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ABSTRACT
Our problem was to find a computer language to teach com-
puter science to freshmen in exact sciences other than com-
puter science. We were in search for a language that has the
power of languages like Scheme, the readability of ‘plain’
mathematics, and the realism of contemporary imperative
languages. To the best of our knowledge, no existing lan-
guage is successful in uniting all these requirements. In the
paper we show how a simple mathematical notation for func-
tion application combined with a original suite of parameter
passing schemes is the key to the unification we were after.
The outcome is called Pico, a simple powerful extensible
language that is also easy to read.

1. INTRODUCTION
After years of teaching Pascal [12] in a computer science in-
troductory course for freshmen in exact sciences other than
computer science1 we had to face the fact that the overall
results were deplorable. Many students kept on struggling
with the syntax, static typing rules, the positioning of semi-
colons, the difference between procedures and functions, the
necessity to compile and so on. As a result the programming
skills of most students remained regrettable and instead of
being an inspiration for further exploration of computer sci-
ence, the introductory course acted as a drag: students got
demotivated, hated computer science and identified it with
the technological fuss associated with Pascal compilers.

We therefore started a project to redesign the entire course.
One of the problems we really wanted to get rid of was the
laborious edit-compile-run cycle which we experienced to be

1Physics, Chemistry, Mathematics, Biology, Biotechnology,
Geography and Geology.

a clog. Therefore we excluded languages with a “compilation
culture” like Ada [10], C [7] and Java [4]. These languages
were also way too complex as they are even richer than the
Pascal we were about to abandon. We also wanted a lan-
guage with automatic GC since manipulating pointers and
managing memory was far beyond the skills of the intended
audience. Pure functional programming was also ruled out:
for many students, the aforementioned introductory course
is the only one they will ever get during their university
studies. One of the goals of the course was therefore to
accustom them with the notion of a changing memory, a
characteristic that is still inherent to mainstream computer
science practice. All these restrictions led us to languages
like Scheme [6] or Smalltalk [2]. But we were left no other
choice than to admit that their simple regular syntax and
semantics even take our computer science students two years
to fully master.

That’s why we started to dream about a simple language in
which students were motivated into exploratory program-
ming in a read-eval-print-loop as is the case with Scheme,
but with a language that is:

• easy to read. The language had to look like calculus
because that is about the only experience the intended
audience had with formal languages.

• as powerful and simple as Scheme. We wanted a small
number of powerful concepts instead of the baroque
concept set of Pascal, Ada or Java.

• extensible in the same way Scheme and Smalltalk are.
Instead of focussing on learning by heart a fixed con-
trol structures suite, we wanted that set to be easily
extensible, much in the same way Smalltalk control
structures are.

At first sight, this seemed impossible. The extensibility of
a language in the spirit of Smalltalk or Scheme goes hand
in hand with the simplicity and regularity of their syntax.
However, the “easy to read” requirement seemed to be di-
ametrically opposed to this. As we show, the exploration



of an original suite of parameter passing techniques was the
key to our quest. The outcome is called Pico.

1.1 The Acting Forces
In current day academic language design, syntax is no longer
an exciting study field. But as explained in the introduc-
tion, in our case this was one of the actual endeavors of the
project. The Pico experience taught us that it is not easy
to come up with a syntax that is easy to read, very orthogo-
nal and that allows the specification of a simple and regular
extensible semantics.

When looking at existing languages, we can divide them into
three flavors when it comes to their syntax:
An Irregular Keyword-based Syntax. The first kind of
syntactic flavor is best known because so many popular lan-
guages have a syntactic system belonging to this flavor. The
general idea is that the language is built around a number of
keywords each with dedicated rules of how sub-expressions
or sub-statements are to be centred around and grouped by
those keywords. Examples of such languages are C, Pascal,
Ada, Java, C++ and many more. These syntactic systems
are irregular in the sense that just about every construct of
the language has dedicated rules as to how instances of that
construct are to be written down. Languages like these have
the advantage of being easy to read. But they are hard to
write. One really has to know their syntactic system thor-
oughly in order to construct programs correctly. As such,
teaching the syntax in an encyclopedic, long-winded way is
the only option. Furthermore it is not easy to equip such a
language with an extensible syntax and semantics.
A Regular Syntax without Special forms. In languages
of the second flavor, the syntactic rules are extremely sim-
ple in the sense that everything is expressed using one single
syntax rule. Examples of such languages are pure functional
languages (where everything is a function application) and
Smalltalk or Self [11] (where everything is a message send).
In pure functional languages it is possible to express every-
thing as a function application since these languages usually
support lazy evaluation allowing “keywords” to be functions
whose arguments are not evaluated unless this is really nec-
essary. However, as explained before, pure FP was ruled
out. Let us then have a look at Smalltalk. This is an
imperative language and since laziness doesn’t combine too
well with side effects, it does use eager evaluation, mean-
ing that arguments are always evaluated before a message is
sent. Therefore, in Smalltalk, arguments of “language mes-
sages” like ifTrue:ifFalse: must be manually wrapped
in a lambda (called a block in Smalltalk) in order to de-
lay them. The lambda is passed around and calling it then
causes its body expression to be evaluated. Important for
this paper is that the regularity of Smalltalk’s syntax com-
bined with its eager evaluation forces programmers to use its
block system to clumsily prevent some expressions from be-
ing evaluated. Therefore, although languages in this second
category are extremely easy to extend, programs written in
them are often obscure, especially to novices.
A Regular Syntax with Special Forms. A third and
final way of specifying syntax is a mixture of these keyword-
based and regular syntax definition flavors. It is adopted by
languages like Scheme and Prolog [9]. These languages are
highly regular in the sense that all constructs are specified
using exactly the same rules even though they semantically

behave quite differently. In Scheme, almost every expression
looks like a function call. Normal function calls follow eager
evaluation, but for some “function names” (like define, if)
a special -partially lazy- evaluation is defined. These “func-
tions that bear a special status in the evaluator” are called
special forms in Scheme. In Prolog we have the same situ-
ation where some predicate names behave differently from
regular predicates. Just as is the case for languages in the
second category, languages in this third category are easy
to extend as is shown by the Scheme macro system. Fur-
thermore, constructing programs in languages of this third
category is quite simple. However, students have to metic-
ulously “parse” programs in order to read them. We found
that even sophomores in computer science that have been ex-
tensively exposed to Scheme 2 still find deciphering Scheme
programs troublesome.

To the best of our knowledge an intersection of these three
flavors that combines their advantages but shuns their dis-
advantages is empty. What we were actually after was a
language with a syntax as easy to read as keyword-based
languages, as easy to write as ordinary calculus, yet as or-
thogonal in syntax and semantics as the languages with a
regular syntax. Furthermore, instead of hard coding all con-
trol structures with ad hoc rules to be taught in an ency-
clopedic tedious way, we wanted them to be specifiable and
extensible in the language itself as in Smalltalk. But sim-
pler.

As we will show in the rest of the paper, it seems that the
key to solve our problem lies combining ordinary function
application syntax from mathematics, with the invention of
a suite of original parameter passing techniques. Param-
eter passing used to be a hot topic in the seventies when
differences between call-by-value and call-by-reference were
exploited in programming languages. However, the distinc-
tion between these parameter passing schemes was not really
a result of language design considerations, but was rather
driven from an implementational point of view: should a
thing or a pointer to the thing be passed around. As far as
we know, Ada was the only language (with its IN, OUT and
IN OUT parameter annotation system) in which program-
mers were able to specify how parameters had to behave
from a conceptual point of view. In our work we invented
different conceptual parameter passing schemes which was
the key to solve our language puzzle.

1.2 The Pico 3x3 Syntax System
The Pico syntax is two-tiered. The first layer consists of a
suite of simple rules that allow for the construction of triv-
ial programs much in the style of functional programming.
The second layer adds a few bells and whistles which at first
might seem like rough edges to the proposal. However upon
closer inspection, it are exactly these that entailed the full
power of Pico as an extensible language. In this section, we
will explain the first layer of the syntax. The following sec-
tions explain the additional syntactical constructions. Be-
fore moving on to an in-depth explanation of the language,
the following Pico code snippet, meant as a teaser, gives a

2We teach our CS freshmen SICP [1] plus an Algorithms
& Data Structures course, and require them to do a ‘big’
two-semester programming project.



general flavor of the language. It is a naive implementation
of the famous quick sort algorithm:

QuickSort(V, Low, High):
{ Left: Low;
Right: High;
Pivot: V[(Left + Right) // 2];
until(Left > Right,
{ while(V[Left] < Pivot, Left:= Left+1);
while(V[Right] > Pivot, Right:= Right-1);
if(not(Left > Right),
{ Swap(V, Left, Right);
Left:= Left+1; Right:= Right-1 },

false) });
if(Low < Right, QuickSort(V, Low, Right), false);
if(High > Left, QuickSort(V, Left, High), false) }

The first layer of the Pico syntax and semantics is explained
by means of the three by three matrix depicted in table 1.
This two dimensional matrix emerges from taking all possi-
ble combinations of two design decision dimensions. First, a
Pico expression is always evaluated in the context of an en-
vironment (called a dictionary in Pico terminology) and one
dimension of understanding Pico consists of viewing Pico in
terms of manipulations of this dictionary. Therefore, each
row in table 1 gives syntax to add something to the dictio-
nary (with :), to refer to something in the dictionary, and
to update something in the dictionary (with :=). Second,
all Pico values (aside from literal values like integer num-
bers, fractions, texts and void) are described by what we
call invocations. These invocations constitute the horizon-
tal dimension of the Pico language design space. Invoca-
tions are used to talk about values in an atomic way, to talk
about tables, and to talk about functions. Tables are Pico
terminology for what is usually known as arrays. The first
kind of invocations are ordinary references nam. The second
kind are of the form nam[exp] and the final ones look like
nam(exp1,...,expn).3.

Before doing so, let us emphasize the fact that in Pico, ev-
erything is considered to be a first class value: basic values,
functions and tables all are ‘on the same level’: they can
be passed around as arguments, can be returned from func-
tions, can be used as the right hand side of an assignment
and so on. Another important point to keep in mind is that
Pico functions (in contrast to Scheme for example) always
have a name. This decision was made because of the audi-
ence intened: indeed, mathematics does not feature some-
thing as anonymous functions (functions are always named
f , g and h in mathematics and many students already con-
sider names like fac or fib strange). Having said this, let
us now run through the table:

• We start in the first column. A variable is installed
in the current dictionary using name: exp where exp

designates the initial value. exp can be anything since
expressions always yield a value. Hence, the expression
v: (n: (t: "hello")) will install three variables which

3In this paper, we give an informal explanation of the
Pico concepts. A formal specification in the form
of a meta-circular definition can be downloaded from
http://pico.vub.ac.be.

are all initialized to "hello". Referring to a variable
simply happens by naming it. Finally, variable assign-
ment4 almost is the same as variable definition. The
only difference is that the variable is already expected
to be in the dictionary.

• Manipulating tables (i.e. arrays) is the topic of the
second column. Table indexes run from 1 to the size
of the table. Let us start with table definition which
is the only expression type for which the semantics
is not trivial from what one would normally expect.
In an expression like t[exp1]: exp2, exp1 is evaluated
to yield an integer acting as the size of the new ta-
ble being installed in the dictionary under the name
t. The entries of that table will be filled with the re-
sult of evaluating exp2. The unexpected behavior lies
in the fact that exp2 is evaluated again and again for
every entry of the table. This allows for expressions
like t[n]: (i:=i+1) to create a table with n numbers
in ascending order (provided that a variable i exists
somewhere). Referring to a value in a table happens
with an expression of the form nam[exp] whose seman-
tics is as expected. Finally, updating a table position
happens with a nam[exp1]:= exp2 expression, of which
the meaning is predictable as well.

• The final column in table 1 is about function manipu-
lation. Function scoping is lexical as in Scheme. But
in contrast to Scheme, Pico functions always carry a
name. A function with name nam, parameters
par1, ... ,parn and body exp is defined by the expres-
sion nam(par1, ... ,parn): exp. The expression can be
anything. Hence, the expression:

f(x,y): g(t,u): x+y+t+u

will define a function f with two parameters that will
return another function of two parameters. An expres-
sion of the form nam(exp1, ... ,expn) will lookup nam

and check it to be a function. After checking the num-
ber of arguments, the parameters will be bound from
left to right to the arguments5. In the first layer of
Pico we are describing here, eager evaluation is used
such that all arguments will be evaluated. In the fol-
lowing sections we will see how to preclude arguments
from being evaluated. Last, function assignment hap-
pens in the same way as function definition. The name
is looked up and its associated value (whether it is a
function or not) will be garbage collected. The name
will be (re)associated with a new function.

Notice that Pico allows operators to be used in infix
notation. This is syntactical sugar, though. An oper-
ator application like x+y will be replaced by the parser
by a regular function application +(x,y). Operators
are recognized by their name which consists of special
symbols such as +, * and the like.

This ends our explanation of the first level of understanding
Pico. Notice that the curly braces used in the QuickSort

4We use := for assignment as we wanted to reserve = for
equality tests.
5Notice, that in contrast to Scheme, we do stress the order
(left to right) in which the arguments are evaluated and
bound.



Table 1: Pico basic syntax
kind of variable invocations table invocations application invocations
invocation: nam nam[exp1] nam(exp1, ... ,expn)

definition nam: exp nam[exp1]: exp2 nam(exp1, ... ,expn): exp
(see also sections 1.3 and 2)

reference nam nam[exp] nam(exp1, ... ,expn)
(see also section 2)

assignment nam:= exp nam[exp1]:= exp2 name(exp1, ... ,expn):= exp

teaser are not covered by this syntax. Furthermore, with
what we know so far, it is not possible to define or even use
a conditional if expression. Indeed, using an if with our
syntax would force us to write it down as if(condition,

then, else) causing all(!) arguments to be evaluated. In
order to mend this, the following sections add some bells
and whistles to this basic framework, which at first might
seem rough edges to the proposal. However, as we will show,
they are the key to turning Pico into a practical extensible
language.

1.3 Syntactic Sugar Due to @

As explained in the previous section, the Pico syntax is two
tiered. The second layer consist of what we usually call “two
footnotes to table 1”. This section presents the first foot-
note which is about functions that take a variable number of
arguments. Such functions are defined using the @ notation.
The following excerpt shows a function that can be called
with any number of arguments. It returns the sum of the
first three provided.

sum3@args: args[1]+args[2]+args[3]

Definition expressions of the form nam1@nam2: exp will install
a new function named nam1 in the dictionary with body exp.
The function can be called with any number of arguments
which will be evaluated from left to right, and collected in a
table of the appropriate size. This table is passed under the
name nam2. Inside the body of the function, one can thus
use nam2 as a normal Pico table as explained in the previous
section. In the example, the call to sum3 will always succeed,
no matter how many arguments are passed. Inside sum3 the
arguments are accessible by manipulating the args table. Of
course the body of sum3 will fail whenever less than three
arguments are passed to sum3.

The feature discussed here allows us to write our own begin

function:

begin@args: args[size(args)]

This begin function can be called with any number of argu-
ments. These will be bound, as always, from left to right.
Of course, this is what one expects when writing an expres-
sion like begin(exp1, ... ,expn). Inside begin, the values of
the expressions will reside in the args table. The body de-
termines its size and returns its last entry (cf. the value of
begin in Scheme).

Another function that comes handy when writing Pico pro-
grams, is the tab function:

tab@args: args

A call to tab like tab(1, 2.0, 3, "hello world") will eval-
uate the arguments, and pass them as a table; tab simply

returns that table. Hence, tab allows for ‘inline’ table con-
struction.

Syntactic Sugar Because begin and tab are used so of-
ten, the resulting number of parentheses starts to clutter up
programs. Therefore the Pico parser allows some syntactic
sugar:

• First, expressions can be grouped between curly braces
and separated by semicolons as in { exp1; ... ;expn }.
However, this notation is merely syntactic sugar: the
parser will replace this expression with a call to begin.
Hence, internally the parse tree generated by the above
expression will be the same as the parse tree of
begin(exp1; ... ;expn). This means that redefining begin

with the function assigment feature for example, will
give Pico programs a new meaning, also when they use
the curly braces notation.

• A second form of syntactic sugar that was added to
the parser is the ability to construct tables ‘inline’
by enumerating their elements between brackets and
separated by commas. Such expressions are syntactic
sugar for the corresponding calls to tab. Hence, an
expression [[1,2], [3,4]] is treated by the parser as
tab(tab(1,2), tab(3,4)).

We found that introducing these two shorthands consider-
ably improved the readability of Pico programs. Neverthe-
less, we managed to do so without really extending the suite
of Pico concepts.

2. VALUE BINDING SEMANTICS
The first “footnote” to the Pico 3x3 syntax system has been
presented in the previous section. We now proceed with the
second annotation. When evaluating a function application,
formal parameters are being bound to the actual arguments,
one by one. During this process the lexical environment of
the called function is progressively extended with new bind-
ings yielding an extended environment in which the body of
the function will be evaluated. This lexical scoping rule is
exactly the same as in Scheme.

The thought experiments we carried out when designing
Pico led to a generalized notion of parameter passing which
we call value binding. Value binding is regarded as a general
process that is not only applied to parameter passing but
to variable definition in general. To bind a pair of values
x← y means to associate them in a certain way, depending
on the form of x. In that binding, x is called the parame-
ter and y the argument. This nomenclature reflects the fact



that the ideas we will explain are in fact inspired on the
study of parameter passing mechanisms, and they find their
best application therein. Nevertheless, the generalization we
developed constitutes a step forward in the orthogonality of
the language semantics, as we will show next. Using the gen-
eral notion of value binding, the definition a: [ 1, 2, 3, 4 ]

invokes the exact same binding semantics in the interpreter
as the function application f([ 1, 2, 3, 4 ]), supposing that
f(a): { f’s body } has been defined. Value binding is ap-
plied both during variable definition and parameter pass-
ing. Unlike other languages, there is only one concept for
both mechanisms. In C or Java for instance, the definition
int a[] = { 1, 2, 3, 4 } is valid, whereas f({ 1, 2, 3, 4 }) with
f defined as void f(int a[]) { f’s body }, is not. In this
case, the process of binding the variable a with its initial
value is not the same as the binding of the parameter a with
its argument. But in Pico, it is.

Apart from extra orthogonality simplifying the definition
and implementation of the language, the notion of binding
led us to consider arbitrary couples (x, y) of expressions,
where x is not restricted to identifiers. Referring back to
the last column of table 1 we notice that the formal pa-
rameters exp1, ... ,expn of a function definition can, in fact,
be arbitrary expressions! How a value binding semantics
should be defined for each parameter type was an impor-
tant part of our language design. Although there are many
cases that do not make sense (e.g. it does not make sense to
bind the parameter expression 3 to the argument expression
6), we found some very interesting nontrivial cases which
will be explained in this section and in section 3. The rea-
son to split up the sections is to be consistent with other
documentation material of Pico. The binding semantics ex-
plained in this section is part of the “standard Pico seman-
tics” for a few years now. We understand it completely
and it is a feature of every Pico implementation around
(see http://pico.vub.ac.be). The value binding schemes
of section 3 are more experimental and their repercussions
on the pragmatics of the language are less well understood.
We start the presentation with the most basic case, namely
value binding for parameters that are ordinary variable ref-
erences.

2.1 Value Binding for Reference Expressions:
call-by-value

When a formal parameter of a function is an ordinary refer-
ence (i.e. an identifier), the Pico semantics prescribes that
the passed argument will be evaluated and the dictionary
is extended with one new association mapping the identi-
fier to the evaluated value. This happens for instance when
variables are defined:

a: 1; b: 2

or upon application of a function whose parameters are (or-
dinary) references:

f(a, b): { ... }; f(1, 2)

The function application causes the same binding processes
to occur than the two variable definitions above. This se-
mantics of binding a value to an identifier, often referred to
as call-by-value, is the most common in programming lan-
guages.

2.2 Value Binding for Application Expressions:
call-by-expression

Binding is more complex when parameter expressions are
application invocations, i.e. constructions of the form
nam(exp1, ... ,expn). For a parameter like this, binding a
given argument exp to it is achieved by creating a new func-
tion that corresponds to:

nam(exp1, ... ,expn): exp

Hence, binding an expression to an application invocation
parameter consists in constructing a new function with for-
mal parameters exp1, ... ,expn and body exp. The closure of
this function is the current evaluation environment, which is
“the environment of definition of the function”, thereby fol-
lowing the lexical scoping rules. Let us exemplify this using
the function definition:

g(f(a,b),x,y): if(f(x,y) > 0, x, y)

g has three parameters, f, x and y, the first of which is
an application expression, the type we are discussing here.
The other two parameters are ordinary reference expres-
sions discussed in section 2.1. Hence upon a function call
g(a+b, 1, 2), the value bindings f(a,b): a+b, x: 1 and y: 2

are performed, as always from left to right, and g can use
them as needed. The point to highlight here is that the
body and scope of f is dynamically associated upon each
invocation of g. We call this type of parameter passing call-
by-expression.

Although this might seem like an extremely obscure lan-
guage feature at first, the value binding semantics explained
here turns out to be natural for people without prior pro-
gramming experience. Consider for example the bisection
method to find the zero of a numerical function. Because
computer scientists are so much used to work with higher
order functions, they will say(!) that a numeric procedure
for this method takes “a function f”, boundaries a and b
and an accuracy epsilon. High school students, however,
will rather say that the bisection method can be used to
find the zero of “a function f of x” between a and b with
precision epsilon. The subtle difference between “f” and “f
of x” is often a source of problems when teaching higher or-
der functions: we as computer scientists rather work with f
because we are used to lexical scoping and local parameters.
Students with only an education in high school mathemat-
ics will prefer the second nomenclature. The value binding
semantics explained in this section allows this to be written
down in the most natural way:

zero(a, b, f(x), epsilon):

c: (a+b)/2;

if(abs(f(c)) < epsilon,

c,

if(f(a)*f(c) < 0,

zero(a, c, f(x), epsilon),

zero(c, b, f(x), epsilon)))

A call of zero such as zero(-3, 3, x*x-6, 0.01) will bind
the reference invocations a, b and epsilon to -3, 3 and
0.01 respectively. The application invocation f(x) will be
“value bound” to x*x-6 which will internally create a func-
tion f(x): x*x-6.



2.3 Value Binding for Table Invocations
As the value binding semantics are orthogonal throughout
the language, binding an argument exp to a parameter which
is a table invocation expression t[n] results in a new table
being created, where the passed argument is used as the
initializer expression of the table’s entries, i.e. t[n]: exp.
Thus defining

f(t[n]): { f’s body }
and then invoking { i: 0; n: 3; f(i:= i+1) } results in the
table [1, 2, 3] bound to the identifier t in the environment
of execution of f’s body. This semantics for table invocation
parameters is a homogeneous extension of the value binding
explained in the previous section. We have to admit that we
do not have a lot of experience with this feature currently.

2.4 Evaluation and Epilog
Measuring expressiveness and quality of programming lan-
guages is not an exact science. Nevertheless we have the feel-
ing of having established a consistent language that is easy
to learn and implement. This was confirmed by the results
we obtained in the introductory computer science course we
were talking about in section 1. While the course of the
Pascal era majorly consisted of explaining Pascal based on
simplistic examples like determining greatest common di-
visors, the size and simplicity of Pico actually allowed us
to focus on programming! In the 30-hours course, we ex-
posed the students (after explaining Pico itself) to four ex-
periments designed to stimulate their appetite for further
exploration of computer science in their respective fields:
simulation of population growth (biology), triangularization
of matrices (mathematics), simulation of forced oscillations
(physics) and querying of a small database representing the
periodic table of elements (chemistry). Again, all this was
done with 18-year olds in 30 hours.

But apart from these results, Pico is also interesting from
an academic point of view due to the value binding system
explained in the previous section. As we will show now, the
value binding mechanism for function application invoca-
tions allows for an easy extension of the language in the same
way Smalltalk and Scheme can be extended. This point is
made by the fact that Pico’s boolean system and its com-
plete suite of control structures were implemented in Pico
itself. Pico’s boolean system is actually an adaptation for
imperative languages of the famous Church booleans. The
idea thereof is to define booleans as functions that choose
between two options given as arguments. Based on these
definitions, one of the core control functions of Pico, the if

decision function, can be introduced in the same way it was
proposed by λ-calculus:

true(t,f): t

false(t,f): f

if(cond, t, f): cond(t, f)

This would work as expected, if(true, 1, -1) = true(1, -1)

= 1. There is however a problem in this overly simplistic
scheme: both branches passed as arguments to if will be
evaluated when bound to the parameters t and f because it
involves regular call-by-value. Thus code like:

if(true, display(1), display(2))

does not behave as expected. Call-by-expression was the
key to making Church’s boolean system applicable in Pico:

true(t(), f()): t()

false(t(), f()): f()

if(cond, t(), f()): cond(t(), f())

The ()-parameters delay evaluation of the argument expres-
sions because calling the function will not evaluate the ar-
gument but will instead create a function of zero parameters
whose body will be the argument. This allows us to perform
evaluation in a controlled way, by means of function applica-
tion. Operations like and, or and not are also implemented
in Pico this way.

Handy, but not essential of course, are some “commonly
known” Algol-like control structures such as the while con-
struct:

while(cond(), exp()):

{ loop(value, pred):

pred(loop(exp(), cond()), value);

loop(void, cond()) }

We leave it to the reader to figure out how this works because
it is not essential for the rest of the paper. We merely wanted
to prove our point of having an easily extensible language
due to call-by-expression.

In all these examples, thunks (i.e. functions of zero argu-
ments) are used to achieve what Smalltalk does with blocks.
However, in Smalltalk “thunkification” is requested by the
user of the control structure. We think that we have ob-
tained a cleaner syntax and semantics with the same power.
Furthermore it is not necessary to enrich the language with
extra concepts like macros and quasiquoting as was needed
to render Scheme’s special form suite extensible.

3. VALUE BINDING: ROUND 2
In this section we describe some experiments we conducted
in extending the standard Pico explained so far. In the value
binding possibilities x ← y we have presented until now,
the left hand side had to be one of the types listed in the
header row of table 1, i.e. x was either a variable, table or
application invocation. In this section we present binding
semantics for two other types of parameters we have been
investigating. Experiments nonetheless suggest [3] that both
of them enrich the possibilities of the language. Section 3.1
presents the case in which x is a table6 and section 3.2 the
case where x is a quoted expression.

3.1 Value Binding for Table Expressions: call-
by-table

If the parameter in a binding operation is a table (as op-
posed to a table invocation, explained in section 2.3), then
the argument must be a table as well, of the same size. The
entries of the parameter table are considered a parameter
each, and similarly each entry of the argument table is con-
sidered an argument. A 1-1 binding process is then applied
over the two sets of parameters and arguments, from left to
right. Let us consider some examples:

[a, b]: [1, 2]

[f(x), g(x)]: [x+2, x*2]

6Note that a “table” is different from a “table invocation”.
A table looks like [exp,...,exp], a table invocation looks
like t[exp].



The first binding operation defines two variables a and b

initialized to 1 and 2 respectively, and the second defines
two functions f(x): x+2 and g(x): x*2. Using this binding
semantics in the formal parameters of a function works as
expected:

f([a, b]): { f’s body }; f([1, 2])

Upon invocation, f’s body will see the variables a: 1 and
b: 2 defined in its execution environment.

One useful application we devise for this binding semantics is
to “catch up” table return values from functions that return
more than one result in the form of a table:

f(i): [i, i+1, i+2]; [x, y, z]: f(1)

The result value of f’s application – the table [1, 2, 3] – is
bound to the receiving parameter [x, y, z], implying that
the bindings x: 1, y: 2 and z: 3 are performed, in that order,
in the evaluation environment of the application.

Another use of table parameters consists in emulating the
“head/tail” parameter matching mechanism available in Haskell
[5]:

length [] = 0

length (head:tail) = 1 + length tail

In Pico, we can first define a list framework similar to that
of most functional languages:

empty: [void, void] -- the empty list
prepend(elem, list): [elem, list] -- like Scheme’s cons
head@list: list[1] -- like Scheme’s car
tail@list: list[2] -- like Scheme’s cdr

Then, we can define functions with “head/tail pattern pa-
rameters”, like in Haskell:

length([head,tail]):

if(is_void(tail), 0, 1+length(tail))

Note that the table parameter [head,tail] of length acts
as a pattern-matching construct: when the function is in-
voked passing a list as argument, the head and tail of the
list will be bound accordingly.

We have shown the usefulness of table binding both to match
arguments and to “catch up” results from functions. But
what is more important is that (in our experimental ver-
sion of Pico discussed here) table binding is, together with
reference binding, the most used binding mechanism of the
language. It is used whenever a fixed-arity function is ap-
plied, because the formal parameters of fixed-arity functions
are represented as normal Pico tables of expressions. When
the function is invoked, the table of arguments is bound
to the table of parameters, thus invoking the semantics ex-
plained in this section. This semantics happens to be the
same as that described in section 1.2 (the table sizes must
coincide, and the binding is performed from left to right).
For variable-arity functions, i.e. nam@args-style functions
(recall section 1.3), normal reference binding is performed:
the table of arguments is bound to the only parameter args
declared by the function.

3.2 Value Binding for Quoted Expressions: call-
by-quoting

Now we will describe a simple, although rather innovative
parameter passing mechanism that was inspired by the quot-
ing mechanism of Scheme. In an experimental Pico version,
quoting an expression (by prefixing it with a quote ’) is
made possible.

When the parameter x of an association x ← y is a quoted
expression, the value binding is done by unquoting the pa-
rameter and value binding it to the quoted argument. For
instance when binding 1 to the parameter ’x, first the ex-
pression ’x is unquoted, resulting in the ordinary reference
x, then 1 is quoted and bound to x, i.e. the binding x: ’1 is
performed. Another example:

(’y): i+1 – defines y as the quoted expression ’i+1

The parentheses are needed to force the binding of the quoted
reference ’y to the expression i+1; if the parentheses were
omitted, evaluating ’y: i+1 would just quote the whole ex-
pression y: i+1, without invoking any binding process at all.

This mechanism is also used to define functions with quoted
parameters. We call the parameter passing technique that
results from this value binding technique call-by-quoting.
For example, the function f(’a): a just quotes its argument
and returns it.

Quoting equips Pico with a very simple reflection [8] mech-
anism as it is a way to turn Pico programs into Pico data
structures manipulatable by other Pico programs: the parse
tree of every expression in Pico is made available as a reg-
ular Pico table. Hence, the result of quoting an expression
is nothing but a table representing the parse tree of the ex-
pression. Since the parse tree can be modified and evaluated
using constructs from the language itself, a door to reflection
is open.

A more complicated example, illustrating a very convenient
combination of call-by-quoting and the reflective architec-
ture, comes from an experiment we did to implement a sim-
ple object-oriented extension of Pico. In this system we
made a representation of objects in Pico (basically objects
= dictionaries) and implemented mechanisms like method
lookup and method application as functions that operate
on this representation. The example illustrating call-by-
quoting involves the implementation of a message sending
operator <- to be used like obj<-msg, where obj is the re-
ceiver object and msg is a regular function application in-
vocation nam(exp1, ... ,expn). The implementation of this
operator is as follows7.

<-(receiver , [’name, args] ):

apply(lookup(receiver, name), args, receiver)

The inner workings of method lookup and invocation is ir-
relevant for this paper. Let us concentrate on the formal
parameters by looking at the evaluation of the expression
obj<-msg(1, 2), i.e. <-(obj, msg(1, 2). This gives rise to
the bindings

receiver: obj

7Recall from the end of section 1.2 that Pico allows infix
notation for operators. Nevertheless they are nothing but
functions.



[’name, args]: msg(1, 2)

The first is an ordinary reference binding. As the second
has a table on the left-hand side, it is a table binding, of
the type described in section 3.1 where we explained that
the argument should be a table having the same size as the
parameter table. The reflective architecture of Pico implies
that the expression msg(1, 2) (a function application invoca-
tion) has a table representation of the form [ msg, [ 1, 2 ] ].
Hence the second binding is in fact:

[’name, args]: [msg, [1, 2]]

whose meaning is now clear. Table binding implies a 1-1
binding between the entries of two the tables, thus the bind-
ings ’name: msg and args: [1,2] are performed. In the end,
the following variables are defined for the <- operator to use:
receiver: obj (a Pico dictionary), name: ’msg (a reference
invocation expression) and args: [1,2] (a table with the ar-
guments). To conclude the example, note in the definition
of the <- operator that parameter nesting has been used –
the second parameter is a table expression which contains
in its turn a quoted expression and a reference invocation
expression.

A key benefit of call-by-quoting is that the quoting of ar-
guments is requested from the function implementor’s side
rather than forcing the client to quote the arguments on
each invocation (as opposed for instance to Scheme). What
is more, as the previous example demonstrates, quoted pa-
rameters are sometimes indispensable. As in the case of call-
by-expression parameters, call-by-quoting parameters are a
way of avoiding special forms, since they delay the evalu-
ation of arguments passed to functions. The way quoted
parameters are used is pretty different, though. While the
code contained in functions obtained by call-by-expression
can be parametrized and comes along with an evaluation en-
vironment, quoted expressions constitute “raw” code alone,
with no context at all. Functions are intended to be applied,
whereas quoted code is intended – most of the time – to be
manipulated reflectively. These constitute two radically dif-
ferent ways of using delayed arguments.

4. CONCLUSIONS
Our goal was to find a simple interpreted language that is
as easy to read as keyword-based languages, as easy to write
as basic calculus, and with the same power of highly regular
languages like Scheme and Smalltalk. As we have shown,
the basis for our work is a simple 3x3 syntactic system that
allows us to define, update and refer variables, functions and
tables. This system was turned into a powerful language by
adding variable argument functions and by adding a suite
of originally designed parameter passing mechanisms. The
result is a language that has the full power of Scheme and
Smalltalk, but which is much smaller and many times eas-
ier to implement. The (non reflective version of the) lan-
guage was successfully used to introduce non CS students
to topics as complex as data structures and higher order
programming.
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