Identifying Refactoring Opportunities Using Logic Meta Programming

Tom Tourwe and Tom Meris

Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
Email: {tom.tourwe.tom.mengvub.ac.be

A final version of this
paper has been published
in the Proceedings of the
CSMR 2003 conference

Abstract—In this paper, we show how automated support can be considered as hard as, or perhaps even harder than, the task

be provided for identifying refactoring opportunities, e.g., when
an application’s design should be refactored and which refactor-
ing(s) in particular should be applied. Such supportis achievedby ®
using the technique of logic meta programming to detect so-called

bad smells and by defining a framework that uses this informa-

tion to propose adequate refactorings. We report on some initial

but promising experiments that were applied using the proposed
techniques.

I. INTRODUCTION

Refactoring is the process of changing an application’s de-
sign without changing it's overall behavior [19]. Its goal is
to prevent the design from aging and to ensure the appropri-
ate flexibility to enable smooth integration of future exten-
sions. Although the definition of refactoring has been around
for several years, its importance in object-oriented develop-
ment and reengineering has only recently been acknowledged.
Most major integrated development environments for object-
oriented programming languages incorporate support for refac-
toring [22], [23], refactoring is more and more discussed in «
the context of reengineering legacy applications [9], [26] and
it is included as an explicit activity in agile development pro-
cesses [2], [28].

We can identify three distinct steps in the refactoring process:

1) detect when an application should be refactored

2) identify which refactoring(s) should be applied and where

3) (automatically) perform these refactorings

The last step is often divided into two different phases: *
checking if the appropriate preconditions of the refactoring hold
(to ensure the refactoring is behavior preserving) and actually
applying the necessary changes.

Currently, no development environment offers support for
this complete process. The support offered by most environ-
ments is limited to step 3, e.g. they present a list of refactorings
to the developer, and upon selection of any one of these, au-
tomatically perform the corresponding changes to the applica-
tion. Although this relieves the developer from the difficult and
error-prone process of performing these changes manually, it
still requires him to apply step 1 and 2 by hand. Both steps can

of manually performing changes, due to the following reasons:

Current-day development environments only offer a nar-
row and local view on the source code of an application.
Most environments are file based, which makes it difficult
to browse an entire class hierarchy, let alone the differ-
ent implementations of a method implemented across this
hierarchy. Consequently, such environments are incapable
of presenting a global overview of the overall structure and
design of the application.

Current-day development environments only allow prede-
fined querying of the source code of an application. Most
environments provide support for finding all users of a par-
ticular class, or all senders and implementors of a particu-
lar method. They do not allow more sophisticated queries,
however, such as finding all methods that directly access
a particular instance variable of a class, while that class
explicitly provides corresponding accessors and mutators
for that purpose. Such a request can only be realized by
manual inspection.

Documentation of the application’s design is often missing
or completely outdated. Consequently, developers may
not be aware of particular design guidelines or coding con-
ventions that are used throughout the application. As a
result, they may violate such guidelines and coding con-
ventions without even knowing. Clearly, this degrades the
design, which will eventually lead to the problem of design
erosion [29].

Even if developers become aware of the fact that an ap-
plication’s design is degrading, or when they have spot-
ted design guideline violations, they may not know about
refactoring and will try to remedy the situation manually
(which is, as already mentioned, a time-consuming and
error-prone process). If they know about refactoring, they
may have a hard time finding out which refactoring can
be applied, as there are many, and some of them are even
largely similar. Even if they know which refactoring(s)
should be applied, they may lack the appropriate infor-
mation necessary for applying it (e.g., which classes and
methods the refactoring should change).

These are exactly the kind of problems we want to tackle

" Tom Mens is a Postdoctoral Fellow of the Fund for Scienn this paper. The approach we put forward consists of iden-
tific Research - Flanders (Belgium). This research is fundéfling bad smellsn the source code of an application. Orig-
by FWO research grant G.0452.03: “A formal foundation fanally coined by Kent Beck [10], the term bad smell refers to

software refactoring”

structures in the code that suggest (sometimes scream for) the

Tom Mens
A final version of this paper has been published in the Proceedings of the CSMR 2003 conference

possibility of refactoringOnce identified, we can use the inforretrieves the result in the variabte (in this case there are
mation about these bad smells to propose adequate refactorihge, solutions2c=simplevisitor =~ and ?C=NamedvariableVisitor).
that can be used to reduce the bad smell, or even remove it altbe queryhierarchy(Termvisitor,NamedVariableVisitor) checks
gether. Furthermore, we will show that even more opportunitiagether the classamedvariableVisitor is a (possibly indirect)
for refactoring can be derived, based on the refactoring oppdescendant ofermvisitor , and returns true.
tunities identified by the bad smells.

The remainder of this paper is structured as follows: tH& Virtual Logic Facts
following section introduces the technique of logic meta pro- The essential distinguishing feature of SOUL compared to
gramming, which we will use to overcome the above mentionefher logic-based approaches (such as [4]) is its useirof
problems and detect bad smells in the code automatically (sgfal logic facts. All entities in the object-oriented source
tion Il). Section IV proceeds to show how the so-gathered igode (i.e., classes, methods, variables, inheritance relationships,
formation can be used to propose a list of refactorings that can) can be directly accessed from within the SOUL environ-
remedy the situation. Section V introduces the notioas- ment through a metalevel interfacerepresentational mapping
caded refactoring opportunitieshich are refactoring opportu- predicates. The main advantage of this approach, as opposed to
nities derived from already identified opportunities. Subsequeaiiving a separate repository of logic facts extracted from the
sections discuss the initial experiments we conducted, the teghie, is that we will always reason about the latest version of

support we provide and related work. the source code, thus avoiding consistency problems.
Table | lists some of the representational mapping predicates.
II. LoGgIC META PROGRAMMING Typically, these predicates are used like ordinary logic predi-

. . . L _cates (i.e., focheckingandretrievinginformation).
Logic meta programming (LMP) is currently being investi-

gated as a technique to support state-of-the-art software devel- lIl. DETECTING BAD SMELLS
opment. It is based on a tight symbiosis between an object-
oriented base language and a declarative meta language. Th
makes it possible to reason about and to manipulate obje
oriented programs in a straightforward and intuitive way [31
The technique has already been used to check and enforce

gramming conventions and best-practice patterns [17], to det
design pattern instances in existing source code [30], to speci
and reason about (the evolution of) design patterns [18], [Zﬁ_’ Obsolete Parameter

and to check conformance of a software implementation to its] o
intended architecture [16]. A method defines an obsolete parameter if it includes a for-

The LMP technique is independent of the particular base [dh@! parameter in its signature that is never used in its imple-
guage that is used. Up till now, we experimented with botRe€ntation. The implementation of a method may span sev-
Smalltalk and Java as the base language [31], [8]. All expefit@l classes, of course, since the method can be overridden in
ments reported on in this paper were conducted using SOUL gubclass. Given a particular class, the developer does not
logic programming language implemented on top of the objedt?oW beforehand which method implementation he has to in-

oriented language Smalltalk [30], [31], as the meta Ianguage?peCt’ nor does he know which subclasses of the class over-
ride which methods, and which subclasses don't. Suppose the

class implementm methods, and supposesubclasses of this
A. Syntax class override this method. The developer then needs to inspect
SOUL is a variant of Prolog [6] with some minor syntaction x n methods to detect an obsolete parameter. Moreover, he
differences. Below we give an example of the syntax. Like ineeds to do thigor every formal parametethat the method
Prolog, lines starting witheindicate comments and a commalefines. Clearly, detecting the occurrence of an obsolete pa-
denotes a logical conjunction. The main differences with Preameter manually is a very hard and time consuming process.
log are that logic variables are always preceded by a questionwhat follows, we will show an example of the occurrence

D this section, we explain how logic meta programming can

> used to detect bad smells. We consider two examples, with
ncreasing complexity. In the first example, we detect the sit-
'%[i_on where a method definition includes a formal parameter
El‘t is never used. In the second example, we analyze a class
rarchy and verify whether it features a clear interface.

mark (e.g.»p, 2c, 2D). of an obsolete parameter and we will explain how this situation
% two logic facts can be detected a_utomatically in our LMP environment.
subdlass(Termvisitor SimpleVisiton). 1) Example: Figure 1 depicts an example of the obsolete
subclass(SimpleVisitor,NamedVariableVisitor). parameter bad smell in the code. Themvistor class de-
‘r’fn twohIO(gic rul)es belass() fines an abstracdibjectvisit: method with one parametér
ierarchy(?P,?C) :- subclass(?P,?C). o
hierarchy(?P.2C) - subclass(?P.?D). hierarchy(?D,?C) This method is ov_errldden in two sgbclasses\/usn_or and
))) simplevisitor . Neither of the two implementations of the
The logic rules above simply state that a clasis an ances- .. it method in these classes uses the parameter. As

For of a glas&c if 2cis g su.bclass ofe, or if there exists and such, the parameter is obsolete.
intermediate clas®, which is a subclass @f and an ancestor

of class>c. Logic queries can be used to trigger the above |Og|c1 Note that Smalltalk uselseyvyord;tq identify the_ parameters a method_de-
fines. For example, the nanogjectVisit: consist of one keyword, while

clauges. For example, the quefarchy(Termvisitor,2C)) de- prettyPrintOn:scope: consists of two keywords. The first method thus
termines whether a descendant of clas@visior exists, and defines one parameter, and the second defines two.

Representational Mapping Predicqﬁt@escription \

class(?C) cmust be a class
hierarchy(?P,?C) classc must be a (possibly indirect) subclass of clags
classimplements(?C, ?M) cimplements a method named
instanceVariable(?C, ?V) v must be an instance variable of class
TABLE |

REPRESENTATIONALMAPPING PREDICATES

TermVisitor

objectVisit: anObject

FixVisitor SimpleVisitor
objectVisit: anObject objectVisit: anObject
CompoundTermRenaming NamedVariableVisitor

Visitor Z%

VariableAndUnderscore
Visitor

Fig. 1. A method with an obsolete parameter

2) Detecting the Bad SmellDetecting whether a formal pa-B. Inappropriate Interfaces
rameter is not used by a method boils down to checking whetherG
the method itself and none of its overriding methods uses trfligxi
parameter. We can use the following two logic rules to implﬁzr—1
ment such an algorithm:

ood interfaces are extremely important when designing
ble and reusable object-oriented systems. Any situation
which the interface of a class is inappropriate, incomplete
or unclear should thus be avoided at all costs. In the initial

Ft;solletePara}meter(?(clalss, ?sellector,)?parameter) - stage, classes may define the appropriate interface, but due to
1] classimplements(?class,?selector), . . - .
[2] parameterOf(2class, ?selector, ?parameter), the constant evolution of an application, and due to different
{3} forall(subclas(slr}wplements(?class,?sze(lf)ect%r,l?subglasls), developers working on the same code base, the interface may
4 not(selectorUsesParameter(?subclass,?selector, H .

parameter)) deteriorate over time.

Detecting the inappropriate interface bad smell manually is
First, we retrieve the methods implemented by a given clagsite a difficult task because one has to analyze an entire class
(line 1, through thelassimplements predicate, which is part of wierarchy, and the interfaces it defines. Supposing this hier-
the representational mapping), and we retrieve all the paragichy consists ofn classes, we have to consider all possible
eters of each method at line 2 (by means of ghemeterof combpinations of these classes and check whether any of those
predicate). For each subclass of the given class that implemegigbinations share an interface. Since there&rsuch com-

the given method (gathered by means ofdibeassimplements binations, this is quite cumbersome. Even an automatic ap-
predicate), we check if it uses the given parameter (line 4, usiﬂg)ach is not feasible when dealing with such huge numbers.
theselectorusesParameter predicate). The problem can be alleviated however, by first applying some
Theselectorusesparameter predicate itself is implemented aslightweight techniques (such as metrics [12]) to detect class hi-
follows: erarchies that should be investigated further and in more detail.
selectorUsesParameter(?class,?selector,?parameter) :- We will first show an example of the inappropriate interfaces

[1] classimplementsMethodNamed(?class, ?selector,?method), bad smell, and afterwards discuss how we can detect the prob-
[2] parsetreeUsesVariable(?method,?parameter). . . .
lem by using our LMP environment. We will not elaborate on

It uses a variant of the@assimplements ~ predicate, thelass- the metrics we use for identifying class hierarchies for further
ImplementsMethodNamed ~ predicate that also returns the parsetregxamination, since this is outside the scope of this paper.
of the method identified by the class and the selector (line 1).1) Example: Consider theabstractTerm hierarchy depicted
TheparsetreeUsesVariable predicate is then used to traverse thign Figure 2. As can be observed, th@Term, CompoundTerm,
parsetree and look for uses of the specified parameter (line 2)aitakterm and QuotedcodeTerm classes each provide an im-
It is defined in terms of theaversemethodParseTree predicate, plementation for theerms method, whereas all other classes
that implements a general parse tree matching algorithm. (including abstractterm) do not. This situation is problematic

AbstractTerm ‘

£

CallTerm CompodndTerm l Variable

terms terms

SmalltalkTerm QuotedCodeTerm l Cut ‘ l NativeClause

terms terms

Fig. 2. An example of an inappropriate interface

for two reasons: It simply computes a subset for the set of classes passed

« The classes in this hierarchy cannot be used polymorpkf-it (line 1), and derives the common interface between the
cally, at least not in a statically-typed language (such &tasses of this subset (line 2). Theset predicate is a library
Java and C++), since there is no common ancestor that predicate that computes a possible subset of a given set. The
cludes thaerms method in its interface. commoninterface ~ predicate is implemented as follows:

o Extending theabstractterm hierarchy with a new class be-Commlonlnter_face(?classes,?interface) -
comes harder. It is absolutely unclear from the desi Al d(member(zclass, lasses),

which subclasses @bstractterm should provide animple- [3] ~ classinterface(?class, ?itf)),

mentation for theems method and which classes shouldg] ainterfaces)

. o ’ intersection(?interfaces,?interface)
not. A developer confronted with this situation should thus)]]
know exactly what he is doing. It first computes the interfaces of all classes in the provided

set (first four lines), and then computes the intersection of this

2) Detecting The Bad Smell:We use the following algo- saet of interfaces (last line).

rithm for detecting the problem of inappropriate interfaces in
g P pprop One particular technical problem of this algorithm is that it

hlerarchy of clas§es. . computes the shared interface between any combination of sub-
« retrieve all direct subclasses of the root class of the hiergliz ccag of 3 given class. As such, the shared interface that is
chy. . . detected between four classes of this set, may also be detected

« compute all possible subsets of this set of classes. for any combination of three classes of these four classes. In

« for each of these subsets, compute the intersection of f{ge words, the results returned by the algorithm may possi-
interfaces of all classes contained in the subset. bly include duplicated entries. These can be removed easily

« in each of the resulting |r_1terse(;t|ons, exclude all thosfﬁawever, which results in the following implementation for the
methods that are present in the interface of the root class

X inappropriatelnterface predicate:
of the hierarchy)))
i i i . inappropriatelnterface(?class,?interface,?subclasses) :-
Clearly, this algorithm grows exponentially with the number findall(<7itf, 7scs>, _
of subclasses, because we compute all possible subsets. There- 2?622]8”5“bc'ass'”terfaCe(?C'aSS'?'tf'?SCS)'
fore, we restrict it by only considering subsets of three or more removeDuplicates(?result, ?nodups),
classes that should share an interface of two or more methods. MemPer(<?interface,?subclasses>,2nodups).
For explanatory purposes, we do not take these restrictions into
account in the implementation of this algorithm below. C. Discussion

The purpose of th@ommonsubclassinterface predicate is to As can be seen from these two examp|es’ the technique of
retrieve all subclasses of a given root class (line 2), find oigic meta programming is extremely well suited to detect bad
whether some subclasses share a common interface (line 3), &a@lls in source code. Thanks to distinguishing and power-
compute the difference between this shared interface and ffjefeatures as backtracking and unification, we can write com-

interface of the root class (line 4). plicated search algorithms in a straightforward, understandable
commonSubclassinterface(?class, ?interface, ?subclasses) :- and concise way. Moreover, the LMP environment has full
[1] classinterface(?class, ?classinterface), access to an application’s source code, which means we are
[2] allSubclasses(?class,?scs), .

[3] sharedinterface(?scs,?commoninterface, ?subclasses), not hampered by the narrow view offered by standard develop-
g d'”erence("comf;“i?]’t‘é'r‘f‘;c';ﬁ;cev'-’c'ass'”tefface' ment environments. In combination with the fact that the logic

paradigm naturally allows us to express sophisticated queries,
Thealsubclasses ~ anddifference predicate are basic predi-this also means we are no longer limited to the basic querying

cates. The former retrieves the list of all subclasses of a giveols offered by these environments.

class, while the latter computes the difference between two sets.

Their implementation is not considered here. The implementa-

tion of thesharedinterface ~ predicate looks as follows:

IV. PROPOSINGREFACTORINGS

Now that we have shown how we can detect bad smells using
sharedInterface(?classes,?interface,?subset) :- H ; ; i
[1] subset(?subset 2classes), LMP, we are ready to explain how the mfo_rma’uon gathered in
[2] commoninterface(?subset,?interface). this way can be used to propose appropriate refactorings. We

want to stress that we do not aim to apply these refactoringsd the subclasses that implement a shared interface, or he can
automatically. Many times, several refactorings can be chosamgment the interface of the root class of the hierarchy with the
to remedy a particular situation, and it is impossible to infénterface shared by the subclasses. These two solutions cor-
automatically which of these refactorings is most appropriateespond to amddClassand anaddMethodrefactoring respec-
Therefore, we present the developer with a list of refactoringjsely.

that he can use, and it is his responsibility to pick out the appro-The addClassrefactoring requires as arguments the root
priate one(s). of the hierarchy, a list of subclasses of this root class that
should become subclasses of the newly introduced class, and
a list of selectors that are shared by the subclasses and that

should be implemented in the newly introduced cfasSince

We will use one single and general predicate for proposingis is exactly the kind of information that is derived by the

refactorings: theroposeRefactoring predicate. This predicate inappropriatelnterface predicate, the refactoring can be pro-
thus provides one single hook for tools that want to know whicthceq in the following way:

refactorings are applicable. The predicate has the foIIowin% _
proposeRefactoring(?class,addClass,

form: <?class,?interface, ?subclasses>) -
inappropriatelnterface(?class,?interface,?subclasses)

A. Overview

proposeRefactoring(?entity, ?refactoring,?arguments)

Its first argument represents the entity for which we want Similarly, theaddMethodrefactoring requires as arguments

to detect refactoring opportunities. It can be any source co éiSt of methods to be added and the root class to which they
g opp y a(l;rould be added. The refactoring can thus be proposed as fol-

artifact, but at the moment we only use classes, methods) .
instance variables, since these are all entities for which SOI.I%'S' Not_e how mformatpn aboutthe subclasses that share the
refactorings have been defined [19], [10]. The second argumbmfanc""ce is not used in this case.

identifies the particular refactoring that should be applied. It¥§°P°Sﬁi;Lﬁg‘;’rzZ‘tge(l;’]féﬁr‘f;égsfc'\l"afg‘;?ﬁ:e?r%ﬁfes;f)imeffa°e>) -

value can thus ijdCIass, pullUpMethod, abstractVariable or " a

any other refactoring that is defined [10]. The last argumentApplying the following query on thebstractrerm ~ class hier-

of the predicate identifies the list of arguments that should B&chy

passed to the refactoring. These arguments can be any Sourg@poseRefactoring(AbstractTerm, ?refactoring,

code artifact [25]. arguments)
yields two results
B. Obsolete Parameter proposeRefactoring(AbstractTerm, addClass,
. <AbstractTerm,terms,
Obsolete parameters can be removed from a particular met- <C§1IITe”rml,k TCompoundTerm,
! . . t .
hod by applying theemoveParameterefactoring. This refac- OuotedCodeTerm>)

toring makes sure that the obsolete parameter is removed from ctor
a particular method, all of its overriding methods, and all gfoPoseRefactoring(Abstr

the method’s callers. The refactoring requires as arguments o) . o
the class in which the method is defined, the method defin-Note that this is only a very basic example, since it involves a

ing the obsolete parameter, and the obsolete parameter it<gftSS hierarchy which is only one level deep. More complex hi-
This is exactly the information that has been gathered by tREAChies may require more complex refactorings. Due to space
obsoleteparameter predicate, as presented previously. We cafinitations we cannot present the algorithm that covers these

use this information in the following way to propose the appr&Ses as well here.
priateremoveParameterefactoring:

actTerm, addMethod,
<AbstractTerm, terms>)

V. CASCADED REFACTORING OPPORTUNITIES

Many times, part of the purpose of a particular refactoring is
. _ to enable the possibility of performing another refactoring. For
Applying the following query on the example presented igxample, before an instance variable shared by a number of sub-

proposeRefactoring(?class,removeParameter,
<?class,?selector,?parameter>) :-
obsoleteParameter(?class,?selector,?parameter)

Figure 1 classes can be pulled up, it is required that all subclasses refer
.- proposeRefactoring(TermVisitor, ?refactoring, to this variable by the same name.rénameVariableefactor-
Parguments) ing may thus be mandatory beforgallUpVariablerefactoring
returns the following result: can be applied. The application of one particular refactoring
proposeRefactoring(TermVisitor,removeParameter, may thus open possibilities for other refactorings to be applied.
<AbstractTerm, objectVisit:>) We call this phenomenooascaded refactoring opportunities

Our LMP environment naturally allows us to detect cascaded
refactoring opportunities. We can easily use the information
] gathered about a particular refactoring opportunity to discover
C. Inappropriate Interfaces even more opportunities, as we will show next.

There are two general solutions to overcome the problem of - o . o
. . . . - . “Our definition of theaddClassrefactoring differs from existing defini-
inappropriate interfaces. A developer can either insert an ig;

8 i ns [19], [25] because it explicitly includes an extra parameter that holds this
termediate superclass between the root class of the hierarsiyred interface. This is only a minor technical issue, however.

which is exactly what is to be expected.

A. A CascadedemoveParametdRefactoring Opportunity identifying refactoring opportunities largely vanishes when the

As an example, consider the case where an obsolete pargﬁyeloper is forced to check for such opportunities constantly.
eter bad smell is detected for a particular method The ap- Rather, he wishes to check once and get as many identified op-
propriate refactoring to be applied is@moveParameterefac- Portunities as possible.
toring, which will remove the parameter from's definition, The question of scalability refers to the fact that each existing
as well as remove it from all call sites. A methad in which refactoring may depend on all other existing refactorings. As
a call tom: occurs, may as well include this parameter in it§Uch, identifying cascaded refactoring opportunities requires
definition, and may not use it besides for calliag(in which ~checking opportunities for each and every possible refactoring,
case we call it @lelegated parametgrAs such, method also which could take quite some time. When a new refactoring is

defines an obsolete parameter, all be it an indirect one. introduced, this also requires to identify how it relates to all ex-

This bad smell can be detected by means of the followiri@ting refactorings and change all the logic rules that check for
rule: refactoring opportunities. Clearly, this is quite cumbersome.
proposeRefactoring(?classl, removeParameter, Given the initial status of our work, we are not yet in the posi-

<2class1,?selectorl>) :- tion to study such issues. This should thus be considered future

proposeRefactoring(?class2, removeParameter, work
<?class2,?selector2,?parameter>), :
senderOf(?class1,?selectorl,?selector2),
delegatedParameter(?classl,?selectorl,?parameter)
VI. EXPERIMENTS
Of particular importance for initially validating our tech-
. | . niques is that we test them on an application of which we have
checks whether the parameter is used in the calling method .
P 9 intimate knowledge. Only then will we be able to assess the

?;fgitr?:gpfgﬁrr?;ti ngrlogctrs“es d'Ss?r?(t:g}?rﬁg;igt?feasggﬁ]g?lcogectness of the identified bad smells anq th.e u;efulr!ess of
used elsewhere in the method ' §hé propqsed refact_orlngs. The _SOUL apphcathn itself is the
' most obvious candidate for testing purposes, since we devel-
oped it ourselves and we thus know its implementation very
B. A CascadegullUpVariableRefactoring Opportunity well.

Based on the inappropriate interface bad smell, many dif-We used version 3.0 of SOUL, which was the latest version at
ferent cascaded refactoring opportunities can be proposed. the time we started doing our experiments. In this version, the
will only provide one example of these. implementation consists of 84 classes and approximately 1100

Subclasses sharing a common interface often also share saiifferent methods (not counting methods that are overridden, so
state (e.g. some instance variables). When an intermediatethere are many more methadplementations which makes it
perclass is inserted by means of atdClassrefactoring, this a small to medium-sized application. The implementation is
common state can be factored out from the subclasses into Itlaged around 5 important class hierarchies:
intermediate superclass. Observe that without this intermedi-, apstractterm consists of 30 classes and 116 methods.
ate superclass, such a refactoring would not be possible. Thg nHomclause consists of 4 classes and 26 methods.
state would then have to be factored out into a more general SU; Termvisitor consists of 6 classes and 18 methods.
perclass, which may have other subclasses that do not have 9 apstracirepository ~ consists of 6 classes and 63 methods.

contain this state. « Frame consists of 5 classes and 12 methods.

Detecting when a shared state can be factored out after ajye searched for refactoring opportunities in these five hi-
addClassrefactoring has been applied, and proposing the agrarchies, only considering those bad smells presented in the
propriatepullUpVariablerefactoring, is achieved by using theprevious sections.
following logic rule:

proposeRefactoring(?class, pullUpVariable, .
<?variable,?subclasses>) :- A. Proposed Refactorlngs

proposeRefactoring(?class, addClass, . i B
<2class,? 2subclasses>), The refactoring opportunities that were proposed do not in-
sharedVariable(?subclasses, ?variable) clude cascaded refactoring opportunities, as no instances of

Thesharedvariable predicate simply checks whether the Iis{hcis)eowbesrgé?g?%rameter:

of subclasses passed to it share a common variable. If this is the
removeParameter(AbstractTerm,

case, thepullUpVariablerefactoring can be proposed. unifyWithKeywordedCompound:inEnv:myindex:hisindex:-
inSource:,
mylndex:)

The senderof predicate is used to determine all senders of
a particular method, while theelegatedParameter ~ predicate

C. Discussion
i removeParameter(AbstractTerm,
Clearly, applying one single refactoring may give rise to a unifywithkeywordedCompound:inEnv:myIndex:hisindex:-

multitude of other refactoring opportunities. The question may hislmjgif)’“rce“

thus be raised whether searching for cascaded refactoring op-

portunities is both useful and scalable. removii?f;m?htiréﬁvsz%a;ézfgbound:inEnv:myIndex:hisIndex:-
As for its usefulness, we firmly believe it is of prime im- inSource:,

portance that as many refactoring opportunities as possible are nSource)

discovered in one single step. The benefits of automaticallyhoveParameter(Termvisitor,

HornClause

o

Fact Rule Query
printOn: printon: printOn:
printForCompileOn: printForCompileOn: printForCompileOn:
prettyPrintOn:scope: prettyPrintOn:scope: addChildrenlnitial:

addChildreninitial:

Fig. 3. The originaHornClause class hierarchy

objectVisit;, the refactoring process.
objectVisit:)

The first three refactorings are proposed due to the f%t
that the unifywithkeywordedCompound:inEnv:myindex:hisindex:- ’
insource: ~ method in theabstractterm class does not use its The following refactorings were effectively used in practice
three last formal parameters. The method is implemented tayimprove the design of the SOUL application.
three different classes of the hierarchy, but neither implementa-1) Obsolete Parameter:

tion uses these parameters. Similarly, dhetvisit method , \we could have applied the threemoveParameterefac-
of theTemmvisior ~ class does not use its single parameter. This torings that were proposed for thefywitkeywordedcom-

Solutions

me_thOd is overridden in two subclasses of the hierarchy, but pound:inEnv:myIndex:hisindex:inSource method. However,
nelzth(Tr one uses th? parfamgter. we chose to apply @&moveMethodefactoring instead,
) Inappropriate Interface: which removed the method from the implementation. This
addClass(AbstractTerm,terms, <CallTerm, SmalltalkTerm, last refactoring was proposed, based on the detection of the
QuotedCodeTerm, CompoundTerm>) . .
bad smell that this particular method was never called.
addMethod(AbstractTerm, terms) o Theobjectvisit: method participates in an instance of the
addClass(HornClause, <printOn:,printForCompileOn:>, Visitor design pattern. Its formal parameter represents the
<Query, Rule, Fact>) element object that is being visited. One of the coding con-
addClass(HornClause, <printOn:,printForCompileOn:, ventions used in the SOUL implementation is that a visitor
addChildreninitial:>, method (such as th@jectvisit: method) should always
<Query, Rule>) . .
define such a parameter. Therefore, we do not remove it.
addClass(HornClause, <printOn:,printForCompileOn:, The fact that this parameter is not used in this particular
prettyPrintOn:scope:>,
<Rule, Fact>) situation, may hint that this is too strict a restriction, how-
addMethod(HornClause, <printOn:,printForCompileOn:>) ever. .
2) Inappropriate Interface:
addMethOd(Hgg:ﬁ'%ﬁi;rimporcOmp”eon:, « We changed the superclass of thet class fromHom-
addChildreninitial:>) clause tO Rule. Such a refactoring was actually not pro-
addMethod(HornClause, posed by our techniques, but after studying the code of
<printOn:, printForCompileOn:, both classes, we found out that such a change would result
prettyPrintOn:scope:>)
in an improved and cleaner design. This change solves the
The first two refactorings are proposed due to the inappropri- problem of theyrettyPrinton:scope: method. This method
ate interface bad smell in thestractterm hierarchy depicted in only needs to be implemented by the: andract classes,
Figure 2. All other refactorings are proposed due to the same since queries (represented by thery class) never need to
bad smell in thedomciause hierarchy, which is shown in Fig- be pretty printed.
ure 3. « The addMethodrefactoring that is proposed to add the
As can be observed, these results overlap to some extent: the printon: and printForCompileon: methods to the interface
printon: and printForCompileOn: methods are reported three of the Homclause class, is applied. These methods are

times. This is unavoidable given the current implementation defined as abstract methods, and since all subclasses of
of our detection algorithm, which searches for a shared inter- theHomclause class already provide an implementation for
face between any combination of classes in a particular class them, no additional changes are required.

hierarchy. As such, one combination may share an interfaces The secondaddMethodrefactoring, that is proposed to
that is a subset of the interface shared by another, slightly dif- add theaddchildreninitial: method to the interface of the
ferent, combination. Detecting such situations is possible, but Homclause class is also applied. Since thet class does
requires a more advanced, and hence more complex, search al- not define this method, we should provide an implementa-
gorithm. We may however prefer the above results, since they tion for it. However, since we also changed the inheritance
show more clearly which interfaces are shared between which relationships (see the first refactoring), it turns out this im-
combinations of classes, and such information is important for plementation is not necessary.

HornClause as the first refactoring in the list is applied, later refactor-
printon: ings that become obsolete may be removed. This requires
printForCompileOn: that we study dependencies between different refactor-
addChildreninitial: . . .

ings, which should be considered future work.
2) Include refactoring in the development process as a spe-
cific task that should be performed on regular times (as

Rule Query suggested in [2]). Regularly checking for refactoring op-
printon: printon: portunities and applying the corresponding refactorings
PO o D aChidronitar will ensure that the list of possible refactorings remains
addChildreninitial: small and manageable. We envision an approach where

checking for refactoring opportunities happens at the

% same time as unit testing. The unit tests will then ensure

Fact the behavioral correctness of the application, whereas the
on refactoring tests will ensure its "structural” correctness.
printForCompileOn:
prettyPrintOn:scope: VIl. TOOL SUPPORT

Tool support for our approach is clearly indispensable, to
shield a developer from the logic environment and to provide
him with a straightforward and easy to use interface. The tool
should be driven by the programmer, who selects a particular
source code entity, such as a class or a method, to be analyzed.
This analysis is performed automatically without user interven-
tion, and results in a list of refactorings that can be applied. The
C. Discussion developer is then able to pick out the refactoring(s) he wants to

SOUL is a research prototype tool, and as such is a sm&PPly. and the tool automatically makes the necessary changes.

to medium-sized application, which is being worked on by a To pr(_)wde this kind of .t°0| support, we.mte.grated our ap-
small number of people, and which is developed with erxibiEroaCh into the _Refactorlng Browser, which is the standard
ity and extensibility in mind (to allow us to experiment with rovyserfor the VisualWorks Smal!talk Integratgd Development
new language features easily, for example). Furthermore, gwronment. We augmented this browser with a SOUL tab

applied our techniques to detect refactoring opportunities ba: qe Figure 5), which exists next to the other tabs already avail-

on only two bad smells. Given these facts, the results are q € (tSLk‘)Ch aTsh_th(::%mmetnt., Coc:gtCr]cltéar&d H'ehariﬁytD'a'
surprising. Most of the refactorings that were proposed wepEamta s). This tab contains a list of bad smells at can cur-
ntly be detected by the tool. Tl&heck the class interface

effectively applied to achieve a cleaner and better design. if dCheck for obsolet temsiries that ained
particular refactoring was not applied, for whatever reason,a eckor IO dsczﬁ etﬁ.a r?nt]efeea res Ia Q’JV ere ex;la a'tf‘e f
closer look at the identified bad smell revealed that there OV€, are included in this fist, for example. L’pon selection o
indeed a problem, which should be solved. We can assume ass in the upper left pane, the developer can select a num-

such problems will only aggravate for large-scale applicatio H of these bad smells (o_r all of them) and clicks Execute .
worked on by many more developers. button. As a result, a logic query will be launched that will

S . check the source code for the selected bad smells. The results
A potential disadvantage of the approach is that many refa this query (e.g., the refactorings that can possibly be applied)

torings can be proposed, certainly if large(r)-scale applicatioR i X

are considered and cascaded refactoring opportunities are tal ble 22%’!?(;2?; ![(r)]\;vse‘; :Igfgt;foarnne.s-rgﬁ ddgvglcorizr_tcan then
into account (as discussed in Section V). The developer m%‘lmp%/ Idb ted that i '.ﬂg ’”)é ul I i
thus be presented with a large list of refactorings, and may no should be noted that we explicitly allow a developer to se-

longer see the wood for the trees. This is unavoidable, howe Ft anumber of bad smells (or even one single bad smell) to be

since one particular bad smell can often be remedied by a m I_ecked, instead of automatically checking for all of them. The

titude of refactorings. Furthermore, we do not want to refac’tSPeC'fIC reason is that the current implementation of our LMP

the design automatically [3]. The only solution thus consists S]nwronment is not optimized, and as a consequence, check-

presenting the whole list to the developer, who should then pi'r.q<g for all bad smells on large software systems may take quite

out the appropriate refactorings himself. The problem may 8r(;1ert};mlcl—:‘.dFurtr:]ertmore,rai:evelogier lm;’:ly Iknovnith;a\trahcert?g
alleviated up to some extent in two ways, however: ad smell does not occu a particular class hierarchy, a

. . .__may thus not want to spend the time checking for it.
1) We could induce a particular order on the refactorings y P g

that are proposed, based on some criteria. For example, a

developer would like to seer@moveMethodefactoring VIII. RELATED WORK
beforeremoveParameterefactorings, since the applica- Obviously, the use of logic-based or query-based approaches
tion of the former refactoring makes the latter ones obséer improving software evolution tool support is not new. For
lete (as was explained earlier in this section). This woulekample, [4] propose a reverse engineering tool that stores all
also allow us to reduce the size of the list dynamicallyprogram information in a logic code repository to perform data

Fig. 4. The improvediornClause class hierarchy

The resulting and improved design of th@nclause hierar-
chy is depicted in Figure 4.

Browssr Edit Find View Package Class Protocol Method Tools Help
FHhS oo tDhER RNt &/ 6 v

Package | Hieratchy Instance | Class | Shared Variable | Instance Vaiiable

Object SoulGrammarTerms + access
code tagging
CallTerm converting
CompoundTerm printing
ListTerm quotedCode
PairTerm veification
VarArgsCompoundTerm resolving
cut scoping
MultiPartFunctor testing
KeywordFunctor unification
MessageF unctor isitor
NativeClause private
AndClause -

|| Hierarchy Diagram | Soul | Rewite | Code Criie

Is this class a middle man class?

Check the class interface
Check for absolste parameters
Is this class a dataclass

Class: SoulAbstiactTam Parcel: none Package: SoulGrammarT ems

Fig. 5. Tool Support for Identifying Refactorings

flow analysis. [5] represent structural design information (mopose refactorings that can be applied to remedy the bad smells.
specifically, dependency relationships among modules) in aviore recently, some techniques are being developed with
Prolog data base. A graphical query language is used to qugi¥ specific goal of identifying refactoring opportunities and
the Prolog data base to identify and remove cyclic control dgroposing the corresponding refactorings [15], [7], [24], [13].
pendencies. [21] present an algebraic framework for modelling [15] reports on a tool that is able to derive program invari-
and querying source code. This facilitates expressing high-leygks from the source code automatically, and that uses these in-
source code queries. variants to identify when a refactoring could be necessary. For
As already mentioned, a number of programming enviroexample, one invariant may be that a certain parameter of a
ments exist that provide support for refactoring. Most notablghethod is always constant, or is a function of the other param-
the Refactoring Browser, which exists for many Smalltalk preeters of a method. In that case, it might be possible to apply a
gramming environments, and the Eclipse and IntelliJ enviroremoveParameterefactoring. The main problem with this ap-
ments for the Java programming language. The kind of suppprbach is that it needs to run an application to infer the program
offered by these environments is limited to automatically apavariants. To this extent, it uses a representative set of test
plying the refactorings selected by a developer. They have sigites. It is however impossible to guarantee that a test suite
special provisions for detecting bad smells, nor for identifyingovers all possible uses of an application. Therefore, the invari-
which refactorings can be applied to remove them. ants may not hold in general. Nonetheless, good results have
Other tools exist that can be used to verify source code quiben obtained, and we believe the approach is complementary
ity [14], [1], [20]. The tool presented in [20], for example, isto ours. Combining both approaches, resulting in a tool that
capable of detecting some basic coding errors, such as gsirgpes static as well as dynamic information, seems promising.
instead of== in anit statement. Generally, such tools lack a [7] sketches an approach to detect duplicated code in an
global notion of a program, and, as a consequence, they can (odject-oriented) application and proposes refactorings that can
be used to detect more advanced coding errors, let alone ledichinate this duplication. It is based around an object-oriented
smells on the design level. meta model of the source code and a tool that is capable of de-
A more advanced tool is th€ode Critic tool included in tecting duplication in code. The refactorings that are proposed
the Refactoring Browser, that can be used to detect some Is@disist of removing duplicated methods, extracting duplicated
smells. Code Criticis a Lint-like tool, that has been extendedode from within a method and insert an intermediate subclass
to include global design information. As such, it is not onljyo factor out the common code. Although we currently have no
able to detect various coding errors, but can also identify igupport for detecting code duplication, our LMP environment is
terface conflicts (such as methods that are sent but not igeneral enough to allow us to implement this as well. We could
plemented, or vice versa) and design flaws. The major shdhus incorporate the findings of [7] into our approach.
coming of this tool is that it strongly relies on the Smalltalk [24] uses object-oriented metrics to identify bad smells and
environment and its powerful meta programming capabilitiesropose adequate refactorings. They focusisa relationgo
Smalltalk is a general-purpose programming language, andimposemove method/attributand extract/inline clasgefac-
thus not specifically designed to express rules or constraintstaiings. The key concept underlying their approach is the
straightforwardly implement reasoning algorithms. This hangistance-based cohesionetric, which measures the degree to
pers the extensibility and usability of the tool. For exampleyhich some parts (methods and variables of a class) belong to-
although it can be achieved, implementing an algorithm thgéther. The main difference between a metrics-based approach
detects the problem of inappropriate interfaces would be muahd our approach, is that metrics are still subject to interpreta-
harder, would be much more complex and would as a result tien, whereas our detection technique is more strict (a bad smell
less readable. Furthermore, tBede Critictool does not pro- occurs or it does not). The approaches are thus clearly comple-

mentary, since some bad smells are subject to interpretation [@b Richard Fanta and Vaclav Rajlich. Reengineering Object-Oriented Code.
well, whereas others are more strict. In Proc. In_t. Conf. on Software Maintenangmges 238-246. IEEE Com-
puter Society Press, 1998. Bethesda, Maryland, March 16-19, 1998.
[10] Martin Fowler. Refactoring: Improving the Design of Existing Code
Addison-Wesley, 1999.
IX. CONCLUSION & FUTURE WORK [11] Yann-G&l Gueheneuc and He® Albin-Amiot. Using Design Patterns
. . and Constraints to Automate the Detection and Correction of Inter-class
In this paper, we have shown how support can be provided pesign Defects. IProc. TOOLS USA2001.
for detecting when a design should be refactored, as well [48] Brian Henderson-Seller©bject-Oriented MetricsPrentice Hall, 1995.

identifying which refactorings could be applied to improve thig?’] Jens Jahnke, Wllhelr_n Schaefer, and A_Ibert_Zuendo_rf. Generic fuzzy rea-
soning nets as a basis for reverse engineering relational database applica-

design. The approach we have demonstrated uses the techniquéions. In M. Jazayeri and H. Schauer, editdPsoc. 6th European Soft-
of logic meta programming, which proves to be extremely well ~ ware Engineering Conferencpages 193-210. Springer-Verlag, 1997.

. . - S. Johnson. Lint, a C Program Checker, 1978.
suited for detecting bad smells and for deriving the necess] Yoshio Kataoka, Michael D. Ernst, William G. Griswold, and David

information for the proposed refactorings. We provided two = Notkin. Automated Support for Program Refactoring using Invariants.
non-trivial but representative examples, that prove this. Further- In Proc. Int. Conf. on Software Maintenangeges 736743, 2001.

il dh hi h | . .l[]16] Kim Mens. Automating Architectural Conformance Checking by means
more, we lllustrate ow this approach complements existing of Logic Meta ProgrammingPhD thesis, Departement Informatica, Vrije

refactoring tools, and how it can be integrated into such tools Universiteit Brussel, 2000. _
ffectivelv provi n environmen rting th mplet&?] KimMens, Isabel Mlchlels_, and Roe_I_Wuyts. Supporting Software Devel-

toe eCt. ely pro deane onment supporting the comp e{é opment through Declaratively Codified Programming Pattetdwirnal
refactoring process. on Expert Systems with Applicatigi®ecember 2002.

Future work first of all includes extending the tool to detedts] TcIJOm Mens anddTom Touréx A Declarative EvolUftion fﬁramework for

: ; Object-Oriented Design Patterns. Bmoc. Int. Conf. Software Mainte-

many more bad smells, such as tho_se found in [10]. Since some nance pages 570-579. [EEE Computer Society, 2001
of these bad smells are not as strict and clear-cut as the g william F. Opdyke.Refactoring Object-Oriented FrameworkahD the-

examples we presented here, we may have to resort to the usesis, University of lllinois at Urbana Champaign, 1992.

. . . . 0] Santanu Paul and Atul Prakash. A Framework for Source Code Search us-
of metrics (as In [24])' Our LMP environment can Certamly bg ing Program Patterngransactions on Software Engineerjr&f(6):463—

used to implement such metrics, and in fact already contains a 475, June 1994.
metrics framework. We should also study the scalability of tH&ll Santanu Paul and Atul Prakash. Supporting queries on source code: A

. " . . . formal framework. Software Engineering and Knowledge Engineerin
(cascaded) refactoring opportunities, as discussed in Sections V' 4(3).325_348, September 19949 g g¢ =ngineering

and V1. We would like to investigate which refactorings depenid2] Don Roberts, John Brant, and Ralph Johnson. A Refactoring Tool for

upon other ones, and how and why this is the case. This shoylg] Smalltalk. Theory and Practice of Object Syster):253-263, 1997.
Jocelyn Simmonds and Tom Mens. A comparison of software refactor-

allow us to identify more clearly which refactoring opportuni= " ing tools. Technical Report vub-prog-tr-02-15, Programming Technology

ties can or will give rise to other opportunities. Another inter-] Lab,li\lovember 20:1()2- bk 4q §
: : : : Frank Simon, Frank Steinbiiakner, and Clause Lewerent. Metrics Base!

esting research tr_aCk IS to mcorpordﬁlgn pattern smellﬂto . Refactoring. IrfProc. 5th European Conference on Software Maintenance

the approach, which would enable us to detect detoriated design and Reengineeringages 30-38. IEEE Computer Society Press, 2001.

pattern implementations and propose adequate refactoring&® Sander Ticgga?ﬂ-\/lod?“n% gbri]ect_-Oﬂer_\ted Soft\flvgre forgggfrse Engi-
correct them. This would require us to incorporate some fuzgzyggj neering and RefactoringohD thesis, University of Berne, 2001.

. . . Lance Tokuda and Don S. Batory. Evolving object-oriented designs with
logic techniques (as suggested by [13]) or explanation-based refactorings Automated Software Engineerirg(1):89-120, 2001.

constraint logic programming (as used by [11]), to identify sudR?] Tom Tourvé. Automated Support for Framework-Based Software Evo-
.. . . . lution. PhD thesis, Departement Informatica, Vrije Universiteit Brussel,
detoriating design patterns. We would also like to integrate our 5qgo’

ideas with the approach proposed by [15] to study where thgg] Arie van Deursen and Leon Moonen. The video store revisited — thoughts

i ; on refactoring and testing. Proc. 3rd Int'l Conf. eXtreme Programming
overlap, W.here they complement e.aCh other, and if the resulting and Flexible Processes in Software Engineeripages 71-76, 2002. Al-
approach is more than the sum of its parts. ghero, Sardinia, Italy.

[29] Jilles van Gurp and Jan Bosch. Design Erosion: Problems & Causes.
Journal of Systems & Softwaré1(2):105-119, 2001.
REEERENCES [30] Roel Wuyts. Declarative Reasoning about the Structure of Object-
Oriented Systems. IRProc. TOOLS USA'98, IEEE Computer Society
[1] A. V. Aho, B. W. Kernigan, and P.J. Weinberger. Awk - A Pattern Scan- Press pages 112—124, 1998.

ning and Processing Language, 1980. _ [31] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
[2] Kent Beck. Extreme Programming Explained: Embrace Change — Evolution of Object-Oriented Design and Implementatid®hD thesis,
Addison-Wesley, 1999. Departement Informatica, Vrije Universiteit Brussel, 2001.

[3] F. W. Callis. Problems with automatic restructureBIGPLAN Notices
23:13-21, March 1988.

[4] Gerardo Canfora and Aniello Cimitile. A logic-based approach to re-
verse engineering tools productioftansactions on Software Engineer-
ing, 18(12):1053-1064, December 1992.

[5] M. Consens, A. Mendelzon, and A. G. Ryman. Visualizing and querying
software structures. IRroc. 11th Int'l Conf on Software Engineering
pages 138-157, 1992.

[6] P. Deransart, A. Ed-Dbali, and L. Cervorirolog: The Standard Refer-
ence Manual Springer-Verlag, 1996.

[7] Stephane Ducasse, Matthias Rieger, and Serge Demeyer. A language
independent approach for detecting duplicated code. In Hongji Yang and
Lee White, editorsProc. Int'l Conf. Software Maintenanceages 109—

118. IEEE Computer Society Press, September 1999.

[8] Johan Fabry. Supporting Development of Enterprise Javabeans through
Declarative Meta Programming. In Zohra Bellahs, Dilip Patel, and
Colette Rolland, editorsQbject-Oriented Information Systepreumber
2425 in LNCS. Springer Verlag, 2002.

