
Reducing Network Latency by Application Streaming

Luk Stoops, Tom Mens, and Theo D'Hondt
Department of Computer Science

Programming Technology Laboratory
Vrije Universiteit Brussel, Belgium

{luk.stoops, tom.mens}@vub.ac.be

tel: +32 4785 999 01 fax: +32 3610 6875
http://prog.vub.ac.be

Abstract. In the advent of mobile code, network latency becomes a critical factor. This paper
investigates application streaming, a technique that exploits parallelism between loading and
execution of mobile code to reduce network latency. It allows applications to migrate from host to
host without sacrificing execution time during the migration phase and it allows the application to
start its job at the receiving host much earlier. The feasibility of the technique has been validated
by implementing prototype tools in Java and the Borg mobile agent environment.

Keywords: mobile code, application streaming, network latency

1 Introduction
An emerging technique for distributing applications
involves mobile code: code that can be transmitted
across the network and executed on the receiver's
platform. Mobile code comes in many forms and
shapes. Mobile code can be represented by machine
code, allowing maximum execution speed on the target
machine but thereby sacrificing platform
independence. Alternatively, the code can be
represented as bytecodes, which are interpreted by a
virtual machine (as is the case for Java, Smalltalk and
.Net). This approach provides platform independence, a
vital property in worldwide heterogeneous networks.
The third option, which also provides platform
independence, consists of transmitting source code or
program parse trees. A side effect of platform
independence may be that one or more extra
compilation steps are necessary before the code can be
executed on the receiving platform.

An important problem related to mobile code is
network latency: the time delay introduced by the
network before the code can be executed. This delay
has several possible causes (Table 1). The code must
be (1) halted, (2) packaged, (3) possibly transformed in
a compressed and/or secure format, (4) transported
over a network to the target platform, (5), possibly
retransformed from its compressed or secure format,
(6) checked for errors and/or security constraints, (7)
unpacked, (8) possibly adapted to the receiving host by
compiling the byte codes or some other intermediate
representation, and finally (9) resumed.

Table 1

Step(i) Action Time(Ti)
1 Halt the application Thalt
2 Pack it Tpack
3 Transform it Ttransform
4 Transport to the receiver Ttransport
5 Retransform it Tretransform
6 Check it Tcheck
7 Unpack it Tunpack
8 Adapt it Tadapt
9 Resume the application Tresume

A second important problem is application availability.
In a classical migration scheme the application that
migrates from host to host is temporarily halted and is
restarted at the receiving host after the code is
completely loaded and restored in its original form.
During migration time application is not available for
other processes that need to interact with it. After it is
halted it will become available again only when the
migration process has completed.

In the advent of mobile code, network latency and
application availability are critical factors. This paper
introduces the technique of application streaming to
tackle both problems. Application streaming is inspired
by similar techniques of audio and video streaming.
The main characteristic of these transmission schemes
is that the processing of the digital stream is started
long before the load phase is completed. We proposed
already a similar technique for application code called
interlaced code loading [Stoops&al2002] where code
arrives and starts executing on the receiving host

Application Streaming

computer in the same manner as interlaced image
loading in a web browser. The main difference is that
code interlacing migrates code from an application that
is not running yet. With application streaming we
migrate running code. It is a form of migration that
even goes beyond strong migration
[VanBelleD’Hondt2000] since the evaluation1 of the
application will never be halted.

2 Proposed technique

2.1 Basic observations
A first important observation is that code transmission
over a network is inherently slower than compilation
and evaluation and this will remain the case for many
years to come. The speed of wireless data
communications has increased enormously over the
last years and with technologies as HSCSD (High
Speed Circuit Switched Data) and GPRS (General
Packet Radio Services) we obtain transmission speeds
of 2Mbps [Barberis1997]. Compared with the raw
“number crunching” power of microprocessors where
processor speeds of Gbps are common, transmission
speed is still several orders of magnitude slower. We
expect that this will remain the case for several years to
come, since, according to Moore's Law [Moore 1965],
CPU speeds are known to double every year. For this
reason, step 4 in is in general the most time-
consuming activity, and can lead to significant delays
in the migration of the application. This is especially
the case in low-bandwidth environments such as the
current wireless communication systems or in
overloaded networks.

Table 1

Table 1

A second observation is that actual computer
architectures provide separate processors for
input/output (code loading) and main program
execution.

A third observation is that many applications are built
following the principle of separation of concerns (e.g.
object-oriented, component-based or aspect-oriented
software development techniques). This leads to a
modular design with relatively independent
components. The applied paradigm will influence the
granularity of these components. During the
evaluation of the application, control is passed from
one component to the other while all the other
components are idle.

2.2 Application streaming
Streaming media consists of a sequence of images,
sound or both that are transmitted in compressed form
and played on the receiving computer as they arrive.
With streaming media, a user does not have to wait to
download a large file before seeing the video or
hearing the sound. A frequently used algorithm for

compressing video data is the MPEG standard
[LeGall1991].

The introduced term application streaming is inspired
by streaming media but also by the transport
mechanism for a sequential file, a data structure that
allows only sequential access. During the streaming
process the first part of the file will be already located
at the receiving host while the other part of the file still
remains on the sender platform. When streaming a
running application, part of the application will already
run on the receiving host while another part is still
running on the sending host.

While the streaming unit of files is usually a byte, for
application streams the units need to be executable
entities and can take on a variety of forms: modules,
functions, procedures, objects, agents, processes,
threads and so on.

The standard way of moving an application from host
to host is composed of nine sequential steps ().
During steps 2-8, the application is not available to
respond to events triggered by the user or by other
applications. Application streaming goes beyond this
standard way of moving code, by moving the
application piece by piece from sender to receiver.
During the migration the application continues to run
and will be available to react to any event that will
trigger an action. If the sequence and load distribution
of the different components is well chosen the
migration can happen in parallel with its execution
thereby almost completely eliminating network
latency.

3 Proof of concept

3.1 Borg environment
To demonstrate the feasibility of application streaming
we describe a setup in Borg [VanBelle&al2001] a
mobile agent environment in which agents are active
autonomous software components that are able to
communicate with other agents. The term mobile
indicates that an agent can migrate to other agent
systems, thereby carrying its program code and data.

A Borg application consists of a number of cooperating
agents that can be considered as mobile components,
the entities of our streaming process. The term agent
refers to the autonomous role of the entity whereas the
term component indicates the fact that the entity is a
part of a greater entity: the application. A component's
state can only be modified by sending a message to that
component; all data of a component is private. Besides
other, in this context less relevant, properties, the Borg
mobile architecture features:

Strong mobility. A component can migrate between
agent systems thereby keeping its computational state
of the running process, including its runtime stack.

An easy to use agent communication layer. Agents
always communicate in an asynchronous fashion. The
reasoning behind this design decision is the notion of

Page 2

1 We utilize the more general term evaluation to
describe execution or interpretation of code.

Application Streaming

being autonomous: an agent should be designed as a
separate entity, sending messages to, and receiving
messages from other agents, not as an entity which
transfers its control flow to other agents.

A hierarchical routing system. There is no distinction
between the name of an agent and the address of an
agent. This means, of course, that we need to
substantially change the existing communication
infrastructure. We no longer have a statically
interconnected routing infrastructure and a separate,
statically interconnected naming infrastructure; instead
we have one hierarchical infrastructure in which we
name agents and route messages between them.

A location-transparent distribution layer. An agent can
send messages to other agents, without having to know
where the other agent resides. To provide this
functionality the name server and router are merged
into one entity.

Resource transparency. All resources in the mobile
agent system (disks, user interfaces and so on) are
represented as static agents (which cannot migrate). So
whenever we migrate an agent, it stays connected to
the resources it was using.

Agent synchronization. This is performed by using a
rendez-vous between multiple agents. This rendez-vous
can be in time and/or in space (synchronize at a certain
computer). The primitives themselves are based upon
CSP [Hoare 1985], with the exception that as guards,
unification is used instead of sequenced statements.

The Borg environment allows us to migrate the
components that compose the application one by one.
The migration can be triggered by the component itself
or can be under control of another component (see
section 5:). An ideal migration
strategy would be obtained if each component could be
moved during its idle time by a separate processor.
This can be done by ensuring that the I/O processor
runs in parallel with the main processor or by
providing each component of the (now distributed)
application with a separate host. If every component
migrates during its own idle time without claiming
processing power of the application itself, the
application can stream from one set of sending hosts to
a set of receiving hosts without the burden of network
latency.

Migration strategies

3.2 Experiments
As a proof of concept we implemented a simple Borg
application that moves two components C1 and C2 (see
Figure 1) from their sending hosts to two receiving
hosts. The only task of each component is counting to
20000 and then signaling a clock agent that it has
finished its job and passing control to the other
component which in turn will go trough the same
procedure. The count of 20000 was chosen to make
sure that the idle time of each component is greater
than its migration time. Each component will start to
migrate after it finished its counting job and during the
time the other component does the counting. Figure 1

illustrates the hierarchical naming/routing structure that
is chosen in such a way that the path between the
sending and receiving hosts is of equal length (i.e.,
trough the Timing Host) and that the path from the
components to the timing host is as short as possible
(i.e., directly to the Timing Host). To provide each
component its own processor we used five different
hosts. Each host comprises a Gentoo Linux
environment running on a 1800 MHz AMD processor
with 256 MB RAM.

Timing Host

 clock

Receiving
Hosts

Sending Hosts

 C1

 C2

Figure 1: proof of concept setup

We launched the two component applications 500
times without migration and then again 500 times with
migration and calculated the average time the
application needed to complete. We calculated the
average time in order to flatten out unpredictable time
variations introduced by the Borg garbage collection,
network bandwidth variations or other possible
unpredictable events.

The average time the application needed to complete
without migration was 153 ms The average time the
application needed to complete with migration is 106
ms. Apparently the application runs faster if it migrates
at the same time!

To confirm these surprising results, we carried out a
similar experiment in Java, and this yielded very
similar results. Without migration, the running
application took 142 ms on average, with migration,
the application executed slightly faster with 138 ms on
average. In both cases the experiment showed that it is
possible to migrate a running application without
slowing it down, as if there where no network latency
at all. Even better, the migrating application runs faster
than the without migration. Although we do realize that
in real-world, non-distributed applications we might
expect the application to slow down somewhat during
the migration.

Page 3

Application Streaming

4 Compensating network latency
In this section we will discuss how we can generalize
the experimental setup to more complex realistic
applications. We describe component properties as
migration time and idle time and how these relate to
each other.

4.1 Component migration time
The time a component needs to migrate from host to
host is composed of the different times needed in the
steps of . Table 1

Table 1

∑
=

≈
9

1i

imig T T

The transport time T4 depends mostly on the bandwidth
B of the communication channel because this is mostly
much lower than the clock speed of the sending or
receiving host. The other times depend on the clock
speeds2 Csender and Creceiver of the sending and receiving
host processors, respectively. (see units in Table 2)

Table 2

base quantity symbol unit
Bandwidth B bps

Clock speed C Hz
Number of bits b bits

Number of instructions I instructions

If we call b4 the number of bits transported and I i the
number of instructions needed in step i (see)
then the migration time Tmig becomes approximately:

receiver

9

5i

i

sender

3

1i

i
4

mig
C

I

C

I

B
b T

∑∑
== ++≈

∑∑
==

+≈
9

5i

i

3

1i

 itot TT I

If Csender = Creceiver and if we call

60

70

80

90

1
64

4096

262144

1 4
16 64

25
6

10
24

40
96

16
38

4

65
53

6

26
21

44

0

1

2

3

4

5

6

7

8

9

10

time (sec)

bandwidth
(kbps)

clock (MHz)

Figure 2. Migration time for 1KiB code and Itot =106

Figure 2then shows the migration time of a component
of 1KiB (kibibyte3) if 106 instructions are needed for
halting, packing, transforming, retransforming,
checking, unpacking, adapting and resuming the code.

The figure shows that even for 106 instructions the total
time depends mainly on T4 and thus the available
bandwidth.

4.2 Component idle time
During the evaluation of an application that is built
from components, the task of the application will be
performed by the different components. In many
languages the component structure reflects a functional
decomposition of the application. During the control
flow of the application the work is done by different
components mostly one at the time while all others
remain idle. If we assume as a first and rough
approximation that the workload of an application is
equally divided over all its components and the
application runs in a single thread, the time a
component remains idle depends on the number of
components and the execution clock speed.

Figure 3

Figure 3. Component idle time versus execution clock speed

 shows the idle time per component in function
of the system clock speed if we assume an idle time of
100 seconds at 1 MHz clock speed. If your competitors
work twice as fast, your idle time becomes half of the
original one.

Figure 4 shows the idle time per component if the
evaluation of the application takes 100 seconds. If the
number of workers increases to n for the same amount
of work each of the workers needs only to work 1/nth of
the original time. The remainder of the time becomes
idle time. In practice the idle time will increase even
faster since increasing of the number of components
tend to make an application less efficient, and therefore
more time-consuming due the introduces inter-
component communication overhead.

If the workload is not equally distributed, as we may
expect from real world applications the times should be
interpreted as average times.

0

10

20

30

40

50

100

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

MHz

se
c

Page 4

2 We use clock speed as a measure for the number of
clock cycles evaluated per unit of time. 3 one KiB = 1024 Bytes [IEC 2000]

Application Streaming

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

components

se
c

5 Migration strategies
Application streaming moves the application piece by
piece from sender to receiver. During the migration the
application continues to run and will be available to
react to any event that will trigger an action. It is
important that the sequence of the different
components is guided in such a way that the migration
can happen in parallel with its execution thereby
eliminating the network latency completely. We
describe some strategies below.

Figure 4. Component idle time for 100 sec application 5.1 Self triggered after last instruction
This strategy implies that each component triggers its
own migration just after it releases control to another
component (). This is a simple strategy that
can be deployed if the workload of an application is
more or less equally divided over its components and if
the number of components is sufficiently large so that
the average idle time is high and average migration
time is low. This is also the strategy we used in our
proof of concept experiment.

4.3 Necessary conditions for removing
network latency Figure 5

Figure 5. Migrate after last instruction

To be able to move every component in parallel with
the evaluation of the application the following
conditions must be satisfied:

1. Each component must have at least one period of
idle time equal to or greater than the time the
component needs to migrate.

2. The exact point of time where this idle time period
starts must be known in advance.

3. If different components have only one free slot of
idle time equal to or greater than the time that
component needs to migrate, these slots may not
overlap.

If all these conditions are satisfied it suffices to migrate
the components at the point of time where their idle
period starts.

If we build a new application these design rules should
be kept in mind. It will not always be possible to
comply to them completely, but the more we
approximate them the more the application will benefit
from the proposed technique. If we need to stream an
existing application, we may need to adapt it to comply
better to the above conditions.

If the first condition is not met the technique can still
be deployed but migration of the application will then
cause some delay in its evaluation. We expect however
that in many cases architectural transformations could
be applied to transform the original application to an
equivalent one that complies better with the first
condition.

If the second condition is not met the migration of the
application will also cause some delay in its evaluation.
If the exact onset of the idle time is not known in
advance it will be possible in some cases to estimate
the delay based on statistics obtained from application
profiling. Modifying the application at its design level
could transform the original application to an
equivalent one that complies better with the second
condition.

If the third condition is not met the migration can only
be optimized for one of the conflicting components
although here also architectural transformations at the
design level may resolve the conflict.

5.2 Self triggered based on profiling
This strategy assumes the existence of a profiling
process. (). The profiler is an independent
process that runs in parallel with the application built
from the different components. During the evaluation
of the application the profiler generates a statistical
profile of the application behavior. The appearance of
the profile could be a dictionary containing the
different evaluation contexts of a component as a key
and the average idle time following the evaluation in
this context as value. Each component will at the end
of its evaluation consult the profiler to find out if the
coast is clear to migrate. The main disadvantage of this
strategy is the extra time the components need to spend
after their evaluation.

Figure 6

Figure 6. Self triggered migration based on profiling

:Component :Migrate
Component :Profiler

:Component 1 :Component 2 :Migrate
Component 1

:Migrate
Component 2

Page 5

Application Streaming

Exploiting parallelism is another way to reduce
network latency. Interlaced code loading
[Stoops&al2002] is a technique that applies the idea of
progressive transmission of software code. The
proposed technique splits a code stream in several
successive waves of code streams. When the first wave
finishes loading at the target platform its execution
starts immediately and runs in parallel with the loading
of the next wave. [Krintz&al1998] proposed to
simultaneously transfer different pieces of Java code in
parallel, to ensure that the entire available bandwidth is
exploited. Alternatively, they proposed to parallelize
the processes of loading and compilation/execution, a
technique that is also adopted by this paper. Krintz et
al. suggest parallelization at the level of methods,
which decreases transfer delays between 31% and 56%
on average.

5.3 Under control of a supervisor
If a profiler is running in parallel with the application it
is advantageous to transfer the migration control to this
process, which in this case we like to call a supervisor
(Figure 7). The components itself are now freed from
checking the opportunity each time they run.

:Supervisor :Component :Migrate
Component

Figure 7. Migrate under control of a supervisor

Reordering of code and data is also essential for
reducing transfer delay. [Krintz&al1999] suggest
splitting Java code (at class level) into hot and cold
parts. The cold parts correspond to code that is never or
rarely used, and hence loading of this code can be
avoided or at least postponed. To determine the
optimal ordering of code, a more thorough analysis of
the code is needed. This can be done either statically,
using control flow analysis, or dynamically, using
profiling. Both techniques are empirically investigated
in [Krintz&al1998] to predict the first use ordering of
methods in a class. These techniques are directly
applicable to our approach as well. More sophisticated
techniques for determining the most probable path in
the control flow of a program are explored in
[JasonPatterson1995].

5.3.1 Fixed migration strategy
If new applications are developed from scratch, the
developer can keep the streaming conditions (section
4.3) in mind during the development. The development
environment can provide support for that. The
developer can use its knowledge of the high level
purpose of the application to describe a fixed partial
migration strategy of its components including the
exact moments in time where a migration should start.
If the application decides to migrate, or if another
component asks the application to do so, a supervisor
component, running in parallel and independent of the
application, will guide the migration of the application.
The supervisor will trigger the migration based on
fixed rules set up by the developer. If the application
needs to migrate more than once during its lifetime the
supervisor has to migrate with the application. Continuous compilation and ahead-of-time

compilation are techniques that are typically used in a
code on demand paradigm, such as dynamic class
loading in Java. The goal of both compilation
techniques, explored in [Krintz&al1999] and
[PlezbertCytron1997], is to compile the code before it
is needed for execution. Again, these techniques can be
exploited to further optimize our results.

5.3.2 Dynamic migration strategy
If there is no fixed strategy available, the supervisor
component, running in parallel with the application can
do the profiling of the application’s behavior in the
same sense as described in 5.2. If the application needs
to migrate, then the supervisor will guide the migration
of the application based on the profile obtained so far.

7 Conclusion
Network latency becomes a critical factor in the
usability of applications that are loaded over a network.
As the gap between processor speed and network speed
continues to widen it becomes more and more
opportune to use the extra processor power to
compensate for the network delays. We showed with
our experiment that it is possible to migrate a simple
running application as if there where no network
latency at all. In our experimental setup the migrating
application even runs faster during migration than
when it runs stationary.

6 Related work
A variety of different techniques have been proposed to
reduce network latency:

Code compression is the most common way to reduce
overhead introduced by network delay in mobile code
environments. Several approaches to compression have
been proposed. [Ernst&al1997] describes an executable
representation that can be interpreted without
decompression. [Franz&al1997] describes a
compression scheme tailored towards encoding
abstract syntax trees rather than character streams. The
technique of code compression is orthogonal to the
techniques proposed in this paper, and can be used to
further optimize our results.

We discussed the relation between migration time and
idle time of the components that constitute the
application and described the necessary conditions for
removing network latency completely. Further we
presented some component migration strategies to
optimize application streaming.

Page 6

Application Streaming

Page 7

A second problem in the usability of applications that
are loaded over a network is the availability of
migrating code. With application streaming the running
code is never halted and therefore will keep its ability
to react to incoming events.

8 Future Work
A research project, funded by the Belgian government
and in close cooperation with our national radio and
television broadcast company is situated around mobile
code and MPEG-4 [Puri and Eleftheriadis 1998]
environments. This setting will give us the real live test
environment to validate our approach further on
different platforms and will allow us to get more
detailed results.

Not all existing applications are suited for applying the
technique of application streaming but we believe that
architectural transformations can be carried out to
make the proposed technique applicable. Transforming
the architecture should be done in a transparent way,
for example not interfere with the architecture as
defined and viewed by the designer but instead these
transformations should occur during an optimization
step of the compiler.

During the streaming phase of a non-distributed
application the application itself becomes temporarily
distributed which can introduce delays caused by the
communication over the network. We will look into
methods to avoid such delays as much as possible. On
the other hand, the distributed nature allows us to
temporarily introduce parallelism in the evaluation
thereby gaining extra time.

An other possible way to speedup the migration and
avoid distribution is to send over a snapshot of the
application on the sender host including its
computational state to the receiving host while in the
mean time the original application continues to run.
When the copy is completed the evaluation is then
continued at the copy on the receiver while the change
in the computations state at the original sender host is
loaded to the receiver in an interlaced [Stoops&al2002]
way.

9 Acknowledgements
We thank Franklin Vermeulen and Gert van Grootel
for reviewing the paper, Karsten Verelst and Christian
Devalez for writing the proof of concept in Borg and
Java respectively, and the Programming Technology
Lab team for their valuable comments.

10 References
[Barberis1997] S. Barberis, A CDMA-based radio
interface for third generation mobile systems. Mobile
Networks and Applications Volume 2, Issue 1, ACM
Press June 1997

[Ernst&al1997] J. Ernst , W. Evans , C. W. Fraser , T.
A. Proebsting , S. Lucco, Code Compression. Proc.
ACM SIGPLAN Conf. on Programming Language
Design and Implementation. Volume 32 Issue 5, May
1997

[Franz&al1997] M. Franz, T. Kistler. Slim Binaries.
Comm. ACM Volume 40 Issue 12, December 1997

[IEC2000] IEC 60027-2, Second edition, Letter
symbols to be used in electrical technology - Part 2:
Telecommunications and electronics. November 2000

[JasonPatterson1995] R. Jason, C. Patterson, Accurate
Static Branch Prediction by Value Range Propagation
Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation, pages 67-78,
June 1995

[Krintz&al1998] C. Krintz, B. Calder, H. B. Lee, B. G.
Zorn, Overlapping Execution with Transfer Using
Non-Strict Execution for Mobile Programs. Proc. Int.
Conf. on Architectural Support for Programming
Languages and Operating Systems, San Jose,
California U.S., October, 1998

[Krintz&al1999] C. Krintz, B. Calder, U. Hölzle,
Reducing Transfer Delay Using Class File Splitting
and Prefetching, Proc. ACM SIGPLAN Conf. Object-
Oriented Programming, Systems, Languages, and
Applications, November, 1999

[LeGall1991] D. Le Gall, MPEG: a video compression
standard for multimedia applications Communications
of the ACM Volume 34 Issue 4 April 1991

[Moore1965] G. Moore, Cramming more components
onto integrated circuits, Electronics, Vol. 38(8), pp.
114-117, April 19, 1965.

[PlezbertCytron1997] M. P. Plezbert, R. K. Cytron,
Does "just in time" = "better late than never"? Proc.
ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, pp. 120-131, 1997

[PuriEleftheriadis1998] A. Puri, A. Eleftheriadis,
MPEG-4: An object-based multimedia coding standard
supporting mobile applications Mobile Networks and
Applications 3 5–32 1998

[Stoops&al2002] L. Stoops, T. Mens, T. D’Hondt,
Fine-Grained Interlaced Code Loading for Mobile
Systems, 6th International Conference MA2002, LNCS
2535, pp. 78-92 Barcelona, Spain October 2002

[VanBelleD’Hondt2000] W. Van Belle, T. D'Hondt,
Agent Mobility and Reification of Computational State,
an experiment in migration Agents 2000 Infrastructure
for Agents, Multi-Agent Systems, and Scalable Multi-
Agent Systems, Springer Verlag, Barcelona, Spain
2000

[VanBelle&al2001] W. Van Belle, J. Fabry, K. Verelst,
T. D’Hondt, Experiences in Mobile Computing: The
CBorg Mobile Multi Agent System Tools Europe 2001,
March 2001

