A to: receiver

: arguments...

Instance of :

: mo send: #nextPutAll:

@ from: joe
g to: aStream
k .
| evaluation,” arguments: #(name)

metay A

Example of 1V Read-Write Control

. g atlV: ivindex of: anObject put: value
BreakPointM etaObj ect df halt.
alV:of: ~super atlV: ivindex
alVofputte—mMm7F — | | of: anObject
put: vaue

mo atlV:
of: account
put: 100

evaluation, ~ 4
7

/

A4
index of 1V balance

29

Meta-objects Cooperation

m 1 object is linked to 1 metaObject

m Controlling 1 object by many meta-objects
e Meta-Objects cooperation
e e.g. Chain of Responsibility Design Pattern

AOP using MetaclassTalk

A First Natural Separation

B,

31

=

Aspects

Synchronisation
.

|
omor | 3> EE

M eta-Objects

How to I solate & Weave Aspects?

=

!

-~
g
= Distributi Persistency
(o] \ \] 7
g
=
* chronisation
12]
g
Q
o

Issues & Solutions

33

X

m How to define isolated aspects?
e 1 Set of Meta-Objects per aspect
e 1 meta-object participate to 1 aspect

m How to weave?

e The meta link Configuration
e Meta-objects cooperation Scripts

An E-Business Application

- =~

! Distribution)
~ -

8l -
e EHEN
| A1)

Persistence

{ \Synchronizalion/) - T
Client 2 T

(e <<<<<<<<C(,L"'I\

© 4
ké Client 3 L Do B

36

,m MetaObjects for a Synchronization Aspect

35

=~ :
o7 r:;tkedMe‘aOble‘?‘ atlV: ivindex of: anObject
| “next atlV: ivindex of: anObject
alviof: e :
alViofiput:e— | | atlV: ivindex of: anObject put: value
send:.. ~next atlV: ivindex of: anObject put: value
recelive....
apply:...

atlV: ivindex of: anObject
lock critical: [*super atlV: ivindex

SynchroM etaObj ect 1 of: anObject]
lock atlV: ivindex of: anObject put: val
alviot: o lock critical: [super alV: ivindex
alV:of:put: of: anObject

put: value]

ue

,m Configuration Script for Synchronization Aspect

=
m Link every book and order to a new
synchronisation meta-object
Book addMetaObjectClass: SynchroMetaObject.
Order addMetaObjectClass: SynchroMetaObject.

e i.e. when a newlnstance (book or order) is created
1. |syncMeta|
2. syncMeta := SyncrhoMetaObject new.
3. newlnstance addMetaObject: syncMeta

37

MetaObjects for a Persistence Aspect

= [LinkedMetaObject

next

PersitM etaObj ect

storage

atlV:of:put: -\

atlV: ivindex of: anObject put: value

super atlV: ivindex of: anObject.
"storage updateObject: anObject "

Configuration Script for Persistance Aspect

m Link every book and order to a new
persistance meta-object
Book addMetaObjectClass: PersistMetaObject.
Order addMetaObjectClass: PersistMetaObject.

e i.e. when a newlnstance (book or order) is created
1. |persistMeta|
2. persistMeta := PersistMetaObject new.
3. newlnstance addMetaObject: persistMeta

39

MetaObjects for a Debug Aspect

1l

LinkedM etaObj ect

next send: selector from: sender to: receiver argu...

Transcript cr; show: 'Sending msg ', selector.
" super send: selector

L ogM etaObj ect from: sender

send:... to: receiver

receive:.. arguments....

BreakPointM etaObj ect

ivs

selectors atlV: ivindex of: anObject
alViofie— | (ivsincludes: ivindex)

alV:of:put: B ifTrue: [self halt].

EEER S "super atlV: ivindex of: anObject

Configuration Script for a Debug Aspect

1l

s Link orderXto alog meta-object
[b1|
bl := BreakPointMetaObject new.
bl ivs: #(items) selectors: #(totalPrice printOn:)
orderX addMetaObiject: b1;
addMetaObject: LogMetaObject new

m Link all books to a single break point meta-object
|b2|
b2 := BreakPointMetaObject new.
b2 ivs: #(price) selectors: #(printOn:).
Book addInstanceMetaObject: b2.
Order addMetaObjectClass: PersistMetaObject.
e i.e. when a newBook is created
> newBook addMetaObject: b2

a1

Our E-Business Application in MetaclassTalk

Meta-Objects

Base-Objects

Synchro. Aspect Persist. Aspect

Debug Aspect

Base Code

Conclusion

a3

Summary

-~
m Reflection Does Support AOP

e NO new language construct

e Reusable aspects: generic meta-objects

e Flexibility: dynamic meta-objects/aspects change

e Aspects conflicts = meta-object composition problem

m MetaclassTalk eases experiments
e AOP (using Meta-Objects)
e Mixins (using Metaclasses)
O 560

ny
==X

= An implementation is available for Squeak 3.2

-~

Some Future Works

m Other experiments
e Distribution
e Software Components
e Mutli-Agents Systems
e (Strong) Mobility?...
= Enhancing MetaclassTalk
e Improving performance (Code inlining?, Specific VM?)
e Refactoring the full Smalltalk library

e Migration to the latest Squeak release

a5

Thanks for your attention
3 Questions? Comments?

1l

o 4

. §

Documents & Download
http://csl.ensm-douai.fr/MetaclassTalk

