
Can Domain-Specific Languages Benefit from

Linguistic Symbiosis?

Kris Gybels∗

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Elsene, Belgium
kris.gybels@vub.ac.be

July 5, 2003

Abstract

When considering domain-specific languages that are not purely static,
the question arises how programs written in the DSL can interact with
those of the base language. We propose to apply the concept of linguistic
symbiosis as a standard for evaluating mechanisms that allow such an in-
teraction. Linguistic symbiosis in general refers to the ability of programs
written in different languages to interact transparently as if they were
written in the same language.

1 Introduction

Linguistic symbiosis is a concept that arose from work on reflectively ex-
tensible interpreters. In the work of Ichisugi et al. [7] and Steyaert [9] and
De Meuter [8], linguistic symbiosis refers to the ability of base-level objects
and meta objects to send each other messages when the base level and
meta level languages are not the same. Reflection can then be achieved
by allowing inter-level ”travelling” of objects. When a meta object trav-
els to the base level it can be sent the same messages by base objects as
can be sent by the other meta objects that form the interpreter. This al-
lows basic introspection and intercession of the interpreter. If a base-level
object supports the message protocol expected by the interpreter it can
take the place of a meta object, which then allows changing the rules of
interpretation themselves.

While linguistic symbiosis as a means for reflection is certainly interest-
ing to the REPLS workshop, it is a generalization to base level interaction
which we wish to discuss here. We recently explored the application of lin-
guistic symbiosis to multi-paradigm programming where base-level parts

∗Research assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

1



2 BUSINESS RULES 2

of a single program need to interact [2]. Two particular cases we explored
were the implementation of business rules [4], a concept from the domain
of business software, and the implementation of component configuration
rules for generative programming [5]. In both cases we made use of logic
programming to implement these ”domains”. In the remainder of the pa-
per we present these cases and discuss how linguistic symbiosis is exploited
therein.

2 Business Rules

When developing software to support a business, one needs to distinguish
between the business model and business knowledge governing the global
policies applied by the business. The former is normally implemented in
object-oriented programming, while the latter is implemented as a set of
business rules, usually in some suitable language based on logic program-
ming.

Because two different languages are used to express two parts of the
the same application in, the issue arises how the two are connected. Figure
1 illustrates the general connection problem: one the one hand we have
objects modeling the store and its customers, on the other rules stating
when customers are allowed discounts. At certain points the rules need
to access information that is stored in the objects, and objects need to be
informed of ”decisions” taken by the rules.

if customer is loyal then customer has 10% discount

if customer has charge card then customer is loyal

business rules

business objects

storecustomer

Figure 1: Connecting business objects in the core application functionality and
business rules.

We found that in existing business rule systems several approaches
are used to deal with the connection problem [4]. In some an explicit
mechanism for switching between the OO and BR language is used, in
others programmers need to explicitly specify how the concepts from the
one (objects) can be mapped to the one from the other (relations), some
use an implicit mapping etc.

We proposed to use the concept of linguistic symbiosis as a standard to
evaluate the different approaches by. The more transparent inter-calling of



3 SYMBIOTIC LANGUAGES 3

member(?x, <?x | ?rest>).
member(?x, <?y | ?rest>) if
member(?x, ?rest).

<?x | ?rest> contains: ?x.
<?y | ?rest> contains: ?x if
?rest contains: ?x.

Figure 2: Comparison of list-containment predicate in classic and new SOUL
syntax.

program elements in different languages is, the less programs are cluttered
with explicit switches. Another benefit of symbiosis would be to allow for
easy business rule refactoring: when a business evolves some methods
may become easier to express in the BR language because their behavior
involves taking into account several business rules. We would then like to
replace the method with rules, without having to change the code that
invoked that method.

3 Symbiotic Languages

To experiment with base-level symbiosis for business rules we used the
SOUL [10] logic language. SOUL is implemented in Smalltalk and orig-
inally was based on Prolog with some minor syntactical differences and
an additional mechanism for manipulating Smalltalk objects from SOUL.
This allowed for a simple interaction approach where SOUL could es-
cape to Smalltalk for sending the objects messages. Invoking queries from
Smalltalk involved explicit construction of a SOUL evaluator object and
sending it messages to execute queries and retrieve results. Thus the
interaction either way was not very transparent.

To allow for better symbiosis we made some adaptations to SOUL [6].
A key change was to change the syntax from Prolog-like syntax to one that
is more like the message sending syntax of Smalltalk. Figure 2 contrasts
the classical member predicate of Prolog with the new contains: version
in SOUL. This syntactic likeness makes it easier to define a semantic in-
teraction through mapping of objects/messages and relations/predicates.
We changed the evaluation process of both Smalltalk and SOUL as fol-
lows: when SOUL does not find a rule for a predicate, the predicate will
be translated to a message. When Smalltalk does not find a method for
a message, the message is translated to a query. The translation itself is
rather straightforward, though there are some issues in how to deal with
multiple results from queries etc. Our point here is mostly to illustrate
how symbiosis is used, so we will not discuss the details of its working and
origin, we refer to our paper “SOUL and Smalltalk - Just Married” [6] for
further details.



4 BUSINESS RULES IN SOUL 4

4 Business Rules in SOUL

OnlineStore

checkout:
createOrder: 
addOrder:

Customer
shippingAddress
hasChargeCard 
locationIs:
addToShoppingCart:
totalPurchases

Product
price 
internationalShipping

ShoppingCart

addProduct:

Order
total
calculateTotal

customer

items

products

customer

orders

itemsshoppingCart

Figure 3: A class diagram of the online store

Figure 3 shows the class diagram for a simple business application, an
online store, which we will use to illustrate how the symbiosis of SOUL
and Smalltalk is used to actually implement business rules.

A typical task for an online store is to calculate the total price of all
items a customer bought and apply any discounts. This is implemented
by the method calculateTotal in the class Order:

calculateTotal

total:=0.

self items do:[:i|total:=total+i price].

total:=total-(total*customer discount/100)

Whom to give a discount is an example of business rule knowledge.
Some simple rules we can implement for this in SOUL are:

?c discount = 10 if ?c premierCustomer

?c discount = 5 if ?c loyalCustomer

?c discount = 0 if ?c ordinaryCustomer

?c premierCustomer if

?c totalValueOfPurchases = ?p &

?p greater: 10000

These rules simply express that a customer is given a 10% or 5%
discount when he is a premier customer or a loyal customer respectively.
When a customer falls into these categories is again governed by business
rules, one for ”premier customer” is also shown above.

In this particular example there are two points where a language switch
occurs. In the calculatePrice method the message discount is sent to
a customer object. There is actually no method for this message, so



5 COMPONENT RECONFIGURATION RULES 5

?featureSet disallowedFor: ?account if

?featureSet containsFeature: credit &

?account disallowedCreditRating.

?account disallowedCreditRating if

?account balanceHistory = ?history &

?history badHistory.

?account disallowedCreditRating if

?account owner = ?owner &

?owner age = ?age &

?age isBelow: 22.

Figure 4: Example rules expressing dynamic disallowed feature set inclusion
constraints.

because of our changes to Smalltalk it will be translated to the query
?customer discount = ?d with ?customer holding the customer object
to which the message was sent. The query’s solution for the variable ?d

will be returned as result of the message. Vice-versa a switch from SOUL
to Smalltalk occurs in the rule for premierCustomer where the predicate
totalValueOfPurchases is used. There is not actually a rule for this
predicate, so it will be translated to a message to the customer object in
?c.

5 Component Reconfiguration Rules

Another domain to which we applied the symbiosis concept in SOUL is
that of component reconfiguration rules for dynamic generative program-
ming. In a paper at last year’s GPCE conference, Barbeau and Bordelau
argued that a generator should become more of a configurator, able to
(re)compose components at runtime [1]. In addition to checking the com-
ponent inclusion constraints as documented in feature diagrams, such a
configurator would also have to check certain dynamic constraints. Such
as not giving a bank account a credit overdraw feature when its owner
has a low income or is younger than 22.

We experimented with a simple Smalltalk component model for im-
plementing the features in and checking whether the combinations are
allowed. The feature components are implemented as prototype objects,
which are easy to (re)compose in a delegation relationship. We used this
to implement the bank account example from the GP book [3] with some
additional feature composition rules implemented in SOUL.

Some of the rules are illustrated in figure 4. The disallowedFor:

predicate is used by the configurator when a recomposition of compo-
nents is requested, with the new feature set and the existing compo-
nent object as arguments. The example disallowedFor: rule expresses
that the feature set cannot contain the credit feature if the account is
not allowed the feature. It is not allowed, as expressed in the rules for



6 POSITION 6

disallowedCreditRating, when the account has a bad credit history or
when its owner is younger than 22.

The difference between this approach and the one taken in the GP
book is of course the use of the symbiotic logic language. Czarnecki and
Eisenecker advocate the use of C++ metaprogramming for implementing
static feature constraints, so presumably they would advocate the use of
regular C++ for dynamic constraints. In both this case and the earlier
business rule example we use a logic language because it is more adapted
to expressing such rules, especially if more complex constraints which
require some reasoning would need be implemented, while the symbiosis
still allows it to interact easily with the object-oriented domain of the
application.

6 Position

This paper’s title reflects our position, or better question, for the REPLS
workshop: can domain-specific languages benefit from linguistic symbio-
sis? Our experience with the concept is limited to the two cases presented
here and so we are interested in learning about other domains where
interaction between different languages could be useful. So far we can
observe it is mostly relevant to dynamic domain specific languages. Most
research into DSL seems to focus on providing domain-specific syntactic
sugar wherein any concepts of the domain-specific language are translated
to those of the host language as part of the compile-time desugaring pro-
cess. In our approach we mapped concepts such as objects, messages,
relations and rules at run-time. In fact, the merit of each language lies
not in its syntactic fit to a particular domain, for we even changed the
syntaxes to be more alike, but rather the different concepts and interpre-
tation used.

References

[1] Michel Barbeau and Francis Bordeleau. A protocol stack develop-
ment tool using generative programming. In D. Batory and C. Con-
sel, editors, Proceedings of Generative Programming and Component
Engineering, volume 2487 of Lecture Notes in Computer Science.
Springer, 2002. 5

[2] Johan Brichau, Kris Gybels, and Roel Wuyts. Towards a linguistic
symbiosis of an object-oriented and logic programming language. In
Jörg Striegnitz, Kei Davis, and Yannis Smaragdakis, editors, Proceed-
ings of the Workshop on Multiparadigm Programming with Object-
Oriented Languages, 2002. 2

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Program-
ming: Methods, Tools and Applications. Addison-Wesley, 2000. 5

[4] Maja D’Hondt and Kris Gybels. Linguistic symbiosis for the auto-
matic connection of business rules and object-oriented application
functionality. Submitted to conference on Automated Software En-
gineering 2003, 2003. 2



REFERENCES 7

[5] Kris Gybels. Enforcing feature set correctness for dynamic recon-
figuration with symbiotic logic programming. Position paper at the
Eighth International Workshop on Component-Oriented Program-
ming. 2

[6] Kris Gybels. Soul and smalltalk - just married: Evolution of the
interaction between a logic and an object-oriented language towards
symbiosis. Submitted to the Workshop on Declarative Programming
in the Context of Object-Oriented Languages. 3

[7] Yuuji Ichisugi, Satoshi Matsuoka, and Akinori Yonezawa. Rbcl: a re-
flective object-oriented concurrent language without a runtime ker-
nel. In IMSA’92 International Workshop on Reflection and Meta-
Level Architectures, 1992. 1

[8] Wolfgang De Meuter. The story of the simplest mop in the world,
or, the scheme of object-orientation. Prototype-Based Programming
(eds: James Noble, Antero Taivalsaari, and Ivan Moore), 1998. 1

[9] Patrick Steyaert. Open Design of Object-Oriented Languages. PhD
thesis, Vrije Universiteit Brussel, 1994. 1

[10] Roel Wuyts. A Logic Meta Programming Approach to Support the
Co-Evolution of Object-Oriented Design and Implementation. PhD
thesis, Vrije Universiteit Brussel, 2001. 3


	Introduction
	Business Rules
	Symbiotic Languages
	Business Rules in SOUL
	Component Reconfiguration Rules
	Position

