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ABSTRACT. When considering the wide range of object-oriented programming languages, one
hardly ever finds methods to be first-class entities. At first sight, this phenomenon seems to
be caused by a concern for an efficient implementation. Closer inspection however, reveals
more subtle grounds that are rooted in issues more fundamental than performance. This paper
investigates this aspect of object-oriented programming languages using an extensible object
model that is sufficiently simple to reveal the various concerns. In particular, it argues in favor
of dynamic scoping as a setting in which to manipulate first-class methods.

RÉSUMÉ. Parmi l’éventail très large de langages orientés objet, la notion de méthodes de pre-
mière classe est en général absente. A première vue, ce phénomène semble être causé par un
souci d’efficacité. Une étude plus approfondie dévoile néanmoins des raisons plus subtiles,
ayant une origine dans des considérations plus fondamentales. Ce papier examine cet aspect
de langages de programmation orientés objet en utilisant un modèle objet extensible qui est
suffisamment simple pour exposer les soucis divers. Nous y proposerons en particulier de choi-
sir pour la portée dynamique de variables comme contexte optimal dans lequel utiliser des
méthodes de première classe.
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1. Introduction

Consider the programming language Smalltalk. Many view it as a paragon of
object-oriented programming, bringing together in one elegant and expressive package
most of the things that objects are supposed to represent. Although largely supplanted
by Java — for reasons that are beyond the scope of this paper — it is still very much
alive and in use. It was conceived thirty years ago but it continues to be a remark-
able example of language design and implementation. One of the few faults that we
can find with Smalltalk is the dichotomy between methods and closures: methods are
syntactical structures (barely accessible at the meta-level) while (block) closures are
true objects. Considering other programming languages, we find similar limitations:
methods are purely syntactical (e.g. Java), addressable (e.g. C++) or convertible to
first-class values (e.g. CLOS). Using the same languages as examples, we find that
closures can be simulated by class nesting (e.g. Java), limiting scope nesting (e.g.
C++) or using conversion operators (e.g. Common Lisp). Two of the few exceptions
treating methods as objects are Self [SLF 87] and NewtonScript [NWS 95]; we refer
to them here because both are prototype-based languages and additionally, Newton-
Script also supports frames. But more of this later.

We would like to explore the notion of first-class methods in a controlled environ-
ment. To this end we use an experimental language framework, described in the next
section. It will be possible to navigate an extremely simple design space and zoom
in on a minimal but stable object model that supports first-class methods. Byobject
model we denote an interpreter for some object flavor that can conceivably be trans-
lated into some formalism (e.g. denotational semantics). It will on the one hand offer
a sufficiently strict view on the semantics of the model; on the other, it will allow us
to investigate the model’s expressiveness by experimenting with some of its concrete
instances.

We shall see that we will simplify things by relaxing the inheritance strategy (hence
our preference for a prototype-based model) and we will also want to lift any kind
of differentiation between attributes and methods (hence the interest in frame-based
models). We will also need to investigate the reentrancy properties of our objects. In
fact, in section 4 we will associate the method-sharing in more conventional object-
oriented languages with properties of (im)mutability of variables in our model.

Finally, we want to conclude this introduction with a final question: is a concern for
first-class methods more than purely academic? Is there any response beyondsmall
is beautiful? We have no intention here to explore the full range in expressiveness
of first-class methods, but the least we can do is state a case in their favor. Let us
therefore (re)consider the block-context/inner class constructs mentioned earlier on.
These happen to occur in two of the most widely used object-oriented programming
languages. Hardly anyone is impressed by either of these constructs as examples
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of elegant language design and as a matter of fact they can be viewed asremedial.
They are often used to act as closures — quoted and parameterized expressions paired
off with a static environment — in a context where first-class methods are indicated.
Consider a functional programming style, which is often encountered in acollection
hierarchy. For instance in Smalltalk thedo andcollect are the counterparts of the
Schemeforeach andmap operations, but on general sets rather than on lists. Bothdo
andcollect require a closure argument in the form of aBlockContext instance as in:

someSet collect: [:item | ... do something with item ...]

where thecollect: message instructs the objectsomeSet to apply the content of
the block to each of itsitems. Within the context of an object-oriented language such
as Smalltalk, it would make more sense to define the block as a method, for instance:

someMethod: item
...do something with item ...

and then transmitsomeMethod: as an argument to thecollect: message. In
languages like C++, a low-level approach is used (i.e., using a reference to a member
function), but in Smalltalk it is a lot more complicated to find a solution that does not
violate the clean semantics of the language. Several object-oriented languages, such
as Java, Smalltalk and Self, allow the manipulation of messages via the meta-object
protocol, but this is fundamentally different from having first-class methods — and
generally much less expressive.

2. ThePico language model and virtual machine

The Pico language framework [PIC] was originally developed as a teaching en-
vironment, putting into practice such various topics as language design, grammars
and semantics, memory management and interpreter techniques. It is intended as an
alternative to Scheme as used in e.g. [EOP 01], but with an explicit interest in com-
putational and storage models. It was rapidly adopted to function as a framework
for research into reflective virtual machines and strong mobility [BRG 00].Pico was
designed with a very tight but expressive abstract language kernel and a simple and
extensible language front-end. Consider as an example the following code fragment:

QuickSort(V,Low,High):

{ Left: Low; Right: High;

Pivot: V[(Left + Right) // 2];

Save: 0;

until(Left > Right,

{ while(V[Left] < Pivot,

Left:= Left+1);

while(V[Right] > Pivot,
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Right:= Right-1);

if(Left <= Right,

{ Save:= V[Left];

V[Left]:= V[Right];

V[Right]:= Save;

Left:= Left+1;

Right:= Right-1 }) });

if(Low < Right, QuickSort(V, Low, Right));

if(High > Left, QuickSort(V, Left, High)) }

It implements the well-known quicksort algorithm — the program:

QuickSort(V[100]: random(), 1, size(V))

performs an in-line sort of a hundred randomly chosen numbers. It should be suf-
ficiently recognizable to develop a first impression of the language.

Pico was developed very much in the spirit of Scheme, but with a conventional
syntax (featuring infix operators and a canonical notation for function application),
tables instead of lists and no special forms. The latter is the result of using an Algol-
like call-by-name binding mechanism and it results in a standard function format for
all control structures. InPico all language elements are first-class (including proced-
ures1, declarations, environments and continuations) and the abstract grammar con-
sists of essentially five productions (references, applications, tabulations, definitions
and assignments). A metacircular specification of the evaluator numbers 220 lines but
despite the fact that no lexical addressing is used (environments are simple linked lists
of bindings) an optimized continuation-passing-style virtual machine was constructed
that matches Scheme implementations (e.g. DrScheme [DRS]) in efficiency.

ThePico framework proved to be an excellent environment in which to experiment
with languages and paradigms. It was for instance extensively used in theEuropean
Master in Object-Oriented Software Engineering [EMO] program to compare class-
based and prototype-based inheritance.

3. A simple object model

Since environments are first-classPico values, they can easily act as objects: it
suffices to add a native functionclone() to clone the current environment:

1. We use the Scheme termprocedure, otherwise known as closure, for the value of a lambda-
expression in a statically scoped language; it typically adds the defining environment to the
lambda expresion.
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counter(n):

{ incr(): n:= n+1;

decr(): n:= n-1;

clone() }

An expression of the kindc: counter(0) will define a variablec bound to a
counter object with an attributen initialized to zero and two methodsincr() and
decr() to change the state of the object. These will be stored in the closure that is
created when the functioncounter is applied. An extension of thePico machine,
involving name qualification (by means of the ubiquitous dot-qualifier) is readily im-
plemented as qualified name lookup in aPico environment and results in a simple (but
expressive) message passing semantics:

c: counter(0);

d: counter(100);

(c.incr())+(d.decr())

In order to introduce inheritance, we opted for nested mixin methods (see e.g.
Agora [AGO 94]). In order to see what mixin methods (also referred to asmodular
inheritance) consider the example below.

The sameclone() function allows us to extend thecounter generating function
with a mixin protect(limit) such thatp: c.protect(2) produces a counter
object that limits its state to the interval [-2,2]. Note the presence of an extrasuper

attribute and the assignment to it of the cloned value, in order to allow super sends.

counter(n):

{ incr(): n:= n+1;

decr(): n:= n-1;

super: void;

protect(limit):

{ incr():

if(n = limit,

error("overflow"),

super.incr());

decr():

if(n = -limit,

error("underflow"),

super.decr());

clone() };

super:= clone() }

We have effectively introduced a prototype-based language that allows for the gen-
eration of an hierarchy of prototypes, constructed by the successive application of
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nested mixins and that exhibits an overriding semantics that can be found in most
object-oriented systems. In order to avoid having to apply the same mixin over and
over again each time we want to instantiate an object, we have also provided a vari-
ation clone(object) to the cloning function that clones a given object (the actual
meaning of cloning will be one of the topics in the next section).

Note that our model suffers from the problems that are inherent to the nested mixin
approach: the design of a prototype hierarchy requires prescience on the part of the de-
signer. Mixins must be defined a priori and any extension of some hierarchy requires
an intervention in existing code. Solutions exist but are beyond the scope of this paper.

Another issue that we should resolve is the one about self-reference: we have
adopted a Java-style notion ofself which is linked to the absence of qualification,
but the semantics are as yet unclear. On the other hand, and without really trying, we
have covered the first part of this paper’s title: first class methods. Indeed, consider
the following example:

object(variable):

{ method(argument):

argument+variable;

export():

method;

clone() }

An invocation ofm: object(123).export() produces a procedurem that im-
plements the methodmethod in combination with the attributevariable the value
of which is 123. Actually, the same result is obtained by qualifying the method as
a variable, as inm: object(123).method. In both cases evaluatingm(876) will
produce the value999.

The second part of the title, referring to dynamic scope, is what the following
section is about. Indeed, we have been naive in thinking that first-class methods can
be implemented as procedures. Strangely enough, the most elegant way to tackle this
problem passes through the need for code sharing, otherwise known as reentrancy. It
also goes hand-in-hand with the architecture of an environment.

4. Reentrancy and dynamic scope

Probably the most important reason why class-based inheritance is so popular is
because it can so easily and efficiently be mapped to static types. A less appreciated
(but at least as important) advantage lies with code sharing. Classes constitute a spe-
cification of the behaviour of a family of objects, and this specification is moreover
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incremental, through the concept of inheritance. But classes are also a repository for
the implementation of common behaviour and in most object-oriented languages this
consists of the reentrant code of the various methods. Reentrancy is typically obtained
by reusing technology to support recursion and equipping methods with a hiddenself
parameter. On the downside, shared code should not be modified and therefore most
object-oriented languages implement methods as syntactic structures that are immune
to side-effects.

In order to give a tangible meaning to all of the preceding observations, we shall
investigate how they apply to the model introduced in the preceding section. First of
all, we need to have a closer look atenvironments as the prime support for an object.
The originalPico environment is a simple list of bindings, as is represented in figure 1.

variable

value

variable

value

variable

value
env

Figure 1. Environment layout

This is arguably the most simple semantics one might imagine for an environment.
Adding a variable implies pushing a new binding onto the list, while looking up a vari-
able or changing its value implies a sequential search through the list. The treatment of
homonyms is unambiguously defined (and in the object model used to support overrid-
ing), but obviously, in the absence of frames2 , it is impossible to eliminate them from
a single scope level. When a function is called, it suffices to make a shallow copy of
the function’s static environment — as stored in the procedure — to implement static
scoping and sharing of those non-local variables that should be visible to the function.
The actualPico implementation, using smart caching, proves that this approach does
not raise impossible performance issues, although variable lookup cannot be but the
most time consuming part of the virtual machine. On the other hand, it allows us to
reason about the execution model in a simple way without losing the benefits of an
operational system.

Consider the naive model we introduced in the previous section. An object, as
represented by such an environment, is composed of bindings that associate variables
with their values. We can arbitrarily distinguish methods from attributes depending on
whether these values are procedures or not. In the example of the protected counter
in the previous section, the attributen is shared by bothc andp; on the other hand,
the methodsincr anddecr are truly overridden when we go fromc to p. However,

2. Frame is used to refer to a grouping within an environment of parameters and local variables
belonging to a single procedure activation.
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a proper definition of aclone(object) function will not be possible without a pro-
found revision of our model.

The problem lies with the fact that in a statically scoped language with first-
class procedures, environments are recursive3. Consequently, if an application of
clone(object) is defined as a deep copy, as it necessarily must be, this implies a
computation of the transitive closure ofobject. Indeed, if we do not equally clone
the environments nested inside the procedures that we have identified as methods, we
will never have objects with a unique state. But this in turn leads to the observa-
tion that we will never have method sharing in our model. The only way out of this
seeming contradiction is a revised definition of aprocedure and as we shall see, the
introduction of dynamic scope. In fact, the declaration of:

incr(): n:= n+1

will as of now result in a procedure, composed of an empty parameter list and the
body n:= n+1, but without a static environment, bound to the variableincr. The
counter objectc — read: environment — containing this binding will upon reception
of a messagec.incr() have to activate the procedure bound toincr with respect to
itself — read:self. In other words, during function application — read: message —
all non-locally bound variables will be looked up in the receiver.

Our revised model has identical semantics to the original one, except in the case
of a self-send, i.e., in the absence of an explicit receiver. In this particular caseself
is bound to the current environment and the above process implies nothing short of
dynamic scope. Indeed, any self-send activating a method that refers to a non-locally
bound variable will result in this variable being looked up in the calling environment
and not in the defining environment of the function that implements the method.

make(x):

{ get(): x;

extend():

{ x: 0;

set(y): x:= y;

clone() };

clone() }

An interesting new feature that can be derived from this modified model is that of
variable overriding — not to be confused withvariable shadowing as in Java. Con-
sider the following — artificial — application of the example above.

3. A procedure contains a reference to the static environment in which the corresponding func-
tion was defined; any assignment of the procedure consequently introduces a recursion.
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Imagine a prototype is created by performingp: make(1); imagine moreover
that a second prototype is derived by means ofq: p.extend(). Becausex was
overridden, a call toq.get() produces the value0. However,q.set(2) will have an
effect onq only.

Let us return to the subject of code sharing since in the modified model we now
effectively dispose of reentrant methods. We could consider using a shallow copy to
re-implement theclone(object) function but this would be incompatible with the
use of destructive operations. Indeed, any assignment of a variable — method or oth-
erwise — would impact all of the clones, which contradicts the notion of individual
state. We will therefore need to introduceimmutable entries in an environment, sim-
ilar to constant declarations in Java, called constants as opposed to variables:

<constant>:: <expression>

The <constant> will be initialized with the value of<expression> and can
consequently be used in any expression except:

<constant>:= <expression>

Constant entries in an environment are candidates for sharing, hence we require
an updated architecture for environments (see figure 2). In all honesty we should add
that with this approach, resolving homonyms is less than satisfactory4. However, for
the purpose of this discussion, the proposed architecture is sufficient.

variable

value

variable

value

variable

value
env

constant

value

constant

value

Figure 2. Updated environment layout

Armed with the updated environment from figure 2, and as described in figure 3,
we will redefine theclone(object) operation, i.e., a deep copy of the variable part
and a shallow copy of the constant part.

This effectively provides sharing of methods, provided they have been declared as
constant. Moreover, this holds for any constant, irrespective of whether it is bound to

4. In the presence of a constant and variable with the same name, one will arbitrarily — de-
pending on the lookup strategy — hide the other. In order to solve this, frames are required.
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variable

value

variable

value

variable

value
env

constant

value

constant

value

variable

value

variable

value

variable

value
clone(env)

Figure 3. Cloning an environment

a scalar, procedure, table5 or environment.

We need to cover a last topic, namelyclosures. Indeed, we need to establish what
happens when a first-class use is made of a method, as in:

method(argument):: ...

...

variable: method;

...

function(method);

...

variable:= method;

...

function(): method;

We have opted for a conservative approach, automating what is practice in Com-
mon Lisp. Upon retrieval from an environment, a procedure value is implicitly con-
verted to a closure by including the environment. Hence, in the program on the next
page, the value2 is displayed. It is clear that other strategies are available to us, but
their exploration would — again — be beyond the scope of this paper.

{ bean(x):

{ get():: x;

set(y):: x:= y;

freeze():: get;

5. Note that a constant table’s slots can be modified through assignment.
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clone() };

b: bean(1);

c: b.freeze();

b.set(2);

display(c()) }

The following example describes aStack(n) mixin containing a nested mixin
makeProtected(). They are expressed in a variation ofPico, calledPic% 6, based
on the concepts introduced earlier in this section7. In order to have a workable object-
oriented language, aself() native function was introduced that returns the current
receiver. Moreover, an extension was made to the message passing syntax: anonymous
dot-qualification denotes a super send.

Stack(n):

{ T[n]: void;

t: 0;

empty():: t = 0;

full():: t = n;

push(x)::

{ T[t:= t+1]:= x;

self() };

pop()::

{ x: T[t];

t:= t-1; x };

makeProtected()::

{ push(x)::

if(full(),

error("overflow"),

.push(x));

pop()::

if(empty(),

error("underflow"),

.pop());

clone() };

clone() }

This example mimics a traditional object-oriented style:n, T andt areattributes
while empty, full, push andpop aremethods. The first two areinherited and the
other two areoverridden. It should be noted thatPic% is at least as expressive as,
say, Smalltalk — but it is a true multi-paradigm language. In our quest for first-
class methods we produced a language model that effectively smoothes the transition
between the functional and the object-oriented style.

6. Object-oriented = o/o = %, for want of a better name.
7. This includes the suggested frame based environments.
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5. Conclusion

We live in an age were the vast majority of software developers believes that
a modern programming environment is necessarily statically typed, class-based and
garbage-collected. This conviction is moreover spreading to the academic community
as witness the technical presentations at many of the conferences on software techno-
logy. So many will view this paper as an academic exercise, and to a certain extent it
is true. But there is more.

We have reported on the conception and development of a simple but expressive
object model that incorporates the notion of first-class methods. It is clear that a full
report on the details of such a venture exceeds the scope of this paper, but we hope we
have succeeded in presenting a convincing synopsis of the various issues — and their
solution. Anyway, the resulting model is consistent and complete and although we do
not claim that it is unique, anyone would be hard put to improve on it. Note that the
model does not consider first-class methods from a reflection perspective — which is
what is involved with languages such as Self.

The Pic% model provides a number of insights in the architecture of an object-
oriented programming language — again we don’t claim that this is unique, only that
it is probably more accessible than other approaches, which are either more formally
or more technically slanted. In particular,Pic% can be viewed as a proof by construc-
tion of the existence of a stable object model with first-class methods. It clearly estab-
lishes the relationship with closures and provides an environment in which functions
and methods are seamlessly integrated. It might be possible to use a similar approach
to tackle more challenging paradigms: the ad-hoc way in which NewtonScript uses
slots in which to store methods might be used as an inspiration for the integration
of functional programming, object-oriented programming and frame-based program-
ming.

One of the more remarkable conclusions from our experiment shows that the intro-
duction of first-class methods — as a coherent and stable given in an object-oriented
system — requires a return to dynamic scope. Since dynamic scope has been as good
as dead these past 25 years — remember that Scheme is Lisp with static scope —
this is something of a surprise. At the very least it raises an interesting question: is
static scoping compatible with object orientation or is its inclusion in modern object-
oriented languages an artifice?

At the very least thePic% model is a useful experimentation tool as witness the
results with three generations of EMOOSE students. It has also proven to be an effi-
cientsandbox in which toplay with programming language features. Some interest-
ing developments show that this in not at all academic: consider the notion ofdomain
specific languages which has steadily been gaining attention (an interesting survey is
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available on [DSL 02]); also consider emerging tools such as for instance JScheme
[JS]. Language engineering is alive and kicking and environments such asPico are
its workbench.
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