
Enforcing Feature Set Correctness for Dynamic

Reconfiguration with Symbiotic Logic

Programming

Kris Gybels
Programming Technology Lab

Vrije Universiteit Brussel
kris.gybels@vub.ac.be

April 14, 2003

1 Introduction

We propose here to enforce the correct configuration of generic components when
dynamically reconfiguring them by encoding the rules governing the correctness
using logic programming. Additionally, rather than using a classic logic language
such as Prolog ”as is”, we want to use a logic language that allows the correctness
rules to easily interact with the components. To achieve this we propose to use
the concept of linguistic symbiosis and present a logic language that has such
symbiosis with a component implementation language.

The motivation for this proposal lies in the work on Generative Programming
(GP) in which generic components are delivered as a set of ready features which
can be put together to form an actual component [3]. The actual component,
usually simply a class, is composed by a generator which also checks that the
selected features meet certain inclusion requirements documented in a feature
diagram. As GP is usually used in a context in which components are generated
statically these are about the only possible correctness checks to be performed.

As Barbeau and Bordelau pointed out in a paper at the last Generative Pro-
gramming and Component Engineering conference, correctness checking gets
more interesting when we start to consider dynamic reconfiguration of compo-
nents [1]: ”[...] what we often need to build in software engineering is a car
that could reconfigure itself to move the driver seat from the left side of the
car to the right side of the car when the car moves from France to England.”
When doing such reconfigurations additional constraints need to be taken into
account: what country is the car currently in? Is it stopped before we start
switching the driver seat? etc. They sketched a possible architecture for such a
dynamically reconfigurable component in which the purely static GP generator
is replaced with a dynamic configuration agent. Such an agent could be made
to do reconfigurations on explicit request or by monitoring internal conditions
of a component. Because such an agent would need to perform some form of
reasoning to check the correctness of the new configuration we propose to write
it in logic programming. Because it would need to access internal conditions

1

2

Personal account component

Generator
- Feature set
- Feature combination
constraints

Personal account class

Personal
account
object

Figure 1: Illustration of the personal bank account as a GP component

of the component we propose the linguistic symbiosis mechanism to ease this
interaction.

Instead of the car example, we will illustrate our approach with another ex-
ample from the GP book [3]: personal bank accounts. We will briefly review this
example in the next section. Then we digress from it for a moment and discuss
linguistic symbiosis. After we show how it can be used in the implementation of
the account example. We end the paper with a short discussion of questions on
the wider applicability of this idea to Component-Oriented Programming and
related work.

2 Personal Bank Accounts

The personal bank account component is illustrated in figure 1. As it is a com-
ponent in the GP sense it consists of a set of parts implementing certain features
that can be composed by its generator. The result of the generator is a class
whose instances will support the selected features. Not all feature combinations
are allowed and certain features force the inclusion of others. These constraints
are normally documented in a feature diagram and enforced by the generator.
The feature diagram for the example is shown in figure 2. Some of the con-
straints are that a bank account object always has the feature of being able to
remember who its owner is, that it supports balancing but always one of four
alternative forms of balancing etc.

The above depiction of GP is static in nature as the bank account component
is used just once to generate a class. Figure 3 illustrates how we might think
of GP in a more dynamic form. As illustrated we would like the ability to
dynamically reconfigure the features of certain personal account objects to be
of a different class output by the generator. In this sense we might think of the
generator more as a (re)configurator.

Besides the feature inclusion constraints, a configurator may need to take
constraints into account about the features’ applicability, for example:

• When the credit rating of the account isn’t high enough, the account
shouldn’t be given the ”credit” feature.

• Before the introduction of the EURO, an account still expressed in the
national currency could be changed to the EURO but not back again.

3

Personal Account

owner number

currency

balancing

no creditcredit EUR

of transactions

opening date

balance

overdraft payment

cash deposit

cash withdrawaltransfer

DEM

BEF

quarter calendar year 30 days 60 days

static

persistant

Mandatory feature inclusion Alternative features

Or-features (combination)
Optional feature inclusion

balance
history

Figure 2: Feature diagram for bank account

4

Personal account component
- Feature set
- Feature combination
constraints
- Feature applicability
constraints

Personal account class

Personal
account
object

Personal account class V2
Configurator

Figure 3: Illustration of a generator turning into a configurator

We will implement such constraints in the logic language we present next,
focusing on the linguistic symbiosis with out chosen component implementation
language, Smalltalk.

3 Linguistic Symbiosis

In general, linguistic symbiosis refers to the integration of two programming
languages so that parts of a single program can be written in either language
[5]. When the paradigms of the two languages are different, linguistic symbiosis
can bring about multi-paradigm programming. This is the case here, as we want
to combine an object-oriented language to write the components in and a logic
language to write the composition process of the components in.

Linguistic symbiosis can range from a loose integration where program parts
in either language can hop to the parts in the other one with a very explicit
”escape” mechanism also allowing only the exchange of primitive data types to
a very tight symbiosis where the hops are almost transparent [4]. The original
version of the logic language we use, SOUL [10], was based on classical Prolog
though it exhibited linguistic symbiosis by allowing objects to be bound to logic
variables and messages could be sent to them by a special kind of term doing an
”escape to Smalltalk”. By incorporating this message sending as the basis for
logic programming, rather than as such an ”escape”, we have achieved a better
linguistic symbiosis of the two languages.

The changes in SOUL when compared to classic Prolog are thus the follow-
ing:

Value system: variables can be bound to objects, not just Prolog values such
as lists etc.

Syntax: Smalltalk message sending syntax is used for predicates.

Evaluation: instead of evaluating predicates by looking up a rule for them and
recursively checking its conditions, the default is to simply send the mes-
sage. When a rule exists for the message predicate however, it overrides
this behavior to the normal Prolog behavior.

5

account includesAll: <balancing, transactionCounter,
openingDate, currency,
payment, overdraft, owner,
number, balance, balanceHistory>.

currency includesOneOf: <bef, eur, usd>.
payment includesCombinationOf: <transfer, cashDeposit,

cashWithdrawal>.
balancing includesOneOf: <quarter, calenderYear,

thirtyDays, sixtyDays>.
overdraft includesOneOf: <credit, noCredit>.

Figure 4: Facts corresponding to the feature diagram.

We will illustrate how this is used in the next section where we return to the
account example.

4 Account Example Implementation

As we are concentrating on the configuration rules here, we will only briefly de-
scribe the other implementation aspects of composition in the account example.
We have used a simple implementation in which the feature subcomponents of
the account generator are implemented as objects. These objects are supposed
to be composed using prototype-based delegation to form the larger account ob-
ject. Though this is implemented in Smalltalk, it is done through an extension
of the language and classes are not really needed. We have thus bypassed the
explicit generation of a class as was depicted in figure 1 and let the generator
generate objects directly. Because of the delegation this results in a less effi-
cient implementation than would be possible but it is one in which the features
supported by an object are easier to manipulate. The configurator can simply
replace features when necessary by replacing the corresponding object in the
larger object.

When the configurator receives a request to change the features supported by
an account object, it will need to check the validity of the request. This means
checking the feature inclusion and feature applicability constraints which we
implement as logic rules. Each rule is implemented as a rule for the predicate
?featureSet disallowedFor: ?account.

For the feature inclusion constraints there is a general existing rule which
checks facts that correspond to the feature diagram as shown in figure 4.

Figure 5 contains rules for the feature applicability constraints. The first
two rules are the implementation of the two constraints we listed in section 2.
The other rules are auxiliary rules used in that implementation.

The benefit provided by linguistic symbiosis for writing these rules are that:

• The rules reason about the actual account objects and their subobjects.

• We can easily choose which language or paradigm we want to implement
a predicate in.

As to the second benefit, consider these two conditions used in two of the
rules in the figure:

6

?featureSet disallowedFor: ?account if
?featureSet containsFeature: credit &
?account disallowedCreditRating.

?featureSet disallowedFor: ?account if
?featureSet containsFeature: eur.

?account disallowedCreditRating if
?account owner = ?owner &
?owner age = ?age &
?age isBelow: 22.

?account disallowedCreditRating if
?account balanceHistory = ?history &
?history badHistory.

?history badHistory if
....

Figure 5: Rules for the feature applicability constraints

1. ?account disallowedCreditRating

2. ?featureSet containsFeature: eur

We have chosen to implement the predicate disallowedCreditRating as
a rule. Thus when the logic inference engine needs to evaluate ?account
disallowedCreditRating it will go on trying to construct a proof by using
those rules.

Less obvious from the figure is that containsFeature: is implemented as
a method. We have chosen to use a method rather than a rule because it is
easier to express containment of a feature in the set as a method on the class
FeatureSet rather than a logic rule. When the logic inference engine needs to
evaluate ?featureSet containsFeature: eur it will thus not find a rule for
that predicate and will simply send the message containsFeature: eur to the
object that is held in the variable ?featureSet. The method will return true
or false, indicating the success or failure of the predicate.

When an interaction is needed between the logic rules and methods that
return something other than a boolean, the equality construct can be used. The
construct is another addition to the logic language to support the symbiosis. It
is used in the figure for example for stating that ?owner should unify with the
object that is returned when sending the message owner: to the object held in
account:, as is done in the first rule for disallowedCreditRating.

Having explained the way symbiosis is used to implement the feature in-
clusion and applicability constraints, we now turn to the next section where
we pose some questions on the further applicability of symbiotic languages for
component-oriented programming and offer topics for discussion at the work-
shop.

7

5 Discussion

Our main question is what the wider applicability of linguistically symbiotic
languages could be to Component-Oriented Programming. Because we have
presented this idea in the context of GP components, where components are
usually understood more as generators or even ”anything reusable” [3] than the
stricter definition given by Szyperski [9], the question rises whether it has any
applications to those kinds of components as well. Certainly the feature imple-
mentation parts of the account example are components in this stricter sense,
though small-scale. Thus how does this translate to larger scale composition
correctness checking of components?

One other area where linguistically symbiotic languages can aid in the re-
configuration of component compositions is in dynamic adaptability of services.
Jarir et al. [6] previously presented an adaptable EJB architecture where poli-
cies influence the services present in an application. These policies work by
monitoring certain system properties and changing policy-bindings when cer-
tain conditions on these properties are true. The rules for the policies were
written in a sort of XML-based rule language. A full logic language that can
interact with the system for retrieving or even reasoning about the properties
could make the implementation of the rules simpler.

6 Related work

The work presented here is a further improvement on and proposed application
of earlier work we did on linguistic symbiosis [2]. The improvements are mostly
in the changing of the syntax of the logic language to get a more transparent
interaction with the OO language. In the earlier effort we tried to get such an
interaction by mapping message names to predicate names which resulted in
less readable rules.

Schaerli [8] has worked on an inter-language bridging between Java and a
scripting language for glueing components, Piccola. The aim is also to use
a more suitable language for implementing the component compositions while
using another for the components themselves. The effort is similar to our earlier
work on linguistic symbiosis in that neither language is changed to achieve the
interaction, rather the interaction is achieved by a bridging strategy between
the two languages that converts objects and message sends to the representation
used in the other language.

As it was not our major point we have only briefly described the way we
actually compose and recompose features as prototype-based objects. Kniesel
has provided a full discussion of how dynamic component adaptation can be
achieved with type-safe delegation [7]. Note that his work focused on unantic-
ipated adaptations, while we have focused here on anticipated adaptations or
configurations.

7 Summary

We have proposed here to apply the concept of linguistic symbiosis to languages
used for composing, reconfiguring or checking the correctness of component
compositions. We presented an application in the context of GP generator

8

components for enforcing the selection of correct features when dynamically
reconfiguring the features supported by objects. The constraints that govern the
correctness are encoded as logic rules and use the symbiosis mechanism to reason
about the state of the objects. We believe this can have wider applications in the
Component-Oriented Programming area, such as for monitoring the service-level
provided by components and reconfiguring them as needed to meet the required
level or checking composition correctness on a larger scale.

References

[1] Michel Barbeau and Francis Bordeleau. A protocol stack development tool
using generative programming. In D. Batory and C. Consel, editors, Pro-
ceedings of Generative Programming and Component Engineering, volume
2487 of Lecture Notes in Computer Science. Springer, 2002.

[2] Johan Brichau, Kris Gybels, and Roel Wuyts. Towards a linguistic sym-
biosis of an object-oriented and logic programming language. In Jörg
Striegnitz, Kei Davis, and Yannis Smaragdakis, editors, Proceedings of
the Workshop on Multiparadigm Programming with Object-Oriented Lan-
guages, 2002.

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools and Applications. Addison-Wesley, 2000.

[4] Kris Gybels. A survey of Object-Oriented and Logic Multi-Paradigm Pro-
gramming languages. Technical Report (In preparation), Vrije Universiteit
Brussel, 2003.

[5] Yuuji Ichisugi, Satoshi Matsuoka, and Akinori Yonezawa. Rbcl: a reflective
object-oriented concurrent language without a runtime kernel. In IMSA’92
International Workshop on Reflection and Meta-Level Architectures, 1992.

[6] Zahi Jarir, Pierre-Charles David, and Thomas Ledoux. Dynamic adapt-
ability of services in enterprise javabeans architecture. In Proceedings of
the Workshop on Component-Oriented Programming, 2002.

[7] Günter Kniesel. Type-safe delegation for dynamic component adapta-
tion. In Proceedings of the Workshop on Component-Oriented Program-
ming, 1998.

[8] Nathanael Schärli. Supporting pure composition by inter-language bridging
on the meta-level. Master’s thesis, Philosophisch-naturwissenschaftlichen
Fakultät der Universität Bern, September 2001.

[9] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1997.

[10] Roel Wuyts. A Logic Meta Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis, Vrije
Universiteit Brussel, 2001.

