
Identifying Refactoring Opportunities Using Logic Meta Programming

Tom Tourẃe and Tom Mens*

Programming Technology Lab

Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium

Email: {tom.tourwe.tom.mens}@vub.ac.be

Abstract— In this paper, we show how automated support can
be provided for identifying refactoring opportunities, e.g., when
an application’s design should be refactored and which refactor-
ing(s) in particular should be applied. Such support is achieved by
using the technique of logic meta programming to detect so-called
bad smells and by defining a framework that uses this informa-
tion to propose adequate refactorings. We report on some initial
but promising experiments that were applied using the proposed
techniques.

I. I NTRODUCTION

Refactoring is the process of changing an application’s de-
sign without changing it’s overall behavior [19]. Its goal is
to prevent the design from aging and to ensure the appropri-
ate flexibility to enable smooth integration of future exten-
sions. Although the definition of refactoring has been around
for several years, its importance in object-oriented develop-
ment and reengineering has only recently been acknowledged.
Most major integrated development environments for object-
oriented programming languages incorporate support for refac-
toring [22], [23], refactoring is more and more discussed in
the context of reengineering legacy applications [9], [26] and
it is included as an explicit activity in agile development pro-
cesses [2], [28].

We can identify three distinct steps in the refactoring process:
1) detect when an application should be refactored
2) identify which refactoring(s) should be applied and where
3) (automatically) perform these refactorings
The last step is often divided into two different phases:

checking if the appropriate preconditions of the refactoring hold
(to ensure the refactoring is behavior preserving) and actually
applying the necessary changes.

Currently, no development environment offers support for
this complete process. The support offered by most environ-
ments is limited to step 3, e.g. they present a list of refactorings
to the developer, and upon selection of any one of these, au-
tomatically perform the corresponding changes to the applica-
tion. Although this relieves the developer from the difficult and
error-prone process of performing these changes manually, it
still requires him to apply step 1 and 2 by hand. Both steps can

* Tom Mens is a Postdoctoral Fellow of the Fund for Scien-
tific Research - Flanders (Belgium). This research is funded
by FWO research grant G.0452.03: “A formal foundation for
software refactoring”

be considered as hard as, or perhaps even harder than, the task
of manually performing changes, due to the following reasons:

• Current-day development environments only offer a nar-
row and local view on the source code of an application.
Most environments are file based, which makes it difficult
to browse an entire class hierarchy, let alone the differ-
ent implementations of a method implemented across this
hierarchy. Consequently, such environments are incapable
of presenting a global overview of the overall structure and
design of the application.

• Current-day development environments only allow prede-
fined querying of the source code of an application. Most
environments provide support for finding all users of a par-
ticular class, or all senders and implementors of a particu-
lar method. They do not allow more sophisticated queries,
however, such as finding all methods that directly access
a particular instance variable of a class, while that class
explicitly provides corresponding accessors and mutators
for that purpose. Such a request can only be realized by
manual inspection.

• Documentation of the application’s design is often missing
or completely outdated. Consequently, developers may
not be aware of particular design guidelines or coding con-
ventions that are used throughout the application. As a
result, they may violate such guidelines and coding con-
ventions without even knowing. Clearly, this degrades the
design, which will eventually lead to the problem of design
erosion [29].

• Even if developers become aware of the fact that an ap-
plication’s design is degrading, or when they have spot-
ted design guideline violations, they may not know about
refactoring and will try to remedy the situation manually
(which is, as already mentioned, a time-consuming and
error-prone process). If they know about refactoring, they
may have a hard time finding out which refactoring can
be applied, as there are many, and some of them are even
largely similar. Even if they know which refactoring(s)
should be applied, they may lack the appropriate infor-
mation necessary for applying it (e.g., which classes and
methods the refactoring should change).

These are exactly the kind of problems we want to tackle
in this paper. The approach we put forward consists of iden-
tifying bad smellsin the source code of an application. Orig-
inally coined by Kent Beck [10], the term bad smell refers to
structures in the code that suggest (sometimes scream for) the

Tom Mens
A final version of this paper has been published in the Proceedings of the CSMR 2003 conference



possibility of refactoring. Once identified, we can use the infor-
mation about these bad smells to propose adequate refactorings,
that can be used to reduce the bad smell, or even remove it alto-
gether. Furthermore, we will show that even more opportunities
for refactoring can be derived, based on the refactoring oppor-
tunities identified by the bad smells.

The remainder of this paper is structured as follows: the
following section introduces the technique of logic meta pro-
gramming, which we will use to overcome the above mentioned
problems and detect bad smells in the code automatically (sec-
tion III). Section IV proceeds to show how the so-gathered in-
formation can be used to propose a list of refactorings that can
remedy the situation. Section V introduces the notion ofcas-
caded refactoring opportunities, which are refactoring opportu-
nities derived from already identified opportunities. Subsequent
sections discuss the initial experiments we conducted, the tool
support we provide and related work.

II. L OGIC META PROGRAMMING

Logic meta programming (LMP) is currently being investi-
gated as a technique to support state-of-the-art software devel-
opment. It is based on a tight symbiosis between an object-
oriented base language and a declarative meta language. This
makes it possible to reason about and to manipulate object-
oriented programs in a straightforward and intuitive way [31].
The technique has already been used to check and enforce pro-
gramming conventions and best-practice patterns [17], to detect
design pattern instances in existing source code [30], to specify
and reason about (the evolution of) design patterns [18], [27],
and to check conformance of a software implementation to its
intended architecture [16].

The LMP technique is independent of the particular base lan-
guage that is used. Up till now, we experimented with both
Smalltalk and Java as the base language [31], [8]. All experi-
ments reported on in this paper were conducted using SOUL, a
logic programming language implemented on top of the object-
oriented language Smalltalk [30], [31], as the meta language.

A. Syntax

SOUL is a variant of Prolog [6] with some minor syntactic
differences. Below we give an example of the syntax. Like in
Prolog, lines starting with% indicate comments and a comma
denotes a logical conjunction. The main differences with Pro-
log are that logic variables are always preceded by a question
mark (e.g.,?P, ?C, ?D ).
% two logic facts
subclass(TermVisitor,SimpleVisitor).
subclass(SimpleVisitor,NamedVariableVisitor).

% two logic rules
hierarchy(?P,?C) :- subclass(?P,?C).
hierarchy(?P,?C) :- subclass(?P,?D), hierarchy(?D,?C)

The logic rules above simply state that a class?P is an ances-
tor of a class?C if ?C is a subclass of?P, or if there exists and
intermediate class?D, which is a subclass of?P and an ancestor
of class?C. Logic queries can be used to trigger the above logic
clauses. For example, the queryhierarchy(TermVisitor,?C) de-
termines whether a descendant of classTermVisitor exists, and

retrieves the result in the variable?C (in this case there are
two solutions?C=SimpleVisitor and ?C=NamedVariableVisitor ).
The queryhierarchy(TermVisitor,NamedVariableVisitor) checks
whether the classNamedVariableVisitor is a (possibly indirect)
descendant ofTermVisitor , and returns true.

B. Virtual Logic Facts

The essential distinguishing feature of SOUL compared to
other logic-based approaches (such as [4]) is its use ofvir-
tual logic facts. All entities in the object-oriented source
code (i.e., classes, methods, variables, inheritance relationships,
. . . ) can be directly accessed from within the SOUL environ-
ment through a metalevel interface ofrepresentational mapping
predicates. The main advantage of this approach, as opposed to
having a separate repository of logic facts extracted from the
code, is that we will always reason about the latest version of
the source code, thus avoiding consistency problems.

Table I lists some of the representational mapping predicates.
Typically, these predicates are used like ordinary logic predi-
cates (i.e., forcheckingandretrieving information).

III. D ETECTING BAD SMELLS

In this section, we explain how logic meta programming can
be used to detect bad smells. We consider two examples, with
increasing complexity. In the first example, we detect the sit-
uation where a method definition includes a formal parameter
that is never used. In the second example, we analyze a class
hierarchy and verify whether it features a clear interface.

A. Obsolete Parameter

A method defines an obsolete parameter if it includes a for-
mal parameter in its signature that is never used in its imple-
mentation. The implementation of a method may span sev-
eral classes, of course, since the method can be overridden in
a subclass. Given a particular class, the developer does not
know beforehand which method implementation he has to in-
spect, nor does he know which subclasses of the class over-
ride which methods, and which subclasses don’t. Suppose the
class implementsm methods, and supposen subclasses of this
class override this method. The developer then needs to inspect
m × n methods to detect an obsolete parameter. Moreover, he
needs to do thisfor every formal parameterthat the method
defines. Clearly, detecting the occurrence of an obsolete pa-
rameter manually is a very hard and time consuming process.
In what follows, we will show an example of the occurrence
of an obsolete parameter and we will explain how this situation
can be detected automatically in our LMP environment.

1) Example: Figure 1 depicts an example of the obsolete
parameter bad smell in the code. TheTermVisitor class de-
fines an abstractobjectVisit: method with one parameter1.
This method is overridden in two subclasses,FixVisitor and
SimpleVisitor . Neither of the two implementations of the
objectVisit: method in these classes uses the parameter. As
such, the parameter is obsolete.

1Note that Smalltalk useskeywordsto identify the parameters a method de-
fines. For example, the nameobjectVisit: consist of one keyword, while
prettyPrintOn:scope: consists of two keywords. The first method thus
defines one parameter, and the second defines two.



Representational Mapping PredicateDescription

class(?C) C must be a class
hierarchy(?P,?C) classC must be a (possibly indirect) subclass of classP

classImplements(?C, ?M) C implements a method namedM

instanceVariable(?C, ?V) V must be an instance variable of classC

TABLE I
REPRESENTATIONALMAPPING PREDICATES

TermVisitor

objectVisit: anObject

FixVisitor

objectVisit: anObject

SimpleVisitor

objectVisit: anObject

CompoundTermRenaming
Visitor

NamedVariableVisitor

VariableAndUnderscore
Visitor

Fig. 1. A method with an obsolete parameter

2) Detecting the Bad Smell:Detecting whether a formal pa-
rameter is not used by a method boils down to checking whether
the method itself and none of its overriding methods uses this
parameter. We can use the following two logic rules to imple-
ment such an algorithm:

obsoleteParameter(?class, ?selector,?parameter) :-
[1] classImplements(?class,?selector),
[2] parameterOf(?class,?selector,?parameter),
[3] forall(subclassImplements(?class,?selector,?subclass),
[4] not(selectorUsesParameter(?subclass,?selector,

?parameter)))

First, we retrieve the methods implemented by a given class
(line 1, through theclassImplements predicate, which is part of
the representational mapping), and we retrieve all the param-
eters of each method at line 2 (by means of theparameterOf

predicate). For each subclass of the given class that implements
the given method (gathered by means of thesubclassImplements

predicate), we check if it uses the given parameter (line 4, using
theselectorUsesParameter predicate).

TheselectorUsesParameter predicate itself is implemented as
follows:

selectorUsesParameter(?class,?selector,?parameter) :-
[1] classImplementsMethodNamed(?class,?selector,?method),
[2] parsetreeUsesVariable(?method,?parameter).

It uses a variant of theclassImplements predicate, theclass-

ImplementsMethodNamed predicate that also returns the parsetree
of the method identified by the class and the selector (line 1).
TheparsetreeUsesVariable predicate is then used to traverse this
parsetree and look for uses of the specified parameter (line 2).
It is defined in terms of thetraverseMethodParseTree predicate,
that implements a general parse tree matching algorithm.

B. Inappropriate Interfaces

Good interfaces are extremely important when designing
flexible and reusable object-oriented systems. Any situation
in which the interface of a class is inappropriate, incomplete
or unclear should thus be avoided at all costs. In the initial
stage, classes may define the appropriate interface, but due to
the constant evolution of an application, and due to different
developers working on the same code base, the interface may
deteriorate over time.

Detecting the inappropriate interface bad smell manually is
quite a difficult task because one has to analyze an entire class
hierarchy, and the interfaces it defines. Supposing this hier-
archy consists ofm classes, we have to consider all possible
combinations of these classes and check whether any of those
combinations share an interface. Since there are2m such com-
binations, this is quite cumbersome. Even an automatic ap-
proach is not feasible when dealing with such huge numbers.
The problem can be alleviated however, by first applying some
lightweight techniques (such as metrics [12]) to detect class hi-
erarchies that should be investigated further and in more detail.

We will first show an example of the inappropriate interfaces
bad smell, and afterwards discuss how we can detect the prob-
lem by using our LMP environment. We will not elaborate on
the metrics we use for identifying class hierarchies for further
examination, since this is outside the scope of this paper.

1) Example: Consider theAbstractTerm hierarchy depicted
in Figure 2. As can be observed, theCallTerm, CompoundTerm,

SmalltalkTerm and QuotedCodeTerm classes each provide an im-
plementation for theterms method, whereas all other classes
(including AbstractTerm ) do not. This situation is problematic



AbstractTerm

Cut NativeClause

VariableCallTerm

terms

CompoundTerm

terms

SmalltalkTerm

terms

QuotedCodeTerm

terms

Fig. 2. An example of an inappropriate interface

for two reasons:

• The classes in this hierarchy cannot be used polymorphi-
cally, at least not in a statically-typed language (such as
Java and C++), since there is no common ancestor that in-
cludes theterms method in its interface.

• Extending theAbstractTerm hierarchy with a new class be-
comes harder. It is absolutely unclear from the design
which subclasses ofAbstractTerm should provide an imple-
mentation for theterms method and which classes should
not. A developer confronted with this situation should thus
know exactly what he is doing.

2) Detecting The Bad Smell:We use the following algo-
rithm for detecting the problem of inappropriate interfaces in a
hierarchy of classes:

• retrieve all direct subclasses of the root class of the hierar-
chy.

• compute all possible subsets of this set of classes.
• for each of these subsets, compute the intersection of the

interfaces of all classes contained in the subset.
• in each of the resulting intersections, exclude all those

methods that are present in the interface of the root class
of the hierarchy

Clearly, this algorithm grows exponentially with the number
of subclasses, because we compute all possible subsets. There-
fore, we restrict it by only considering subsets of three or more
classes that should share an interface of two or more methods.
For explanatory purposes, we do not take these restrictions into
account in the implementation of this algorithm below.

The purpose of thecommonSubclassInterface predicate is to
retrieve all subclasses of a given root class (line 2), find out
whether some subclasses share a common interface (line 3), and
compute the difference between this shared interface and the
interface of the root class (line 4).

commonSubclassInterface(?class,?interface,?subclasses) :-
[1] classInterface(?class,?classInterface),
[2] allSubclasses(?class,?scs),
[3] sharedInterface(?scs,?commonInterface,?subclasses),
[4] difference(?commonInterface,?classInterface,

?interface).

The allSubclasses anddifference predicate are basic predi-
cates. The former retrieves the list of all subclasses of a given
class, while the latter computes the difference between two sets.
Their implementation is not considered here. The implementa-
tion of thesharedInterface predicate looks as follows:

sharedInterface(?classes,?interface,?subset) :-
[1] subset(?subset,?classes),
[2] commonInterface(?subset,?interface).

It simply computes a subset for the set of classes passed
to it (line 1), and derives the common interface between the
classes of this subset (line 2). Thesubset predicate is a library
predicate that computes a possible subset of a given set. The
commonInterface predicate is implemented as follows:
commonInterface(?classes,?interface) :-
[1] findall(?itf,
[2] and(member(?class,?classes),
[3] classInterface(?class,?itf)),
[4] ?interfaces),
[5] intersection(?interfaces,?interface)

It first computes the interfaces of all classes in the provided
set (first four lines), and then computes the intersection of this
set of interfaces (last line).

One particular technical problem of this algorithm is that it
computes the shared interface between any combination of sub-
classes of a given class. As such, the shared interface that is
detected between four classes of this set, may also be detected
for any combination of three classes of these four classes. In
other words, the results returned by the algorithm may possi-
bly include duplicated entries. These can be removed easily
however, which results in the following implementation for the
inappropriateInterface predicate:
inappropriateInterface(?class,?interface,?subclasses) :-

findall(<?itf,?scs>,
commonSubclassInterface(?class,?itf,?scs),
?result),

removeDuplicates(?result,?nodups),
member(<?interface,?subclasses>,?nodups).

C. Discussion

As can be seen from these two examples, the technique of
logic meta programming is extremely well suited to detect bad
smells in source code. Thanks to distinguishing and power-
ful features as backtracking and unification, we can write com-
plicated search algorithms in a straightforward, understandable
and concise way. Moreover, the LMP environment has full
access to an application’s source code, which means we are
not hampered by the narrow view offered by standard develop-
ment environments. In combination with the fact that the logic
paradigm naturally allows us to express sophisticated queries,
this also means we are no longer limited to the basic querying
tools offered by these environments.

IV. PROPOSINGREFACTORINGS

Now that we have shown how we can detect bad smells using
LMP, we are ready to explain how the information gathered in
this way can be used to propose appropriate refactorings. We



want to stress that we do not aim to apply these refactorings
automatically. Many times, several refactorings can be chosen
to remedy a particular situation, and it is impossible to infer
automatically which of these refactorings is most appropriate.
Therefore, we present the developer with a list of refactorings
that he can use, and it is his responsibility to pick out the appro-
priate one(s).

A. Overview

We will use one single and general predicate for proposing
refactorings: theproposeRefactoring predicate. This predicate
thus provides one single hook for tools that want to know which
refactorings are applicable. The predicate has the following
form:
proposeRefactoring(?entity,?refactoring,?arguments)

Its first argument represents the entity for which we want
to detect refactoring opportunities. It can be any source code
artifact, but at the moment we only use classes, methods or
instance variables, since these are all entities for which some
refactorings have been defined [19], [10]. The second argument
identifies the particular refactoring that should be applied. It’s
value can thus beaddClass, pullUpMethod, abstractVariable or
any other refactoring that is defined [10]. The last argument
of the predicate identifies the list of arguments that should be
passed to the refactoring. These arguments can be any source
code artifact [25].

B. Obsolete Parameter

Obsolete parameters can be removed from a particular met-
hod by applying theremoveParameterrefactoring. This refac-
toring makes sure that the obsolete parameter is removed from
a particular method, all of its overriding methods, and all of
the method’s callers. The refactoring requires as arguments
the class in which the method is defined, the method defin-
ing the obsolete parameter, and the obsolete parameter itself.
This is exactly the information that has been gathered by the
obsoleteParameter predicate, as presented previously. We can
use this information in the following way to propose the appro-
priateremoveParameterrefactoring:
proposeRefactoring(?class,removeParameter,

<?class,?selector,?parameter>) :-
obsoleteParameter(?class,?selector,?parameter)

Applying the following query on the example presented in
Figure 1
:- proposeRefactoring(TermVisitor,?refactoring,

?arguments)

returns the following result:
proposeRefactoring(TermVisitor,removeParameter,

<AbstractTerm, objectVisit:>)

which is exactly what is to be expected.

C. Inappropriate Interfaces

There are two general solutions to overcome the problem of
inappropriate interfaces. A developer can either insert an in-
termediate superclass between the root class of the hierarchy

and the subclasses that implement a shared interface, or he can
augment the interface of the root class of the hierarchy with the
interface shared by the subclasses. These two solutions cor-
respond to anaddClassand anaddMethodrefactoring respec-
tively.

The addClassrefactoring requires as arguments the root
of the hierarchy, a list of subclasses of this root class that
should become subclasses of the newly introduced class, and
a list of selectors that are shared by the subclasses and that
should be implemented in the newly introduced class2. Since
this is exactly the kind of information that is derived by the
inappropriateInterface predicate, the refactoring can be pro-
posed in the following way:
proposeRefactoring(?class,addClass,

<?class,?interface,?subclasses>) :-
inappropriateInterface(?class,?interface,?subclasses)

Similarly, theaddMethodrefactoring requires as arguments
a list of methods to be added and the root class to which they
should be added. The refactoring can thus be proposed as fol-
lows. Note how information about the subclasses that share the
interface is not used in this case.
proposeRefactoring(?class,addMethod,<?class,?interface>) :-

inappropriateInterface(?class,?interface,?)

Applying the following query on theAbstractTerm class hier-
archy
:- proposeRefactoring(AbstractTerm,?refactoring,

?arguments)

yields two results
proposeRefactoring(AbstractTerm, addClass,

<AbstractTerm,terms,
<CallTerm, CompoundTerm,

SmalltalkTerm,
QuotedCodeTerm>)

proposeRefactoring(AbstractTerm, addMethod,
<AbstractTerm, terms>)

Note that this is only a very basic example, since it involves a
class hierarchy which is only one level deep. More complex hi-
erarchies may require more complex refactorings. Due to space
limitations we cannot present the algorithm that covers these
cases as well here.

V. CASCADED REFACTORINGOPPORTUNITIES

Many times, part of the purpose of a particular refactoring is
to enable the possibility of performing another refactoring. For
example, before an instance variable shared by a number of sub-
classes can be pulled up, it is required that all subclasses refer
to this variable by the same name. ArenameVariablerefactor-
ing may thus be mandatory before apullUpVariablerefactoring
can be applied. The application of one particular refactoring
may thus open possibilities for other refactorings to be applied.
We call this phenomenoncascaded refactoring opportunities.
Our LMP environment naturally allows us to detect cascaded
refactoring opportunities. We can easily use the information
gathered about a particular refactoring opportunity to discover
even more opportunities, as we will show next.

2Our definition of theaddClassrefactoring differs from existing defini-
tions [19], [25] because it explicitly includes an extra parameter that holds this
shared interface. This is only a minor technical issue, however.



A. A CascadedremoveParameterRefactoring Opportunity

As an example, consider the case where an obsolete param-
eter bad smell is detected for a particular methodm:. The ap-
propriate refactoring to be applied is aremoveParameterrefac-
toring, which will remove the parameter fromm:’s definition,
as well as remove it from all call sites. A methodn: , in which
a call to m: occurs, may as well include this parameter in its
definition, and may not use it besides for callingm: (in which
case we call it adelegated parameter). As such, methodn: also
defines an obsolete parameter, all be it an indirect one.

This bad smell can be detected by means of the following
rule:
proposeRefactoring(?class1, removeParameter,

<?class1,?selector1>) :-
proposeRefactoring(?class2, removeParameter,

<?class2,?selector2,?parameter>),
senderOf(?class1,?selector1,?selector2),
delegatedParameter(?class1,?selector1,?parameter)

The senderOf predicate is used to determine all senders of
a particular method, while thedelegatedParameter predicate
checks whether the parameter is used in the calling method as a
delegated parameteronly. If this is not the case, the additional
refactoring cannot be proposed, since it means the parameter is
used elsewhere in the method.

B. A CascadedpullUpVariableRefactoring Opportunity

Based on the inappropriate interface bad smell, many dif-
ferent cascaded refactoring opportunities can be proposed. We
will only provide one example of these.

Subclasses sharing a common interface often also share some
state (e.g. some instance variables). When an intermediate su-
perclass is inserted by means of anaddClassrefactoring, this
common state can be factored out from the subclasses into the
intermediate superclass. Observe that without this intermedi-
ate superclass, such a refactoring would not be possible. The
state would then have to be factored out into a more general su-
perclass, which may have other subclasses that do not have to
contain this state.

Detecting when a shared state can be factored out after an
addClassrefactoring has been applied, and proposing the ap-
propriatepullUpVariablerefactoring, is achieved by using the
following logic rule:
proposeRefactoring(?class, pullUpVariable,

<?variable,?subclasses>) :-
proposeRefactoring(?class, addClass,

<?class,?,?subclasses>),
sharedVariable(?subclasses,?variable)

The sharedVariable predicate simply checks whether the list
of subclasses passed to it share a common variable. If this is the
case, thepullUpVariablerefactoring can be proposed.

C. Discussion

Clearly, applying one single refactoring may give rise to a
multitude of other refactoring opportunities. The question may
thus be raised whether searching for cascaded refactoring op-
portunities is both useful and scalable.

As for its usefulness, we firmly believe it is of prime im-
portance that as many refactoring opportunities as possible are
discovered in one single step. The benefits of automatically

identifying refactoring opportunities largely vanishes when the
developer is forced to check for such opportunities constantly.
Rather, he wishes to check once and get as many identified op-
portunities as possible.

The question of scalability refers to the fact that each existing
refactoring may depend on all other existing refactorings. As
such, identifying cascaded refactoring opportunities requires
checking opportunities for each and every possible refactoring,
which could take quite some time. When a new refactoring is
introduced, this also requires to identify how it relates to all ex-
isting refactorings and change all the logic rules that check for
refactoring opportunities. Clearly, this is quite cumbersome.
Given the initial status of our work, we are not yet in the posi-
tion to study such issues. This should thus be considered future
work.

VI. EXPERIMENTS

Of particular importance for initially validating our tech-
niques is that we test them on an application of which we have
intimate knowledge. Only then will we be able to assess the
correctness of the identified bad smells and the usefulness of
the proposed refactorings. The SOUL application itself is the
most obvious candidate for testing purposes, since we devel-
oped it ourselves and we thus know its implementation very
well.

We used version 3.0 of SOUL, which was the latest version at
the time we started doing our experiments. In this version, the
implementation consists of 84 classes and approximately 1100
different methods (not counting methods that are overridden, so
there are many more methodimplementations), which makes it
a small to medium-sized application. The implementation is
based around 5 important class hierarchies:

• AbstractTerm consists of 30 classes and 116 methods.
• HornClause consists of 4 classes and 26 methods.
• TermVisitor consists of 6 classes and 18 methods.
• AbstractRepository consists of 6 classes and 63 methods.
• Frame consists of 5 classes and 12 methods.
We searched for refactoring opportunities in these five hi-

erarchies, only considering those bad smells presented in the
previous sections.

A. Proposed Refactorings

The refactoring opportunities that were proposed do not in-
clude cascaded refactoring opportunities, as no instances of
those were found.

1) Obsolete Parameter:
removeParameter(AbstractTerm,

unifyWithKeywordedCompound:inEnv:myIndex:hisIndex:-
inSource:,

myIndex:)

removeParameter(AbstractTerm,
unifyWithKeywordedCompound:inEnv:myIndex:hisIndex:-

inSource:,
hisIndex:)

removeParameter(AbstractTerm,
unifyWithKeywordedCompound:inEnv:myIndex:hisIndex:-

inSource:,
inSource:)

removeParameter(TermVisitor,



HornClause

Fact Rule Query

printOn:
printForCompileOn:
prettyPrintOn:scope:

printOn:
printForCompileOn:
prettyPrintOn:scope:
addChildrenInitial:

printOn:
printForCompileOn:
addChildrenInitial:

Fig. 3. The originalHornClause class hierarchy

objectVisit:,
objectVisit:)

The first three refactorings are proposed due to the fact
that the unifyWithKeywordedCompound:inEnv:myIndex:hisIndex:-

inSource: method in theAbstractTerm class does not use its
three last formal parameters. The method is implemented by
three different classes of the hierarchy, but neither implementa-
tion uses these parameters. Similarly, theobjectVisit: method
of theTermVisitor class does not use its single parameter. This
method is overridden in two subclasses of the hierarchy, but
neither one uses the parameter.

2) Inappropriate Interface:

addClass(AbstractTerm,terms, <CallTerm, SmalltalkTerm,
QuotedCodeTerm, CompoundTerm>)

addMethod(AbstractTerm, terms)

addClass(HornClause, <printOn:,printForCompileOn:>,
<Query, Rule, Fact>)

addClass(HornClause, <printOn:,printForCompileOn:,
addChildrenInitial:>,

<Query, Rule>)

addClass(HornClause, <printOn:,printForCompileOn:,
prettyPrintOn:scope:>,

<Rule, Fact>)

addMethod(HornClause, <printOn:,printForCompileOn:>)

addMethod(HornClause,
<printOn:,printForCompileOn:,

addChildrenInitial:>)

addMethod(HornClause,
<printOn:,printForCompileOn:,

prettyPrintOn:scope:>)

The first two refactorings are proposed due to the inappropri-
ate interface bad smell in theAbstractTerm hierarchy depicted in
Figure 2. All other refactorings are proposed due to the same
bad smell in theHornClause hierarchy, which is shown in Fig-
ure 3.

As can be observed, these results overlap to some extent: the
printOn: and printForCompileOn: methods are reported three
times. This is unavoidable given the current implementation
of our detection algorithm, which searches for a shared inter-
face between any combination of classes in a particular class
hierarchy. As such, one combination may share an interface
that is a subset of the interface shared by another, slightly dif-
ferent, combination. Detecting such situations is possible, but
requires a more advanced, and hence more complex, search al-
gorithm. We may however prefer the above results, since they
show more clearly which interfaces are shared between which
combinations of classes, and such information is important for

the refactoring process.

B. Solutions

The following refactorings were effectively used in practice
to improve the design of the SOUL application.

1) Obsolete Parameter:

• We could have applied the threeremoveParameterrefac-
torings that were proposed for theunifyWithKeywordedCom-

pound:inEnv:myIndex:hisIndex:inSource method. However,
we chose to apply aremoveMethodrefactoring instead,
which removed the method from the implementation. This
last refactoring was proposed, based on the detection of the
bad smell that this particular method was never called.

• TheobjectVisit: method participates in an instance of the
Visitor design pattern. Its formal parameter represents the
element object that is being visited. One of the coding con-
ventions used in the SOUL implementation is that a visitor
method (such as theobjectVisit: method) should always
define such a parameter. Therefore, we do not remove it.
The fact that this parameter is not used in this particular
situation, may hint that this is too strict a restriction, how-
ever.

2) Inappropriate Interface:

• We changed the superclass of theFact class fromHorn-

Clause to Rule . Such a refactoring was actually not pro-
posed by our techniques, but after studying the code of
both classes, we found out that such a change would result
in an improved and cleaner design. This change solves the
problem of theprettyPrintOn:scope: method. This method
only needs to be implemented by theRule andFact classes,
since queries (represented by theQuery class) never need to
be pretty printed.

• The addMethodrefactoring that is proposed to add the
printOn: andprintForCompileOn: methods to the interface
of the HornClause class, is applied. These methods are
defined as abstract methods, and since all subclasses of
theHornClause class already provide an implementation for
them, no additional changes are required.

• The secondaddMethodrefactoring, that is proposed to
add theaddChildrenInitial: method to the interface of the
HornClause class is also applied. Since theFact class does
not define this method, we should provide an implementa-
tion for it. However, since we also changed the inheritance
relationships (see the first refactoring), it turns out this im-
plementation is not necessary.



HornClause

Fact

Rule Query

printOn:
printForCompileOn:
prettyPrintOn:scope:

printOn:
printForCompileOn:
prettyPrintOn:scope:
addChildrenInitial:

printOn:
printForCompileOn:
addChildrenInitial:

printOn:
printForCompileOn:
addChildrenInitial:

Fig. 4. The improvedHornClause class hierarchy

The resulting and improved design of theHornClause hierar-
chy is depicted in Figure 4.

C. Discussion

SOUL is a research prototype tool, and as such is a small-
to medium-sized application, which is being worked on by a
small number of people, and which is developed with flexibil-
ity and extensibility in mind (to allow us to experiment with
new language features easily, for example). Furthermore, we
applied our techniques to detect refactoring opportunities based
on only two bad smells. Given these facts, the results are quite
surprising. Most of the refactorings that were proposed were
effectively applied to achieve a cleaner and better design. If a
particular refactoring was not applied, for whatever reason, a
closer look at the identified bad smell revealed that there was
indeed a problem, which should be solved. We can assume that
such problems will only aggravate for large-scale applications
worked on by many more developers.

A potential disadvantage of the approach is that many refac-
torings can be proposed, certainly if large(r)-scale applications
are considered and cascaded refactoring opportunities are taken
into account (as discussed in Section V). The developer may
thus be presented with a large list of refactorings, and may no
longer see the wood for the trees. This is unavoidable, however,
since one particular bad smell can often be remedied by a mul-
titude of refactorings. Furthermore, we do not want to refactor
the design automatically [3]. The only solution thus consists of
presenting the whole list to the developer, who should then pick
out the appropriate refactorings himself. The problem may be
alleviated up to some extent in two ways, however:

1) We could induce a particular order on the refactorings
that are proposed, based on some criteria. For example, a
developer would like to see aremoveMethodrefactoring
beforeremoveParameterrefactorings, since the applica-
tion of the former refactoring makes the latter ones obso-
lete (as was explained earlier in this section). This would
also allow us to reduce the size of the list dynamically:

as the first refactoring in the list is applied, later refactor-
ings that become obsolete may be removed. This requires
that we study dependencies between different refactor-
ings, which should be considered future work.

2) Include refactoring in the development process as a spe-
cific task that should be performed on regular times (as
suggested in [2]). Regularly checking for refactoring op-
portunities and applying the corresponding refactorings
will ensure that the list of possible refactorings remains
small and manageable. We envision an approach where
checking for refactoring opportunities happens at the
same time as unit testing. The unit tests will then ensure
the behavioral correctness of the application, whereas the
refactoring tests will ensure its ”structural” correctness.

VII. T OOL SUPPORT

Tool support for our approach is clearly indispensable, to
shield a developer from the logic environment and to provide
him with a straightforward and easy to use interface. The tool
should be driven by the programmer, who selects a particular
source code entity, such as a class or a method, to be analyzed.
This analysis is performed automatically without user interven-
tion, and results in a list of refactorings that can be applied. The
developer is then able to pick out the refactoring(s) he wants to
apply, and the tool automatically makes the necessary changes.

To provide this kind of tool support, we integrated our ap-
proach into the Refactoring Browser, which is the standard
browser for the VisualWorks Smalltalk Integrated Development
Environment. We augmented this browser with a SOUL tab
(see Figure 5), which exists next to the other tabs already avail-
able (such as theComment, Code Criticand Hierarchy Dia-
gram tabs). This tab contains a list of bad smells that can cur-
rently be detected by the tool. TheCheck the class interface
andCheck for obsolete parametersentries that were explained
above, are included in this list, for example. Upon selection of
a class in the upper left pane, the developer can select a num-
ber of these bad smells (or all of them) and clicks theExecute
button. As a result, a logic query will be launched that will
check the source code for the selected bad smells. The results
of this query (e.g., the refactorings that can possibly be applied)
will be shown in the lower right pane. The developer can then
simply select one of these refactorings, and execute it.

It should be noted that we explicitly allow a developer to se-
lect a number of bad smells (or even one single bad smell) to be
checked, instead of automatically checking for all of them. The
specific reason is that the current implementation of our LMP
environment is not optimized, and as a consequence, check-
ing for all bad smells on large software systems may take quite
some time. Furthermore, a developer may know that a certain
bad smell does not occur in a particular class hierarchy, and
may thus not want to spend the time checking for it.

VIII. R ELATED WORK

Obviously, the use of logic-based or query-based approaches
for improving software evolution tool support is not new. For
example, [4] propose a reverse engineering tool that stores all
program information in a logic code repository to perform data



Fig. 5. Tool Support for Identifying Refactorings

flow analysis. [5] represent structural design information (more
specifically, dependency relationships among modules) in a
Prolog data base. A graphical query language is used to query
the Prolog data base to identify and remove cyclic control de-
pendencies. [21] present an algebraic framework for modelling
and querying source code. This facilitates expressing high-level
source code queries.

As already mentioned, a number of programming environ-
ments exist that provide support for refactoring. Most notably,
the Refactoring Browser, which exists for many Smalltalk pro-
gramming environments, and the Eclipse and IntelliJ environ-
ments for the Java programming language. The kind of support
offered by these environments is limited to automatically ap-
plying the refactorings selected by a developer. They have no
special provisions for detecting bad smells, nor for identifying
which refactorings can be applied to remove them.

Other tools exist that can be used to verify source code qual-
ity [14], [1], [20]. The tool presented in [20], for example, is
capable of detecting some basic coding errors, such as using=

instead of== in an if statement. Generally, such tools lack a
global notion of a program, and, as a consequence, they can not
be used to detect more advanced coding errors, let alone bad
smells on the design level.

A more advanced tool is theCode Critic tool included in
the Refactoring Browser, that can be used to detect some bad
smells. Code Critic is a Lint-like tool, that has been extended
to include global design information. As such, it is not only
able to detect various coding errors, but can also identify in-
terface conflicts (such as methods that are sent but not im-
plemented, or vice versa) and design flaws. The major short-
coming of this tool is that it strongly relies on the Smalltalk
environment and its powerful meta programming capabilities.
Smalltalk is a general-purpose programming language, and is
thus not specifically designed to express rules or constraints, or
straightforwardly implement reasoning algorithms. This ham-
pers the extensibility and usability of the tool. For example,
although it can be achieved, implementing an algorithm that
detects the problem of inappropriate interfaces would be much
harder, would be much more complex and would as a result be
less readable. Furthermore, theCode Critictool does not pro-

pose refactorings that can be applied to remedy the bad smells.
More recently, some techniques are being developed with

the specific goal of identifying refactoring opportunities and
proposing the corresponding refactorings [15], [7], [24], [13].

[15] reports on a tool that is able to derive program invari-
ants from the source code automatically, and that uses these in-
variants to identify when a refactoring could be necessary. For
example, one invariant may be that a certain parameter of a
method is always constant, or is a function of the other param-
eters of a method. In that case, it might be possible to apply a
removeParameterrefactoring. The main problem with this ap-
proach is that it needs to run an application to infer the program
invariants. To this extent, it uses a representative set of test
suites. It is however impossible to guarantee that a test suite
covers all possible uses of an application. Therefore, the invari-
ants may not hold in general. Nonetheless, good results have
been obtained, and we believe the approach is complementary
to ours. Combining both approaches, resulting in a tool that
uses static as well as dynamic information, seems promising.

[7] sketches an approach to detect duplicated code in an
(object-oriented) application and proposes refactorings that can
eliminate this duplication. It is based around an object-oriented
meta model of the source code and a tool that is capable of de-
tecting duplication in code. The refactorings that are proposed
consist of removing duplicated methods, extracting duplicated
code from within a method and insert an intermediate subclass
to factor out the common code. Although we currently have no
support for detecting code duplication, our LMP environment is
general enough to allow us to implement this as well. We could
thus incorporate the findings of [7] into our approach.

[24] uses object-oriented metrics to identify bad smells and
propose adequate refactorings. They focus onuse relationsto
proposemove method/attributeand extract/inline classrefac-
torings. The key concept underlying their approach is the
distance-based cohesionmetric, which measures the degree to
which some parts (methods and variables of a class) belong to-
gether. The main difference between a metrics-based approach
and our approach, is that metrics are still subject to interpreta-
tion, whereas our detection technique is more strict (a bad smell
occurs or it does not). The approaches are thus clearly comple-



mentary, since some bad smells are subject to interpretation as
well, whereas others are more strict.

IX. CONCLUSION & FUTURE WORK

In this paper, we have shown how support can be provided
for detecting when a design should be refactored, as well as
identifying which refactorings could be applied to improve this
design. The approach we have demonstrated uses the technique
of logic meta programming, which proves to be extremely well
suited for detecting bad smells and for deriving the necessary
information for the proposed refactorings. We provided two
non-trivial but representative examples, that prove this. Further-
more, we illustrated how this approach complements existing
refactoring tools, and how it can be integrated into such tools
to effectively provide an environment supporting the complete
refactoring process.

Future work first of all includes extending the tool to detect
many more bad smells, such as those found in [10]. Since some
of these bad smells are not as strict and clear-cut as the two
examples we presented here, we may have to resort to the use
of metrics (as in [24]). Our LMP environment can certainly be
used to implement such metrics, and in fact already contains a
metrics framework. We should also study the scalability of the
(cascaded) refactoring opportunities, as discussed in Sections V
and VI. We would like to investigate which refactorings depend
upon other ones, and how and why this is the case. This should
allow us to identify more clearly which refactoring opportuni-
ties can or will give rise to other opportunities. Another inter-
esting research track is to incorporatedesign pattern smellsinto
the approach, which would enable us to detect detoriated design
pattern implementations and propose adequate refactorings to
correct them. This would require us to incorporate some fuzzy
logic techniques (as suggested by [13]) or explanation-based
constraint logic programming (as used by [11]), to identify such
detoriating design patterns. We would also like to integrate our
ideas with the approach proposed by [15] to study where they
overlap, where they complement each other, and if the resulting
approach is more than the sum of its parts.

REFERENCES

[1] A. V. Aho, B. W. Kernigan, and P.J. Weinberger. Awk - A Pattern Scan-
ning and Processing Language, 1980.

[2] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[3] F. W. Callis. Problems with automatic restructurers.SIGPLAN Notices,
23:13–21, March 1988.

[4] Gerardo Canfora and Aniello Cimitile. A logic-based approach to re-
verse engineering tools production.Transactions on Software Engineer-
ing, 18(12):1053–1064, December 1992.

[5] M. Consens, A. Mendelzon, and A. G. Ryman. Visualizing and querying
software structures. InProc. 11th Int’l Conf on Software Engineering,
pages 138–157, 1992.

[6] P. Deransart, A. Ed-Dbali, and L. Cervoni.Prolog: The Standard Refer-
ence Manual. Springer-Verlag, 1996.

[7] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A language
independent approach for detecting duplicated code. In Hongji Yang and
Lee White, editors,Proc. Int’l Conf. Software Maintenance, pages 109–
118. IEEE Computer Society Press, September 1999.

[8] Johan Fabry. Supporting Development of Enterprise Javabeans through
Declarative Meta Programming. In Zohra Bellahséne, Dilip Patel, and
Colette Rolland, editors,Object-Oriented Information Systems, number
2425 in LNCS. Springer Verlag, 2002.

[9] Richard Fanta and Vaclav Rajlich. Reengineering Object-Oriented Code.
In Proc. Int. Conf. on Software Maintenance, pages 238–246. IEEE Com-
puter Society Press, 1998. Bethesda, Maryland, March 16-19, 1998.

[10] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[11] Yann-Gäel Gúeh́eneuc and Herv́e Albin-Amiot. Using Design Patterns
and Constraints to Automate the Detection and Correction of Inter-class
Design Defects. InProc. TOOLS USA, 2001.

[12] Brian Henderson-Sellers.Object-Oriented Metrics. Prentice Hall, 1995.
[13] Jens Jahnke, Wilhelm Schaefer, and Albert Zuendorf. Generic fuzzy rea-

soning nets as a basis for reverse engineering relational database applica-
tions. In M. Jazayeri and H. Schauer, editors,Proc. 6th European Soft-
ware Engineering Conference, pages 193–210. Springer-Verlag, 1997.

[14] S. Johnson. Lint, a C Program Checker, 1978.
[15] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David

Notkin. Automated Support for Program Refactoring using Invariants.
In Proc. Int. Conf. on Software Maintenance, pages 736–743, 2001.

[16] Kim Mens. Automating Architectural Conformance Checking by means
of Logic Meta Programming. PhD thesis, Departement Informatica, Vrije
Universiteit Brussel, 2000.

[17] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting Software Devel-
opment through Declaratively Codified Programming Patterns.Journal
on Expert Systems with Applications, December 2002.

[18] Tom Mens and Tom Tourẃe. A Declarative Evolution Framework for
Object-Oriented Design Patterns. InProc. Int. Conf. Software Mainte-
nance, pages 570–579. IEEE Computer Society, 2001.

[19] William F. Opdyke.Refactoring Object-Oriented Frameworks. PhD the-
sis, University of Illinois at Urbana Champaign, 1992.

[20] Santanu Paul and Atul Prakash. A Framework for Source Code Search us-
ing Program Patterns.Transactions on Software Engineering, 20(6):463–
475, June 1994.

[21] Santanu Paul and Atul Prakash. Supporting queries on source code: A
formal framework. Software Engineering and Knowledge Engineering,
4(3):325–348, September 1994.

[22] Don Roberts, John Brant, and Ralph Johnson. A Refactoring Tool for
Smalltalk.Theory and Practice of Object Systems, 3(4):253–263, 1997.

[23] Jocelyn Simmonds and Tom Mens. A comparison of software refactor-
ing tools. Technical Report vub-prog-tr-02-15, Programming Technology
Lab, November 2002.

[24] Frank Simon, Frank Steinbruückner, and Clause Lewerent. Metrics Based
Refactoring. InProc. 5th European Conference on Software Maintenance
and Reengineering, pages 30–38. IEEE Computer Society Press, 2001.

[25] Sander Tichelaar.Modeling Object-Oriented Software for Reverse Engi-
neering and Refactoring. PhD thesis, University of Berne, 2001.

[26] Lance Tokuda and Don S. Batory. Evolving object-oriented designs with
refactorings.Automated Software Engineering, 8(1):89–120, 2001.

[27] Tom Tourẃe. Automated Support for Framework-Based Software Evo-
lution. PhD thesis, Departement Informatica, Vrije Universiteit Brussel,
2002.

[28] Arie van Deursen and Leon Moonen. The video store revisited – thoughts
on refactoring and testing. InProc. 3rd Int’l Conf. eXtreme Programming
and Flexible Processes in Software Engineering, pages 71–76, 2002. Al-
ghero, Sardinia, Italy.

[29] Jilles van Gurp and Jan Bosch. Design Erosion: Problems & Causes.
Journal of Systems & Software, 61(2):105–119, 2001.

[30] Roel Wuyts. Declarative Reasoning about the Structure of Object-
Oriented Systems. InProc. TOOLS USA’98, IEEE Computer Society
Press, pages 112–124, 1998.

[31] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Departement Informatica, Vrije Universiteit Brussel, 2001.




