
Beyond the Refactoring Browser:
Advanced Tool Support for Software Refactoring

Tom Mens Tom Tourẃe Francisca Mũnoz
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

Email: { tom.mens| tom.tourwe| fmunozbr}@vub.ac.be

Abstract

Current refactoring tools only provide support for per-
forming selected refactorings. We show how tool support
can be provided for the preparatory phases of refactor-
ing as well, by determining when a software application
should be refactored and which refactoring(s) in particu-
lar should be applied. We implemented a tool to detect
bad smells and to propose adequate refactorings based on
these smells, and validated this tool by carrying out exper-
iments in three concrete case studies: the Soul application,
the Smalltalk Collection hierarchy, and the HotDraw appli-
cation framework. We also show how our tool complements
the Smalltalk Refactoring Browser.

1 Introduction

Refactoring is the process of improving the structure of
an object-oriented application without changing its over-
all behaviour [9]. Although the definition of refactoring
has been around for several years, its importance in object-
oriented development and reengineering has only recently
been acknowledged. Most major integrated development
environments for object-oriented programming languages
incorporate support for refactoring, and refactoring is more
and more discussed in the context of reengineering legacy
applications [5, 12].

We can identify three distinct steps in the refactoring
process: (1) detect when an application should be refac-
tored; (2) identify which refactorings should be applied and
where; (3) perform the refactorings. The support offered by
most current development environments is limited to step 3.
Most tools present a list of refactorings to the developer, and
upon selection of any refactoring from this list, automati-
cally perform the corresponding changes. Although this re-
lieves the developer from the difficult and error-prone pro-

cess of performing these changes manually, it still requires
him to apply the earlier identification steps by hand.

In order to find out which parts of the source code need
to be refactored, we suggest to rely on the notion ofbad
smells. Originally coined by Kent Beck [6], the term refers
to structures in the code that suggest (sometimes scream
for) the possibility of refactoring. Once bad smells have
been identified, refactorings need to be proposed to resolve
these smells. Automated support is crucial here, due to the
large number of refactorings that are available.

In this paper we propose an advanced refactoring tool
that automates the three steps of the refactoring process.
Step 1 identifies bad smells in the program code. Step 2
proposes refactorings to remove these bad smells. Step 3
uses the existing refactoring browser to apply the proposed
refactorings, after manual inspection by the programmer.

As a proof of concept, we implemented our tool in theVi-
sualWorks Smalltalkobject-oriented programming environ-
ment, of which theRefactoring Browser[10] is an integral
part. We show how our tool complements, and is integrated
with this browser, and illustrate the added value of our tool
by means of a number of experiments performed on three
realistic case studies. We also discuss some scalability is-
sues we encountered when carrying out our experiments.

2 Advanced Refactoring Tool Support

The tool we propose has a straightforward and easy to
use interface. Rather than being fully automated, the tool is
driven by the programmer, who selects a particular source
code entity to be analysed for bad smells, and then chooses
one of the proposed opportunities for refactoring. This
then triggers the refactoring engine that applies the selected
refactoring.

To provide this kind of support, we integrated our tool
with the Refactoring Browserof VisualWorks Smalltalk,
which already provides support for applying user-selected

Figure 1. Tool support for detecting bad smells and proposing refactorings

refactorings. We augmented this browser with aSoul tab
(see Figure 1), which exists next to the other tabs already
available (such as theSource, Commentand Code Critic
tabs). TheSoul tab offers a list of logic queries that can
directly be invoked by the user from within theSmalltalk
browser. Upon selection of a class in the upper left pane,
the developer can select a query and click on theExecute
button. As a result, the logic query will be executed and the
results will be shown in the lower right pane.

As can be seen in Figure 1, our tool offers several cate-
gories of queries, and the developer is free to use any com-
bination of them in any order:

Bad smells. This category contains all the queries that we
implemented for detecting a particular bad smell. The re-
sult of applying a bad smell query is a list ofSmalltalken-
tities (e.g., classes or objects) that are qualified with their
bad smell. As an example,Is there speculative generality?,
one of the bad smells enumerated by Kent Beck and Mar-
tin Fowler in [6], detects a number of different problems,
including the fact that a method has unused parameters.

Refactorings. This category provides an alternative way
to access the refactoring engine ofSmalltalk. Most of the
queries in this category are wrappers that execute the corre-
sponding refactoring in theRefactoring Browser. For ex-
ample, Add subclassinvokes the built-in refactoring that
creates a new subclass of the current class, and allows the

user to select which of the current subclasses should be-
come children of the new subclass. If desired, more specific
preconditions may be specified for each refactoring, or user-
defined refactorings may be added.

Propose refactorings. This category contains only one
queryPropose refactorings for this class. It computes all
bad smells of the selected class and proposes refactorings
for these bad smells. Figure 1 illustrates that this returns
4 results for the currently selectedOrderedCollection

class: 3 instances of the user-defined refactoringre-
placeMagicNumber, and one instance of the composite
refactoringpushUpMethodToNewClass. This list of pro-
posed refactorings only mentions refactorings for which the
preconditions are satisfied. This is achieved by invoking
the appropriate method for checking preconditions in the
Smalltalkrefactoring engine. From the list of all proposed
refactorings, the user can directly execute refactorings by
invoking the appropriate method in theSmalltalkrefactor-
ing engine. For example, in Figure 1 we see that select-
ing the composite refactoringpushUpMethodToNewClass
opens a new window in which a new superclass needs to
be specified, to which the method will be pushed up.

Metrics. We have also implemented a category of logic
queries that compute object-oriented metrics. These can
be used to detect those places in the code that are wor-
thy of further investigation because they are likely candi-

dates for bad smells. Once these locations in the source
code have been identified, we can use our other queries to
analyse these parts of the program in more detail. Mari-
nescu [8] used object-oriented metrics to identify structural
weaknesses and bad smells in object-oriented class hierar-
chies. Simonet al. [11] also used metrics to identify bad
smells and propose adequate refactorings.

3 Selected Bad Smells

In this section, we explain the three bad smells that we
have chosen to detect during our experiments.

Unused Parameter

One of the things that needs to be detected by the specu-
lative generality bad smell of Beck and Fowler [6] is the
presence of unused method parameters. A method defines
an unused parameter if it includes a formal parameter in
its signature that is never used in its implementation. The
implementation of a method may span several classes, of
course, since the method can be overriding a method from
a superclass or be overridden in a subclass. Given a partic-
ular class, the developer does not know beforehand which
method implementation he has to inspect, nor does he know
the highest superclass that implements the method, which
subclasses of the class override which methods, and which
subclasses don’t. Because of this, detecting the occurrence
of an unused method parameter manually is a very hard and
time consuming process. It boils down to checking whether
the highest definition of the method and none of its over-
riding methods uses this parameter. Therefore, we need to
traverse the parse tree of each of these methods to find out
whether or not the parameter is used.

Unused parameters can be removed by applying there-
moveParameterrefactoring. This refactoring makes sure
that the unused parameter is removed from a particular
method, all of its overriding methods, and all of the meth-
ods callers. The refactoring requires as arguments the class
in which the method is defined, the method defining the un-
used parameter, and the unused parameter itself.

Inappropriate Interfaces

A class defines an inappropriate interface if some of its sib-
ling classes define an interface that is not fully supported by
the class itself, nor by some of its other siblings. Good inter-
faces are extremely important when designing flexible and
reusable object-oriented systems. Any situation in which
the interface of a class is inappropriate, incomplete or un-
clear should thus be avoided at all costs.

Detecting the inappropriate interface bad smell manu-
ally is quite difficult because one has to analyse an entire

class hierarchy, and the interfaces it defines. To automate
the detection of inappropriate interfaces in a hierarchy of
classes, we use the following algorithm: (1) retrieve all di-
rect subclasses of the root class of the hierarchy; (2) com-
pute all possible subsets of this set of classes; (3) for each of
these subsets, compute the intersection of the interfaces of
all classes contained in the subset; (4) in each of the result-
ing intersections, exclude all those methods that are present
in the interface of the root class of the hierarchy. Clearly,
this algorithm grows exponentially with the number of sub-
classes, because we compute all possible subsets. There-
fore, we restrict it by only considering subsets of three or
more classes that should share an interface of two or more
methods.

There are two solutions to resolve the problem of inap-
propriate interfaces. A developer can either insert an inter-
mediate superclass between the root class of the hierarchy
and the subclasses that implement a shared interface, or he
can augment the interface of the root class of the hierarchy
with the interface shared by the subclasses. These two so-
lutions correspond to anaddClassand anaddMethodrefac-
toring respectively. TheaddMethodrefactoring requires as
arguments a list of methods to be added and the root class
to which they should be added. Similarly, theaddClass
refactoring requires as arguments the root of the hierarchy, a
list of subclasses of this root class that should become sub-
classes of the newly introduced class, and a list of selectors
that are shared by the subclasses and that should be imple-
mented in the newly introduced class.

Duplicated Methods

Duplicated methods, or duplicated code in general, seri-
ously hamper software evolvability, since it becomes easy
to oversee a method implementation when bug fixes or
changes should be made. Manual detection of duplicated
methods is not straightforward. The developer has to walk
through each method implementation in a class hierarchy,
and mutually compare each of these methods, statement
by statement, to verify whether they are duplicated or not.
Given the fact that methods may consist of many different
statements, and may use different variable names, although
this does not affect the duplication, this is a hard and time
consuming task.

The algorithm we use to detectduplicated methodsis
based on a statement-by-statement comparison of the parse
trees of the methods, rather than comparing their string rep-
resentation. This ensures that white spaces, comments, and
renamings of temporary variables can be ignored. One par-
ticular restriction we took in this article, is to apply the du-
plicated method smell only to siblings of a particular class.
Although this is a very strict definition of duplicated meth-
ods, it already allowed us to identify some major design

flaws, as our experiments will show.
The refactorings that can be applied to remove dupli-

cated methods depend upon the particular context in which
this bad smell occurs: (1) if two or more siblings contain
a duplicated method, and their common superclass does
not define that method, a singlepushUpMethodrefactoring
pulls up the method to the superclass and removes it from
the siblings; (2) if only a small number of siblings contain
a duplicated method, and their common superclass does not
define that method, but the remaining siblings should not in-
herit the method implementation, anaddClassrefactoring
should first introduce an intermediate superclass between
the siblings, and afterwards apushUpMethodrefactoring
should push up the duplicated method from the siblings to
the newly introduced intermediate superclass; (3) if some
siblings contain a duplicated method, and the common su-
perclass also defines that method, anaddClassrefactoring
should introduce an intermediate superclass, after which the
duplicated method should be pushed up to this new class by
apushUpMethodrefactoring.

4 Experiments

This section summarises the experiments we conducted
to validate our approach. We first introduce the three case
studies on which we tested our techniques, and then report
upon the results we obtained for these case studies in the
subsequent subsections.

4.1 Selected case studies

The first selected application isSoul [14], an inter-
preter for a logic programming language developed at our
lab. Its implementation consists of 150 classes and 1966
different method implementations, which makes it a small
to medium-sized application.Soul is a research prototype,
which is being worked on by a team of developers. As such,
it is under constant evolution, which makes it an ideal sub-
ject for our experiments.

The second selected application is theSmalltalk Collec-
tion hierarchy. The hierarchy consists of 101 classes and
1999 methods. It is an essential part of theSmalltalkpro-
gramming environment, and as such it is heavily optimised,
and not much subject to changes. It is interesting to analyse
this hierarchy to find out whether there are still any remain-
ing bad smells and opportunities for refactoring.

A final application isHotDraw[3], a small-scale applica-
tion framework in the domain of structured drawing editors.
It is a popular, successful, well-documented framework that
has undergone many evolutions. As such, it is very interest-
ing to verify whether we can still identify some design flaws
among its 69 classes and 886 method implementations.

In the following subsections, we first report upon the bad
smells our tool identified. Then, we discuss the refactorings
that were proposed based on these bad smells, and we elab-
orate upon the refactorings that were effectively applied to
remove the bad smells.

4.2 Unused Parameter Revisited

In theSoulapplication we detected 5 occurrences of the
unused parameter bad smell. Based on these occurrences,
a number ofremoveParameterrefactorings were proposed.
We investigated each of these refactoring opportunities to
check and decided to apply all of them.

The Collection hierarchy contains six instances of the
unused parameter bad smell. SixremoveParameterrefac-
torings were proposed based on these bad smells. A closer
investigation of the source code revealed that they should
all be applied.

In the HotDraw framework, the unused parameter bad
smell occured 26 times. Based on these bad smells, 26
removeParameterrefactorings were proposed. Two of the
proposed refactorings were effectively applied. Because
the other 24 bad smells and proposed refactorings all oc-
curred in the sameToolState class, we decided to inves-
tigate this class in more detail. Analysis revealed that the
class was actually defined in the wrong class hierarchy. It
should be defined as a subclass of theController class,
which is part of the Model-View-Controller paradigm. In-
deed,Controller deals with exactly the same events as
ToolState , and defines all of the methods which were
reported to have an unused parameter. IfToolState be-
comes a subclass ofController , all unused parameter oc-
currences simply disappear. Hence, the actual refactoring
that needs to be applied is amoveClassrefactoring.

4.3 Inappropriate Interface Revisited

The Soul application contains four inappropriate inter-
faces. Based on these occurrences, a combination ofadd-
ClassandaddMethodrefactorings was proposed, that either
insert an intermediate superclass or implement the method
in the complete class hierarchy. We decided to apply one
of the proposedaddMethodrefactorings, but the proposed
addClassrefactorings were not applied. Instead, we de-
cided to change existing inheritance relationships between
the involved classes because this resulted in an improved
and cleaner design. Additionally, it also solved all reported
bad smells.

In the Collection hierarchy we found 4 occurrences of
the inappropriate interface bad smell. Based on these bad
smells, 8 refactorings were proposed: 4addClassrefactor-
ings that add an intermediate superclass and 4addMethod
refactorings that provide an implementation for the detected

methods in the entire class hierarchy. Of these 8 propos-
als, we decided to apply 4 proposed refactorings to re-
structure theCollection hierarchy. We searched for other
refactoring opportunities after these refactorings had been
applied. Some duplicated code was detected, and 14 ad-
ditional pushUpMethodrefactorings were proposed for all
methods that are duplicated. Because intermediate super-
classes have been introduced by the previously applied
refactorings, each of these newly proposed refactorings can
be executed to remove the duplication.

For theHotDraw framework, only one occurrence of the
inappropriate interface bad smell was detected in the classes
CompositeFigure andViewAdapterFigure that have a
common superclassFigure . Based on this bad smell, one
addClassand oneaddMethodrefactoring is proposed. Nei-
ther of these two refactorings is applied, however. A closer
inspection of the involved methods reveals that they all form
part of the standardVisualWorksframework, and that they
are actually implemented by theVisualComponent class,
which is a common superclass of bothCompositeFigure

andViewAdapterFigure . Since our detection algorithm
only checks the classes belonging to theHotDraw frame-
work, it did not take into account methods implemented by
the VisualComponent class. The resulting bad smell is
thus actually a false positive.

4.4 Duplicated Method Revisited

The Soul application only contains a single occur-
rence of the duplicated method bad smell: the classes
QuotedCodeTerm and SmalltalkTerm contain exactly
the same implementation for theprintForCompileOn:

method. Moreover, these two classes have a common su-
perclassSymbiosisTerm , which has no other subclasses.
A pushUpMethodrefactoring is thus proposed, that pulls
up theprintForCompileOn: method. Clearly, this refac-
toring should be applied to remove the code duplication and
improve the structure of the application.

In the Collection class hierarchy, seven duplicated
method bad smells were identified. Based on these bad
smell occurrences, 7 refactorings were proposed. 4 of them
were simplepullUpMethod refactorings, and 3 of them
were composite refactorings consisting of the introduction
of an intermediate superclass followed by apullUpMethod.
The intermediate superclass is introduced first since it is not
possible to simply pull up the method to the common su-
perclass, because this superclass already implements it, or
because it has too many other subclasses. We decided not
to apply the composite refactorings since we would be in-
troducing a class which would define only one method. The
four pushUpMethodrefactoring proposals could be applied,
however.

The HotDraw framework contains only two dupli-

cated methods. First of all,RectangleFigure de-
fines a method rectangle: and EllipseFigure

defines a methodellipse: that both contain the
same method body. Secondly,RectangleFigure and
EllipseFigure both have exactly the same implemen-
tation for the displayFigureOn: method. Because
RectangleFigure and EllipseFigure are subclasses
of Figure , we can not simply pull up the methods.
Both rectangle: andellipse: are initialisation meth-
ods that do not belong to theFigure class, and the
displayFigureOn: method is already defined as an ab-
stract method in classFigure . Therefore, we propose
to rename therectangle: and ellipse: methods so
that they share the same name, and then perform anadd-
Classand pushUpMethodrefactoring, to add an interme-
diate superclass betweenFigure andRectangleFigure

andEllipseFigure and pull up thedisplayFigureOn:

method fromRectangleFigure andEllipseFigure to
this new intermediate superclass. Applying this refactoring
also opens the opportunity to remove the code duplication
in the displayFilledOn: and displayOutlineOn:

methods in theRectangleFigure andEllipseFigure

classes.

4.5 Discussion

From the experiments we learned a number of things: in
each of the three case studies, almost all of the bad smells
that were detected pinpointed situations that were worthy of
our attention. Of the 65 bad smells we identified, there were
only 5 false positives.

The proposed refactorings were not always the ones that
were needed. In some cases, the user needed to perform
some extra analysis to identify which refactoring was nec-
essary. We are convinced that the rules for proposing refac-
torings can be fine-tuned to further increase their accuracy
and usefulness. For example, we could add more contextual
information, such as the simultaneous occurrence of multi-
ple bad smells in the same or related software entities.

Finally, we didn’t encounter a big difference in the num-
ber of detected bad smells between the three considered
case studies. Even theCollectionhierarchy, that is consid-
ered to be very stable, contained a number of bad smells
that could be removed easily.

5 Scalability

Detection of some bad smells can be very computation
intensive. As such, it is not always feasible to check them
on a large code base. Therefore, we could combine our
approach with more lightweight approaches that optimise
detection of some bad smells, at the expense of losing pre-
cision. For example, a limited subset of bad smells can be

expressed in terms of regular expressions that are more ef-
ficient to compute. InSmalltalk VisualWorks, we can use
the Code Critic tool for this purpose, which is aLint-like
tool [7] that has been extended to include global design
information. This tool can detect a number of simple bad
smells, but remains limited in scope. For example, none of
the bad smells used in our experiments are detectable with
Code Critic.

To detect duplicated methods we could rely on more effi-
cient approaches that have been reported upon in literature.
For example, Ducasseet al.[4] sketch an approach to detect
duplicated code in an (object-oriented) application based on
line-based string matching. Baxteret al. [2] uses a more
flexible, but more computation-intensive approach by rely-
ing on a ful-fledged parser. Our approach also takes the full
parse tree into account, which allows us to detect code that
is similar but not entirely identical. Balazinskiet al. [1] im-
plemented an automated refactoring tool to factorise cloned
code, but our refactoring tool is more generic because it can
be applied for any kind of bad smell.

Since one particular bad smell can often be remedied by
a multitude of refactorings, a large list of refactorings will
be proposed in practice. To keep this manageable, we can
use a number of techniques:
(1) Induce an order on the proposed refactorings. For exam-
ple, aremoveMethodrefactoring will be listed before are-
moveParameterrefactoring for the same method, since the
application of the former refactoring makes the latter one
obsolete.
(2) Use user-configurable threshold values. For example,
only detect bad smells (and their associated proposed refac-
torings) if at least three classes and/or three methods are
involved.
(3) Use composite refactorings. For example, the
pushUpMethodToNewClass refactoring shown in Figure 1
is in essence a composite refactoring that includes the prim-
itive refactoringsaddClassandpushUpMethod.
(4) Use a visualisation mechanism. This is for example pro-
posed by van Emden and Moonen [13] who combine the
detection of bad smells inJavawith a visualisation mecha-
nism.
(5) Use metrics. Metrics are another way to address scal-
ability, and have been investigated in the context of bad
smells and refactorings in [11, 8].

6 Conclusion

In this paper, we proposed an advanced refactoring tool
that also provides support for the earlier phases of the refac-
toring process, by detecting bad code smells in a software
application, and proposing refactorings that could be ap-
plied to remove these smells. We integrated our tool in the
Smalltalkdevelopment environment, and integrated it with

the already availableRefactoring Browser. The tool was
validated by detecting three different bad smells for three
different case studies on medium-sized object-oriented ap-
plications. All detected bad smells pinpointed situations
that were worthy of our attention, and many of the proposed
refactorings were actually useful to resolve the bad smells.

References

[1] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and
K. Kontogiannis. Advanced clone analysis to support object-
oriented system refactoring. InProceedings 7th Working
Conf. Reverse Engineering, pages 98–107. IEEE Computer
Society Press, 2000.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detecting using abstract syntax trees. InProc. Int’l
Conf. Software Maintenance, pages 368–377. IEEE Com-
puter Society Press, 1998.

[3] J. M. Brant. Hotdraw. Master’s thesis, University of Illinois
at Urbana Champaign, 1995.

[4] S. Ducasse, M. Rieger, and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. InProc.
Int’l Conf. Software Maintenance, pages 109–118. IEEE
Computer Society Press, September 1999.

[5] R. Fanta and V. Rajlich. Reengineering Object-Oriented
Code. InProc. Int. Conf. on Software Maintenance, pages
238–246. IEEE Computer Society Press, March 1998.

[6] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[7] S. Johnson. Lint, a C Program Checker, 1978.
[8] R. Marinescu.Measurement and Quality in Object-Oriented

Design. PhD thesis, Politehnica University of Timisoara,
2002.

[9] W. F. Opdyke. Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois at Urbana Champaign,
1992.

[10] D. Roberts, J. Brant, and R. Johnson. A Refactoring Tool
for Smalltalk. Theory and Practice of Object Systems,
3(4):253–263, 1997.

[11] F. Simon, F. Steinbr̈uckner, and C. Lewerentz. Metrics
Based Refactoring. InProc. 5th European Conference on
Software Maintenance and Reengineering, pages 30–38.
IEEE Computer Society Press, 2001.

[12] L. Tokuda and D. S. Batory. Evolving object-oriented de-
signs with refactorings.Automated Software Engineering,
8(1):89–120, 2001.

[13] E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. InProc. 9th Working Conference on
Reverse Engineering. IEEE Computer Society Press, Octo-
ber 2002.

[14] R. Wuyts.A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Implemen-
tation. PhD thesis, Departement Informatica, Vrije Univer-
siteit Brussel, 2001.

