Beyond the Refactoring Browser:
Advanced Tool Support for Software Refactoring

Tom Mens Tom Tour® Francisca Miioz
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium
Email: { tom.meng tom.tourwe| fmunozbr} @vub.ac.be

Abstract cess of performing these changes manually, it still requires
him to apply the earlier identification steps by hand.
Current refactoring tools only provide support for per- In order to find out which parts of the source code need

forming selected refactorings. We show how tool support to be refactored, we suggest to rely on the notiorbad
can be provided for the preparatory phases of refactor- smells Originally coined by Kent Beck [6], the term refers
ing as well, by determining when a software application to structures in the code that suggest (sometimes scream
should be refactored and which refactoring(s) in particu- for) the possibility of refactoring Once bad smells have
lar should be applied. We implemented a tool to detect been identified, refactorings need to be proposed to resolve
bad smells and to propose adequate refactorings based orthese smells. Automated support is crucial here, due to the
these smells, and validated this tool by carrying out exper- large number of refactorings that are available.
iments in three concrete case studies: the Soul application, In this paper we propose an advanced refactoring tool
the Smalltalk Collection hierarchy, and the HotDraw appli- that automates the three steps of the refactoring process.
cation framework. We also show how our tool complementsStep 1 identifies bad smells in the program code. Step 2
the Smalltalk Refactoring Browser. proposes refactorings to remove these bad smells. Step 3
uses the existing refactoring browser to apply the proposed
refactorings, after manual inspection by the programmer.
1 Introduction As a proof of concept, we ?mplemented our Fool in \ﬁe
sualWorks Smalltalkbject-oriented programming environ-
o)) ment, of which theRefactoring Browsef10] is an integral
Refactoring is the process of improving the structure of art \We show how our tool complements, and is integrated
an object-oriented application without changing its over- it this browser, and illustrate the added value of our tool

all behaviour [9]. Although the definiFion of refa(_:torin.g by means of a number of experiments performed on three
has been around for several years, its importance in objectyggjistic case studies. We also discuss some scalability is-

oriented development and reengineering has only recentlyg;,as we encountered when carrying out our experiments.
been acknowledged. Most major integrated development

environments for object-oriented programming languages)

incorporate support for refactoring, and refactoring is more 2 Advanced Refactoring Tool Support

and more discussed in the context of reengineering legacy

applications [5, 12]. The tool we propose has a straightforward and easy to
We can identify three distinct steps in the refactoring use interface. Rather than being fully automated, the tool is

process: (1) detect when an application should be refac-driven by the programmer, who selects a particular source

tored; (2) identify which refactorings should be applied and code entity to be analysed for bad smells, and then chooses

where; (3) perform the refactorings. The support offered by one of the proposed opportunities for refactoring. This

most current development environments is limited to step 3.then triggers the refactoring engine that applies the selected

Most tools present a list of refactorings to the developer, andrefactoring.

upon selection of any refactoring from this list, automati- To provide this kind of support, we integrated our tool

cally perform the corresponding changes. Although this re- with the Refactoring Browsernf VisualWorks Smalltalk

lieves the developer from the difficult and error-prone pro- which already provides support for applying user-selected

Browser Edit Find “ew Package Class Frotocol Method Tools Help

El %&l le ‘/jl ml éé | [hl ﬁl *ml #Ql #l % Find I OrderedCollection

Packae | H\erarchyl Instance | Elassl Shared \."ariahlal Instance Wariable
Local Image i’ & LinkedWeakassocistionDicla]| faccessing =l ;I
: Base VisualWorks " + LocalScope adding
- Kernel * &b MappedPalette hinary storage
[A] System * MessagesSend Copying
-] Collections * Metaclass enumerating
¢ Collections-Suppor | MethodDictionary removing
-t Collections-Abstrac & NamedChangeSet esting
i & MNameSpace user interface
nrivate
[[
=l vy <[#replaceMagicMumber],<[OrderedCollection],[0]=> ;[

<[treplaceMagichumber] <[OrderedCollection],[1]=>

+-abhsolute metrics
Chasrmctonngs

B Add an instance variable
Add subclass

Push up instance variahle

Transform this class in a sibling Enter name of the new class
Push down instance variable

El-padt smeils |
I this a large class?

Ate there magic numbers? |
ls this class a dataclass Feoncel
1s there speculative generality? &
|s the interface being refused?
1s the interface inappropriate?
Are there long methods?

Ate there duplicated methods?

Execute

Class: Core.OrderedCollection I Parcel: nong I Package: Collections-Sequenceable

[|

Figure 1. Tool support for detecting bad smells and proposing refactorings

refactorings. We augmented this browser witlSa@ul tab user to select which of the current subclasses should be-
(see Figure 1), which exists next to the other tabs alreadycome children of the new subclass. If desired, more specific
available (such as th8ource Commentand Code Critic preconditions may be specified for each refactoring, or user-
tabs). TheSoultab offers a list of logic queries that can defined refactorings may be added.

directly be invoked by_ the user from within ttf&malltalk Propose refactorings. This category contains only one
browser. Upon selection of a class in th_e upper left pane, query Propose refactorings for this clasdt computes all
the developer can select a query and click onkxecute 54 smells of the selected class and proposes refactorings
button. As aresult, the logic query will be executed and the for these bad smells. Figure 1 illustrates that this returns
results will be shown in the lower right pane. 4 results for the currently select@tderedCollection

As can be seen in Figure 1, our tool offers several cate-class: 3 instances of the user-defined refactoniag
gories of queries, and the developer is free to use any complaceMagicNumber and one instance of the composite
bination of them in any order: refactoring pushUpMethodToNewClassThis list of pro-
Bad smells. This category contains all the queries that we posed refactorings only mentions refactorings for which the
implemented for detecting a particular bad smell. The re- preconditions are satisfied. This is achieved by invoking
sult of applying a bad smell query is a list 8malltalken- the appropriate method for checking preconditions in the
tities (e.g., classes or objects) that are qualified with their Smalltalkrefactoring engine. From the list of all proposed
bad smell. As an examplés there speculative generality? ~ refactorings, the user can directly execute refactorings by
one of the bad smells enumerated by Kent Beck and Mar-invoking the appropriate method in ti@malltalkrefactor-
tin Fowler in [6], detects a number of different problems, ing engine. For example, in Figure 1 we see that select-
including the fact that a method has unused parameters. ing the composite refactoringushUpMethodToNewClass

Refactorings. This category provides an alternative way OPeNs @ new window in which a new superclass needs to
to access the refactoring engineSralltalk Most of the e specified, to which the method will be pushed up.
gueries in this category are wrappers that execute the correMetrics. We have also implemented a category of logic
sponding refactoring in thRefactoring Browser For ex- gueries that compute object-oriented metrics. These can
ample, Add subclassnvokes the built-in refactoring that be used to detect those places in the code that are wor-
creates a new subclass of the current class, and allows théhy of further investigation because they are likely candi-

dates for bad smells. Once these locations in the sourceclass hierarchy, and the interfaces it defines. To automate
code have been identified, we can use our other queries tdhe detection of inappropriate interfaces in a hierarchy of
analyse these parts of the program in more detail. Mari- classes, we use the following algorithm: (1) retrieve all di-
nescu [8] used object-oriented metrics to identify structural rect subclasses of the root class of the hierarchy; (2) com-
weaknesses and bad smells in object-oriented class hierampute all possible subsets of this set of classes; (3) for each of
chies. Simoret al. [11] also used metrics to identify bad these subsets, compute the intersection of the interfaces of

smells and propose adequate refactorings. all classes contained in the subset; (4) in each of the result-
ing intersections, exclude all those methods that are present
3 Selected Bad Smells in the interface of the root class of the hierarchy. Clearly,

this algorithm grows exponentially with the number of sub-
. .) classes, because we compute all possible subsets. There-
In this section, we explain the three bad smells that we ¢,e \ye restrict it by only considering subsets of three or
have chosen to detect during our experiments. more classes that should share an interface of two or more
methods.
Unused Parameter There are two solutions to resolve the problem of inap-

One of the things that needs to be detected by the SpeCupropriate interfaces. A developer can either insert an inter-

. . g mediate superclass between the root class of the hierarchy
lative generality bad smell of Beck and Fowler [6] is the . .
.~ _and the subclasses that implement a shared interface, or he
presence of unused method parameters. A method defines ; .
P . _Can augment the interface of the root class of the hierarchy
an unused parameter if it includes a formal parameter in

o . ST . with the interface shared by the subclasses. These two so-
its signature that is never used in its implementation. The .

; . utions correspond to aaddClassand araddMethodefac-
implementation of a method may span several classes, o

course, since the method can be overriding a method fromtorlng respectively. ThaddMethodrefactoring requires as

. . . ._arguments a list of methods to be added and the root class
a superclass or be overridden in a subclass. Given a partic;

. to which they should be added. Similarly, taddClass
ular class, the developer does not know beforehand which . . .
.) : refactoring requires as arguments the root of the hierarchy, a
method implementation he has to inspect, nor does he kno

) . Mist of subclasses of this root class that should become sub-
the highest superclass that implements the method, which . .
classes of the newly introduced class, and a list of selectors

subclasses of the class overr|de_wh|ch mgthods, and Whlcr}hat are shared by the subclasses and that should be imple-
subclasses don't. Because of this, detecting the occurrence

of an unused method parameter manually is a very hard and‘rl ented in the newly introduced class.
time consuming process. It boils down to checking whether
the highest definition of the method and none of its over- pyplicated Methods
riding methods uses this parameter. Therefore, we need to
traverse the parse tree of each of these methods to find oubuplicated methods, or duplicated code in general, seri-
whether or not the parameter is used. ously hamper software evolvability, since it becomes easy
Unused parameters can be removed by applyingahe to oversee a method implementation when bug fixes or
moveParameterefactoring. This refactoring makes sure changes should be made. Manual detection of duplicated
that the unused parameter is removed from a particularmethods is not straightforward. The developer has to walk
method, all of its overriding methods, and all of the meth- through each method implementation in a class hierarchy,
ods callers. The refactoring requires as arguments the clas@nd mutually compare each of these methods, statement
in which the method is defined, the method defining the un- by statement, to verify whether they are duplicated or not.
used parameter, and the unused parameter itself. Given the fact that methods may consist of many different
statements, and may use different variable names, although
this does not affect the duplication, this is a hard and time
consuming task.
A class defines an inappropriate interface if some of its sib- The algorithm we use to deteduplicated methodss
ling classes define an interface that is not fully supported by based on a statement-by-statement comparison of the parse
the class itself, nor by some of its other siblings. Good inter- trees of the methods, rather than comparing their string rep-
faces are extremely important when designing flexible andresentation. This ensures that white spaces, comments, and
reusable object-oriented systems. Any situation in which renamings of temporary variables can be ignored. One par-
the interface of a class is inappropriate, incomplete or un-ticular restriction we took in this article, is to apply the du-
clear should thus be avoided at all costs. plicated method smell only to siblings of a particular class.
Detecting the inappropriate interface bad smell manu- Although this is a very strict definition of duplicated meth-
ally is quite difficult because one has to analyse an entireods, it already allowed us to identify some major design

Inappropriate Interfaces

flaws, as our experiments will show. In the following subsections, we first report upon the bad
The refactorings that can be applied to remove dupli- smells our tool identified. Then, we discuss the refactorings

cated methods depend upon the particular context in whichthat were proposed based on these bad smells, and we elab-

this bad smell occurs: (1) if two or more siblings contain orate upon the refactorings that were effectively applied to

a duplicated method, and their common superclass doesemove the bad smells.

not define that method, a singleshUpMethodefactoring

pulls up the method to the superclass and removes it from4.2 Unused Parameter Revisited

the siblings; (2) if only a small number of siblings contain

a duplicated method, and their common superclass does not |n the Soulapplication we detected 5 occurrences of the

define that method, but the remaining siblings should notin- ynysed parameter bad smell. Based on these occurrences,

herit the method implementation, aaldClassrefactoring a number ofemoveParameterefactorings were proposed.

should first introduce an intermediate superclass betweenye investigated each of these refactoring opportunities to

the siblings, and afterwards gushUpMethodefactoring check and decided to apply all of them.

should push up the duplicated method from the siblings to The Collection hierarchy contains six instances of the

the newly introduced intermediate superclass; (3) if some ynysed parameter bad smell. $&moveParameterefac-

siblings contain a duplicated method, and the common Su-torings were proposed based on these bad smells. A closer

perclass also defines that method,aaliClassrefactoring jnvestigation of the source code revealed that they should

should introduce an intermediate superclass, after which they|| pe applied.

duplicated method should be pushed up to this new class by | the HotDraw framework, the unused parameter bad

apushUpMethodefactoring. smell occured 26 times. Based on these bad smells, 26
removeParameterefactorings were proposed. Two of the
4 Experiments proposed refactorings were effectively applied. Because

the other 24 bad smells and proposed refactorings all oc-
curred in the sam&oolState class, we decided to inves-

This section summarises the experiments we conductedjo e this class in more detail. Analysis revealed that the
to validate our approach. We first introduce the three Case€.ass was actually defined in the wrong class hierarchy. It

studies on which we tested our techniques, and then reportyould be defined as a subclass of thetroller class

upon the results we obtained for these case studies in the, .. is part of the Model-View-Controller paradigm. in-

subsequent subsections. deed,Controller deals with exactly the same events as
ToolState , and defines all of the methods which were

4.1 Selected case studies reported to have an unused parameterTdafiState be-
comes a subclass Gbntroller , all unused parameter oc-
The first selected application Soul [14], an inter- currences simply disappear. Hence, the actual refactoring

preter for a logic programming language developed at ourthat needs to be applied isx@oveClassefactoring.

lab. Its implementation consists of 150 classes and 1966

different method implementations, which makes it a small 4.3 Inappropriate Interface Revisited

to medium-sized applicatiorSoulis a research prototype,

which is being worked on by a team of developers. As such, The Soul application contains four inappropriate inter-

it is under constant evolution, which makes it an ideal sub- faces. Based on these occurrences, a combinatiailaf

ject for our experiments. ClassandaddMethodefactorings was proposed, that either
The second selected application is 8malltalk Collec- insert an intermediate superclass or implement the method

tion hierarchy. The hierarchy consists of 101 classes andin the complete class hierarchy. We decided to apply one

1999 methods. It is an essential part of 8malltalkpro- of the proposedddMethodrefactorings, but the proposed

gramming environment, and as such it is heavily optimised, addClassrefactorings were not applied. Instead, we de-

and not much subject to changes. Itis interesting to analysecided to change existing inheritance relationships between

this hierarchy to find out whether there are still any remain- the involved classes because this resulted in an improved

ing bad smells and opportunities for refactoring. and cleaner design. Additionally, it also solved all reported
Afinal application iHotDraw[3], a small-scale applica- bad smells.
tion framework in the domain of structured drawing editors. In the Collection hierarchy we found 4 occurrences of

It is a popular, successful, well-documented framework that the inappropriate interface bad smell. Based on these bad
has undergone many evolutions. As such, it is very interest-smells, 8 refactorings were proposedaddClassefactor-

ing to verify whether we can still identify some design flaws ings that add an intermediate superclass arddMethod
among its 69 classes and 886 method implementations. refactorings that provide an implementation for the detected

methods in the entire class hierarchy. Of these 8 propos-cated methods. First of allRectangleFigure de-
als, we decided to apply 4 proposed refactorings to re-fines a methodrectangle: and EllipseFigure
structure theCollection hierarchy We searched for other defines a methodellipse: that both contain the
refactoring opportunities after these refactorings had beensame method body. SecondIRectangleFigure and
applied. Some duplicated code was detected, and 14 adEtllipseFigure both have exactly the same implemen-
ditional pushUpMethodefactorings were proposed for all tation for the displayFigureOn: method. Because
methods that are duplicated. Because intermediate superRectangleFigure and EllipseFigure are subclasses
classes have been introduced by the previously appliedof Figure , we can not simply pull up the methods.
refactorings, each of these newly proposed refactorings carBoth rectangle: andellipse: are initialisation meth-
be executed to remove the duplication. ods that do not belong to thEigure class, and the
For theHotDraw framework, only one occurrence of the displayFigureOn: method is already defined as an ab-
inappropriate interface bad smell was detected in the classestract method in clasSigure . Therefore, we propose
CompositeFigure andViewAdapterFigure thathavea to rename theectangle: and ellipse: methods so
common superclagdgure . Based on this bad smell, one that they share the same name, and then performddn
addClassand oneaddMethodefactoring is proposed. Nei- Classand pushUpMethodefactoring, to add an interme-
ther of these two refactorings is applied, however. A closer diate superclass betweé&igure andRectangleFigure
inspection of the involved methods reveals that they all form andEllipseFigure and pull up thalisplayFigureOn:
part of the standar¥isualWorksframework, and that they = method fromRectangleFigure andEllipseFigure to
are actually implemented by thésualComponent class, this new intermediate superclass. Applying this refactoring

which is a common superclass of bathmpositeFigure also opens the opportunity to remove the code duplication
andViewAdapterFigure . Since our detection algorithm in the displayFilledOn: and displayOutlineOn:
only checks the classes belonging to thetDraw frame- methods in theRectangleFigure and EllipseFigure

work, it did not take into account methods implemented by classes.
the VisualComponent class. The resulting bad smell is
thus actually a false positive. 4.5 Discussion

4.4 Duplicated Method Revisited From the experiments we learned a number of things: in
each of the three case studies, almost all of the bad smells
that were detected pinpointed situations that were worthy of

The Soul application only contains a single occur- , . .
rence of the duplicated method bad smell: the classesOUr attention. Of the 65 bad smells we identified, there were

QuotedCodeTerm and SmalltalkTerm contain exactly only 5 false positives.)
the same implementation for thgintForCompileOn: The proposed refactorings were not always the ones that

method. Moreover, these two classes have a common suY/¢'® needed. In some cases, the user needed to perform
perclassSymbiosisTerm , which has no other subclasses. S°M€ extra analysis'to identify which refactoring was nec-
A pushUpMethodrefactoring is thus proposed, that pulls essary. We are (_:onvmced that the rgles for proposing refac-
up theprintForCompileOn: method. Clearly, this refac- torings can be fine-tuned to further increase their accuracy

toring should be applied to remove the code duplication and@"d usefulness. For example, we could add more contextual
improve the structure of the application information, such as the simultaneous occurrence of multi-

In the Collection class hierarchy, seven duplicated ple bad smells in the same or related software entities.

method bad smells were identified. Based on these ba Finally, we didn’t encounter a big difference in the num-

smell occurrences, 7 refactorings were proposed. 4 of them er of det_ected bad smells_betyveen the thre_e cons_ldered

were simplepullUpMethod refactorings, and 3 of them case studies. Even ti@ollectlophlerarchy, that is consid-

were composite refactorings consisting of the introduction ered to be very stable, co_ntamed a number of bad smells

of an intermediate superclass followed bgwlUpMethod that could be removed easily.

The intermediate superclass is introduced first since it is not

possible to simply pull up the method to the common su- 5 Scalability

perclass, because this superclass already implements it, or

because it has too many other subclasses. We decided not Detection of some bad smells can be very computation

to apply the composite refactorings since we would be in- intensive. As such, it is not always feasible to check them

troducing a class which would define only one method. The on a large code base. Therefore, we could combine our

four pushUpMethodefactoring proposals could be applied, approach with more lightweight approaches that optimise

however. detection of some bad smells, at the expense of losing pre-
The HotDraw framework contains only two dupli- cision. For example, a limited subset of bad smells can be

expressed in terms of regular expressions that are more efthe already availabl®efactoring Browser The tool was
ficient to compute. Irbmalltalk VisualWorkswe can use validated by detecting three different bad smells for three
the Code Critictool for this purpose, which is hint-like different case studies on medium-sized object-oriented ap-
tool [7] that has been extended to include global design plications. All detected bad smells pinpointed situations
information. This tool can detect a number of simple bad that were worthy of our attention, and many of the proposed
smells, but remains limited in scope. For example, none of refactorings were actually useful to resolve the bad smells.
the bad smells used in our experiments are detectable with
Code Critic References

To detect duplicated methods we could rely on more effi-
cient approaches that have been reported upon in literature. [1] M. Balazinska, E. Merlo, M. Dagenais, B. Lag, and

For gxample, Du_casﬁ al._[4] Ske_tCh an appr_oac_h to detect K. Kontogiannis. Advanced clone analysis to support object-
duplicated code in an (object-oriented) application based on oriented system refactoring. IRroceedings 7th Working

line-based string matching. Baxtet al. [2] uses a more Conf. Reverse Engineeringages 98—107. IEEE Computer
flexible, but more computation-intensive approach by rely- Society Press, 2000.

ing on a ful-fledged parser. Our approach also takes the full [2] I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L. Bier.
parse tree into account, which allows us to detect code that Clone detecting using abstract syntax trees.Piac. Int'l

is similar but not entirely identical. Balazinséi al.[1] im- Conf. Software Maintenanc@ages 368-377. IEEE Com-
plemented an automated refactoring tool to factorise cloned __ Puter Society Press, 1998.

code, but our refactoring tool is more generic because it can [3] J. M. Brant. Hotdraw. Master’s thesis, University of lllinois
' at Urbana Champaign, 1995.

be applled for a”Y kind of bad smell. . [4] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
Since one particular bad smell can often be remedied by pendent approach for detecting duplicated code.Prioc.

a multitude of refactorings, a large list of refactorings will Intl Conf. Software Maintenangepages 109-118. IEEE

be proposed in practice. To keep this manageable, we can Computer Society Press, September 1999.

use a number of techniques: [5] R. Fanta and V. Rajlich. Reengineering Object-Oriented

(1) Induce an order on the proposed refactorings. For exam- Code. InProc. Int. Conf. on Software Maintenanqeages

ple, aremoveMethodefactoring will be listed before ge- 238-246. IEEE Computer Society Press, March 1998.

moveParameterefactoring for the same method, since the [6] M. Fowler. Refactoring: Improving the Design of Existing

S . Code Addison-Wesley, 1999.
application of the former refactoring makes the latter one [7] S. Johnson. Lint, a C Program Checker, 1978.

obsolete. . [8] R.MarinescuMeasurement and Quality in Object-Oriented
(2) Use user-configurable threshold values. For example, Design PhD thesis, Politehnica University of Timisoara,
only detect bad smells (and their associated proposed refac- 2002.

torings) if at least three classes and/or three methods are [9] W. F. Opdyke. Refactoring Object-Oriented Frameworks

involved. PhD thesis, University of lllinois at Urbana Champaign,
(3) Use composite refactorings. For example, the 1992.

pushUpMethodToNewClass refactoring shown in Figure 1 [10] D. Roberts, J. Brant, and R. Johnson. A Refactoring Tool
is in essence a composite refactoring that includes the prim- for Smalitalk. - Theory and Practice of Object Systems

3(4):253-263, 1997.

. S . .. [11] F. Simon, F. Steinlirckner, and C. Lewerentz. Metrics
(4) Use a visualisation mechanism. This is for example pro- Based Refactoring. IRroc. 5th European Conference on

posed by van Emden and Moonen [13] who combine the Software Maintenance and Reengineeripmges 30—38.
detection of bad smells idavawith a visualisation mecha- IEEE Computer Society Press, 2001.

nism. [12] L. Tokuda and D. S. Batory. Evolving object-oriented de-

(5) Use metrics. Metrics are another way to address scal- signs with refactorings.Automated Software Engineering

ability, and have been investigated in the context of bad 8(1):89-120, 2001.

smells and refactorings in [11, 8]. [13] E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. IRAroc. 9th Working Conference on
Reverse EngineeringEEE Computer Society Press, Octo-

itive refactoringsaaddClassandpushUpMethod

6 Conclusion ber 2002.
[14] R.Wuyts.A Logic Meta-Programming Approach to Support
In this paper, we proposed an advanced refactoring tool ~ the Co-Evolution of Object-Oriented Design and Implemen-
that also provides support for the earlier phases of the refac- tation. PhD thesis, Departement Informatica, Vrije Univer-

toring process, by detecting bad code smells in a software ~ S'teit Brussel, 2001.

application, and proposing refactorings that could be ap-
plied to remove these smells. We integrated our tool in the
Smalltalkdevelopment environment, and integrated it with

