
ECOOP 2003 Workshop Report:

Seventh Workshop on Tools and Environments

for Learning Object-Oriented Concepts

Isabel Michiels1, Jürgen Börstler2, Kim B. Bruce3, and Alejandro Fernández4

1 PROG, Vrije Universiteit Brussel, Belgium
2 Ume̊a University, Sweden

3 Williams College, Massachusetts, USA
4 Fraunhofer IPSI, Darmstadt, Germany

Abstract. This report summarizes the results of the seventh workshop
in a series of workshops on learning object-oriented concepts. The focus
of this workshop was on (computer-aided) support for the teaching and
learning of basic object-oriented concepts.

1 Introduction

Teaching the object-oriented paradigm in the same way as “traditional” intro-
ductory programming courses does not appear to work very well. In the pre-OO
world, concepts could be introduced step by step and the grouping of program
elements could be handled as an afterthought. There was no need to introduce
high-level and abstract structures, like modules or abstract data types, early on.
This is very different in the object-oriented paradigm, where the basic concepts
are tightly interrelated and seem not to be easily explained in isolation. Instead
they need to be handled in groups (like, for example, variable, value, type, ob-
ject, and class) making teaching and learning more challenging. Grasping the
“big picture” may furthermore be hindered by focusing on notational details of
specific object-oriented programming languages. Most students therefore have
difficulties taking advantage of object-oriented concepts.

This was the seventh in a series of workshops on issues in object-oriented
teaching and learning. Reports from all previous workshops in the series are
available [1–5, 9]. Further information can be found at the workshop series home
page [17].

The objective of the workshop series was to share experiences and discuss
ideas, approaches and hypotheses on how to improve the teaching and learning
of object-oriented concepts.

Each workshop in the series focussed on a specific theme. This workshop’s
theme was (computer-aided) support for the teaching and learning of basic
object-oriented concepts. The organisers particularly invited submissions on the
following topics:

– intelligent learning environments (for teaching object technology)



– frameworks/toolkits/libraries for learning support
– approaches and tools for teaching design early
– different pedagogies
– design early vs. design late
– frameworks/toolkits for the development of teaching/learning applications
– experiences with innovative CS1 curricula
– usage of metaphors, analogies, and illustrative examples
– distance education

2 Workshop Organization

Participation at the workshop was by invitation only. The number of participants
was limited to encourage the building of few small interest groups working on
specific topics. Potential attendees were required to submit position papers.

Time Topic

9.00 am - 9.10 am WELCOME AND INTRODUCTION

9.10 am - 10.30 am First Presentation Session

9.10 am Animated UML as a 3D-illustration for Teaching OOP by
Uwe Thaden

9.35 am A Framework for Lightweight Object-Oriented Design Tools
by Jörg Pleumann

10.00 am Java Online Pedagogy by Jürgen Wolff von Gudenberg

10.30 am - 11.00 am COFFEE BREAK

11.00 am - 12.30 am Second Presentation Session

11.00 am Socio-Cultural Perspectives on Object-Oriented Learning by
Ola Berge

11.30 am Teaching About Creational Design Patterns - General Imple-
mentations of an Algebraic Structure by Virginia Niculescu

12.00 am OO Learning, a Modeling Approach by Arne-Kristian Groven

12.30 am - 1.30 pm LUNCH BREAK

1.30 pm Position Statement Presentations
2.00 pm Discussion Topic Selection
2.20 pm First Group Discussion Session

3.00 pm - 3.30 pm COFFEE BREAK

3.30 pm Second Group Discussion Session
4.45 pm Wrap-up session

Table 1. Workshop program

Out of the 17 position papers that were submitted, six papers were selected
for presentation at the workshop. The authors of nine other papers were invited
for participation at the workshop. All contributions were made available on the
workshop’s website a few weeks before the workshop, in order to give attendees
the possibility to prepare the discussions. Presentations were scheduled for the



morning sessions. The afternoon sessions were dedicated to discussions in small
working groups.

All attendees were given the opportunity to present their positions briefly
(one overhead, at most two minutes time). After that three working groups were
formed to discuss in more detail the topics they found most relevant. The full
workshop program can be found in Table 1.

The workshop gathered 28 participants from 11 different countries, all of them
from academia. A complete list of participants together with their affiliations and
e-mail addresses can be found in table 2.

3 Summary of Presentations

This section summarizes the main points of the presented papers and the most
important positions of the other participants. More information on the presented
papers can be obtained from the workshop’s home page [10].
Uwe Thaden (Learning Lab, Hannover, Germany) discussed the usage of 3D
animations of UML diagrams to visualize the execution of object-oriented code.

A basic premise for good software development is the ability of program-
mers to think in the concepts of the programming language used. Thus, today
object-oriented programming needs to be taught in an adequate way. The proce-
dural or imperative style of programming corresponds very well with the verbal
descriptions of algorithms, concentrating on control flow. Important and typi-
cal for the object-oriented paradigm are the dynamic creation and destruction
of objects, the links between them, and their interaction through exchanging
messages. Program execution is distributed over several objects.

Object-oriented programming was conceived as a way of modeling reality. It
seems to be worth examining whether this naturalness can be exploited to explain
program execution other than by mapping it to a sequence of instructions to a
register machine. The Unified Modeling Language (UML) offers several dynamic
diagram types (e.g. sequence- and collaboration diagram) of particular interest
for such an approach.

However, paper-bound visualizations of program executions are inevitably
static projections that cannot transport program dynamics. The goal of the pre-
sented approach is not only to visualize algorithm execution, but to develop a
tool to aid the intuitive understanding of an arbitrary Java program execution.
The presented (Java) prototype uses an XML structure representing UML dia-
grams. This structure can be obtained from existing Java programs by means
of UML modeling tools (“Together” in this case). The XML structure is then
transformed into VRML that can be displayed in web browsers.

Figure 1 shows a screenshot taken from an instantiation animation. The
classes in this example are shown at a higher level while the instances are placed
on the “ground” to visualize the conceptual difference between class and object
in an intuitive way.

Jörg Pleumann (University of Dortmund, Germany) proposed a framework
for lightweight object-oriented design tools. Modeling on the basis of formal vi-



Fig. 1. Example view of an instantiation

sual languages like the UML has become a central activity in today’s software
development processes. Universities need to teach new software developers how
to express their ideas in the form of models and how to understand the mod-
els created by others. When the size of models approaches that of non-trivial
problems, tool support becomes crucial – even during education. Unfortunately,
the typically-used industrial CASE tools have major drawbacks when applied
in an educational setting. Aimed at professional work, they are too complex for
classroom-use and lack features that support their users in learning a modeling
language.

The Java-based framework for so-called “lightweight” modeling tools devel-
oped at the University of Dortmund is meant to be a first step towards didactical
modeling tools. All tools derived from the framework share the same simple and
intuitive user interface and have only small resource demands. The two main ex-
tension points of the framework are a generic metamodel and generic graphical
figures. New tools are easily developed by “plugging in” the concrete metamodel
and graphical elements of a specific modeling language. Three modeling tools
have already been built using the framework; a statechart editor and simulator,
a software architecture editor and a toolset for the Unified Process. The state-
chart editor features a multimedia simulation engine interfacing with the user’s
model. This interface can be used to control a washing machines or a coffee



machine. The tool has already been used successfully in a software engineering
class at Dortmund.

Jürgen Wolff von Gudenberg (University of Würzburg, Germany) claimed
that programming can only be learned by reading and, first of all, by writing pro-
grams. Hence, an online tutorial should provide a high level of interaction. The
evaluation of and immediate response to performed tests or submitted programs
enhances the value considerably.

The presented JOP (Java Online Praktical) was developed by the universities
of Passau and Würzburg (both Germany). It comprises two parts: a Java tutorial
and evaluator to check exercises and give feedback to students.

The tutorial is organized as a collection of learning units together with im-
mediately executable and modifiable examples and exercises. It can be noted
that interfaces are discussed long before inheritance and polymorphism. I/O
and GUIs are the last topic. Examples and exercises are evaluated by electronic
tutors. These tutors perform functional as well as structural tests and provide
immediate feedback to the users. Examples of tests performed are conformance to
coding conventions, proper documentation, usage of required/forbidden classes
and the correct execution of supplied functional tests.

The system has been used in different lectures. In those lectures about 2500
programs for 16 different problems have been evaluated. The average size of a
program was about 1000 lines of Java code. The work load for examining and
marking the programs could be decreased by a factor of four, while the quality
and readability of the programs increased significantly. The tests are furthermore
quite reliable. Only about two percent of the programs that passed all automatic
tests were not accepted by a human inspector.

Ola Berge (Intermedia, University of Oslo, Norway) talked about socio-cultural
perspectives on object-oriented learning and how these aspects relate to the
COOL (Comprehensive Object-Oriented Learning) project [13]. One of the cen-
tral objectives of this project is to explore critical aspects associated with learn-
ing (and teaching) object-oriented concepts. This objective will be pursued by
bringing forth the heritage of Kristen Nygaard and the Norwegian approach to
object-orientation. The project aims at developing learning materials based on
this work and intends to make those materials available to the object-oriented
community in the form of reusable learning objects.

Berge and colleagues apply a socio-cultural perspective on the area of learn-
ing object-oriented concepts. It raises a number of issues concerning design of
learning objects and learning environments for knowledge construction in this
field. The COOL project explores these issues by studying current practices as
well as by experimenting with new constellations of artifacts. Early activities
include the development of courses that introduces learners and practitioners to
fundamental object-oriented concepts through approaches such as “models first”
and “objects first.” The courses will be developed evolutionary, where experience
from the first courses, planned to be held in Oslo in the summer of 2003, will
provide insights for further improvement of the subsequent activities.



The socio-cultural perspectives give directions of how tools (e.g. KarelJ [15]
or BlueJ [12]) and other ICTs (Information and Communication Technologies)
should be incorporated in the learning activity. Therefore, questions arise on how
existing and new learning material should be implemented as learning objects in
ICT-based learning environments. Last, but not least, these perspectives provide
also guidelines on how to understand the meaning of social interaction with
respect to learning.

Virginia Niculescu (Babes-Bolyai University, Cluj-Napoca, Romania) pre-
sented an approach to teach creational design patterns based on simple algebraic
structures.

Teaching design patterns to students with little experience in OOP is difficult.
It is therefore crucial to use examples from well-known domains. Since most CS
programs start with (among others) Algebra, this seems a suitable area.

To implement a general algebraic structure over a field of special values,
such as null and unity elements, are needed. To build a structure that is inde-
pendent from the specific field chosen, these special values must be created by
specific methods. The goal is to develop a general polynomial class that is in-
dependent from the type of its coefficients, i.e. uses an abstract coefficient type
(FieldElement). When working with polynomials over specific coefficient types
it is necessary to handle special values independent of their exact type. For in-
stance, when one constructor of the class polynomial creates a null polynomial,
one has to create a null coefficient, even if its exact type is not known.

Niculescu presented three approaches to solve this problem, based on three
classic creational design patterns [6]: Factory Method, Abstract Factory, and
Prototype. Students can then compare solutions to specific problems using all
three approaches. This enables students to understand these design patterns, and
the differences between them. Experience confirms that applying patterns in a
known domain helps students to better understand the concepts. In the future
this work will be extended to cover further algebraic structures, such as matrices,
and to build a general algebraic library. This might even help to reinforce some
of the mathematical concepts.

Arne-Kristian Groven (Norwegian Computing Centre, Oslo, Norway) argued
that OO programming should be regarded as modeling, establishing the ba-
sic concepts of the OO perspective early in the study. The dominating current
pedagogical approach is often justified by the statement that “teaching must
start with sufficiently simple examples.” This statement is often (mis-) under-
stood as to use traditional examples developed with the imperative programming
paradigm in mind.

The Scandinavian tradition builds upon ”sufficiently complex examples” as
propagated by Kristen Nygaard. Modeling is about creating a description of phe-
nomena and concepts from a given application domain. In OO modeling these
phenomena and concepts are described as classes and objects. A model is itself
an abstraction of something for the purpose of understanding it. The expres-
siveness of programming languages is limited. They are therefore not suitable
to describe all aspects of an application domain. It is therefore imperative to



expose students to different programming languages to enrich their vocabulary
for modeling different aspects of the application domain.

Groven and colleagues have started to monitor and evaluate OO courses to
identify recurring problems and approaches that work or do not work respec-
tively. As a next step they have planned to carefully design interventions in
existing courses to study the effects of modeling based approaches. The first
results are expected for the beginning of 2004.

4 Working Group Discussions

For the afternoon sessions participants formed three working groups to discuss
the following topics. The following subsections summarize the results from these
workings groups.

1. Tools

2. OO languages for teaching - why all this Java?

3. What are the real hard problems?

4.1 Tools

This group discussed the usage of tools in various teaching situations. Four
main areas for tool support were identified; modeling and design, coding, exe-
cution, and evaluation. The strengths and weaknesses of several popular tools
were shortly discussed (Alice [11], BlueJ [12], Fujaba [14], JKarel [15], and Prak-
tomat [16]). It was noted that all of them worked excellently in at least one of
the four areas above, but none of them did support all four areas.

Working group participants would require the following minimum proper-
ties/capabilities from a good OO educational tool:

– clear purpose

– simple & lightweight, but not simplistic

– impose restrictions on programming styles

– visualization of collaborations between objects

– easy transition to “real life” programming tools or environments

Finally, the group expressed also what they wish to see more of in available or
future tools:

– traceability; seeing the effects of change

– better integration of tools with each other

– student progression monitoring

– (semi-) automatic evaluation of models, code, and documentation



4.2 OO languages for teaching - why all this Java?

This group debated on the use of OO languages for teaching purposes. The
following three questions came to the surface at the beginning of the discussion:

1. Do we need a subset of an existing language?
2. Do we need a brand new language?
3. Does the perfect language perhaps already exist?

Group members agreed on the value of the following language features to
support learning of OO:

Static Types and Type Declarations The discussion emphasized that the following
properties of static type systems were often valuable in teaching novices:

– safety
– documentation
– tests (powerful documentation!)
– programming environment
– type inference
– beta patterns

Closures There was some discussion as to whether it was useful to have a lan-
guage that provided support for closures. At least one participant, Bruce, argued
that they were not necessary, and that some of the same expressiveness could be
provided in a language like Java with inner and anonymous classes. Even then
these features were not necessary in a first semester course, though inner classes
can be quite helpful in a course on data structures.

Don’t fall off a cliff The participants agreed that it could be helpful to use pro-
gramming environments that provide support for focusing on only parts of the
programming language (the part that students are learning at some time). Stu-
dents shouldn’t accidentally use part of a language or an environment which they
should not know (yet), in order to avoid confusion. In DrScheme for example,
teaching packs are offered depending on the level of the student.

4.3 What are the real hard problems?

The following aphorisms, ideas, and questions came up during the discussion:

– Is it hard to teach or to learn?
– We need to bridge the gap between stories and the program
– Students are not empty bowls
– Students can learn by seeing other students’ errors
– As with writing poetry, students should learn to read before learning to write
– A good programmer is lazy – they copy the best practice
– Good design comes from experience – experience comes from bad design



This group started the discussion with a comment of Joe Bergin. He said that
if you teach right, learning is easy. But since we still do need to figure out how
to teach right, we tried to identify the current problems we have.

Abstraction was considered to be one of the hardest problems – to let stu-
dents grasp the object-oriented way of thinking and to learn how to generalize
a problem. Teaching more than one paradigm was found to be important for
broadening a student’s mind. Using functional programming was mentioned in
this context, because for example Scheme, a dynamically typed, functional lan-
guage, is an excellent tool for learning about abstraction. Consider, for example,
defining higher-order functions in Scheme. This way, you learn to factor out the
variabilities of common subproblems.

Polymorphism is a tough topic as well, although others find it a quite natural
topic if you succeed in relating polymorphism with things that are already known
in the real world. An example of this could be asking a question to two different
people, as they might respond in completely different ways.

Another hot topic in this group was a more general remark: other students
can benefit by seeing other students’ errors. Student assignments based on this
idea were discussed, like grading students on their ability to criticize the other’s
designs, and more than that, also grade them on their ability to improve their
work after hearing the criticism.

Another range of hard problems are the ones related to design and modeling:
how do you visualize things for students, and how do you provide them with the
sort of mental model they need to have? It is clear that even for experienced
practitioners, everyone uses their own way of mentally drawing their idea of
the design, and even if people use the same notation, people sometimes assign
different semantics to it.

5 Conclusions

The objective of this workshop was to discuss current tools and environments for
learning object-oriented concepts and to share ideas and experiences about the
usage of computer-based tools to teach the basic concepts of object technology.

Ongoing work was presented by a very diverse group of people with very
different backgrounds, which resulted in the discussion of a broad range of top-
ics like tool support, environments, courses, teaching approaches, languages for
teaching, etc.

Summarizing what was said in the debate groups, we can conclude that:

– Teaching/learning tools should be lightweight and reflect a clear purpose.
Support should be provided for visualizing the different aspects of the OO
paradigm like object interactions. Integration of different educational tools
should be increased, and the transition to real-life programming should be
easily possible.

– There are many advantages to using an OO language for teaching that sup-
ports static types and type declarations. It is also very helpful if support is



provided for focussing only on some aspects of the language (concepts that
don’t have to be known yet shouldn’t be made available) - like teaching packs
in DrScheme.

– Having talked about what the hard problems in teaching are, we concluded
that abstraction(learning to generalize), polymorphism, teaching design, and
providing mental models provide the biggest problems.

– Getting to know different programming paradigms is important; other para-
digms, like functional programming, can aid significantlyin clarifying differ-
ent aspects of programming.

References

1. Börstler, J. (ed.): OOPSLA’97 Workshop Report: Doing Your First OO Project.
Technical Report UMINF-97.26, Department of Computing Science, Ume̊a Uni-
versity, Sweden (1997).

2. Börstler, J. (chpt. ed.): Learning and Teaching Objects Successfully. In: De-
meyer, S., Bosch, J. (eds.): Object-Oriented Technology, ECOOP’98 Workshop
Reader. Lecture Notes in Computer Science, Vol. 1543. Springer-Verlag, Berlin
Heidelberg New York (1998) 333-362.

3. Börstler, J., Fernández, A. (eds.): OOPSLA’99 Workshop Report: Quest for Effec-
tive Classroom Examples. Technical Report UMINF-00.03, Department of Com-
puting Science, Ume̊a University, Sweden (2000).

4. I. Michiels, J. Börstler: Tools and Environments for Understanding Object-
Oriented Concepts, ECOOP 2000 Workshop Reader, Lecture Notes in Computer
Science, LNCS 1964, Springer (2000), pages 65-77.

5. I. Michiels, J. Börstler and K. Bruce: Sixth Workshop on Pedagogies and Tools
for Learning Object-Oriented Concepts, in J. Hernández and A. Moreira, editors,
Object Oriented Technology - ECOOP 2002 Workshop Reader, Volume 2548 of
Lecture Notes in Computer Science, LNCS 2548, Springer (2002), pages 30-43.

6. E. Gamma , R. Helm , R. Johnson , and J. Vlissides . Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

7. Pedagogical Patterns pages. http://www-lifia.info.unlp.edu.ar/ppp/

http://csis.pace.edu/~bergin/PedPat1.3.html

8. European Master in Object-Oriented Software Engineering.
http://www.emn.fr/MSc/

9. OOPSLA01 workshop. http://www.cs.umu.se/%7Ejubo/Meetings/OOPSLA01/

10. ECOOP 2003 Workshop homepage. http://prog.vub.ac.be/~imichiel/

ecoop2003/workshop/

11. Alice homepage. http://www.alice.org

12. BlueJ - the interactive Java environment. http://www.bluej.org
13. COOL project Workshop homepage. http://www.intermedia.uio.no/cool/

14. Fujaba (From UML to Java And Back Again) homepage.
http://www.uni-paderborn.de/cs/fujaba/

15. JKarel Robot homepages. http://csis.pace.edu/~bergin/#kjr and
http://math.otterbein.edu/JKarelRobot/

16. Praktomat. http://sourceforge.net/projects/praktomat/

17. Workshops on OO Education. http://www.cs.umu.se/research/education/

ooEduWS.html



Name Affiliation E-mail Address

Isabel Michiels Vrije Universiteit Brussel, Belgium imichiel@vub.ac.be
Jürgen Börstler Ume̊a University, Sweden jubo@cs.umu.se
Kim Bruce Williams College, USA kim@cs.williams.edu
Alejandro Fernandez Fraunhofer IPSI, Darmstadt, Ger-

many

casco@ipsi.fhg.de

Ola Berge Intermedia, University of Oslo,

Norway

ola.berge@intermedia.
uio.no

Joe Bergin Pace University, USA jbergin@pace.edu
Andrew P. Black OGI School of Science and Engi-

neering, Oregon, USA

black@cse.ogi.edu

Richard Edvin Borge University of Oslo, Norway richared@ifi.uio.no
Thomas Cleenewerck Vrije Universiteit Brussel, Belgium tcleenew@vub.ac.be
Pedro J. Clemente University of Extremadura,

Cáceres, Spain

jclemente@unex.es

Jessie Dedecker Vrije Universiteit Brussel, Belgium jededeck@vub.ac.be
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium wdmeuter@vub.ac.be
Arne-Kristian Groven Norwegian Computing Centre,

Oslo, Norway

Arne-Kristian.
Groven@nr.no

H̊avard Hegna Norwegian Computing Centre,

Oslo, Norway

havard.hegna@nr.no

Mario Kusek University of Zagreb, Croatia mario.kusek@fer.hr
Dennis Medzihradszky Dennis Gabor College, Budapest,

Hungary

medzihradszky@ sza-
malk.hu

Birger Møller-
Pedersen

University of Oslo, Norway birger@ifi.uio.no

Marie-Helene Ng
Cheong Vee

Birkbeck College, University of Lon-

don, UK

gngch01@dcs.bbk.
ac.uk

Virginia Niculescu Babes-Bolyai University, Romania vniculescu@nessie.cs.-
ubbcluj.ro

Jörg Pleumann Universität Dortmund, Germany pleumann@ls10.cs.
uni-dortmund.de

Wilfried Rupflin University of Dortmund, Germany wilfried.rupflin@uni-
dortmund.de

Jens Schröder Universität Dortmund, Germany schroeder@ls10.cs.
uni-dortmund.de

Tyszberowicz Shmuel Tel-Aviv University, Israel tyshbe@post.tau.ac.il
Marianna Sipos Dennis Gabor College, Budapest,

Hungary

sipos@szamalk.edu

Friedrich Steimann Learning Lab, Hannover, Germany steimann@acm.org
Uwe Thaden Learning Lab, Hannover, Germany thaden@learninglab.

de
Jürgen Wolff von Gu-
denberg

University of Würzburg, Germany wolff@informatik.uni-
wuerzburg.de

Amiram Yehudai Tel-Aviv University, Israel amiramy@tau.ac.il

Table 2. Workshop participants


