
Automated Support for Data Exchange via XML

Tom Tourẃe
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussel - Belgium

tom.tourwe@vub.ac.be

Luk Stoops
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussel - Belgium

luk.stoops@vub.ac.be

Stijn Decneut
IMEC

Kapeldreef 75 - 3001 Leuven - Belgium
stijn.decneut@imec.be

Abstract

XML has recently emerged as a standard for exchang-
ing data between different software applications. In this pa-
per, we present an approach for automatic code genera-
tion to interpret information in an XML document. The ap-
proach is based on a user-defined mapping of the XML doc-
ument’s structure onto the application’s API. This mapping
is declarative in nature, and thus easy to specify, and is
used by code generator that applies advanced code gen-
eration and manipulation techniques to generate the ap-
propriate code. The approach relieves developers from the
time-consuming and error-prone task of writing the inter-
preter themselves, and complements existing XML technolo-
gies such as XSLT.

1. Introduction

In recent years, XML (eXtensible Markup Language)
has become the de facto standard for data exchange between
software applications. The number of applications that are
based on or make use of XML technology is simply over-
whelming. The popularity of XML is due to many reasons:

• It defines a standard format for exchanging informa-
tion, as opposed to an application-specific format. This
makes it easier to exchange data between different ap-
plications;

• It is open, so it can be used to model any sort of infor-
mation;

• It comes with a large tool set, consisting of many tools
that can be used to handle and manipulate XML docu-
ments in an easy and straightforward way;

• It rigorously defines the syntax and structure of a docu-
ment. This allows us to check whether a particular doc-
ument is lexically and syntactically well formed.

XML can be held responsible for a major breakthrough
in the standardisation of the way applications exchange
data with one another. Before XML, each application had
it its own proprietary way of representing and storing data.
Therefore, data exchange between applications was a chal-
lenging and difficult task. Nowadays, however, applications
send and receive XML documents containing the appropri-
ate information in a cleanly structured way.

Naturally, XML isn’t all roses. Exchanging information
between two applications via an XML document requires
that the first application packages the information into a
well-structured document and the second application in-
terprets the contents of the document in the appropriate
and correct semantic way. Developers responsible for im-
plementing such functionality are faced with the problem
of developing the appropriate parsers and interpreters. Al-
though such technology is well understood and some (lim-
ited) support for it exists in the XML toolkit (e.g. DOM or
SAX), implementing it still remains a difficult and error-
prone task:

• a developer should have very detailed knowledge about
an application’s API in order to know how data can be
extracted from it, or how data should be fed to it;

• writing an interpreter is a form of meta programming,
which is considered difficult by most developers. For
this very same reason, the process is extremely vulner-
able to errors;

• the process is not robust with respect to evolution.
Changes to either the application’s API or the XML
document’s structure require change propagation to the

Song
name
duration
title:duration:

Artist
name
name:

Album
title
title:artist:songs:

artist
1

1

songs

1

*

Figure 1. The music organiser’s class dia-
gram

parsers and interpreters. Since applications, and thus
their APIs, evolve at a rapid pace, this is a serious prob-
lem;

• the process does not support easy application integra-
tion. Integrating a new application and allowing it to
communicate with already existing applications may
require the document structure to be changed, since it
may be inadequate for containing all appropriate data.
Given that many applications need to communicate
these days, this is a serious problem as well.

These problems can be alleviated up to a large extent,
if we unleash the full power that is offered by standard-
ised data exchange over XML. The fact that XML docu-
ments are well structured and that various tools exist that al-
low advanced navigation through such documents, enables
us to generate appropriate parsers and interpreters automat-
ically, based on descriptions of an application’s API and the
structure of the XML documents containing the data. This
would solve the problems mentioned above because the in-
terpreter would be generated automatically, which is cer-
tainly less time consuming then writing it manually, and
which is also less prone to errors. Moreover, when the ap-
plication’s API or the XML document’s structure changes,
only the corresponding descriptions need to be adapted, and
the interpreter will automatically be changed accordingly.

In the remainder of this paper, we will propose an ap-
proach that does exactly this. The next section introduces
the running example that will be used throughout this pa-
per. Section 3 then discusses the approach we propose in
more detail and shows how it can be used in practice. Sec-
tion 4 then discusses the results of applying our approach
to the running example, by showing the code that is gener-
ated for the example. Section 5 identifies work that remains
to be done, Section 6 presents related work, and finally Sec-
tion 7 concludes.

Album
name
name:

Artist
name
name:

Song
name
duration
title:duration:artist:album:

Playlist

songs:

songs
1

*

album

1

1
artist

1

1

Figure 2. The playlist organiser’s class dia-
gram

2. Running Example: Managing Music Files

Throughout the paper, we will make use of one sin-
gle running example to illustrate the main ideas of our ap-
proach. Consider two multimedia applications, the first of
which is a music organiser, that keeps track of music albums
in a database, while the second is a playlist organiser, that
stores playlists containing songs gathered by a user. These
two applications need to communicate with each other, be-
cause they handle the same data that should remain syn-
chronised. The data is represented in XML format. For ex-
ample, the representation of a music album is represented
as follows:

<?xml version="1.0"?>
<album>

<title>Album 1</title>
<artist>Artist 1</artist>
<song>

<title>Song 1</title>
<duration>4:10</duration>

</song>
<song>

<title>Song 2</title>
<duration>2:50</duration>

</song>
...

</album>

It represents an album calledAlbum1by an artistArtist1
containing a number of songs. Each song in its turn has a
title and a duration.

Both applications have a class diagram that is used to
store the information internally. The music organiser’s di-
agram is represented in Figure 1. It shows a classAlbum
that has associations with classesArtist andSong. The
Artist class represents an artist and simply contains his
or her name. TheSong class represents a single song, and

Component
API

Description

XML
Document
Description

XML2API
Mapping

API2XML
Mapping

Code
Generator

Smalltalk
code

Figure 3. Our Code-Generation Approach

contains the name of the song and its duration. We assume
an album is performed by only one artist, and contains mul-
tiple songs.

The playlist organiser’s class diagram is shown in Fig-
ure 2. It consists of a classPlaylist that contains ref-
erences to a number of songs. These songs are represented
by theSong class, which contains the name and the dura-
tion of the song. Moreover, the class has references to the
Artist andAlbum classes, that represent artists and al-
bums respectively.

3. Approach: Generating XML Interpreters
Automatically

In this section, we discuss our approach to generate code
for handling XML data automatically. We first present a
general overview, and discuss the most important aspects
in more detail afterwards.

3.1. Overview

The approach to generate code for feeding XML data
to an application’s API automatically is depicted in Fig-
ure 3. As can be seen, we make use of a code generator,
that takes various descriptions as input, and generates ap-
propriate Smalltalk code as output. Smalltalk is a class-
based, object-oriented programming language, similar to
Java. We choose it as the target language for our experi-
ments, since it contains some advanced features that allow
us to rapidly produce a working prototype and adapt it to
our needs whenever necessary.

The descriptions that are passed to the code generator are
the following:

application API description : a description of the classes
and methods that make up the class diagram of the ap-
plication’s components. This description mainly con-

tains the names of the classes, their constructor meth-
ods and the arguments that should be passed to them;

XML document structure description : a description of
the XML documents that can be exchanged between
the applications. This is merely the XML schema that
defines the class of documents;

XML → API and API → XML mapping . The first
describes how information from the XML docu-
ment should be interpreted and fed to the applica-
tion’s API. The second describes describes how the
data can be extracted from a component and pack-
aged into an XML document.

All descriptions take the form of an XML document, and
are thus declarative in nature. The code generator needs to
generate code that transforms an XML document into an
object structure appropriate for the application. Therefore,
it needs to know how such an object structure can be con-
structed, which is described by the application’s API de-
scription. In order to know how the information from the
XML document should be mapped onto the classes, the
code generator uses the XML→ API description.

In what follows, we will discuss the application’s API
description and the XML→ API description in more de-
tail. The XML document structure description merely con-
sists of the XML Schema, and is thus not explained any fur-
ther. The API→ XML is similar to the reverse mapping, but
will not be considered in detail in this paper, due to space re-
strictions.

3.2. Application API Description

The application API description documents an applica-
tion’s API in terms of the classes that it offers, how these
classes should be instantiated and how their objects should
be structured. For example, the following description doc-
uments theSong class from the music organiser applica-
tion:

<?xml version="1.0"?>
<api>

<class>
<name>Song</name>
<constructor>

<name>title:duration:</name>
<param>String</param>
<param>Integer</param>

</constructor>
</class >

</api>

As can be seen, an instance of theSong class is con-
structed by using thetitle:duration: constructor
method, that initialises the title and the duration of the song.
These are instances of classString and Integer re-
spectively.

The Song class of the playlist organiser application is
different, which is reflected in its description:

<?xml version="1.0"?>
<api>

<class>
<name>Song</name>
<constructor>

<name>title:duration:artist:album:</name>
<param>String</param>
<param>Integer</param>
<param>Artist</param>
<param>Album</param>

</constructor>
</class>

</api>

Objects of this class are instantiated by means of
the title:duration:artist:album: construc-
tor. The arguments passed to this constructor are of types
String, Integer, Artist and Album respec-
tively. TheArtist andAlbum classes are then described
as follows:

<?xml version="1.0"?>
<api>

<class>
<name>Artist</name>
<constructor>

<name>name:</name>
<param>String</param>

</constructor>
</class>

<class>
<name>Album</name>
<constructor>

<name>name:</name>
<param>String</param>

</constructor>
</class>

</api>

Three important issues need to be stressed. First of all,
note how the description of the API not only documents the
classes and their constructors, but also describes the run-
time object structure for representing information. For ex-
ample, the description of theSong class of the playlist or-
ganiser application includes that aSong object contains
both aArtist and Album object. Second, the API de-
scription is purely declarative in nature. As a consequence,
such descriptions are easy to understand and specify, which
also makes them easy to change. Last, we require the devel-
oper to explicitly specify such a description, which can be
considered as a burden. Apart from the fact that this descrip-
tion is used by an automatic code generator that takes over
a large part of the developer’s task, it can also be considered
as an excellent form of documentation. Note, for example,
how this description closely resembles a JavaDoc-style of
documentation, be it in the form of XML. We can thus eas-
ily imagine extracting the information contained within the
description from a JavaDoc comment, for example.

3.3. XML → API Mapping

The XML → API mapping describes how information
in the XML document should be mapped onto the appli-
cation’s API. Basically, this boils down to describing how

the XML document should be traversed and which objects
should be constructed during this traversal. For travers-
ing the XML document, we use XPath, which is part of
the standard XML processing toolkit. To describe how ob-
jects should be created and combined while traversing the
document, we introduce a number of specialcommands.
Each command is responsible for specifying how an ob-
ject should be created. The following commands are used
in the remainder of this paper:

• theSimplecommand: this command consists of a sin-
gle XPath expression and optionally a class whose con-
structor should be called with the value returned from
evaluating this expression. If no class is present, the
value is a simple string;

• the Repeatcommand: this command consists of an
XPath expression, a command and optionally a class.
Its purpose is to continuously repeat applying the com-
mand for every value of the XPath expression, and op-
tionally call the constructor of the specified class with
a collection of all the values obtained by executing the
command;

• the Compoundcommand: this command is a simple
container that contains an aggregation of other com-
mands and the name of the class whose constructor
should be called with the value obtained by applying
the commands.

More advanced commands exist as well, which are used
to convert complex XML documents that require complex
traversal strategies. A discussion of these commands is out-
side the scope of this paper however.

An ExampleConsider how the XML document of Section 2
should be mapped onto the music organiser’s API described
in Section 3.2. This mapping is quite straightforward, as
the object structure and the XML document structure match
quite nicely:

<?xml version="1.0"?>
<compound>

<simple>
<xpath>/album/title</xpath>

</simple>
<simple>

<xpath>/album/artist</xpath>
<class>Artist</class>

</simple>
<repeat>

<xpath>/album/song</xpath>
<compound>

<simple>
<xpath>title</xpath>

</simple>
<simple>

<xpath>duration</xpath>
</simple>
<class>Song</class>

</compound>
</repeat>
<class>Album</class>

</compound>

As can be seen, we define one compound command
that consists of two simple commands and one repeat com-
mand, and that is responsible for instantiating objects of the
Album class. Both simple commands use an XPath expres-
sion to gather the information they require. The first com-
mand retrieves the title of the album, and since it does not
specify any class that should represent this title, it is left in
the form of a string. The second simple command uses an
XPath expression to retrieve the name of the artist, and spec-
ifies that this should be used to construct anArtist ob-
ject. Note that we do not specify how this instance should
be constructed, as this information is present in the applica-
tion API description and should not be repeated here. The
repeat command will execute its specified compound com-
mand for each song in the XML document, as specified
by the XPath expression. The compound command merely
consists of two simple commands, that retrieve the title and
the duration of the specified song and construct an instance
of classSong with these parameters.

In a similar way, we can specify how the information
in the XML document should be mapped onto the API of
the playlist organiser as described in Section 3.2. This map-
ping is less straightforward as the previous one, since the
object structure and the document structure do not map ex-
actly. Nonetheless, we can specify the mapping relatively
easily as well:
<?xml version="1.0"?>
<repeat>

<xpath>/album/song</xpath>
<compound>

<simple>
<xpath>title</xpath>

</simple>
<simple>

<xpath>duration</xpath>
</simple>
<simple>

<xpath>/album/title</xpath>
<class>Album</class>

</simple>
<simple>

<xpath>/album/artist</xpath>
<class>Artist</class>

</simple>
<class>Song</class>

</compound>
<class>Playlist</class>

</repeat>

This mapping specifies a repeat command that will exe-
cute a compound command for each song in the XML docu-
ment, and will instantiate an object of thePlaylist class
with the result. The compound command itself consists of
four simple commands, and will instantiate an object of the
Song class. The simple commands use XPath expressions
to gather information from the XML document, and instan-
tiate the appropriate classes with this information.

It should once again be stressed that these descriptions
are entirely declarative in nature and entirely specified in an
XML format. As such, they nicely complement the other al-
ready existing tools in the XML family.

3.4. Code Generator

Our code generator is implemented in SOUL, a
logic meta programming environment developed at our
lab. SOUL is based on a tight symbiosis between an
object-oriented base language and a declarative meta lan-
guage. This makes it possible to reason about and to ma-
nipulate object-oriented programs in a straightforward,
declarative and intuitive way [1]. The technique has al-
ready been used extensively to implement advanced
code generators for diverse application domains such as
aspect-oriented programming [2] and domain-specific lan-
guages [3]. This strengthens our belief that it is an excellent
medium for our purposes as well.

Our code generator thus consists of a number of logic
rules, that consult the XML specifications provided by the
developer, reason about these specifications and generate
appropriate Smalltalk code based on these specifications, A
detailed description of this code generator, together with an
illustration of how the logic rules are implemented and how
they work is beyond the scope of this paper however. We re-
fer the interested reader to [2] and [1].

4. Experimental Results

This section discusses the results of applying our ap-
proach to the running example of Section 2. We will show
the code that is generated by our code generator based on
the descriptions provided in the previous section. Before we
can do that, we need to elaborate upon the implementation
of the XML commands that are used by the code genera-
tor.

4.1. XML Command Library

The commands as specified in the XML→ API de-
scription are implemented as Smalltalk classes in an
XMLCommandclass hierarchy. This hierarchy is de-
picted in Figure 4. There are a number of peculiarities
about each command that should be discussed:

• the SimpleCommand and RepeatCommand are
both parameterised with an XPath expression that
gathers the necessary information from the XML doc-
ument;

• theSimpleCommand andCompoundCommandare
both parameterised by a snippet of Smalltalk code that
describes how an object should be instantiated. This
code merely calls the appropriate constructor of the ap-
propriate class, as described by the application API and
the XML→ API mappings;

• theCompoundCommandandRepeatCommand are
both parameterised by other commands that need to

XMLCommand

execute:continue:

ApplyCommand

execute:continue:

CompoundCommand
smalltalkCode
execute:continue:
execute:commands:continue:

SimpleCommand
xpathExpression
smalltalkCode
execute:continue:

RepeatCommand
xpathExpression
execute:continue:
executeNodes:continue:

DelayedCommand

execute:continue:
executeNodes:continue:

commands

1

*

command 1

1

be executed. In the case of theCompoundCommand,
there can be many such extra commands, whereas for
theRepeatCommand only one command needs to be
specified.

Each command should implement theexecute:con-
tinue: method, which is responsible for the actual traver-
sal of the XML document. The first argument of this method
is an XML node to be processed, while the second argu-
ment represents acontinuation, e.g. it specifies where the
traversal should continue when the node has been pro-
cessed. For example. theexecute:continue: method
in the SimpleCommand class applies the XPath ex-
pression to the specified node, and then executes the
snippet of smalltalk code to instantiate the appropriate ob-
ject. In theCompoundCommandclass, the method exe-
cutes all commands upon the specified node, whereas in
the RepeatCommand the method applies the XPath ex-
pression to the specified node, to gather all appropri-
ate nodes, and applies the command to each of these. The
execute:context:continue: method is mainly
used by theApplyCommand and DelayedCommand
classes, which we will not discuss here.

4.2. Generated Code

Given as input the descriptions presented in Section 3,
our code generator generates the following Smalltalk code
for mapping information from an XML document to the
music organiser’s API:

sc3 := SimpleCommand xpath: ’title’.
sc4 := SimpleCommand xpath: ’duration’.
cc1 := (CompoundCommand

new: [:coll |
Song

perform: #title:duration:
withArguments: coll asArray])

add: sc3;
add: sc4.

rc1 := RepeatCommand
xpathExpression: ’/album/song’
command: cc1.
sc1 := SimpleCommand xpath: ’/album/title’.
sc2 := SimpleCommand

xpath: ’/album/artist’
resultBlock: [:res |

Artist
perform: #name:
withArguments: res asArray].

ˆ(CompoundCommand
new: [:coll |

Album
perform: #title:artist:songs:
withArguments: coll asArray])

add: sc1;
add: sc2;
add: rc1.

Note how in Smalltalk, strings are delimited by sin-
gle quotes (e.g. ’/album/song’ is a string) and square brack-
ets delimit ablock: a piece of Smalltalk code that is not
evaluated immediately, but whose evaluation is deferred un-
til the value message is send to it. Blocks are thus the
Smalltalk way of implementing closures. Furthermore, we
use an advanced reflective feature of Smalltalk to instanti-
ate the objects: instead of invoking the constructor of the
class directly, we use theperform:withArguments:
method. This method will invoke the first argument
(which denotes a method) with the second argument,
represented as a collection, as arguments. For exam-
ple Album perform: #title:artist:songs:
withArguments: coll asArray will invoke the
title:artist:songs: constructor of classAlbum
with as arguments all elements of the collection incoll .
It is implicitly assumed that this collection only con-
tains three elements, corresponding to the three arguments
of the constructor.

This code presented above is a straightforward transla-
tion of the mapping specified in Section 3.3. It instanti-
ates four simple commands:sc1, sc3 andsc4 simply
gather strings representing the title and duration of a song
and the title of the album, thesc2 command retrieves the
artist from the XML document, and instantiates an object of
the Artist class using itsname: constructor. The com-
pound commandcc1 will instantiate aSong object, each
of which contains the title and the duration of the song. The
rc1 command will make sure this happens for every song
present in the XML document. Thecc2 command at the

end will make sure anAlbum object is instantiated with the
appropriate title, artist and song objects.

The code generated for the playlist organiser application
is similar:

sc1 ;= SimpleCommand xpath: ’title’.
sc2 := SimpleCommand xpath: ’duration’.
sc3 := SimpleCommand

xpath: ’/album/artist’.
resultBlock: [:res |

Artist
perform: #name:
with: res asArray].

sc4 := SimpleCommand
xpath: ’/album/title’.
resultBlock: [:res |

Album
perform: #title:
with: res asArray].

cc1 := (CompoundCommand
new: [:coll |

Song
perform: #title:duraction:artist:album:
withArguments: coll asArray])

add: sc1;
add: sc2.
add: sc3;
add: sc4.

ˆRepeatCommand
xpath: ’/album/song’
command: cc1.

Once again, this code is a straightforward translation of
the XML → API mapping given in Section 3.3 and exten-
sively uses the components offered by theXMLCommand
hierarchy.

5. Future Work

Although the initial experiment reported upon in the pre-
vious section shows good results, in the future, we need to
experiment with more complex application APIs and more
complex mappings. Up until now, the object structures we
considered were very simple, consisting of a few objects
that are easy to combine and straightforward to instantiate.
We can easily imagine real-world applications using more
complex object structures, consisting of many more objects,
that are more complicated to instantiate and that should be
combined in more complex ways than we considered here.
Moreover, the XML→ API mappings we considered are
also quite simple. This is a result of the fact that the XML
document we considered is simple and straightforward to
traverse. The more complex the XML document’s struc-
ture, the more complex the traversal will become. How-
ever, we strongly believe our approach will be able to cope
with more complex traversals, since it is implemented by
means of continuations and delayed evaluation, and it has
been proved many times that this greatly facilitates imple-
menting traversals. We do feel that more XML commands
may be required, but we consider this only a minor exten-
sion to our approach.

Another issue that deserves some more attention is the
reusability of the XML↔ API mappings. Although not ex-

plicitly considered in this paper, as it is now, we require a
developer to specify both this mapping and the reverse API
→ XML mapping. We feel this puts to much burden upon
the developer, and we therefore want to investigate whether
it is possible to use one single mapping to specify both di-
rections of the translation. Since we use a purely declarative
approach, this should pose no problem. However, the map-
pings as they are represented now would presumably not fit
this purpose and should therefore be changed.

To further reduce the burden of specifying all necessary
descriptions, we would like to provide a graphical user in-
terface that allows a developer to specify the descriptions
in a more intuitive way. For example, the application’s API
could be specified by clicking on the appropriate class and
constructor methods, and the tool could then automatically
generate a corresponding specification, perhaps based on
some JavaDoc-style comments that are already present. It
would even be possible to identify the necessary argument
classes automatically and construct a specification for these
as well. Furthermore, the XML↔ API mappings could also
be constructed in a more intuitive way, by implementing
some drag and drop operations from a application’s API to
the XML document structure and vice versa.

6. Related Work

Model Driven Architecture [4] also starts from a declar-
ative (UML) description to produce running code. MDA
is a new way of writing specifications and develop-
ing applications, based on a platform-independent model
(PIM). A complete MDA specification consists of a defini-
tive platform-independent base UML model, plus one or
more platform-specific models (PSM) and interface def-
inition sets, each describing how the base model is
implemented on a different middleware platform. A com-
plete MDA application consists of a definitive PIM,
plus one or more PSMs and complete implementations,
one on each platform that the application developer de-
cides to support. MDA separates implementation details
from business functions. Thus, it is not necessary to re-
peat the process of modelling an application or system’s
functionality and behaviour each time a new technol-
ogy (e.g., XML/SOAP) comes along. In terms of prod-
ucts, MDA will be implemented by tools - or suites of tools
- that integrate modelling and development into a single en-
vironment that carries an application from the PIM, through
the PSM, and then via code generation to a set of lan-
guage and configuration files implementing interfaces,
bridges to services and facilities, and possibly even busi-
ness functionality.

In order to express the interaction between the higher
phases of software development and the implementation
level better, our lab is experimenting with declarative meta

programming [5]. The underlying idea is that abstract infor-
mation can be expressed on top of the actual programming
language concepts by means of logic facts and declarative
rules [6]. By explicitly reasoning with these facts and rules,
it becomes possible to provide automated support for a va-
riety of tasks in the software development process in a uni-
form way. e.g.

• check source against certain constructs, conventions,
patterns

• search source for certain constructs, conventions, pat-
terns

• extract certain constructs, conventions, patterns from
source

• enforce certain constructs, conventions, patterns in
source

• transform source based on high-level declarative de-
scription

• generate source from high-level declarative descrip-
tions

A number of successful experiments with declarative
meta programming have already been carried out in the con-
text of code generation in soul [2].

Other approaches of code generation for specific envi-
ronments as the UML CASE Tool is described by Park [7].
Milosavljevi describes a tool that follows simple rules about
mapping JavaBean components to a database schema and
generates components, as well as a set of standardised JSP
pages. The mapping is specified as an instance of an XML
Schema document [8]. Cleaveland [9] describes how to use
XML to describe the programs you need and then write a
Java program template to generate them automatically. Dif-
ferent techniques are described to generate code with DOM,
JSP and the combination of XPATH and XSLT.

7. Conclusion

This paper presented an approach for automatically gen-
erating code that retrieves information from an XML docu-
ment and translates it to an application’s API. The approach
is based on declarative descriptions of the application’s API,
the XML document’s structure and the way the information
from the XML document should be mapped onto the appli-
cation’s API. These descriptions form the input for a code
generator, that used advanced code generation and manipu-
lation techniques to generate executable code that translates
the XML document to the application’s API. We reported
upon an initial experiment with this approach in a multime-
dia context, which showed promising results and thereby il-
lustrates that the approach is both useful and feasible.

8. Acknowledgements

This work is a result of a joint collaboration between
Vlaamse Radio en Televisie (VRT, public broadcaster of
Flanders), IMEC and Vrije Universiteit Brussel (VUB).
This is one of the e-VRT projects funded by the Flemish
government. We especially thank Steven Van Assche for re-
viewing the paper.

References

[1] Roel Wuyts, A Logic Meta-Programming Approach to Sup-
port the Co-Evolution of Object-Oriented Design and Imple-
mentation, Ph.D. thesis, Departement Informatica, Vrije Uni-
versiteit Brussel, 2001.

[2] Kris De Volder, Type-Oriented Logic Meta Programming,
Ph.D. thesis, Departement Informatica, Vrije Universiteit
Brussel, 1998.

[3] Johan Brichau, Kim Mens, and Kris De Volder, “Building
composable aspect-specific languages,” inProceedings of the
Conference on Generative Programming and Component En-
gineering. 2002, Springer-Verlag.

[4] OMG Group, “www.omg.org/mda/,” 2003.
[5] Theo D’Hondt, Kris De Volder, Kim Mens, and Roel Wuyts,

“Co-evolution of object-oriented design and implementation,”
in Int. Symposium on Software Architectures and Component
Technology: The State of the Art in Research and Practice,
2000.

[6] Roel Wuyts, “Declarative Reasoning about the Structure of
Object-Oriented Systems,” inProc. TOOLS USA’98, IEEE
Computer Society Press, 1998, pp. 112–124.

[7] D.H. Park and S.D. Kim, “Xml rule based source code gener-
ator for uml case tool,” inEighth Asia-Pacific Software Engi-
neering Conference, 2001.

[8] Branko Milosavljevi, Milan Vidakovi, and Konjovi Zora, “Ap-
plications of java programming: Automatic code generation
for database-oriented web applications,” inProceedings of the
inaugural conference on the Principles and Practice of pro-
gramming, 2002.

[9] J. Craig Cleaveland,Program Generators with XML and Java,
Prentice Hall, 2001.

