
Automated Support for Framework-Based Software Evolution

Tom Tourẃe
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

Email: tom.tourwe@vub.ac.be

Tom Mens
Service de Gnie Logiciel

Universit de Mons-Hainaut
Av. Champs de Mars 6, 7000 Mons, Belgium

Email: tom.mens@umh.ac.be

Abstract

In this paper, we show how elaborate support for
framework-based software evolution can be provided based
on explicit documentation of the hot spots of object-oriented
application frameworks. Such support includes high-level
transformations that guide a developer when instantiating
applications from a framework by propagating the neces-
sary changes, as well as application upgrading facilities
based on these transformations. The approach relies on ac-
tive declarative documentation of the design and evolution
of the framework’s hot spots, by means of metapatterns and
their associated transformations.

1. Introduction

Over the past years, object-oriented software devel-
opment based on framework technology has become ex-
tremely popular and has gained widespread acceptance.
The major reason is that such a development method offers
significant software engineering benefits: it allows design
reuse, as opposed to mere code reuse, reduces application
development time, improves evolvability, promotes consis-
tency between applications, and so on [7, 21]. In other
words, it brings us closer to a product-line approach of soft-
ware development, where entire software families are being
developed as opposed to stand-alone software applications
[31].

The most important asset offered by an application
framework is its design, that should be flexible and reusable
to allow developers to build numerous applications within
the same application domain. The design defines the spe-
cific places where the framework can be extended with
application-specific code (the so-calledhot spotsof the
framework [24]) and imposes particular constraints upon
the application’s implementation. In order to conform to the
framework specification, the instantiated applications must
fill in the appropriate hot spots and adhere to the framework

design, to ensure that no constraints are violated.
In practice, it turns out that the design of the framework

is not adequately documented, and as a consequence, nei-
ther are the hot spots and the constraints [25, 3]. As a result,
these are only implicitly present in the implementation. It
should thus come as no surprise that correctly instantiating
an application from a given framework is a complex and
error-prone task. Many times, applications do not fill in the
appropriate hot spots, or use these hot spots in the wrong
way, and thereby violate the intended design of the frame-
work.

The above problem is aggravated by the fact that a frame-
work is inevitably subject to constant evolution, as require-
ments are changed, added or removed. Clearly, such evo-
lution affects existing instantiations, which may need to be
updated. Such updating requires very detailed and specific
information about how each instantiated application reuses
the framework’s design and how this design has evolved.
Since neither the design, nor the instantiation or evolution
of a framework are adequately documented, the update pro-
cess is labour-intensive and error-prone.

To alleviate these problems, we propose to document a
framework’s hot spots by means ofmetapatterns[24], an
advanced abstraction of design patterns that was conceived
out of the observation that many design patterns share the
same underlying structure. Although design patterns are
useful for our purposes as well, we deliberately choose not
to use them as a basis for our approach, because the num-
ber of design patterns is quite large and this would endanger
the scalability of our approach. The information conveyed
within a metapattern allows us to document the hot spots in
an accurate manner and to specify in which ways they can
be filled in. As such, each metapattern comes with a num-
ber of transformations, that prescribe the specific changes
that should be applied to fill in its hot spots. These transfor-
mations can be explicitly and formally defined and can be
automated. They thus serve as a basis for an approach that
supports instantiating concrete applications from a frame-
work, change propagation and framework evolution and up-



Drawing

edit
DrawingEditor

drawingClass
defaultTools

IconDrawing

edit

IconDrawing
Editor

drawingClass
defaultTools

Figure 1. A Change Propagation Example

grading.
In what follows, we first clarify the problem statement

by providing two examples (Section 2). Afterwards, we
elaborate upon the specific solution we propose to alleviate
these problems (Sections 3 and 4). In Section 5, we show
how this solution effectively addresses the problems speci-
fied above. Section 6 discusses tool support, Section 7 lists
related work, Section 8 contains future work, and Section 9
presents our conclusions.

2. Running Examples

In this section, we present two typical problems encoun-
tered when using a framework-based software development
method: change propagation and application upgrading.
Both examples are taken from the documented evolution of
HotDraw, a popular framework that has been used to build
numerous graphical applications [2].

2.1. Change Propagation

An application developer instantiating1 a concrete ap-
plication from a framework has to ensure he provides
application-specific code for all necessary hot spots. As
such, various additions to the basic framework are required.
In particular, classes should be added and the appropriate
methods should be overridden in these classes. Although
seemingly simple, this can be quite a tedious and error-
prone task. For one, the developer is expected to be able
to identify all necessary hot spots and to know how these
should be filled in. An additional problem is that, more of-
ten than not, dependencies exist between these hot spots.
Filling in one particular hot spot may require filling in other
hot spots as well. This phenomenon is known as theripple
effect[34]. Furthermore, the particular way in which one

1Note that in this paper, we consider instantiation and evolution of a
framework to be two distinct activities. Both can however make changes
to the framework, and can thus be considered as an evolution of the frame-
work.

hot spot is filled in may constrain the way these other hot
spots are filled in as well. Fulfilling all these requirements
turns out to be a tedious task given the lack of suitable and
decent documentation.

A particular example of the ripple effect in the HotDraw
framework is depicted in Figure 1. TheDrawing class pro-
vides a hot spot that allows an application developer to de-
fine an application-specific drawing class. In this particu-
lar case, the hot spot is filled in by defining anIconDrawing

subclass. One particular dependency defined by the Hot-
Draw framework is that each drawing has an associated
drawing editor, that can be used to edit the application-
specific drawing. In order to satisfy this constraint, the de-
veloper has to fill in another hot spot, by defining a sub-
classIconDrawingEditor of classDrawingEditor . Moreover,
another dependency requires him to link the newly added
classes by providing two methods: adrawingClass method
on classIconDrawingEditor that returns the particular draw-
ing class associated with the editor, and anedit method on
classIconDrawing that opens the appropriate editor on the
particular drawing object. Even more, theDrawingEditor

class hierarchy contains a hot spot that allows developers
to specify the tools that are applicable upon a specific draw-
ing. These tools should be registered by thedefaultTools

method. TheIconDrawingEditor class should thus also de-
fine such a method.

As this example illustrates, what appears to be one small
change, turns out to be a cascade of many different changes.
Identifying the particular hot spot to be filled in, and the
way in which this should be achieved, is already quite cum-
bersome given the lack of suitable documentation. Con-
sequently, identifying the relationships between the differ-
ent hot spots, deriving which additional hot spots should be
filled in and knowing how to do this, is extremely difficult
without some form of (partially) automated support.

2.2. Support for Application Upgrading

Given the size and complexity of current-day frame-
works, it comes as no surprise that these frameworks and
their applications are developed, maintained and evolved by
several teams of developers. A typical situation that occurs
in such a context is that one team is in charge of develop-
ing and evolving the framework itself, while one or more
teams have the responsibility of instantiating this frame-
work to different applications. When a new version of the
framework is released, each instantiated application should
preferably be upgraded to work with this new version, as
it may contain enhanced or improved functionality. Such
upgrading is far from trivial, however, and can lead to a
number ofupgrade conflicts, which need to be resolved in
order to ensure the correct behaviour of the instantiated ap-
plication [19].



Drawing

Drawing

IconDrawing

Drawing

Animated
Drawing

Drawing

Animated
Drawing

IconDrawing

IconDrawing ?

Figure 2. An Example Software Upgrade Con-
flict

As an example, consider the situation depicted in Fig-
ure 2 taken from an actual evolution of the HotDraw
framework. The evolution of the framework introduces an
AnimatedDrawing subclass of theDrawing class (left part of
the figure), with the specific intent of isolating all anima-
tion behaviour in this new class. In parallel, and unaware
of this specific framework evolution, an instantiation of the
HotDraw framework provides a new subclassIconDrawing of
classDrawing (upper part of the Figure). Clearly, this creates
an upgrade conflict when we want to upgrade the frame-
work instantiation to use the new version of the framework:
the IconDrawing class may rely on behaviour of theDrawing

class that has now been moved to theAnimatedDrawing class.
It is clear that we cannot simply merge the two changes and
be done with it. To resolve this situation, the application
developer needs semantic information to determine whether
the IconDrawing class should remain a subclass ofDrawing or
whether it should be changed toAnimatedDrawing .

Upgrade conflicts occur because one change relies on as-
sumptions that are broken by another change that is applied
in parallel. In the concrete example presented above, the
application developer that adds theIconDrawing class cor-
rectly assumes theDrawing class provides the only available
hot spot to be filled in. By extending the framework, an
additional hot spot is introduced, thereby breaking the as-
sumption made by the framework instantiator. Since there
exists very little documentation about how the framework’s
design is instantiated or evolved, such conflicts can only be
detected by manual inspection. Clearly, this is once again
an error-prone and time-consuming task.

2.3. Discussion

The two problems sketched above are due to two princi-
pal shortcomings in current-day framework-based software
evolution: the lack of suitable documentation of the frame-
work’s design and the way it evolves, and the lack of active
support for framework instantiation and application upgrad-
ing.

A framework defines strict rules for its instantiation, that
should be adhered to at all times, by each application de-
rived from the framework. However, a developer currently
has very little support for instantiating the framework, to
help him ensuring that the appropriate rules are adhered to,
and to automate some of his tasks. Therefore, he has no
other option than to perform these tasks manually. We be-
lieve automated support is feasible, however, provided that
the framework hot spots and instantiation rules are known
beforehand.

Likewise, little to no support is available for framework
upgrading. Once again, this is due to a lack of documen-
tation: since instantiating and evolving a framework is a
manual task, no traces of the applied changes are left. This
makes it very hard for a developer to detect upgrade con-
flicts, let alone identify ways to alleviate them. Further-
more, the lack of explicit documentation rules out auto-
mated support for application upgrading completely. We
consider such support possible however, if both the instanti-
ation and evolution process are explicitly documented. This
would enable us to reason about the applied changes, detect
possible upgrade conflicts and propose adequate solutions
for them.

3. Metapatterns

In this section, we introduce the notion of metapatterns,
that will be used to explicitly document a framework’s de-
sign by means of its hot spots. The next section will then
introduce metapattern transformations, that serve to explic-
itly document how the framework’s design is reused and
evolved.

3.1. General Overview

The definition of metapatterns is based on a distinction
betweentemplateand hook methods, the corresponding
templateandhookclasses and the specific ways in which
these classes are related:

• A templatemethod is a concrete method that calls
some other methods, which are thehook methods.
Hook methods can be abstract methods, regular meth-
ods with a default implementation intended to be over-
ridden, or template methods in their turn.



TH

th

1:1 Recursive Unification

T

t

H

h

1:1 Connection

T

h

H

h

1:1 Recursive Connection

1:N Recursive Unification

TH

th

*

1:N Connection

T

t

H

h
*

1:N Recursive Connection

T

h

H

h
*

TH

t
h

Unification

Figure 3. The Existing Metapatterns

• A templateclass is a class that implements a template
method, and similarly, ahookclass is a class that im-
plements a hook method.

Template classes need to be combined with hook classes,
in order for template methods to be able to call hook meth-
ods. A metapattern captures a particular combination of a
template class and a hook class. Two aspects influence this
combination:

1. The cardinality of the association relationship between
the template class and the hook class. An object of the
template class may refer to exactly one object of the
hook class, or it may refer to multiple objects of this
class.

2. The hierarchical relationship between the template
class and the hook class. The template class and the
hook class may be unified into one class, or they may
or may not be related via an inheritance relation.

Figure 3 shows the metapatterns as defined by [24]. Our
own definition of metapatterns is an extension of this clas-
sification, since we explicitly include the notion of a class
hierarchy. Consequently, we are able to represent hook hier-
archy participants (as in [24]), as well as template hierarchy

participants (not present in [24]), and this allows us to de-
fine two additional interesting metapatterns. For the sake
of the discussion in this article, however, the precise details
and differences between our definition and the one in [24]
are irrelevant.

3.2. Notation

Before continuing with the formal definition of metapat-
terns, we should first explain our notation. In the remainder
of the paper, a single class is denoted with an uppercase let-
ter (e.g.,C), while a lowercase letter (e.g.,m) represents a
method. Each method name is preceded by a class name
that indicates where that method is defined. For example,
C :: m means that the classC defines a methodm. We
extend this notation toC :: M, whereM represents a set
of methods. IfC is a class in the framework, we usehier-
archy(C)to denote the class hierarchy generated byC, i.e.,
classC together with all its direct and indirect descendants.
A class hierarchy is also denoted textually by aH symbol.
A class hierarchyH always defines aninherits relation
which forms a partial order. It has a unique maximal el-
ementroot(H) and a set of minimal elementsleafs(H).
Intuitively, the maximal element of a class hierarchy corre-
sponds to the root of that hierarchy, while the set of min-
imal elements corresponds to the set of leaf classes of the
hierarchy.2 Note that leaf classes are not required to be di-
rect subclasses of the root class. If a class hierarchyH im-
plements a set of methodsM we use the familiar notation
H :: M. Formally, this notation implies the following two
constraints:
(i) ∀m ∈M: m is “abstract” inroot(H)
(ii) ∀m ∈M: ∀C ∈ leafs(H): m is “understood” byC

As a special case of “abstract”, we also allow the method
to provide a default implementation that must be overridden
in subclasses.m is “understood” byC means that the class
C itself, or one of its ancestors, should provide a concrete
implementation of methodm.

3.3. Formal Definition

Formally, a metapattern MP is defined as a tuple
〈P,R〉, whereP is a set of participants andR is a set of
relations that hold between these participants. Aninstance
MPi of a metapatternMP is a mapping of concrete soft-
ware artifacts (classes, class hierarchies, methods, method
sets, and variables) onto the participants of the metapattern.

Each participantp ∈ P is a tag-value pair where the tag
denotes the specific role the participant fulfils in the meta-
pattern, and the value is the software artifact that plays this
role in the metapattern. For example, a class hierarchyH

2We assume in this paper that we have single inheritance. Therefore,
there is a unique maximal element, the root class.



that plays the role of hook hierarchy participant is denoted
by (hookhierarchy,H) ∈ P .

Each relationr ∈ R specifies how the different par-
ticipants of the metapattern are related and how they in-
teract with one another. Examples of such relations are
understandsMessage(C,m), that specifies that classC
understands methodm, or inherits(H1,H2), that specifies
that class hierarchyH1 is a subhierarchy of class hierarchy
H2 (in other words, the root class ofH1 is a (possibly indi-
rect) subclass of the root class ofH2). The formal definition
of all the relations that can hold between two participants is
not included here for lack of space. In [29], these relations
are implemented as logic predicates inSOUL, a logic pro-
gramming language implemented on top of the Smalltalk
object-oriented programming language.

3.4. Example

As a concrete example, theUnification fundamental
metapattern is formally defined as follows:

unificationMP = 〈P,R〉, where
P = { (hookhierarchy,H),

(templatemethods,H :: Mt),
(hookmethods,H :: Mh) }

and
R = { understandsMessage(root(H),H :: Mt),

definesMethod(root(H),H :: Mh),
understandsMessage(leafs(H),H :: Mh),
invokes(H :: Mt,H :: Mh) }

This metapattern contains three participants: a hierarchy
H, a set of template methodsH :: Mt and a set of hook
methodsH :: Mh. The template class and the hook class of
this metapattern are one and the same class: the root class of
the hierarchyH (see Figure 3). This class implements all of
the template methodsH :: Mt, each of which invokes one
or more of the hook methods fromH :: Mh. These hook
methods are defined by the root of the hierarchy and are
provided with a concrete implementation for all concrete
leaf classes of the hierarchy.

In the HotDraw example, one of the instancesun1 of the
above metapattern can be obtained by means of the follow-
ing participant mapping:

P = {
(hookhierarchy, hierarchy(DrawingEditor)),
(templatemethods,

hierarchy(DrawingEditor) :: {initialize}),
(hookmethods,

hierarchy(DrawingEditor) :: {defaultTools}) }

4. Metapattern Transformations

In this section, we introduce metapattern transforma-
tions, that can be used to add participants to a metapattern
instance, and as such document the instantiation and evolu-
tion of a framework.

4.1. General Overview

Because metapatterns are used to implement hot spots,
they implicitly contain knowledge about how these hot
spots need to be filled in. Such filling in consists of adding
the appropriate participants to the various metapattern in-
stances, which corresponds closely to adding application-
specific behaviour to the framework. As we have argued
before, this is often not a matter of one single change, but
may require many successive changes in order to guarantee
that the appropriate design constraints are preserved. We
make such knowledge and the corresponding changes ex-
plicit, by providing metapattern transformationsthat can
be used to support a developer when instantiating the frame-
work. Not only does this improve the quality of the resulting
applications, since all required hot spots are filled in in the
appropriate way, it also enables us to reason about the in-
stantiation and evolution of the framework at a higher level
of abstraction.

4.2. Formal Definition

Each metapattern defines only two different transforma-
tions: one adding a class participant and one for adding a
method participant:

• addClass(H, C) takes a hierarchyH and a classC as
arguments and adds this class to the leafsleafs(H) of
the hierarchyH of the metapattern. A precondition of
this transformation is that the class is not part of the
hierarchy:C 6∈ H. Note that this transformation can
be used to add both hook class and template class par-
ticipants, depending on which class hierarchy we pass
as the first argument (thehookhierarchyor template-
hierarchyparticipant respectively).

• addMethod(H :: M,m) adds methodm to the set of
methodsH :: M of the metapattern. An obvious pre-
condition of this transformation is that this method is
not yet part of the method set:m 6∈ H :: M. Similar to
the addClasstransformation, this transformation can
be used to add both hook method and template method
participants, depending on which set of methods we
pass as the first argument.

Note that these definitions are independent from a par-
ticular kind of metapattern, as they are expressed solely in
terms of metapattern participants.



4.3. Example

As a concrete example, we can apply anadd-
Class(hierarchy(DrawingEditor), IconDrawingEditor)
transformation to metapattern instanceun1 to add the
IconDrawingEditor class to theDrawingEditor class hierarchy
(see Figure 1). Besides effectively adding the class,
the transformation should also ensure to preserve the
constraints of theUnification metapattern. Therefore, it
should not only add a new class, but should also provide an
implementation for all appropriate method participants. In
this case, theDrawingEditor hierarchy is thehookhierarchy
participant and therefore, all of its leafs should understand
the defaultTools method, since this is thehookmethod
participant. An implementation for this method is thus
provided for theIconDrawingEditor class.

5. Support for Change Propagation and Up-
grading

In this section, we explain how metapatterns and meta-
pattern transformations can be use to provide support for
change propagation and application upgrading.

5.1. Change Propagation

Support for change propagation is based uponintrade-
pendenciesandinterdependenciesbetween metapattern in-
stances, and the way these dependencies affect metapattern
transformations that are applied. We will explain this issue
in detail in the following subsections.

Intradependencies of a Metapattern Instance As men-
tioned before, each template method calls at least one hook
method, and therefore, each template class is parameterised
with a hook class. Such dependencies between class and
method participants in a metapattern instance are calledin-
tradependencies.

Intradependencies influence the application of transfor-
mations on a metapattern instance. Clearly, whenever a
new template class is added to a such an instance by means
of anaddClasstransformation, a corresponding hook class
should be added as well. Likewise for template and hook
methods. The influence of intradependencies on metapat-
tern transformations is thus summarised as follows:

addMethod(H :: Mt,m1) ⇒
addMethod(H :: Mh,m2)

addClass(Ht, C1) ⇒
addClass(Hh, C2)

(1)

Drawing

edit
DrawingEditor

DrawingEditor

initialize
defaultTools

Overlapping metapattern 
instances

Figure 4. Interdependent Metapattern In-
stances

Interdependencies between Metapattern Instances
When a metapattern transformation adds a new class
participant to a class hierarchy in a particular metapattern
instance, the same class should be added to all other meta-
pattern instances in which the class hierarchy participates.
Dependencies between different metapattern instances
are based on shared participants, and are calledinterde-
pendencies(as opposed tointradependenciesdiscussed
above).

Formally, two metapattern instancesMPi andMPj are
interdependent whenever a class hierarchyH, that is a par-
ticipant ofMPi, is also a participant ofMPj or a subhier-
archy of this participant:

inherits(Hi,Hj) (2)

H can be ahookhierarchyor templatehierarchypartici-
pant in either instance.3

Note that, since this definition of interdependence is de-
fined in terms of the class hierarchy participants of the in-
volved metapattern instances, we can specify the condition
for interdependence independently from the kinds of meta-
pattern that are involved.

Based on Equation 2, anaddClasstransformation ap-
plied to metapattern instanceMPi can give rise to anadd-
Classtransformation on the interdependent metapattern in-
stanceMPj :

addClass(Hi, C) ⇒ addClass(Hj , C) if
inherits(Hi,Hj)

(3)

3Although there are other interdependencies between two metapattern
instances, we will not discuss them here due to space restrictions. For a
more elaborate discussion on this topic, we refer to [29].



This in essence forms the basis for our change propaga-
tion algorithm.

Examples Figure 1 contains three different metapattern
instances of only two metapatterns. Besides metapattern
instanceun1, defined in Section 3.4, we can also identify
two instances of theCreationmetapattern:

cr1 which consists of classDrawing as the template hier-
archy participant, classDrawingEditor as the hook hi-
erarchy participant and methodedit as the template
method participant. Formally:

P = {
(templatehierarchy, hierarchy(Drawing)),
(hookhierarchy, hierarchy(DrawingEditor),
(templatemethods,

hierarchy(Drawing) :: {edit}) }

cr2 which consists of classDrawingEditor as the template
hierarchy participant, classDrawing as the hook hier-
archy participant and methoddrawingClass as the tem-
plate method participant. Formally:

P = {
(templatehierarchy,

hierarchy(DrawingEditor)),
(hookhierarchy, hierarchy(Drawing),
(templatemethods,

hierarchy(DrawingEditor) ::
{drawingClass}) }

Figure 4 shows an example of the interdependence be-
tween instancescr1 (upper part) andun1 (lower part).
These two instances are interdependent because the class
hierarchy defined by theDrawingEditor class participates in
both instances as ahookhierarchyparticipant. As such,
Equation 2 is satisfied:

inherits(hierarchy(DrawingEditorcr1),
hierarchy(DrawingEditorun1)).

Additionally, we can identify the following interdepen-
dencies:

• Instancecr1 is interdependent with instancecr2, due
to two interdependencies. First, theDrawing class is a
hookhierarchyparticipant ofcr1 and atemplatehierar-
chyparticipant ofcr2.

inherits(hierarchy(Drawingcr1),
hierarchy(Drawingcr2)).

Second, theDrawingEditor class is a template hierarchy
participant ofcr1 and a hook hierarchy participant of
cr2:

inherits(hierarchy(DrawingEditorcr1),
hierarchy(DrawingEditorcr2)).

• Instancecr2 is interdependent with instanceun1since
the DrawingEditor class is atemplatehierarchypartici-
pant incr2 and ahookhierarchyparticipant inun1:

inherits(hierarchy(DrawingEditorcr2),
hierarchy(DrawingEditorun1)).

Now that we have identified the interdependencies, we
are ready to show how they can be used to propagate
changes throught the framework.

Instantiating the HotDraw framework by adding a con-
creteIconDrawing class should be specified by means of the
appropriate metapattern transformation applied to one of
the three metapattern instances. Note that we do not care
about which specific metapattern instance the transforma-
tion is applied to, since the change propagation strategy will
make sure the necessary changes are propagated appropri-
ately.

Suppose we model the change by means of anad-
dClass(hierarchy(Drawing), IconDrawing)transformation
applied on metapattern instancecr1 that adds the class as
a template leaf participant tocr1. Conform Equation 1, this
also requires the introduction of a corresponding hook leaf
class, so an additionaladdClass(hierarchy(DrawingEditor),
IconDrawingEditor) transformation is mandatory on the
same instance. This will add theIconDrawingEditor class
as a hook class participant to instancecr1.

Due to the interdependencies identified above, the same
class should also be added to the interdependent metapat-
tern instances. The secondaddClasstransformation on in-
stancecr1 thus yields the following additional transforma-
tions (due to Equation 3):

• an addClass(hierarchy(DrawingEditor), IconDra-
wingEditor)operation on instanceun1, which will add
the IconDrawingEditor class as a hook leaf participant
to instanceun1.

• an addClass(hierarchy(DrawingEditor), IconDra-
wingEditor) operation on instancecr2, which will
add the IconDrawingEditor class as a template leaf
participant to instancecr2.

As we have explained previously, in practice, all
these transformations should preserve the metapattern con-
straints. Therefore, they do not only add the appropriate
classes to the framework’s implementation, but also provide
these classes with appropriate definitions for the required
methods. For example, theaddClass(hierarchy(Drawing),
IconDrawing) transformation on instancecr1 adds the
IconDrawing class as a subclass of classDrawing , and ad-
ditionally provides a default implementation for theedit



method or prompts the developer to provide the implemen-
tation.

5.2. Support for Application Upgrading

The approach we propose to detect possible upgrade
conflicts is an operation-based merge algorithm that is an
extension of similar techniques proposed by [19, 27]. It
consists of mutually comparing the changes applied to a
framework by means of metapattern transformations, and
defining the conditions that lead to a possible conflict when
the transformations are applied in parallel.

The condition for apossible incorrect superclasscon-
flict, which is the conflict depicted in Figure 2, is the fol-
lowing:

possibleIncorrectSuperclass(C1, C2)
if

addClass(H1, C1) ‖ addClass(H2, C2) and
inherits(H1,H2)

(4)

Such a conflict is caused by applying anaddClasstrans-
formation in parallel (hence the‖ (parallel) notation) with
anotheraddClasstransformation. Both operations each in-
dependently introduce a new class in the same class hierar-
chy (denoted by means of theinherits relation), and may
thus conflict with one another. There are of course many
other conflicts that can be detected in a similar way [29],
such as anamingconflict that arises when two transforma-
tions add a class (or a method in a class) with the same
name, or aconstraint violationconflict, that occurs because
one transformations adds a method and a second trans-
formations adds a class that does not implement the new
method. We refer to [29] for an overview and a detailed
discussion.

Naturally, we can not detect each and every possible
conflict. Only when the evolution and instantiation of the
framework can be expressed as a series of metapattern trans-
formations will we be able to detect such conflicts. When
two developers manually evolve the framework in parallel,
conflicts can be introduced but will remain undetected by
our approach.

Example The possible incorrect superclassconflict in
Figure 2 occurs because two conflicting metapattern trans-
formations are applied in parallel. The addition of the
IconDrawing class can be specified as anaddClasstrans-
formation on instancecr2. Likewise, the addition of the
AnimatedDrawing class can be specified by the same transfor-
mation on instancecr1. As such, Equation 4 is satisfied and
a conflict is reported. To summarise, the parallel applica-
tion:

addClasscr2(hierarchy(Drawing), IconDrawing)
‖

addClasscr1(hierarchy(Drawing),
AnimatedDrawing)

leads to a conflict because

inherits(hierarchy(Drawingcr2),
hierarchy(Drawingcr1))

Note that the conflict would also be reported if both
changes were modelled using transformations on the same
metapattern instance. For example, adding theIconDrawing

class could also be modelled by anaddClass transformation
on instancecr1. The above conflict would then also de-
tected, because Equation 4 then trivially holds.

6. Tool Support

The approach we have proposed here has been imple-
mented in theSOUL logic meta programming environ-
ment [33]. The tool we implemented provides support for
framework-based software evolution that includes:

1. providing a design pattern view over the source code
of the framework. A developer is expected to annotate
a framework’s design with information regarding the
design patterns used. This information is then trans-
lated automatically into the corresponding information
about metapatterns, in order to be able to apply our
techniques. Furthermore, the inter- and intradependen-
cies between the metapatterns is computed automati-
cally. Although manual annotation may come about as
a burden for the developer, we believe it is not as bad
as it seems. The information about design patterns can
be used for many other purposes as well, as has been
argued many times [15, 1].

2. providing a list of transformations that a developer
can apply to instantiate or evolve a framework. The
list includes high-level transformations, such asdesign
pattern specificor framework-specifictransformations,
that are defined in terms of metapattern transforma-
tions. It should be considered as a complement to the
list of refactorings that current-day integrated develop-
ment environments offer, since it can be used in exactly
the same intuitive way. Moreover, the tool actively
guides the developer when performing such changes,
by pointing out the hot spots that need to be filled in
and identifying the transformations that this requires.
Whenever possible, the tool fills in some of the hot
spots automatically.



3. providing support for manual evolution. Although not
discussed in this paper, the tool can use the metapattern
relations to verify whether a framework’s design still
adheres to the appropriate constraints after it has been
changed manually. As illustrated in [29], this approach
effectively allowed us to detect a number of conflicts
in the HotDraw framework.

4. logging all transformations performed by the different
developers on a specific version of the framework, rea-
son about them and detect possible upgrade conflicts.
Whenever such a conflict is detected, the tool presents
the developer with a list of actions that he can under-
take to resolve the particular conflict.

Of course, the tool is only a research prototype, and
does not come with all the bells and whistles that should
be present if it is to be used in an industrial setting. This
should be considered future work.

7. Related Work

Many tools exist that are able to verify whether a devel-
oper instantiates a framework in a correct way [11, 12, 23,
5]. All these tools are based upon the idea of a task list,
that contains remaining tasks to be performed by the devel-
oper. These tools do not guide the developer by providing
transformations that perform part of the tasks automatically,
however.

Other environments do provide automated transforma-
tions [26, 4, 14], and are based upon the concept of refac-
toring, first identified in [22]. However, they do not auto-
matically guide a developer by telling him when or where
the transformations should be applied, nor do they provide
support for upgrading.

[9, 17, 30, 10] propose tools that provide extensive sup-
port for working with design patterns and frameworks. The
tools provide automated transformations that can be used to
evolve design pattern instances in predefined ways at a high
level of abstraction. These transformations are similar to
our metapattern transformations, but the tools’ primary fo-
cus is not change propagation or application upgrading, so
these problems are not addressed. [20] presents a similar
tool that does provide (basic) support for such activities.

Many tools and techniques exist for identifying possible
evolution conflicts caused by different developers evolving
an application in parallel [16, 8, 6, 13]. All of them are
based upon comparing lower level (statement level) changes
to the source code. As a result, they can only detect and
report conflicts at a low level of detail.

8. Future Work

In order for our approach to work, we need explicit infor-
mation about the metapattern instances present in a frame-
work. Our current tool gathers such information from de-
sign pattern information specified by the developers. Other
experiments seem to point out that design patterns can also
be detected automatically in the source code [18, 32, 28].
We have not yet experimented with these techniques, but
they seem very worthwhile to investigate in future work, as
they may relieve the developer from annotation the frame-
work manually and may thus reduce the risk of errors.

As already mentioned, an absolute prerequisite for the
approach presented here, is that the developers explicitly
invoke metapattern transformations to evolve or instanti-
ate a framework. This could be considered a disadvantage,
since currently frameworks are changed manually more of-
ten then not (although automated refactorings form the ex-
ception that confirms the rule [26]). However, we firmly be-
lieve that such information can be extracted automatically
from the source code, by comparing different versions of
the framework. Some preliminary experiments have already
been set up, although there is much more work that remains
before any general conclusions can be drawn.

The practical validation of our approach so far was per-
formed on the HotDraw framework. Although a real-world
and popular framework, HotDraw still remains a rather
small-scale artifact. The specific reason for first perform-
ing some small-scale experiments is that we wanted to fine
tune our approach in a first stage, in order to be able to test
it in an industrial environment only later on. As such, we
required a controlled setting, in which we had many dif-
ferent, fixed and stable versions of the framework at our
disposal. Such is very difficult to achieve in an industrial
environment. Quite surprisingly, we were able to identify
some important flaws and inconsistencies in the design of
the HotDraw framework, despite the fact that it is regarded
as a high-quality framework, is often cited as the prototyp-
ical example of a well designed framework, has been used
many times and has known many revisions. This leads us
to believe that our approach performs quite well. Further-
more, by incorporating automatic extraction techniques for
design patterns, their intra- and interdependencies and the
transformations applied to them, we effectively improve the
scalability of our approach, which leaves us confident that
the approach will be valuable on large-scale frameworks as
well.

9. Conclusion

In this paper, we have argued that elaborate support for
framework-based software evolution can be provided if ex-
plicit documentation of the framework’s design, its instan-



tiation and evolution is available. The support is based on
active and declarative documentation by means of metapat-
terns and their associated transformations. This allows us
to provide automated transformations that guide develop-
ers when instantiating the framework, by propagating the
appropriate changes, as well as application upgrading facil-
ities based on these explicit transformations. By means of
two typical examples taken from a real-world framework,
we have shown how the approach works in practice and can
be used to improve the framework-based software develop-
ment process.

References

[1] K. Beck and R. Johnson. Patterns Generate Architectures.
In Proceedings of the European Conference on Object-
Oriented Programming, 1994.

[2] J. M. Brant. Hotdraw. Master’s thesis, University of Illinois
at Urbana Champaign, 1995.

[3] G. Butler and P. D́enomḿee. Documenting Frameworks to
Assist Application Developers, chapter 7. John Wiley and
Sons, 1999.

[4] I. Corporation. Intellij idea, http://www.intellij.com/idea.
[5] W. De Meuter, M. D’Hondt, S. Goderis, and T. D’Hondt.

Reasoning with Design Knowledge for Interactively Sup-
porting Framework Reuse. InProc. of the SCASE (Soft Com-
puting applied to Software Engineering) Conf., 2001.

[6] W. K. Edwards. Flexible Conflict Detection and Manage-
ment in Collaborative Applications. InProc. Symp. User
Interface Software and Technology, ACM Press, 1997.

[7] M. Fayad and D. C. Schmidt. Object-Oriented Application
Frameworks.Communications of the ACM, 40(10), 1997.

[8] M. S. Feather. Detecting Interference when Merging Speci-
fication Evolutions. InProc. 5th Int’l Workshop Softw. Spec-
ification and Design, ACM Press, 1989.

[9] G. Florijn, M. Meijers, and P. van Winsen. Tool Support
for Object-Oriented Patterns. InProceedings of ECOOP’97,
1997.

[10] D. Gruijs. A Framework of Concepts for Representing
Object-Oriented Design and Design Patterns. Master’s the-
sis, Utrecht University, 1997.

[11] M. Hakala, J. Hautam̈aki, K. Koskimies, J. Paakki, A. Vil-
jamaa, and J. Viljamaa. Annotating Reusable Software Ar-
chitectures with Specialization Patterns. InProceedings of
the Working IEEE/IFIP Conference on Software Architec-
ture, pages 171–180, 2001.

[12] M. Hakala, J. Hautam̈aki, K. Koskimies, J. Paakki, A. Vil-
jamaa, and J. Viljamaa. Generating Application Devel-
opment Environments for Java Frameworks. InProceed-
ings of the 3rd International Conference on Generative and
Component-Based Software Engineering (GCSE’01), pages
163–176, 2001.

[13] S. Horwitz, J. Prins, and T. Reps. Integrating Non-
Interfering Versions of Programs.ACM Trans. Program-
ming Languages and Systems, 11(3):345–387, 1989.

[14] O. T. International. The Eclipse Platform,
http://www.eclipse.org.

[15] R. Johnson. Documenting Frameworks Using Patterns. In
Proc. of the OOPSLA Conf. on Object-Oriented Program-
ming, Systems, Languages and Applications, 1992.

[16] C. Lucas. Documenting Reuse and Evolution with Reuse
Contracts. PhD thesis, Departement Informatica, Vrije Uni-
versiteit Brussel, 1997.

[17] M. Meijers. Tool Support for Object-Oriented Design Pat-
terns. Master’s thesis, Utrecht University, 1996.

[18] K. Mens, I. Michiels, and R. Wuyts. Supporting Software
Development through Declaratively Codified Programming
Patterns. InProc. Int. Conf. Software Engineering and
Knowledge Engineering, 2001.

[19] T. Mens. A Formal Foundation for Object-Oriented Soft-
ware Evolution. PhD thesis, Departement Informatica, Vrije
Universiteit Brussel, 1999.

[20] T. Mens and T. Tourẃe. A Declarative Evolution Framework
for Object-Oriented Design Patterns. InProc. Int. Conf. Soft-
ware Maintenance. IEEE Computer Society, 2001.

[21] S. Moser and O. Nierstrasz. The Effect of Object-Oriented
Frameworks on Developer Productivity.IEEE Computer,
29(9):45–51, 1996.

[22] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois at Urbana Champaign,
1992.

[23] A. Ortigosa, M. Campo, and R. M. Salomon. Enhanc-
ing Framework Usability through Smart Documentation. In
Proc. of the Argentinian Symposium on Object Orientation,
pages 103–117, 1999.

[24] W. Pree.Design Patterns for Object-Oriented Software De-
velopment. Addison-Wesley/ACM Press, 1995.

[25] M. Rettig. Nobody Reads Documentation.Communications
of the ACM, 34(7):19–24, 1991.

[26] D. Roberts, J. Brant, and R. Johnson. A Refactoring Tool
for Smalltalk.Theory and Practice of Object Systems, 1997.

[27] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse Con-
tracts: Managing the Evolution of Reusable Assets. InProc.
OOPSLA96 Conf., ACM Sigplan Notices, 1996.

[28] P. Tonella and G. Antoniol. Inference of Object-Oriented
Design Patterns. Journal of Software Maintenance,
13(5):309–330, 2001.

[29] T. Tourwé. Automated Support for Framework-Based Soft-
ware Evolution. PhD thesis, Departement Informatica, Vrije
Universiteit Brussel, 2002.

[30] P. van Winsen. (Re)engineering with Object-Oriented De-
sign Patterns. Master’s thesis, Utrecht University, 1996.

[31] D. M. Weiss and R. Lai.Software Product Line Engineering:
A Family-Based Software Development Process. Addison-
Wesley, 1999.

[32] R. Wuyts. Declarative Reasoning about the Structure of
Object-Oriented Systems. InProc. TOOLS USA’98, IEEE
Computer Society Press, pages 112–124, 1998.

[33] R. Wuyts.A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Departement Informatica, Vrije Univer-
siteit Brussel, 2001.

[34] S. S. Yau, J. S. Collofello, and T. MacGregor. Ripple Ef-
fect Analysis of Software Maintenance. InProc. COMPSAC
Conf.IEEE Computer Society Press, 1978.


