Distributed Object Inheritance to Structure Distributed Applications

Vrije Universiteit Brussel -- Programming Technology Laboratory -- http://prog.vub.ac.be
Jessie Dedecker -- Thomas Cleenewerck -- Wolfgang De Meuter

Introduction

Prototype-based languages (PBLs) are
good at sharing information between
objects, while sharing is a ubiquitous
problem in distributed application
programming (due to concurrency and
partial failures). New language concepts
can exploit the advantages of PBLs to
ease the distribution problems.

Distributed Object Inheritance

Objects can share information with each
other through the use of object
iInheritance. When an object receives a
message that it does not know it can
delegate that message to its object
parent, which then executes that
message in the context of original
receiver. The child - parent object

(jededeck | tcleenew | wdmeuter)@vub.ac.be

Communication Patterns

Obiject inheritance raises the split object
problem. The split object problem can
be solved by transparent multicast
messages, depending on the required
semantics of the split object.

Multicast messages are introduced via:

Dynamic Object Hierarchies

Object hierarchies are very dynamic.
This way the hierarchies can match the
dynamicity of the distributed applications

(e.g. computers are continuously

connecting and disconnecting to the
network). For example if we want to
build a dynamic domain name server we

WE keyword
Multivalue references can create it very naturally with
Per Object distributed object inheritance.
masterAgent@localhost
besiHotel Beach Hotel newBestHotel(aHotelName, aPrice):{
bestPrice 340 bestHotel:= aHotelIName;
newBestHote o bestPrice := aPrice;
search Leee) W € |.updateCache(aPrice):
hotelFound {...} updateCache(aPrice)

TN

Refers to children of current object

hotelSearchAgent@france

checkFacilities

checkPrice

currentHote

cachedl|BestPrice

updateCache

run

relation may be distributed over multiple
machines.
hotelSearchAgent@Iocalhost
bestHotel Beach Hotel
bestPrice 340
newBestHotel {...}
search L e s
hotelFound {...}

TN

Data Sharing Data Sharing

~J
hotelSearchAgent@france hotelSearchAgent@spain
checkFacilities| { ... } checkFacilities| { ... }
checkPrice Q checkPrice)
currentHotel \ currentHotel /
run {...} run 1 {...}

checkPrice():{
iIf (currentHotel.getPrice().isLowerThan(bestPrice))

{

super.newBestHotel(currentHotel.getName(),
currentHotel.getPrice());

}

hotelSearchAgent@spain

checkFacilities
checkPrice
currentHote
cachedIBestPrice
updateCache
run

checkPrice():{

{

}

iIf ((currentHotel.getPrice().isLowerThan(cachedBestPrice)) &&
(currentHotel.getPrice().isLowerThan(bestPrice)))

super.newBestHotel(currentHotel.getName(),
currentHotel.getPrice());

Multivalues are a more general form of
the WE keyword. Multivalues can hold
references to multiple objects. When a
message Is sent to a multivalue, then the
message is sent to all objects referred to
by the multivalue. The result of such a
message is then again a multivalue

reference.

name

top

search

.

Synchronization

When objects are concurrently cooperating to
achieve some goal there is a need for
coordination between different concurrent
objects. Concurrent processes are
synchronized using different kinds of method
synchronizers:

1) Combinator methods

Combinators fib(n-1)|+ fib(n-2)
Synchronization / \\

Active Objects

Ui

name

org

search

)

name |[com name | net
search |{...} search [{...}
name amazon
search {...}
name |www NaNge www2
search | {...} sear {...}

[1]

[2]

/ \

3 3

2) Child synchronization is used when a
parent object is waiting for its child objects
to have reached a certain point in their
execution.

hotelSearchAgent@Iocalhost

bestHotel Beach Hotel
bestPrice 340
newBestHotel {...}
search Leen s
hotelFound {...}
getResult {...}

P<?<7f0hild Synchronization
Child Synchronization
~J
elSearchAgent@france otelSearchAgent@spain

checkFacilities| { ... } checkFacilities| { ... }
checkPrice o checkPrice o
currentHote currentHote
run {...} run {...}
References

Robert Tolksdorf and Kai Knubben. Programming Distributed Systems
with the Delegation-based Object-Oriented Language dSelf , In
Proceedings of SAC’02 - ACM 2002 SYMPOSIUM ON APPLIED
COMPUTING, Technical Track on "Programming Languages and
Object Technologies”. 2002.

Jean-Pierre Briot and Akinori Yonezawa.

Inheritance and synchronization in concurrent OOP.

European Conference on Object-Oriented Programming (ECOOP'87),
Paris, France, number 276 in Lecture Notes in Computer Science,
pages 32-40, Springer-Verlag, 1987.

