
On the Existence of the AOSD-Evolution Paradox

Tom Tourwé
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussel -

Belgium

tom.tourwe@vub.ac.be

Johan Brichau
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussel -

Belgium

johan.brichau@vub.ac.be

Kris Gybels
∗

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2 - 1050 Brussel -
Belgium

kris.gybels@vub.ac.be

ABSTRACT
It is a well-known fact that evolving a software applica-
tion accounts for the largest part of the software develop-
ment process, and is currently the most problematic phase.
Aspect-oriented software development is often touted as a
means to ameliorate this situation: by providing new modu-
larization mechanisms, it enables cleaner separation of con-
cerns and reduced code tangling, and consequently makes
evolving the application easier. Unfortunately, current re-
search results only indicate that AOSD leads to applications
that are better modularized, but fail to show that this im-
proves their evolvability. Paradoxically, we have found indic-
ations of the contrary: current AOSD technologies deliver
applications that are as hard, or perhaps even harder, to
evolve than was the case before. We will show in this pa-
per that the particular cause of this problem is that aspect
programmers are forced to write aspects that only work for
one specific version of an application.

1. INTRODUCTION
Since its conception a few years ago [11], aspect-oriented
software development (AOSD) has been presented as an ad-
ditional and powerful technique for improving the structure
and modularity of an application. This claim is motivated
by the fact that AOSD offers a new way of structuring code,
besides traditional hierarchical decomposition, by means of
so-called aspects. These aspects bundle crosscutting code,
e.g. code that would otherwise have been spread through-
out the whole application. At the same time, it is widely
acknowledged that the modularity of an application has a
significant influence on its evolvability. Intuitively, the more
modular an application, the easier it is to evolve. Given
the fact that evolution of software applications accounts for
the largest part of the software development process, the

∗Johan Brichau and Kris Gybels are research assistants
of the Fund for Scientific Research, Flanders, Belgium
(F.W.O.)

introduction and use of AOSD techniques looks promising.

Unfortunately, current research in the AOSD community
mainly focusses on application development only, and much
less on the long-term behavior of applications developed
with aspect technology. In other words, much attention is
paid to developing highly modular applications, but there
seems to be much less interest in studying the effect(s) of
AOSD on evolution. This observation is quite strange, given
that evolution consumes most of the development time of an
application.

Paradoxically, we’ve found that current AOP technologies
deliver programs that are as hard or even harder to evolve
than was the case before. In our view, this is due to the
following two problems:

1. Current industrial software development environments,
such as [8, 3], offer sophisticated means for evolving
an application, often by means of refactoring tech-
niques [12, 5]. While AOSD techniques are currently
being incorporated into such environments (e.g. Ec-
lipse [8]), their impact on the support for evolution
offered by these environment is largely neglected. As
such, the developer has no support for evolving the as-
pects. For example, the current support for evolving a
base program may overlook code that is included in an
aspect. This will most likely result in an application
that is inconsistent and does not exhibit the desired
behavior.

2. AOSD technology puts forward the assumption that
the base program is syntactically oblivious to the spe-
cific aspects that are applied upon it [4]. The aspects
themselves, on the other hand, have to include a cross-
cut description of all places in the application where
this code yields an influence (e.g. pointcuts in As-
pectJ). Consequently, it is much harder to make such
crosscuts oblivious to the application. Moreover, cur-
rent means for specifying crosscuts rely heavily on the
existing structure of an application. As such, the as-
pects are tightly coupled to the application, and it
is a well-known fact that tight coupling can seriously
hamper the evolvability of an application [13]. In this
particular case, it is clear that when the application
evolves and its structure changes, all crosscuts in every
aspect may have to be checked, and possibly revised.

The first issue can be solved by studying how refactoring, or
any other form of supporting evolution at a high conceptual
level, can include support for aspects as well as for reorgan-
izing code that is included in an aspect. This is not the focus
of this paper. The second issue, however, is exactly what we
want to explain, since it is more fundamental, much harder
to solve, and leads to what we call the AOSD-Evolution
paradox : the observation that AOSD leads to software that
should be more robust with respect to evolution because
it offers better modularization, but paradoxically reduces
the evolvability because it introduces tight coupling. In the
remainder of this paper, we will further investigate this is-
sue, by providing some explanatory examples, identifying
the major causes for this phenomenon, and providing hints
for possible solutions.

2. PROBLEM STATEMENT
In this section we will show why current AOSD technologies
inevitably lead to programs that are not easier to evolve.
As a running example throughout the section, we will con-
sider an abstract framework that we will present first. In
the discussion that follows, we will distinguish between two
different kinds of developers: a framework developer, who is
responsible for developing the initial version of the frame-
work, and a framework maintainer who is responsible for
maintaining the framework and changing it as required. Of
course, in practice, one single developer may be a framework
developer and a framework maintainer at the same time.

2.1 Introduction: An Example Object-Oriented
Framework

The problem we want to show particularly manifests itself in
the context of object-oriented frameworks [9, 10]. A frame-
work is a skeleton application, offering a flexible design in-
tended to be reused when building an application within
the particular domain of the framework. To this extent,
the framework defines so-called hot spots [14], that identify
those places in the design where application-specific code
can be added. Typically, a framework defines a number of
constraints upon these hot spots, that should be adhered to
at all times by the application-specific code in order to arrive
at an application exhibiting the desired behavior. Such con-
straints range from simple naming conventions, over specific
coding patterns that should be followed, to complex object
interactions that the code should provide [1, 6].

Consider the abstract example of an object-oriented frame-
work depicted in Figure 1. It consists of a simple class hier-
archy, A, that includes a number of subclasses and defines a
method m. This method is overridden in each of the various
subclasses of the hierarchy. This is an example of a naming
convention that is defined by the framework: the signature
of the m method should of course be the same for each and
every subclass. For the sake of the discussion, the example
abstracts away from other specific constraints and coding
conventions.

2.2 Requirements
From the point of view of a framework maintainer, the prin-
ciple of separation of concerns simply means that he should
not be forced to consider every individual concern when im-
plementing another one. For example, when adding new

functionality to some classes in an application, the main-
tainer should not be obliged to deal with a synchronization
concern. This is the exact reason why AOSD technologies
allow developers to cleanly separate different concerns and
provide additional composition mechanisms to weave these
concerns into a working application.

As we will discuss in the next section, however, it appears as
if current AOSD technologies force a framework developer to
write crosscuts in such a way that a framework maintainer
will need to remember to change these when he changes the
framework.

2.3 The Problem
A framework developer is responsible for implementing a
framework that incorporates the desired functionality. Inev-
itably, the framework will contain several crosscutting con-
cerns that can be implemented using AOSD technology in
order to improve modularity. As we will show, it is however
very difficult to capture the required joinpoints of the as-
pects in a general and expressive manner, due to the simplistic
crosscut languages used today by current AOSD languages.
As a consequence, the framework developer will find himself
forced to writing suboptimal crosscuts which break his as-
pects at the slightest change applied to the framework itself.

2.3.1 Implementing the Aspects
Consider the situation where a framework developer wants
to define an aspect that should influence only some methods
m defined in subclasses of the class A, but not all methods m.
To implement the corresponding crosscut, he could simply
write one explicitly enumerating these methods using the
name of the class and the method itself. Obviously, this
creates a burden for the framework maintainer. Whenever
a new implementation for the method m is added (in some
new class or an already existing one that does not yet define
m) that should be influenced by the aspect, the enumeration
needs to be changed. To avoid this situation, the framework
developer would rather like to uncover a common pattern in
the methods that need to be captured by the crosscut. Then,
he can encode this pattern so that new methods m that need
to be influenced by the aspect are captured automatically.
This can turn out to be more difficult than it seems however.

For starters, the common pattern can only be found in the
implementation of the methods. Because of the framework’s
design, all methods should be named m, those that should as
well as those that shouldn’t be influenced, are all the same,
as are the types of their arguments and return values. The
only differing element is the class of the methods, but as dis-
cussed above, using that would only lead to an undesirable
enumeration.

Given the current techniques available in AOSD tools, con-
sidering method implementations inside a crosscut can only
be achieved by using common coding conventions or patterns
used by those methods. For example, in AspectJ, which has
one of the most advanced crosscut languages, there is no way
of doing so. In AspectJ, a developer can specify crosscuts in
terms of the dynamic behavior of the application. But nev-
ertheless, the cflow and if constructs are the only primitive
pointcut expressions that allow to describe a pointcut bey-
ond the ’local’ scope.

A

m

A2

m

A1

m

A4

m

A3

m

Aspect

Figure 1: An Example Object-Oriented Framework

This is far from sufficient to separate out those methods that
the crosscut should capture. For one, it cannot be assured
that all methods to be included are in the control flow of
a particular other joinpoint. Second, since the m methods
actually form a hot spot of the framework, they each care-
fully follow the necessary coding conventions and obey the
appropriate constraints. Therefore, it cannot be guaranteed
that only the methods to be included in the crosscut each
follow a particular pattern at all. Other m methods may do
so as well.

In other words, the problem occurs because current AOSD
techniques try to discriminate methods based on some com-
mon structural property (which can be a combination of
other, more simple properties), such as particular naming
conventions, coding conventions and coding patterns. In the
context of large-scale industrial frameworks, this approach
suffers from the following problems:

• The framework itself also defines such conventions, and
classes and methods should adhere to these in order
to implement the correct behavior. The conventions
defined by the framework may conflict with those used
for defining crosscuts.

• It can not be guaranteed that the methods that should
be captured by a crosscut all share this property. Neither
can it be assured that no other methods share this
property.

• it is a well-known fact that developers do not always
adhere to particular coding conventions or patterns [16].
This has several reasons: the complexity and size of
the application, the constant evolution of the applica-
tion, the lack of sufficient and up-to-date documenta-
tion, and the lack of active support for automatically
checking such conventions [15].

Consequently, there are situations in which a developer has
no choice but to use simple enumeration of the various join-
points to make up a crosscut.

2.3.2 Refactoring: A Naive Solution
One argument that is often raised in situations such as the
one sketched above, is that the application could be refact-
ored in order to ensure that the intended methods can be
captured more easily. Such an example of refactoring for the
sake of aspects can be found in [2]. As far as we are con-
cerned, this is not the case. Most importantly, we believe
an application should not be refactored with the sole intent
of enabling a developer to define an aspect more easily. Re-
factoring should only be applied when the current structure
of the application smells bad [5], and its quality should be
restored. There are other problems with refactoring as well,
however.

Consider the example in Figure 1, it is clear that we can
never refactor the class hierarchy so that we can use naming
conventions to identify the correct joinpoints. The hierarchy
constrains the implementation and requires that all m meth-
ods share the same signature. The only other option consists
of reorganizing the different m methods so that it becomes
possible to use coding conventions to define the crosscuts.
The idea would be to separate the methods into those that
share some common structural property, and those that do
not adhere to this same property. We believe such an ap-
proach to be impractical, at the least, and impossible at the
worst, in most situations, however.

First of all, suppose it would be possible to factor out one
common property between all methods that should be cap-
tured in a particular join point. This can be achieved by
splitting the implementation of the methods in multiple aux-
iliary methods, for example, or by inserting an intermediate
superclass in the hierarchy, that captures the common prop-
erty. In both cases, however, the need for using an aspect
disappears. The specific purpose of an aspect is exactly to
capture a crosscutting concern, that can not be factored out
by using traditional decomposition techniques.

Second, a realistic application contains a multitude of as-
pects, which increases the likelihood that one single method
is captured by multiple aspects. Consider as an example
the framework in Figure 2, on which three different aspects

A

m

A2

m

A1

m

A4

m

A3

mm m

Aspect1 Aspect2Aspect3

m m

Figure 2: An Example Object-Oriented Framework with Multiple Aspects

are applied. Each aspect captures various different imple-
mentations of the method m in its crosscut definition. Using
present AOSD technologies, a developer must manage to
find a set of discriminating properties of all methods to de-
scribe the different crosscuts. To accomplish this, the cross-
cut of each aspect should be based upon a particular coding
convention. However, methods participate in more than one
aspect, and they can not easily obey many different coding
conventions at the same time. Reorganizing the methods
for either aspect might thus interfere with a reorganization
of the same methods for any other aspect.

Clearly, any reorganization of the existing structure of an
application so as to ensure that aspects can be defined more
easily is very difficult, if not impossible. Given this obser-
vation together with those made in the previous section,
the only conclusion that can be drawn is that under some
circumstances, developers have no choice but to resort to
enumeration-based crosscuts.

3. SUMMARY & DISCUSSION
3.1 Summary
We strongly believe the problem we have sketched above
manifests itself because all major AOSD techniques in use
today provide very limited means to specify crosscuts. Ba-
sically, developers have no choice but to specify such cross-
cuts based on structural properties, such as naming or cod-
ing conventions. As we have seen, this creates three kinds
of problems, in order of increasing importance:

• It is a well-known fact that agreed upon conventions
are more often violated then they are adhered to in
large-scale and complex applications. This has several
causes, such as incomplete or inconsistent documenta-
tion or deadline pressure, which are not easily solved.

• We feel that an application should not be refactored,
with the sole intent of enabling a developer to define an
aspect more easily. An application should be oblivious
as to which aspects are applied upon it.

• In the context of object-oriented frameworks that con-
tain many different aspects, it is often impossible to
use such conventions for expressing crosscuts, since
these conventions conflict with the conventions and
constraints imposed upon the application by the frame-
works, or even with the conventions used by other as-
pects.

3.2 Towards a Solution?
The one and only way of tackling this problem is using a
more sophisticated and expressive crosscut language. This
would allow a developer to define crosscuts in a more inten-
tional way, and would enable him to discriminate between
methods based on what they actually do instead of what
they look like. It is still to be determined however if de-
velopers can describe aspects that can be applied to any
version of the framework without revisions to the crosscuts.
Crosscut languages are thus clearly an important topic for
research in AOSD and it seems that this issue is largely
neglected.

In [7], we describe how the characteristics of a logic metalan-
guage enhance the description of crosscuts. In that paper,
we mainly described how particular language features are
beneficial for writing more intentional crosscut expressions.
The approach can actually be seen as a derivative of the
AspectJ crosscut language because it is mostly based on
the same join point model as AspectJ. The most import-
ant difference is that we use full predicate logic to describe
the crosscuts and provide the crosscut programmer with a
complete set of predicates to investigate the entire lexical
structure of the program. Unfortunately, the most import-
ant research question remains, i.e.: what should be the meta
representation of the base program such that intentional
crosscuts can be written in terms of it. Since the conception
of AOSD, we have seen full reflective models, static and dy-
namic join point models, event-based models, etc. . . . Most
of these models are either ’ad hoc’ or are driven by the re-
quests of users. Now that we have seen the first requirements
and uses for AOSD technologies, we think the time is ripe
for an extensive study in the language design for crosscut
languages.

4. CONCLUSION
In this paper, we have shown that aspect technology, al-
though claiming to improve the evolvability of an applic-
ation, actually introduces a number of serious issues that
degrade this evolvability at the same time. We termed this
phenomenon the AOSD-Evolution paradox. We have shown
how simple crosscut languages, such as those used in all
current major AOSD incarnations, often force a developer
to resort to enumeration-based crosscut expressions, which
clearly has a negative influence on the evolvability of the
application. We argumented that, to alleviate this problem,
more powerful and expressive crosscut languages are needed,
that allow a developer to write down a crosscut in a more
intentional way. Only in that case will it be possible to dis-
criminate between methods that define different semantics
but share similar structural properties. Consequently, it
would be a first and important step towards making as-
pects more oblivious to the application upon which they are
applied.

5. REFERENCES
[1] K. Beck. Smalltalk Best Practice Patterns. Prentice

Hall, 1996.

[2] Y. Coady and G. Kiczales. Exploring an
Aspect-Oriented approach to OS code. In Workshop
on Advanced Separation of Concerns at OOPSLA
2000.

[3] I. Corporation. Intellij idea,
http://www.intellij.com/idea.

[4] R. Filman and D. Friedman. Aspect-oriented
programming is quantification and obliviousness. In
Workshop on Advanced Separation of Concerns,
OOPSLA 2000,. 2000.

[5] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley,
Massachusetts, 1994.

[7] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based crosscuts. In
To be published in Proceedings of AOSD 2003, 2003.

[8] O. T. International. The Eclipse Platform,
http://www.eclipse.org.

[9] R. Johnson and B. Foote. Designing reusable classes.
Journal of Object-Oriented Programming, 1988.

[10] R. E. Johnson and V. F. Russo. Reusing
object-oriented designs. Technical Report UIUCDCS
91-1696, University of Illinois, 1991.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP), number 1241 in LNCS.
Springer-Verlag, June 1997.

[12] W. F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana Champaign, 1992.

[13] Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM,
15:1053–1058, 1972.

[14] W. Pree. Design Patterns for Object-Oriented Software
Development. Addison-Wesley/ACM Press, 1995.

[15] T. Tourwé. Automated Support for Framework-Based
Software Evolution. PhD thesis, Departement
Informatica, Vrije Universiteit Brussel, 2002.

[16] J. van Gurp and J. Bosch. Design Erosion: Problems
& Causes. Journal of Systems & Software,
61(2):105–119, 2001.

