
Communication Abstractions

Through

New Language Concepts

Jessie Dedecker∗and Wolfgang De Meuter (jededeck—wdmeuter@vub.ac.be)
Tel: +32-2-629.35.30 - Fax: +32-2-629.35.25

Vrije Universiteit Brussel
PROG - Department of Informatics

Pleinlaan 2
1050 Brussels

Belgium

1 Introduction

In this paper we take the position that dedicated
language concepts are to be considered as the
solution for introducing commonly used commu-
nication abstractions into distributed programs.
In our research we explicitly abandon middle-
ware solutions, such as generation of stubs and
skeletons. They do not give rise to the new ways
of thinking that will be required for the construc-
tion of distributed and mobile systems in highly
dynamic environments such as interconnected
desktops, pda’s and domotics. More specifically,
we think that both the complexity and weak-
ness of most middleware technology and the ’so-
lutions’ the spawn is due to the fact that the
technology is statically typed and class-based.
Indeed, the major raison d’etre for generated in-
terfaces and stubs is to satisfy type checkers for
static languages. Because of that, we are starting

∗Research Assistant of the Fund for Scientific Research
Flanders, Belgium (F.W.O.)

to investigate how we can put the properties of
prototype-based languages to structure and sim-
plify the development of mobile agent software
and thus also distributed systems.

In this paper we introduce some preliminary
resulting communication abstractions based on
the delegation mechanism most prototype-based
languages feature. As a concrete case we will dis-
cuss some coordination problems in the master-
slave design pattern and do a few gedankenex-
periments in language design in this context.

2 Master-Slave Pattern

The master-slave pattern [AL98] is used to par-
tition a task into a set of subtasks to increase
the reliability, performance, security and accu-
racy of the execution. In the context of mobile
agents we have a master agent that spawns some
slave agents that each perform a subtask and
migrate to other computational environments in
order to perform that task. After completion

1



the slaves communicate the result back to the
master. Important here is that there is often a
need for coordination between the master and its
slaves. For example, suppose that we have a task
to search for the cheapest hotelroom available in
a hotel. We could spawn several slaves that each
visit a subset of hotels searching for a hotelroom.
When a slave finds a suitable hotelroom it sends
the hotel and its price back to the master that
maintains the cheapest hotel. Agents will have
to migrate often between the computational en-
vironment of the master and the computational
environment that hosts the hotels when a lot of
rooms are available. To optimize this the mas-
ter should be able to communicate the best ho-
tel that has been found so far to its slaves each
time a cheaper room has been found. This ex-
ample shows that some coordination mechanism
is necessary between the master and its slaves
when there are interdependencies between the
subtasks each slave is responsible for.

3 Language Concepts to the
Rescue

In this section we introduce some new language
concepts that help to dissolve the master-slave
pattern and the coordination communication
mechanisms that are often needed between the
master and slave agents.

3.1 Prototype Based Languages

Prototype-based objects [Lie86] are self-
dependent, they carry their own behavior
and do not not depend on a class. Most
prototype-based languages make use of a shar-
ing mechanism that is called delegation or
object-inheritance. For example, if object A

inherits from object B (notice we are not talking
about classes) and a message msg is send to
object A that is not implemented in that object,
then that message is delegated to object B. If
object B has an implementation for msg then it
executes the method associated with message
msg in the context of object A. Said in another
way, the SELF is referring to object A. Such
a mechanism supports the sharing of both be-
havior and data. In prototype-based languages
new objects are created ex-nihilo or by cloning
another object, rather than instantiating the
object from a class.

3.2 Distributed Object Inheritance

Object inheritance allows a parent to share both
its data and behavior with its children. We pro-
pose to use object inheritance to structure mo-
bile agents in an application in such a way that
they are still able to exchange messages to each
other in a convenient way to enhance the coor-
dination between distributed objects and mobile
agents. In our language we use mixins to intro-
duce object-inheritance 1. When a mixin method
is executed on an object A (mixins are activated
by sending a message to the object), then a new
object is returned with the set of method and
data slots defined in the mixin and the parent
link of the new object is pointing to the object
A. Below is the code of a simple counter object
with two regular methods incr and decr and one
mixin method protect. The mixin method over-
rides both regular methods to prevent overflow
and underflow.

counter(n):
1Mixin-based inheritance has several advantages over

classical object-based inheritance (with the most impor-
tant one the reduction of the encapsulation problem) as
pointed out in [SDM95]

2



{ incr():: n:= n+1;
decr():: n:=n-1;
protect(limit)::
{ incr()::

if(n=limit,
error("overflow"),
super.incr());

decr()::
if(n=-limit,

error("underflow"),
super.decr());

capture()
}
capture()

}

Mixins reduce the encapsulation problems, be-
cause it is the parent object that defines the
mixin method and thus decides what child ob-
jects are created. We propose to extend mix-
ins to the context of mobile agents. When a
netmixin is executed on an agent A then a new
agent B is spawned (new object and execution
thread) with its parent pointing to agent A.
When agent B migrates to another computa-
tional environment its parent link keeps pointing
to that of agent A, but agent A does not neces-
sarily migrate with agent B. Below is the code
of an agent that roams over the network to find
suitable hotels and communicates the result back
to the master agent. The hotelSearchAgent (the
master) has one netmixin method that spawns
a new agent that travels to a set of hotels and
checks if they meet the criteria. If they do then
the price is sent together with the name of the
hotel to the master agent.

01: hotelSearchAgent():
02: { bestHotel::void;
03: bestPrice::void;

04:
05: newHotel(aHotelName, aPrice)::
06: if(aPrice < bestPrice,
07: {
08: bestHotelName:=aHotelName;
09: bestPrice:=aPrice
10: });
11:
12: spawnSlave(hotels,query)::netMixin(
13: {
14: index::1;
15: run(aHotel)::
16: {
17: migrate(aHotel);
17: if(aHotel.meetsCriteria(query),
18: super.newHotel(aHotel.name,
19: aHotel.price));
20: if(index <= size(hotels)),
21: index:=index + 1,
22: stop());
23: run(hotels[index])
24: }
25: run(hotels[index])
26: }
27: clone()
28: })

The code below shows an example use of the ho-
telSearchAgent object. The organisational hier-
archy of the objects created by running this code
is shown in figure 1.

01: a: hotelSearchAgent();
02: b: a.spawnSlave([hotel1], myCriteria);
03: c: a.spawnSlave([hotel2], myCriteria);
04: d: a.spawnSlave([hotel3], myCriteria);

One form of communication between the mas-
ter and slave agent is through the use of the
super and self keyword. For example, a slave
agent can communicate with the master agent

3



newHotel
bestPrice
bestHotel

a

local CE

index
query
hotels

b

run
index
query
hotels

c

run
index
query
hotels

d

run

CE hotel1 CE hotel2 CE hotel3

Computational
Environment

(CE)

Object

Distributed Object
Inheritance

Figure 1: Physical Location of Objects

by sending it a message using the super keyword.
The master agent can then send a result back to
the slave as a return value to the super request
- or - in the case of more complex interactions
the master agent can continue to communicate
with the slave by sending it messages through
the use of the self keyword. Indeed, when the
slave sends a message to the master through the
use of the super keyword then the master can
send a reply to the slave that send that mes-
sage using the self keyword, because the SELF is
referring to that slave. This example shows us
how the communication between the master and
a slave melts away in the structure of the pro-
gram code. Without such a mechanism both the
master and slave are responsible for maintaining
references to each other. These references have
to be passed with each communication or stored
in a variable making the code more complex. If
we look how we can implement the optimisations
we described in section 2 then we come to the
conclusion that it is impossible using the super
and self keywords, because we cannot reference
the other slaves.

3.3 Communication Patterns

3.3.1 One-to-many Communication

Sometimes we want to send a message from the
master agent to all the other slaves. The key-
word self and super do not allow us to send such
messages, this is why we introduce the new key-
word we. If we send a message to we, then we
are sending a message to all the children. The
return value of a method call to we always re-
turns void. To make the optimisation such that
the master notifies the best hotel that was found
so far to its slaves we can conveniently change
the code to the following:

06: if(aPrice < bestPrice,
07: {
08: bestHotelName:=aHotelName;
09: bestPrice:=aPrice;
10: we.bestSoFar(bestPrice)
11: });

We further need a local variable localBestPrice
and code in the slave mixin to check if the result
that the slave found is better than the best local
result. Notice that it is important to keep a local
variable in the slave, because otherwise we have
to communicate with the master each time we
need to check the new price that we found. We
can modify the slave mixin to the following:

12: spawnSlave(hotels,query)::netMixin(
13: {
14: index::1;
15: localBestPrice::void
16: bestSoFar(aPrice)::
17: {
18: localBestPrice:=aPrice;
19: }
20: run(aHotel)::
21: {

4



22: migrate(aHotel);
23: if(and(aHotel.meetsCriteria(query),
24: aHotel.price <
25: localBestPrice),
26: super.newHotel(aHotel.name,
27: aHotel.price));
.
.
.

Note that we could also implement similar be-
havior with the observer pattern [GHJV94], but
this would require us to implement the pattern
manually in the master and slave. Another dis-
advantage of the observer pattern is that the de-
veloper needs to discover the pattern in the code,
there are no explicit keywords for it. Sending
more refined notify messages to the slaves comes
for free with the we keyword, while in the ob-
server pattern has to be adapted for this to a
system that is similar to the java listener frame-
work.

3.3.2 Master Agent Synchronization

Another problem we encounter when implement-
ing the example from above is that we need to
synchronize the master and slave agents. For ex-
ample, if we want to implement a method in the
master agent that returns the result of the search
then we need to wait until all slave agents have
finished before returning a result. For this rea-
son we introduce a delayed method. A delayed
method only executes when all the children of
an object have sent a message to the object im-
plementing the delayed method associated with
that message. When a message is send to a de-
layed method it is asynchronous. This means
that the slave that sends the message does not
block until the delayed method has been exe-
cuted. Since messages send to a delayed method

are asynchronous, no return value is send back
to the slaves. The synchronization is added by
adding the following code to the master agent.

03: ready::false;
04: stop()::delayedMethod(ready:=true);
05:
06: getResult()::{
07: waitFor(stop,ready=true);
08: bestHotel.name
09: }

We further need to research what happens with
the actual parameters in the case of delayed
methods. They could be provided as an array
with all the actual parameters, when all children
have send a message. Another, perhaps more in-
teresting option is to use them as a means for
matching certain results. The delayed message
would then only execute when the parameters
send match each other (in the sense of prolog-
unification). We have to further explore these
and other possibilities.

3.3.3 Slave Agent Synchronization

Sometimes we want the slaves to wait for the
master until some value has been send by all
other slaves. Such a behavior is captured using
join methods. Join methods can be seen as the
synchronous variation of the delayed methods in-
troduced above. The semantics are the same,
but the sending slave agent becomes blocked un-
til all other slaves have send the method. Once
the join method has executed the return value is
send to all slaves.

Suppose we want the slave agent that found
the cheapest hotel to book the room. We can
only determine that slave agent after all slaves
have been send their results to the master agent.

5



03: cheapestAgentName::void;
04: book()::
05: joinMethod(cheapestAgentName);
.
.
.
19: if(index <= size(hotels)),
20: index:=index + 1,
21: if(book()=this.name,
22: makeBooking()));

When all slave agents have send their results to
the master agent they send a book message to
the master agent. The master agent returns the
slave agent that found the cheapest hotel to all
slave agents, so that the one can make the book-
ing.

4 Conclusion and Future Work

In this paper we introduced some preliminary
communication abstractions that were based on
the delegation mechanism most prototype-based
languages feature.

The examples shown in section 3 strong our
beliefs that new language concepts are a good
way for introducing new communication abstrac-
tions in languages. Furthermore, these language
concepts aid in imposing a new way of thinking
about the structure of distributed and mobile
programs.

We are currently integrating the new language
concepts explained above into the prototype-
based programming language Pic% [MDD03]
and will do some experiments to gain more
practical experience with the new language con-
structs. We will also investigate the interactions
with metaprogramming, concurrency and partial
failures. Finally, we will search for other patterns

that can expressed with new language concepts
using prototype-based language features.

5 Acknowledgements

Thanks to Thomas Cleenewerck for discussing
some of the ideas and Dr. Tom Tourwe for proof-
reading.

References

[AL98] Yariv Aridor and Danny B. Lange.
Agent design patterns: elements of
agent application design. In Proceed-
ings of the second international con-
ference on Autonomous agents, pages
108–115. ACM Press, 1998.

[GHJV94] Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable
Object-Oriented Software. Addison-
Wesley Professional Computing Se-
ries. Addison-Wesley, 1994.

[Lie86] Henry Lieberman. Using prototypi-
cal objects to implement shared be-
havior in object-oriented systems.
In Conference proceedings on Object-
oriented programming systems, lan-
guages and applications, pages 214–
223. ACM Press, 1986.

[MDD03] Wolfgang De Meuter, Theo D’Hondt,
and Jessie Dedecker. Intersecting
classes and prototypes, 2003. Ac-
cepted at Andrei Ershov Fifth Inter-
national Conference ”Perspectives of
System Informatics”.

6



[SDM95] Patrick Steyaert and Wolfgang
De Meuter. A Marriage of Class-
and Object-Based Inheritance
Without Unwanted Children. In
Walter Olthoff, editor, ECOOP ’95
- Object-Oriented Programming,
number 952 in Lecture Notes in
Computer Science, pages 127–144.
Springer-Verlag, 1995. Proceedings
of the 9th European Conference
on Object-Oriented Programming.
Aarhus, Denmark, August 1995.

7


