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Ambient Intelligence (AmI) [ISTAG 2001] is de visie dat computer technologie onzichtbaar 
zal worden en zich zal integreren in de alledaagse voorwerpen rondom ons. De mensen zullen 
leven in een omgeving die zich bewust is van hun aanwezigheid, gevoelig is voor hun 
behoeften en hier ook op reageert [van Loenen 2003]. 

Om dergelijke intelligente omgevingen te bouwen zijn we genoodzaakt applicaties te 
implementeren in heterogene gedistribueerde netwerken, gekenmerkt door een vluchtige 
topologie als gevolg van de mobiele natuur van sommige van de knooppunten. 

Energie, fouttolerantie en mobiliteit zijn de drie sleutelconcepten waar we mee zullen moeten 
omgaan om de ondersteuning te implementeren voor de toekomstige omgevingen. 
Specificatie, modelering en analyse van deze systemen zullen enkel mogelijk worden door 
gebruik te maken van een mobiliteitgebaseerde calculus [Lindwer et al. 2003] waar we de 
eigenschappen van communicatie zien als een dynamisch gegeven dat individuele 
knooppunten toelaat met elkaar te interageren, zich te verplaatsen en collectief een gegeven 
taak uit te voeren. 

We staan voor de uitdaging om communicatiesystemen te ontwikkelen die de toekomstige 
omgevingen in staat stellen hun diensten aan te bieden en om applicatie scenario’s te 
ontwerpen en implementeren om de intelligente omgeving tot leven te brengen. 

“Het vinden van wegen om complexe taken te partitioneren en te distribueren, op een 
schaalbare wijze, tussen computationele knooppunten met beperkte hulpbronnen is mogelijk 
één van de meest uitdagende problemen die opgelost dienen te worden om computers 
naadloos te integreren naar omgevingen” [Lindwer et al. 2003]. 

Een valabele kandidaat om dynamische communicatiesystemen te implementeren tussen 
computationele knooppunten in een intelligente omgeving is mobiele code, code die over een 
netwerk verzonden kan worden en geëvalueerd1 wordt op het platform van de ontvanger. 

Een belangrijk probleem in verband met mobiele code is netwerk latentie, de tijdsvertraging 
als gevolg van het netwerk die optreedt voor de code geëvalueerd kan worden. Netwerk 
latentie wordt een kritische factor voor de bruikbaarheid van toepassingen die geladen worden 
over een netwerk, vóór de evaluatie van deze code kan starten. Vergeleken met andere 
tijdsvertragingen die zich voordoen als gevolg van code mobiliteit, is de tijd om een applicatie 
te transporteren van een zendend gastplatform naar een ontvangend gastplatform, veruit de 
meest tijdrovende activiteit, wat kan leiden tot betekenisvolle opstartvertraging van de 
toepassing. Dit is vooral het geval in netwerkomgevingen met een lage bit snelheid zoals 
sommige draadloze netwerken met groot bereik of in overbelaste netwerken. 

Behalve netwerk latentie is er nog ander mogelijke tijdsvertraging als gevolg van het 
computersysteem zelf, zoals de ( eventueel “juist op tijd”) vertaling van de code en mogelijke 
evaluatie vertragingen als gevolg van het taakbeheer door het besturingssysteem of problemen 
met concurrente uitvoering. Deze vertragingen zullen we systeem latentie noemen. 

In een mobiele omgeving wordt systeemperformantie uitgedrukt in invocatie latentie. 
Invocatie latentie is de tijdsvertraging tussen de invocatie van een  toepassing en de start van 
de evaluatie van deze toepassing [Krintz et al. 1998]. Het is de combinatie van de netwerk 
latentie en de systeem latentie die zich voordoen voor de evaluatie van de toepassing start. 

De vertraging tussen de invocatie van een toepassing en het verschijnen van de 
gebruikersinterface noemen we: gebruikersinterface latentie. Het is de som van de netwerk 

                                                 
1 We gebruiken de meer algemene term evaluatie om de uitvoering of de interpretatie van code aan te geven. 
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latentie en de systeem latentie die zich voordoet voor het verschijnen van de 
gebruikersinterface. 

Een ander potentieel probleem in tijdskritische toepassingen is de toepassing 
beschikbaarheid, het feit dat een toepassing tijdens zijn migratie niet beschikbaar is om 
wisselwerkingen aan te gaan met andere processen die daarop aansturen. In een klassiek 
migratie scenario zal een toepassing die migreert van een gastplatform naar een ander 
gastplatform altijd tijdelijk stilgelegd worden om pas terug opgestart te worden nadat de 
volledige code geladen is en hersteld in zijn oorspronkelijke vorm. De toepassing wordt pas 
terug beschikbaar na de volledige migratie fase. 

Met de opkomst van intelligente omgevingen, gebouwd op een heterogeen gedistribueerd 
systeem, waar knooppunten het netwerk kunnen komen vervoegen of weggaan, zullen de 
connectietijden tussen de knooppunten onderling onvoorspelbaar worden. Een applicatie 
stoppen en pas terug opstarten nadat het vroeg of laat op zijn bestemming is gearriveerd zal 
deze mogelijk veel te lang onbeschikbaar maken voor de gebruiker. 

Knooppunten in een intelligente omgeving kunnen onbereikbaar worden door de mobiliteit 
van de gebruiker, energiebeperkingen, plotseling optredende fouten enz… 

In dergelijke netwerken, gekenmerkt door hun vluchtige topologie zal mobiele code een 
belangrijke rol spelen. Netwerk latentie en systeem latentie, de oorzaak van invocatie latentie 
zullen kritische factoren worden. Zo ook gebruikersinterface latentie, en toepassing 
beschikbaarheid. 

Deze thesis onderzoekt progressieve mobiliteit en stelt verschillende migratie scenario’s 
voor om bovenstaande problemen aan te pakken. De voorgestelde technieken partitioneren de 
toepassing in componenten en migreert deze componenten, progressief in de tijd, naar de 
ontvanger. 

Het doel van ons onderzoek is om de haalbaarheid aan te tonen van enkele scenario’s die het 
impliciete parallellisme aanwenden dat zelfs in de meest eenvoudige computernetwerken 
gevonden wordt maar massaal aanwezig zal zijn in intelligente omgevingen. 

Dit onderzoeksdomein staat nog in de kinderschoenen en er is weinig ondersteuning van 
bestaande methodologieën en gereedschappen. Daarom is het ook niet onze intentie 
volledigheid of universaliteit na te streven. 

Voor de huidige stand van zaken i.v.m. het uitwerken van deze ideeën verwijzen we naar 
[Krintz et al. 1998] waar onderzoek werd uitgevoerd door het vooraf sturen van methodes in 
een Java programmeeromgeving te simuleren. 

De scenario’s kunnen ingezet worden op het systeem niveau, op het niveau van lokale 
netwerken en in wereldwijde Internet netwerken hoewel de impact groter zal zijn in 
netwerken met een lage bit snelheid. De geëxploreerde thema’s hebben als gemeenschappelijk 
kenmerk dat zij allen een progressief migratie scenario toepassen en worden genoemd: 

 

• Progressieve anticiperende mobiliteit met het op voorhand laden van 
gepermuteerde code 

• Progressieve mobiliteit met component stromen 
• Progressieve anticiperende mobiliteit met pro-actieve migratie 

 

Progressieve anticiperende mobiliteit met het op voorhand laden van gepermuteerde 
code is een techniek die de toepassingscode permuteert en parallellisme exploiteert tussen het 
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laden en evalueren van de code met het doel om de gebruikersinterface latentie te reduceren. 
De techniek is geïnspireerd op stromende (eng: streaming) media waarbij de evaluatie van de 
gegevens bij de ontvanger van start gaat lang voordat de volledige datastroom is binnen 
geladen. 

De techniek laat toepassingen toe hun evaluatie vroeger te starten, vooral toepassingen die 
tijdens de opstart fase sterk voorspelbaar zijn, zoals toepassingen die starten met het bouwen 
van een standaard grafische gebruikersinterface, wat een grotere mate van anticipatie toelaat 
[Stoops et al. 2002]. 

Onze bijdragen met deze techniek zijn: 

• Automatische permutatie van vertaalbare eenheden gebaseerd op een 
afhankelijkheidsgrafiek zodanig dat de statische structuur van de voorstelling van de 
applicatie in een bestandstructuur een reflectie is van zijn dynamisch gedrag 

• Introductie van een synchronisatie mechanisme ter ondersteuning van de evaluatie van 
code die slechts partieel ter beschikking is 

• Op voorhand laden van gepermuteerde code met focus op gebruikersinterface latentie 

Experimenten in Smalltalk [Goldberg and Robson 1989] bevestigen ons thesis statement dat 
progressieve mobiliteit netwerk latentie verbergt en systeem latentie reduceert door aan te 
tonen dat deze techniek het mogelijk maakt netwerk latentie te verbergen door parallellisme 
toe te passen tussen het laden van de code en de evaluatie van de code. Daar de evaluatie van 
de toepassing vroeger start zal de invocatie latentie en dus ook de systeem latentie en vooral 
de gebruikersinterface latentie afnemen. 

Als praktische validatie hebben we deze aanpak getest op drie toepassingen met elk een 
typisch doch verschillend gedrag. 

Met onze experimenten bereiken we een gemiddelde gebruikersinterface latentie die 25% is 
van de originele gebruikersinterface latentie. Een reductie van de totale evaluatie tijd van de 
toepassing van 70% kon bereikt worden voor sommige toepassingen. 

Progressieve mobiliteit met component stromen is een techniek waarbij componenten van 
een toepassing één voor één migreren van het ene gastplatform naar het andere totdat de 
volledige toepassing gemigreerd is. Deze techniek is ook geïnspireerd op stromende media 
waar de evaluatie van de gegevens start lang voordat de volledige stroom gegevens is geladen. 
Vergeleken met de vorige techniek, waarbij statische code wordt gemigreerd, zal deze 
techniek progressief draaiende toepassingen migreren zonder ze tijdelijk stop te zetten. 
Tijdens de migratie fase zal de toepassing beschikbaar blijven voor communicatie over en 
weer met andere processen. Wanneer een toepassing “stroomt” zal een gedeelte ervan reeds 
op het ontvangende platform draaien terwijl een ander deel nog op het zendend platform 
draait. 

Onze bijdrage met deze techniek is: 

• Introductie van progressieve mobiliteit met component stromen 

Experimenten in Borg [Van Belle et al. 2001], Java en Smalltalk bevestigen ons thesis 
statement door aan te tonen dat het mogelijk is netwerk latentie volledig te verbergen. We 
tonen ook aan dat het mogelijk is de systeem latentie in het algemeen en gebruikersinterface 
latentie in het bijzonder te reduceren door de optimale migratie sequentie te kiezen voor de 
verschillende componenten. Door een strategie met parallel processing toe te passen is het 
mogelijk de totale evaluatie tijd van de toepassing te reduceren en daardoor ook de systeem 
latentie. 
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We tonen de uitvoerbaarheid van het concept aan door middel van een experiment in Borg en 
breiden dit achteraf uit door de techniek van progressieve mobiliteit met component stromen 
te implementeren op een toepassing die een fractal tekent onder controle van een grafische 
gebruikersinterface in Java en nadien implementeren we deze toepassing met verschillende 
concurrentie strategieën in Smalltalk [Devalez 2003]. In al deze omgevingen verkregen we 
betekenisvolle resultaten. 

We bieden ook richtlijnen aan om toepassingen op design niveau te optimaliseren met het oog 
op maximalisatie van het rendement van de techniek. 

Progressieve anticiperende mobiliteit met pro-actieve migratie is een techniek die begint 
met het nemen van een snapshot van de volledige toepassing vóór de echte migratie van start 
gaat. Deze snapshot bevat ook de volledige evaluatie toestand van de toepassing. Dan wordt 
deze snapshot anticipatief gemigreerd naar een potentiële ontvang gastplatform terwijl de 
oorspronkelijke toepassing verder wordt geëvalueerd. Wanneer de echte migratie, naar 
datzelfde gastplatform getriggerd wordt, dient er enkel nog het verschil tussen de huidige 
evaluatie toestand van de toepassing en deze die al bevat zat in het snapshot gemigreerd te 
worden. Dit verschil zal veel kleiner zijn dan de originele code waardoor de migratie tijd 
betekenisvol gereduceerd kan worden. 

Onze bijdragen met deze techniek zijn: 

• Introductie van Progressieve anticiperende mobiliteit met pro-actieve migratie 

Vermits de techniek sterk afhankelijk is van reflectie en reïficatie van de datastructuren die de 
evaluatie toestand bevatten, implementeerden we een prototype in Borg om de haalbaarheid 
aan te tonen. Borg is een programmeeromgeving ontwikkeld aan ons labo, waardoor de 
nodige kennis over typische implementatie kenmerken aanwezig is. 

We zullen concluderen dat progressieve mobiliteit de performantie van een mobiele 
toepassing verhoogt. De voorgestelde technieken kunnen de totale evaluatie tijd verminderen, 
netwerk latentie verbergen, invocatie- en gebruikersinterface latentie reduceren en de 
beschikbaarheid van toepassingen verbeteren. 
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Ambient Intelligence (AmI) [ISTAG 2001] is the vision that computer technology will 
become invisible, integrated in all the everyday objects around us. People will live in an 
environment that is aware of their presence, and is sensitive and responsive to their needs [van 
Loenen 2003].  

In order to build these intelligent ambients we are challenged to implement applications in a 
heterogeneous distributed network characterized by a volatile topology due the mobile nature 
of some of the nodes in the network. 

Energy, fault-tolerance and mobility are the three key concepts that we will have to deal with 
to implement the support for the future ambients. Specification, modeling and analysis of 
such systems will become possible only by if we deal with communication properties, as a 
dynamic phenomenon that enables individual nodes in the network to interact, move around 
and collectively perform a given task. 

We are faced with the challenge to develop communication systems that empower the future 
environments and the design and implementation of application scenarios that bring ambient 
intelligence to life. 

“Finding ways to partition and distribute complex tasks, in a scalable manner, among 
computational nodes with limited resources represents perhaps one of the most challenging 
problems that need to be solved in order to seamlessly integrate computers into ambients” 
[Lindwer et al. 2003]. 

A valid candidate to implement dynamic communicating systems between computational 
nodes in the ambient network is mobile code: code that can be transmitted across the network 
and evaluated2 on the receiver's platform.  

An important problem related to mobile code is network latency: the time delay introduced 
by the network before the code can be evaluated. Network latency becomes a critical factor in 
the usability of applications that are loaded over a network before their evaluation can start. 
Compared to other time delays involved with code mobility, the transfer of the code from the 
sending host to the receiving host is in general the most time-consuming activity, and can lead 
to significant delays in the startup of the application. This is especially true in the case of low 
data rate environments such as the some of the current wireless, wide area, communication 
systems or in overloaded networks.  

Besides network latency there are other possible delays introduced by the computer system, 
e.g. (Just In Time) compilation, evaluation delay caused by the (distributed) operating system 
scheduling or concurrency problems. These delays will be called system latency.  

In a mobile environment system performance is measured by invocation latency. Invocation 
latency is the time from application invocation to when the evaluation of the program actually 
begins [Krintz et al. 1998]. It is the combination of the network latency and the system 
latency that occurs before the evaluation of the application starts. 

The delay between the invocation of an application and the appearance of the user interface 
will be called: user interface latency. It is the sum of the network latency and the system 
latency that occurs before the appearance of the user interface. 

Another potential problem in time-critical applications is application availability, the fact 
that an application will not be available during its migration for other processes that need to 
interact with it. In a classical migration scheme the application that migrates from one host to 

                                                 
2 We utilize the more general term evaluation to describe the execution or interpretation of the code. 
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another is temporarily halted and is restarted at the receiving host after the code is completely 
loaded and restored in its original form. It will become available again only after the complete 
migration phase. 

In the advent of ambient intelligence environments built on a heterogeneous distributed 
system, where nodes may join or leave the network, connection times between the nodes 
become unpredictable. Therefore, also the time needed to migrate the application will become 
unpredictable and just halting the application until it may arrive at its destination, sooner or 
later, may not be an option any more. 

Ambient intelligence network nodes may become unreachable due to the mobility of the user, 
energy source constraints, intermittent failures etc... In such networks, characterized by their 
volatile topology, mobile code will play a major role. Network latency and system latency, the 
cause of invocation latency and user interface latency, together with application availability 
will become critical factors. 

This dissertation investigates progressive mobility and explores different migration schemes 
to cope with these problems. The explored themes all have in common that we partition the 
mobile code and migrate the parts, progressively in time, to the receiver. 

Our research goal is to provide a proof of concept of scenarios to harness the implicit 
parallelism, found in even the most simple computer networks, but that will be massively 
available in ambient intelligence environments. Given that this research area is still in its 
infancy, without much support from existing methodologies and tools it is not our intention to 
pursue completeness or universality. 

As previous work in developing these ideas we refer to [Krintz et al. 1998] where, among 
other things, research on non-strict evaluation was conducted by running simulations of 
method pre-fetching in a Java programming environment. 

The scenarios can be deployed at the system level, in local area networks and in worldwide 
internet networks although the impact will be more significant in low data rate networks. The 
explored themes all have in common that they apply a progressive migration scheme, and are 
called: 

• progressive anticipative mobility using pre-fetching of permuted code  
• progressive mobility using component streams 
• progressive anticipative mobility using proactive migration 

 
Progressive anticipative mobility using pre-fetching of permuted code applies a technique 
that permutes the application code and exploits parallelism between loading and evaluation of 
code to reduce user interface latency. The technique is inspired by streaming media where the 
evaluation of the data at the receiver starts long before the complete data stream is loaded. 

The technique allows applications to start their evaluation early, especially applications with a 
predictable startup phase, such as building a standard GUI, which allows a higher level of 
anticipation [Stoops et al. 2002].  

Our contributions with this technique are: 

• Automatic permutation of compilable units based on a dependency graph so that the 
static structure of the representation of the application in a file structure reflects its 
dynamic behavior 

• Introduction of a synchronization mechanism to support evaluation of code that is only 
partially present 
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• Pre-fetching of permuted code with focus on user interface latency 

Experiments in Smalltalk [Goldberg and Robson 1989] confirm our thesis statement that 
progressive mobility hides network latency. We show that this technique is able to hide 
network latency by applying parallelism between the code loading and the evaluation of the 
code. Since the evaluation of the applications will start early, invocation latency and therefore 
also system latency and especially user interface latency will decrease.  

As a practical validation we tested our approach on three applications each exhibiting some 
typical but distinct behavior. In our experiments we obtain an average user interface latency 
that is 25% of the original user interface latency. For one of the applications the total 
evaluation time could be reduced to 70% of the original evaluation time. 

Progressive mobility using component streams is a technique where components of an 
application migrate one by one from one host to another until the application is completely 
migrated. This technique is also inspired by streaming media where the evaluation of the data 
at the receiver starts long before the complete data stream is loaded. In contrast with the 
previous technique, where static code is migrated, this technique progressively migrates 
running applications without halting them. During the migration phase the application will 
remain available for interaction with other processes. When streaming a running application, 
part of the application will already run on the receiving host while the other part is still 
running on the sending host. 

Our contribution with this technique is: 

• Introduction of progressive mobility using component streams 

Experiments in Borg [Van Belle et al. 2001], Java and Smalltalk confirm our thesis statement 
by showing that is possible to hide network latency completely. We also show that it is 
possible to reduce system latency in general and user interface latency in particular by 
choosing the optimal sequence of migration of the different components.  By applying a 
strategy with parallel processing we are able to decrease the total evaluation time of the 
application and therefore the system latency. 

We perform a proof of concept experiment in Borg and elaborate on this by implementing the 
technique of progressive mobility using component streams on a fractal drawing application 
with a graphical user interface in Java. Afterwards we will deploy the fractal drawing 
application with different concurrency strategies in Smalltalk [Devalez 2003]. In all these 
environments we are able to achieve significant results. 

We also provide guidelines to optimize applications at the design level to increase their profit 
from the technique. 

Progressive, anticipative mobility using proactive migration is a technique that starts by 
taking a snapshot of the entire application before the real migration is triggered. This snapshot 
includes the applications computational state. Then this snapshot is anticipatively migrated to 
a potential receiving host while the original application continues to run. Then, when the real 
migration, to that same receiving host, is triggered, there is only the need to send the 
difference of the current computational state and the state that was already contained in the 
snapshot. This difference will be significantly smaller than the original code which may 
reduce the migration time considerably.  

Our contributions with this technique are: 

• Introduction of progressive, anticipative mobility using proactive migration 
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Since the technique is heavily dependent on reflection and reification of the computational 
state we implement a proof of concept in Borg, a programming environment developed at our 
lab which provides us with all the necessary knowledge on the idiosyncrasies of the 
implementation of the environment.  

We will conclude that progressive mobility may increase the performance of a mobile 
application. The proposed techniques can enhance overall program evaluation time, hide 
network latency reduce invocation latency, user interface latency, and improve application 
availability. 
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1.1  Thesis Motivation 
With the advent of Ambient Intelligence (AmI) [ISTAG 2001], where people will be 
surrounded by intelligent and intuitive interfaces embedded in everyday objects around us, 
mobile code will become an important medium to support this intelligent environment. In 
particular everyday objects such as telephones, watches, lights, doorbells should be able to 
communicate with one another and with the users through wireless networks. Objects that do 
not move relatively with respect to each other can rely upon current communication protocols 
to provide a stable connection but the connection between moving objects: a car, a bicycle, an 
occupant walking around in his house poses new challenges. 

Ambient intelligence, as defined by the EC Information Society Technologies Advisory 
Group builds on three recent key technologies: Ubiquitous Computing, Ubiquitous 
Communication and Intelligent User Interfaces. Ubiquitous computing means integration of 
microprocessors into everyday objects like furniture, clothing, toys, even paint that cleans off 
dust and notifies you of intruders, walls that selectively dampen sounds [Weiser and Brown 
1996]. Ubiquitous communication enables these objects to communicate with each other and 
the user by means of ad-hoc and wireless networking. An Intelligent user interface enables the 
inhabitants of the AmI environment to control and interact with the environment in a natural 
(voice, gestures) and personalized way (preferences, context) [ISTAG2001].  

Ambient systems need to address some key issues [O'Hare et al. 2004]: 

• Recognition and accommodation of the diversity of devices that contribute to the 
organic nature of the ambient and ubiquitous computing nervous system 

• The need for personalisation and system adaptivity 
• An understanding of the dynamics of context 
• Provision of support for collaboration and cooperation between distributed ambient 

system components 
• Delivery of systems that exhibit autonomic characteristics yielding self management 

and self healing capabilities 
 
In addressing these core issues, we see that developers more and more adopt an agent-based 
approach [O'Hare et al. 2004]. Information between two objects can be exchanged by just 
sending data between them but to address the issues mentioned her above we need to send 
behavior (code) also. In terms of functionality one can imagine a personal agent that follows a 
user in time and space by migrating to objects that are in the neighborhood of the user so that 
its service is easily accessible. This thesis will only focus on the exchange of code. 

In order to support this new network architecture where connections between partners are no 
longer predictable and where the connection time may be less than a second there is a new 
need for techniques to exchange information as fast as possible. These new techniques should 
make optimal use of this type of unpredictable, unstable and time constrained connections. 
Just sending the information and hoping that it will arrive sometimes and that it still will be 
usable once it gets there, as current protocols do, will no longer be an option. 

If a block of data needs to be sent to a moving target, and one cannot predict the width of the 
current timeframe, one possible solution is to break up the block of data in smaller parts and 
send them one by one to the receiver. This will increase the possibility that they will fit in the 
temporal timeframe. Precaution should be taken to send the most important parts first, in a 
format that makes these partial data immediately usable at the receiver’s end. 
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Mobile code is a plausible candidate to ensure the connection between different moving 
software components or devices. The emerging technique of mobile code is a new promising 
way to set up communication mechanisms between different parties but there is still much 
research needed to develop techniques to support and optimize these communication 
mechanisms. 

“Mobility challenges old assumptions and demands novel software engineering solutions. 
Coordination mechanisms must be developed to bridge effectively a clean abstract model of 
mobility and the technical opportunities and complexities of wireless technology, device 
miniaturization, and code mobility. Logical mobility opens up a broad range of new design 
opportunities, physical mobility forces consideration of an entirely new set of technical 
constraints, and the integration of the two is an important juncture in the evolution of software 
engineering as a field” [Gruia-Catalin 2000] .  

Since the width of the timeframe available to migrate the code is not predictable, we need 
some kind of mechanism to break up code into smaller parts and send them one by one, 
progressively in time, to the receiver. This will increase the possibility that they will fit in the 
temporal time frame. Here too, precaution should be taken to send the most important parts 
first, in a format that makes this partial block of code immediately usable (ready for 
evaluation) at the receiver’s end. Since connections between hosts in these new environments 
are more volatile than in static networks there is also the need for mechanisms that allows the 
code to continue its evaluation during the progressive migration so that the application 
remains available for users or other applications at all time.  

Partitioning code and send the most important parts first together with application availability 
are the two main sub-problems in the domain of mobile code that this thesis focuses on. As a 
significant bonus, we will have our migrated code up and running much faster than by using 
traditional migration techniques. This makes the technique of progressive mobility, the 
division of the application in components and migration of these components, progressive in 
time, to the receiver, also applicable in current stable networks to speedup the start of an 
application that is loaded over a network and even for an application that is loaded from a 
hard disk.  

1.2 Latency 
Research has shown that invocation latency, the time from application invocation to when the 
evaluation of the program actually starts is crucial in how users view the performance of an 
application. Early work investigating the effect of time-sharing systems [Doherty and Kelisky 
1979] where different users run their applications on the same machine concluded that 
increased system response time disrupted user thought processes. More recent work [Johnson 
98] investigates the impact of unpredictable web latency, the time between the click on a 
hyperlink and the appearance of the result.  

Invocation latency of an application residing on a single computer is greatly reduced 
nowadays by the introduction of Gigahertz microprocessors and fast internal bus systems, but 
it still remains significant in a mobile code environment, a software system distributed over a 
physical or logical network of heterogeneous computers.  

An important problem related to mobile code is network latency: in this context we define 
network latency as the time delay introduced by moving the code over the network before it 
can be evaluated. This delay typical has several possible causes (Table 1). The code must 
typically be (1) halted, (2) packed (3) possibly transformed in a compressed and/or secure 
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format, (4) transported over a network to the target platform, (5) possibly retransformed from 
its compression or security standard, (6) checked for errors and/or security constraints, (7) 
unpacked, (8) possibly adapted to the receiving host by compiling the byte codes or some 
other intermediate representation and finally (9) resumed.  

Table 1: Typical Migration Steps 

Step Action 
1 Halt the application 
2 Pack it 
3 Transform it 
4 Transport to the receiver 
5 Retransform it 
6 Check it 
7 Unpack it 
8 Adapt it 
9 Resume the application 

 

The fourth phase, the transportation over the network, is in general the most time consuming 
activity, and can lead to significant delays in the startup of the application. This is especially 
the case in low data rate environments such as the current wireless communication systems or 
in overloaded networks. Therefore, it is imperative that in order to reduce the network latency 
we need to tackle this transportation phase. 

Network latency becomes a critical factor in the usability of applications that are transported 
and eventually compiled "Just In Time". In a mobile environment application performance is 
measured by invocation latency. Invocation latency is the time from application invocation to 
when the evaluation of the program actually begins [Krintz et al. 1998]. Invocation latency is 
crucial in the user’s perception of the performance of an application.  

Almost 70% of all delay (transfer or compilation) of an average Java program occurs in the 
first 10% of program execution [Krintz 2001]. This result suggests that if the first 10% of an 
application is predictable then the delays can be reduced considerably. We found that in the 
applications we used for our experiments that the predictable zone ranged from 15 % to 30%. 

In ambient intelligence environments the speed of migration might become a critical factor if 
an application migrates by example over a Bluetooth connection to a moving PDA. Bluetooth 
is a specification for short-range HwirelessH connections with a maximum range of 10 meters. In 
this case the moving target might be only a few seconds in range, so there will be no time to 
waste and some worst case scenarios it will be only possible to send parts, subcomponents of 
the complete application. 

1.3 Application availability  
Application availability is a second potential problem. In time-critical applications it may not 
be acceptable that an application will not be available for other processes that need to interact 
with it during its migration, in short, the application must keep running at all times. If a 
classic migration scheme is deployed the application will become available again only after 
the complete migration phase which may take too much time. In a control engineering 
environment for example the maximum time between the intakes of samples of the quantity 
under control is strictly defined and if the sample timing exceeds this threshold just once this 
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may compromise the complete control process. A typical approach to provide high 
availability is replication of data and services but this is an expensive solution [Ladin et al. 
1992].  

The potential problem of application availability is expected to increase in ambient 
intelligence environments where the transport time for an application can be limited to a few 
seconds or a fraction of a second, i.e. the time a moving client is connected to a sensing point 
of its surrounding intelligent environment. These limitations in time combined with low data 
rates of mobile devices can force us to split up the running application dynamically in 
different parts so that, during each connection, part of the application could be transferred. 
During this transfer the evaluation of the different parts of the application continues. 

1.4 Research Goals 
We need to gain more insight in the different forms of latency and application availability of 
applications that migrate over different kind of networks. Network latency is one of the most 
important potential problems in mobile code environments, therefore we like to investigate in 
different kind of settings in order to reduce or hide this network latency. We will do this with 
a special focus on user interface latency since this kind of latency will determine the users 
perception of the performance of a mobile application.  

Our main research goal is to investigate in how to harness the implicit parallelism that is 
found in computer networks. Even for the most simple network connection between two 
computers there are at least two processors available. Modern computer architectures also 
provide a separate processor to manage the network traffic and we anticipate on upcoming 
new technologies where we may expect up to four different independent processors on one 
chip. As a side effect of the introduced parallelism, we may also expect to see some reduction 
in system latency. 

To overcome invocation latency we can send the code in compressed form or increase the 
data rate of the transport channel. This is not generally applicable however to the wide variety 
of code formats and transport channels that are available for mobile code where the maximum 
data rates are dictated by the underlying physical levels of the network. 

In order to break open this new, complex and difficult research domain we explore three 
different themes in which we use different perspectives to take advantage of the implicit 
parallelism. 

It is our goal to provide a proof of concept of the different scenarios developed under these 
themes without pursuing completeness or universality. The three themes relate to the 
perspective of: 

• Pre-fetching of permuted code 

• Deploying component streams  

• Proactive migration  

A common characteristic of the investigated scenarios in these themes is that we split up the 
code and send the parts one by one progressive in time over the network. This is the essence 
of progressive mobility. 

The first theme, progressive anticipative mobility using pre-fetching of permuted code, is 
tailored to applications that have not started yet before they migrate. 

We apply a technique that automatically permutes the application at the level of compilable 
units based on a dependency graph and exploits parallelism between transportation and 
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evaluation of code to hide network latency. We perform pre-fetching experiments to hide 
network latency in the Smalltalk programming environment. 

The technique allows many applications to start evaluation earlier on, especially applications 
with a predictable, deterministic start-up phase (such as building a GUI) [Stoops et al. 2002]. 
A synchronization mechanism guards the availability of the units that are invoked during 
application evaluation. Our contributions on this theme are:  

• Automatic permutation of compilable units based on a dependency graph so that the 
static structure of the representation of the application in a file structure reflects its 
dynamic behavior 

• Introduction of a synchronization mechanism to support evaluation of code that is only 
partially present 

• Pre-fetching permuted code with a focus on user interface latency 

 

On the first theme we migrate static code, code that is not evaluated at the time the migration 
is triggered, but sometimes we need to migrate running applications as well. Think of an 
active agent application that needs to follow its user in an ambient intelligent environment. 
This becomes our second theme. In order to split up the code of an application that is already 
running, we introduced: progressive mobility using component streams. 

A running application can migrate to another host by migrating its components one by one. 
Preferably we will migrate components in a time slot when they are not needed for evaluation. 
In this case the evaluation of the application continues during its migration which results in a 
high application availability. 

We perform experiments to hide network latency, to reduce system latency and to exploit 
parallel evaluation. We deliver a proof of concept in the programming environments of Borg, 
Java and Smalltalk. We show that network latency can be hidden almost completely, that 
system latency can be reduced and that parallel evaluation on the sender and receiver can 
enhance the users perception of the migrating application. 

Our contribution on this second theme is: 

• Introduction of progressive mobility using component streams 

 

In some cases it makes sense to migrate a running application proactively to a candidate 
receiving host, this is the third theme we investigated into. We provide a proof of concept in 
the Borg programming environment, an environment that provides the reflection we need to 
explore this theme.  

On this last theme our contribution is: 

• Introduction of progressive, anticipative mobility using proactive migration 

1.5 Research restrictions 
We do realize that we enter a new unexplored research domain, so besides the restrictions 
imposed by current practical networks and in order to make it realistic to obtain useful results 
we adopt certain restrictions in our experimental environment. 



Introduction 

Page 29 

First of all, for most of our experiments, we relied on stable fixed TCP/IP network 
connections. Conducting the experiments in unstable, unpredictable or vulnerable networks 
would lead us too far away from our research goal. 

We did not investigate in connection-oriented networks as GSM networks and we neglected 
possible security aspects. Splitting up code in smaller parts may introduce extra security risks 
so that possibly an authification for each part might be appropriate but this problem was not 
considered in the context of this research. 

The hosts used in our experiments have always comparable processing power and we only 
investigate the progressive migration of code. Possible simultaneous progressive migration of 
data is left for future work. 

In all our experiments, we applied a push strategy. In our exploration we assume that the 
know-how and know-when of the migration of partitioned code is located in the sending host. 
However, this does not exclude the possibility of successful combinations with a pull-strategy 
and we will mention these opportunities but we did not implement it in our experiments. 

Besides these restrictions imposed by ourselves we are also confronted with limitation of the 
programming languages or the tools used. 

We find us confronted with the lack of support for strong mobility in popular programming 
environments as Java and Smalltalk and a relative high class-level granularity of code blocks 
in Java. 

For most of the problems we implemented a workaround. We applied the µCode toolkit 
[Picco 1998] to introduce a limited form of strong mobility in Java. With this toolkit, we 
where able to migrate threads from one host to an other inclusive the state of its variables. In 
contrary with real strong mobility the runtime stack is not migrated. Therefore, the threads 
needed to get started again on the receiving host.  

The implementation of a communication system between threads in Java that operate in 
different namespaces is also far from trivial. As a workaround we have setup a dedicated 
communication object accessible via remote method invocation (RMI). 

In the Smalltalk environment we encountered several flaws in the current implementation of 
the VisualWorks programming environment. We needed to combine the standard Smalltalk 
Opentalk tool for distributed systems with the “Binary Object Streaming Service” BOSS to 
implement strong mobility for small processes.  
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1.6 Chapter Summaries 
 

Chapter 2: A Conceptual Framework for Progressive Mobility 
We start by presenting a conceptual framework to provide a context to describe the techniques 
of progressive mobility. The framework is limited to all the concepts that are needed as a base 
to describe the techniques and contains also related work in these domains. 

We present a three dimensional conceptual framework for the mutually orthogonal 
dimensions: Network, Application and Techniques. 

In exploring the network dimension, we will discover the boundaries that will indicate the 
window of opportunity for progressive mobility. 

The application dimension describes relevant application properties as structure, size, user 
interfaces and components. In addition, the programming environments employed in this 
dissertation are presented here. 

Finally, in the techniques dimension we explore relevant techniques as mobility, parallelism, 
pre-fetching and other related techniques. 

 

Chapter 3: Progressive Anticipative Mobility using Pre-fetching of Permuted Code 
In this chapter, we propose a technique that applies the idea of progressive transmission to 
software code. The evaluation of the digital code stream can start before the transportation 
phase is completed by anticipating on the sequence of evaluation.  

We start by describing the technique of code permutation that will be employed to pre-fetch 
static code in order to speedup a weak mobility migration scheme. A technique to permute 
Smalltalk source code is presented. The Smalltalk source code is permuted at the level of 
compilable units in such a way that the units that are needed first during evaluation are placed 
at the start of the source file. 

A prototype tool in Smalltalk is presented that automatically permutes a Smalltalk source file 
and generates a set of source code files optimized for the pre-fetching process. 

The feasibility of the technique has been validated by implementing prototype tools in 
Smalltalk. In this chapter we will restrain ourselves to weak mobility. We will handle 
progressively strong mobility in chapter 4 and 5. 

 

Chapter 4: Progressive Mobility using Component Streams 
This chapter introduces the technique of progressive mobility with strong mobility instead of 
weak mobility. Progressive mobility using component streams allows applications to migrate 
from host to host without sacrificing evaluation time during the migration phase and it allows 
the application to start at the receiving host much earlier.  

The technique is inspired by streaming media. When streaming a running application, part of 
the application will already run on the receiving host while another part is still running on the 
sending host. 

The feasibility of the technique has been validated by implementing prototype tools in the 
Borg mobile agent environment and later also in Java and Smalltalk. Our experiments show 
that this migration strategy can hide network latency almost completely. 
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Chapter 5: Progressive Anticipative Mobility using Proactive Migration 
This next chapter introduces yet another technique of progressive mobility using proactive 
migration, a technique that avoids the delays introduced by the former technique.  

The technique sends the application code, including the computational state, in advance, 
anticipatively to the remote host, before the actual migration is requested. Then, when the 
actual migration takes place, we won’t transfer the complete application but only the delta of 
the current computational state with the already migrated computational state. At the receiver 
the computational state can be brought up to date by applying this delta to the previous 
received computational state before evaluation is continued. 

 

Chapter 6: Conclusion 
We conclude in this chapter by summarizing the results obtained during the exploration of the 
three themes and present some future Work. 

As future research directions, we suggest, besides other things, extensions on progressive 
anticipative mobility using pre-fetching of permuted code and architectural transformations to 
make applications streamable. 

Progressive anticipative mobility using proactive migration and evaluation is also proposed as 
a new progressive migration scheme and suggestions are made to aggregate crosscutting 
concerns of progressive mobility in aspects in order to make use of aspect oriented software 
design, an upcoming software engineering technique. 
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We present a three dimensional conceptual framework for the mutually orthogonal 
dimensions: Network, Application and Techniques. These dimensions play a major role in 
our research domain. In ambient intelligence environments with ubiquitous communication, 
different kind of objects will cooperate in a network architecture where applications will 
migrate from one node to the other. In order to facilitate these migrations we will need to 
apply new and current techniques. 

The framework provides a context to describe the technique of progressive mobility. The 
framework provides the terminology, definitions and properties of the relevant entities in 
which we describe Progressive Mobility. The framework also includes references to related 
work. 

Roadmap: 

• Network 
o Architecture 
o Packet Switching 
o Data Rate 
o Delays in Computer Networks 
o Performance 
o Window of Opportunity 

• Application 
o Internal Structure 
o Size 
o Granularity 
o Evaluation Time 
o Delay 
o User Interfaces 
o Predictability 
o Components 
o Distributed Systems and Applications 
o Choosing an Experimental Programming Environment 
o Programming Languages Used 

 Borg 
 Java 
 Smalltalk 

• Techniques 
o Mobility 

 Host Mobility 
 Evaluator Mobility 
 Data Mobility 
 Code Mobility  
 Process Mobility 
 Weak and Strong Mobility 

o Server - Push versus Client - Pull 
o Parallelism 
o Reflection 
o Compression 
o Reordering and Pre-fetching 
o Progressive techniques 
o Other related techniques 
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2.1 Network 
In this section we describe the relevant entities of the network dimension of the conceptual 
framework. 

2.1.1 Architecture 
Network software is highly structured. Most networks are organized as a stack of layers, each 
one built upon the one below. The set of layers and protocols is called a network architecture. 
Two important network architectures are the OSI reference model and the TCP/IP reference 
model [Tanenbaum 2003].  Figure 1 shows the different names for the layers. 

 
 

Figure 1: OSI and TCP/IP reference model 

 
Many of the current networks use the internet transport protocol in the transport layer. The 
task of the transport layer is to provide reliable, cost-effective data transport from the sending 
host to the receiving host, independently of the host-to-network layer. Be it Ethernet on 
twisted pair or wireless LAN (802.11), Bluetooth, GSM, GPRS or UMTS to mention a few 
well known implementations of the lower layers. 

2.1.2 Packet Switching    
When a sending host has a message to send to a receiving host, the sending host first cuts up 
the message into packets, each one bearing its number in the sequence. These packets are then 
injected into the network one at a time in quick succession. The packets are transported 
individually over the network. These packets may follow different routes and may arrive in a 
different order at the end point. Finally they are disposed at the receiving host, where they are 
reassembled into the original message. A stream of packets is show in Figure 2 [Tanenbaum 
2003]. 
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Figure 2: A stream of packets 

 
If the message is not cut up into packets (message switching) there is no limit on data size, 
which means that routers must have disks to buffer long blocks of data. It also means that a 
single block can tie up a router line for a long time thereby preventing other traffic. Another 
advantage of packet switching is that the first packet of a message can be forwarded while the 
next packets have not fully arrived yet, reducing delay and improving throughput. For these 
reasons, computer networks are usually packet switched. 

2.1.3 Data Rate 
The speed of wireless data communications has increased enormously over the last years with 
the emergence of technologies as HSCSD (High Speed Circuit Switched Data), GPRS 
(General Packet Radio Services), and UMTS (Universal Mobile Telecommunications 
Service) 

HSCSD is evolved from circuit switched data within the GSM environment. HSCSD enables 
the transmission of data over a GSM link at speeds of up to 57.6 kbps3. This is broadly 
equivalent to providing the same transmission rate as that available over one ISDN B-
Channel. 

GPRS is a packet-based wireless communication service that delivers data rates from 56 up to 
114 HKbps H and continuous connection to the Internet for mobile phone and computer users.  

UMTS (Universal Mobile Telecommunications Service) is a third-generation (H3GH) HbroadbandH, 
HpacketH-based transmission of text, digitized voice, video, and multimedia at data rates up to 2 
HMbps H. The service offers a consistent set of services to mobile computer and phone users no 
matter where they are located in the world and is based on the Global System for Mobile  
communication standard (HGSM H). 4 

2.1.4 Delays in Computer Networks 
To emphasize that delay in this context mostly means wasted time, the term latency is often 
used. Latency was originally defined as: “the length of time it takes to respond to an event” 
[HBarbacci 95H]. Network latency however is now an expression of how much time it takes for a 
packet to get from one designated point to another.  
                                                 
3 One kbps equals 1000 bits per second.  - To avoid ambiguity, in this dissertation, we use the SI and IEC 
prefixes. [IEEE 1997] [IEC 2000] - see http://physics.nist.gov/cuu/Units/prefixes.html. 
4 A comparison of different communication speeds can be found at http://www.hawaii.edu/infotech/speeds.html 
and http://whatis.techtarget.com/definition/0,,sid9_gci214198,00.html [Aug 2003]. 
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The latency assumption seems to be that data should be transmitted instantly between one 
point and another (that is, with no delay at all). The contributors to network latency include:  

Propagation: This is simply the time it takes for a packet to travel directly from one place 
and another at the speed of light.  

Transmission (transport): The medium itself (whether optical fiber, wireless, or some other) 
introduces some delay. The size of the packet introduces delay in a trip since a larger packet 
will take longer to receive than a short one.  

Router and other processing: Each gateway node takes time to examine and possibly 
change the header in a packet (for example, changing the hop count in the time-to-live field).  

Other computer and storage delays: Within networks at each end of the journey, a packet 
may be subject to storage and hard disk access delays at intermediate devices such as switches 
and bridges.  

2.1.4.1 Delays in Connection-oriented Networks 
Circuit switched networks as GSM need some extra connection time to establish a connection 
and after the connection is used the connection should be released. During the connection the 
sender just pushes bytes in at one end and the receiver takes them out at the other end. 

When a connection is established there will be sometimes a negotiation between the sender, 
the receiver and the network about parameters to be used, such as data rate, maximum 
message size, quality of service and other issues. Typically, one side makes a proposal and the 
other side can accept it, reject it, or make a counterproposal [Tanenbaum 2003]. 

These connection setup times can play a significant role if one considers implementing 
progressive mobility where basically one message is split up in several smaller messages 
which may lead to the introduction of several connection setup times. We will discuss this 
aspect for each of the explored themes. 

2.1.4.2 Delays in Connectionless Networks 
Packet switched networks as GPRS and TCP/IP don’t need the extra connection time as 
needed in connection-oriented services, each packet carries the full destination address and 
each packet is routed trough the system independent of the others. Normally, when two 
packets are sent to the same destination, the first one sent will be the first one to arrive. 
However if the first one is delayed it is possible that the second one arrives first. It is the 
responsibility of the receiving host to restore their original order.  

Splitting a message in packets and reassembling them takes time and the larger the message is 
to send the more overhead time we may expect. In a classical TCP/IP protocol the packet size 
ranges from 1 to 2 kByte. Sending a message of 1000 bytes instead of 500 bytes does not 
increase the number of packets (only one in this case) and will not lead to a significant extra 
delay. 

Figure 3 shows the time needed to transport an array of Unicode characters with sizes ranging 
from 1 element (16 bits) to 107 elements (1.6 E+08 bits) between two hosts5.  

                                                 
5 The experiment was carried out between two Dell® Inspiron 8100 computers with Intel® Pentium® III Mobile 
CPU AT/AT compatible processor at 1GHz processor speed and 256 Mb RAM running Windows® 2000 and 
VisualWorks 5i4. 
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Figure 3: Time needed to transport character arrays of different sizes in a TCP/IP network 

The figure shows that the transportation time becomes linear with the size of the message 
once the size of the message exceeds the packet size i.e. 2 kByte (16384 bits). Note that the 
graph uses logarithmic scales for both axes. The noise on the graph is mainly caused by 
garbage collection actions in the Smalltalk environment. The maximum resolution of the time 
measurement in the Smalltalk environment is 1 ms. For small arrays the transportation time is 
about 2ms with some variations from 1 ms to 4 ms, this explains the up and down “glitches” 
in the range from 10 to 1000 bits. 

2.1.5 Performance 
The current fiber technology is able to achieve data rates in excess of 50,000 Gbps (50 Tbps). 
The current practical limit of about 10 Gbps is due to our inability to convert between 
electrical and optical signals any faster [Tanenbaum 2003]. In the race for maximum speed 
between computing and communication in laboratory environments, communication won. 

The TCP/IP protocol is also responsible, at the transport layer, to provide a reliable 
connection between a sending host and the receiving host. This means that the arrival of 
packets must be confirmed by the receiver by sending an acknowledge packet to the sender. If 
after a certain time the sender did not receive an acknowledgment for a packet with a 
particular sequence number, that packet will be sent again. If too many packets get lost, the 
sender will assume a network congestion and will slow down in order to try to pass al its 
packets. 

In Figure 4 we show the time it takes to transfer a 1 Megabit file 4000 km over a fiber 
connection at various transmission speeds. Note that both axes have a logarithmic scale. Up to 
1 Mbps the transport time is dominated by the rate the bits can be send. By 1 Gbps, the 40 ms 
round-trip delay dominates the 1 ms it takes to put the bits on the fiber. Further increases in 
data rate have hardly any effect at all [Tanenbaum 2003]. 
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Figure 4: Network protocol overhead   

2.1.6 Window of Opportunity 
One of the assumptions for the techniques of progressive mobility described in this thesis is 
that the time to send a message (an application in our case) is directly proportional to the 
number of bytes sent and the data rate offered by the underlying network technology. 

As we learn from Figure 3 and Figure 4 this is only the case for messages larger than 2 kByte 
and data rates almost up to 10 Mbps with a maximum of 1Gbps.  

Aside from these limitations there is however a large window of opportunity where the 
preconditions of progressive mobility hold. The size of the applications on which we will 
apply the technique of anticipative mobility using pre-fetching of permuted code range in size 
from 65 kByte to 184 kByte, far above the minimum size of 2 kByte. The data rates in current 
wireless environments have an order of magnitude of 10 Mbps or lower. In 3G networks, the 
ambient intelligence environment that we have in mind for these progressive mobility 
techniques, a mobile may be granted 144 kbps when it is close to the base station with small 
shadow fading. But if the user is in the fade zone or fringe of cell, the data rate will drop 
considerably [Shaw-Kung Jong 2000]. 

2.2 Application 
In this section we describe the relevant entities of the application dimension of the conceptual 
framework. 

2.2.1 Internal Structure 
Many implementations of programming languages, especially those that employ garbage 
collection, store their code and computational state as one chunk of memory. In this chunk we 
find all the elements necessary for the evaluation of the program. Again for many language 
implementations this is: a stack of some sort and a dictionary with the variable bindings and a 
representation of the abstract grammar. In chapter 5 we will take advantage of these properties 
to encapsulate the computational state of an application. Figure 5 shows the typical entities of 
a running application.  
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Figure 5: Typical entities of a running application 

2.2.2 Size 
The size of a mobile application may vary from a few bytes to several Mbytes. A typical 
environment for instance that is a likely candidate to gain from progressive mobility is the 
Multimedia Home Platform. This platform is currently investigated by our research group in a 
joint collaboration between Vlaamse Radio en Televisie (VRT, public broadcaster of 
Flanders), and IMEC (Interuniversity MicroElectronics Center) in one of the e-VRT projects 
funded by the Flemish government. 

The Multimedia Home Platform accepts data (teletext, pictures, ...) and code (Java) over a 
shared 2Mbps channel called a carousel that provides on a regular basis, time slots for all the 
data and code to be transported to the set-top box on the television set. Typical MHP 
applications range from 60–300 kB. Browser applications range between 200–400 kB. An 
HTML compliant browser is not on the market yet but its expected size range between 700-
800 kB, a number of bytes that is already too large for current set-top boxes which means that 
partitioning of the code will be necessary, not even to get an improved performance but just to 
get it up and running anyhow. 

These are sizes and data rates that perfectly fit in our window of opportunity. 

2.2.3 Granularity 
Granularity is the relative size, scale, level of detail that characterizes an object or activity. In 
the context of this thesis, we will use the term granularity as an indication of the number of 
lines of code per usable unit. We will say, for instance, that the Java environment offers a 
granularity at the level of a class. It makes no sense to migrate a single Java method since the 
security mechanism of Java imposes that only complete classes can be loaded and started. 
Other programming environments as Smalltalk and Borg offer a much smaller granularity at 
the level of methods (Smalltalk) or even expressions (Borg). 
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2.2.4 Evaluation Time 
Although the theoretical maximum network speed is enormous (see section  2.1.3), in practice 
we find that compared with the raw "number crunching" power of microprocessors where 
processor speeds of Gbps are common, the expected 3G speed ranging from 144 kbps to 384 
kbps [Tanenbaum 2003] is still several orders of magnitude slower if we compare their bit 
processing speeds. According to Moore's Law6 [Moore 1965] data density on a chip doubles 
every 18 months and therefore also the chip's speed increases since the distance between the 
transistors is reduced. This is why CPU speeds are known to double almost every couple of 
years. We expect that this will remain the case through the end of this decade. 

In some maritime environments data transmission rates of 2400 bps are still in use. And in the 
new standard Multimedia Home Platform (MHP), a digital video broadcasting standard 
intended to combine digital television with the Internet, we find a maximum data rate of 2 
Mbps (256 kB/sec) for a channel that needs to share teletext, shop images, interactive TV data 
and java programs. In practice this means that if want to send an application via this channel 
we might expect a maximum data rate of 5kB/sec. 

2.2.5 Delay 
Delay in a computer system (system latency) is often used to denote any delay or waiting that 
increases real or perceived response time beyond the response time desired. Specific 
contributors to computer latency include mismatches in data speed between the 
microprocessor and input/output devices and inadequate data buffers. The possible time 
“wasted” by a (Just In Time) compilation step, evaluation delay caused by the operating 
system scheduling, concurrency problems etc. 

In a mobile environment performance is measured by invocation latency. Invocation latency 
is the time from application invocation to when the evaluation of the program actually begins 
[Krintz et al. 1998]. It is the combination of the network latency and the system latency that 
occurs before the evaluation of the application starts. 

The delay between the invocation of an application and the appearance of the user interface 
will be called: User interface latency in this dissertation. It is the sum of the network latency 
and the system latency that occurs before the appearance of the user interface.  

Within a computer, latency can be removed or "hidden" by such techniques as pre-fetching 
(anticipating the need for data input requests) and multithreading, or using parallelism across 
multiple execution threads. 

2.2.6 User Interfaces 
In information technology, the user interface (UI) is everything designed into an information 
device which a human being may interact with, including display screen, keyboard, mouse, 
light pen, the appearance of a desktop, illuminated characters, help messages, and how an 
application program or a Web site invites interaction and responds to it. In early computers, 
there was very limited user interface except for a few buttons at an operator's console. The 
user interface was largely in the form of punched card input and report output.  

                                                 
6 The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of transistors per square 
inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that 
this trend would continue for the foreseeable future. In subsequent years, the pace slowed down a bit, but data 
density has doubled approximately every 18 months, and this is the current definition of Moore's Law, which 
Moore himself has blessed. Most experts, including Moore himself, expect Moore's Law to hold for at least 
another two decades. 
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Later, a user was provided with the ability to interact with a computer online and the user 
interface was a nearly blank display screen with a command line, a keyboard, and a set of 
commands and computer responses that were exchanged. This command line interface led to 
one in which menus predominated. And, finally, the graphical user interface (GUI) arrived, 
originating mainly in Xerox's Palo Alto Research Center, adopted and enhanced by Apple 
Computer, and deployed by Microsoft in its Windows operating systems and by UNIX adepts 
in X-Windows.  

Applications that communicate with the user by a graphical user interface (GUI) spend a lot 
of time building this GUI (see also section 3.7) which may lead to large user interface 
latencies. 

2.2.7 Predictability  
Basic properties of program predictability – for both values and control – are defined and 
studied in [Sazeides 1998]. Program predictability originates at certain points during a 
program’s execution, flows through subsequent instructions, and then ends at other points in 
the program.  

For many applications, and especially those build with imperative programming languages, if 
we launch the application over and over again, its program flow after the start will always be 
the same for a certain amount of time. We call this time the predictable deterministic time 
zone. The process of building the graphical user interface is typically the same each time the 
application is started and thus largely predictable. As soon as the user interacts for the first 
time with the application, the program flow becomes less predictable. 

To a lesser extent, many applications without a user interface also seem to follow a highly 
predictable process during startup until their first interaction with an unpredictable 
environment such as the connection with external systems, generation of a random number 
based on a real time seed delivered by the system clock etc... 

As a final observation, typical source code contains a lot of low priority chunks for which it is 
predictable that loading can be deferred until the last moment. Class file splitting [Krintz 
2001], partitions a Java class file into separate hot and cold class files where the low priority 
code is grouped in the cold class to avoid transferring code that is never or rarely used. 

Examples of low priority code are: 

• Exception handling (unless exeptions are used to structure the program flow) 
• Code from abstract methods (e.g. in Smalltalk: self subclassResponsibility) 
• Code from cancellation methods (e.g. in Smalltalk: self shouldNotImplement) 
• Program parts that are not used in the predictable time zone 
• Code that is only needed for testing and debugging purposes 

2.2.8 Components    
Composition is the act of applying a composition operator (that forms part of a composition 
model and theory) in a given context. Components are the subjects of composition. 
Composites (also called assemblies) are the results of composition. [Szyperski 2003]. 

A software component has to be a unit of deployment. Furthermore, to enable dynamic 
scenarios, it has to also be a unit of versioning and replacement. [Szyperski 2003] 

Usually, a component provides a particular function or groups related functions. In 
programming design, a system is divided into components.  
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In object-oriented programming and distributed object technology, a component is a reusable 
program building block that can be combined with other components to form an application. 
Components can be deployed on different servers in a network and communicate with each 
other for needed services. A component runs often within a context called a container.  

Coupling and cohesion are attributes that summarize the degree of interdependence or 
connectivity among subsystems and within subsystems. We can define cohesion in terms of 
intramodule coupling, normalized to between zero and one [Edward 2001]. 

An object-oriented information system is decomposed into entities; each entity is decomposed 
into classes of objects. Good object-oriented system design should exhibit high cohesion 
inside entities and low coupling among entities.  In the research literature metrics are 
proposed for cohesion and coupling and can be used to define a quality metric at the system 
level [Nejmeddine 2002]. 

Component-based software development stands for software construction by assembling 
independent building blocks. Typical component models are the Component Object Model 
(COM) and JavaBeans. These models prescribe standards for the collaboration of independent 
applications, which should yield improved development productivity and, in particular, more 
adaptable software. Notable success has been reported for systems implementation in well-
understood application domains, such as graphical user interfaces [Nierstraz 1995]. The 
building of the user interfaces in an object oriented environment is mostly delegated to one 
instance of a designated class. 

The technique of progressive mobility splits existing applications into components that also 
should exhibit high cohesion inside entities and low coupling among entities. The components 
will constitute the parts that will be transported, progressive in time, from a sender to a 
receiver. 

2.2.9 Distributed Systems and Applications 
There is some mix-up in the literature between the notion of a computer network and a 
distributed system. A distributed system is a collection of independent computers that 
appears to its users as a single coherent system. Usually, it has a single model or paradigm 
that it presents to the users. Often a layer of software on top of the operating system, called 
middleware is responsible for implementing this model [Tanenbaum 2003]. A well-known 
example of a distributed system is the World Wide Web, in which everything looks like a 
document. 

In this dissertation we describe distributed applications. Sometimes these applications 
become only temporarily distributed during the process of migrating component by 
component from a sender to a receiver. 

2.2.10 Choosing an Experimental Programming Environment 
The experiments conducted for this dissertation where performed in mainly three different 
programming environments. Our first choice was always Smalltalk for it allows fast 
prototyping and provides reflection, promising easy access to runtime structures e.g. the 
execution stack of processes. Smalltalk is a programming language, where the objects that 
define the language are themselves built with the language. Hence in Smalltalk, code entities 
such as classes and methods are themselves programmable and extensible objects, just like 
any other Smalltalk object. Smalltalk represents processes as objects. The VisualWorks 
Smalltalk environment that we employed comes with an add-on: Opentalk that provides an 
environment for the development and deployment of distributed applications. 
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As it turned out, Smalltalk did not always deliver as promised. Freezing a process object, 
migrate it to another host and restart the process over there was not as simple as we thought it 
should be. Sometimes, for small applications, we could make a workaround using Boss as 
serializer but for the rare occasions that Smalltalk let us down we moved to a language that 
was built for the migration of processes in the first place: Borg. 

Finally, when the proof of concept was achieved we implemented as much as possible a 
similar system in a more widely adopted language: Java. In order to obtain sufficient support 
for our experiments we extended the basic Java environment with the RMI system and the 
µCode toolkit [Picco 1998]. 

2.2.11 Programming Languages Used 
We describe these programming environments, their properties and frameworks used in 
alphabetic order: 

2.2.11.1 Borg 
Borg [Van Belle et al. 2001] is a mobile agent environment developed at the Programming 
Technology Lab of the Vrije Universiteit Brussel. Borg is an extension of Pico [D’Hondt 
2003], a functional, dynamically typed, statically scoped language. 

An agent is an active autonomous software component that is able to communicate with other 
agents. The term mobile indicates that an agent can migrate to other agent systems, while 
carrying its program code and data.  

The Borg system provides a platform with active autonomous agents, which communicate 
with each other over a network, and which are able to migrate over this network. The Borg 
agents can be considered as mobile components. In general, components are not active entities 
but in the Borg context, a component is an active piece of code, which can communicate with 
other components on the network. A Borg component is able to migrate to other machines. A 
component's state can only be modified by sending a message to that component; all data of a 
component is private. Note that component is not the same as object. Components are active 
entities with independent private data. A component usually consists of a number of objects. 
We will interchangeably use the terms component or agent during the remainder of this paper. 
The term component indicates the fact that the entity is a part of a greater entity: the 
application. The term agent refers to the autonomous role of the entity. In the Borg 
environment, an application consists of a number of cooperating components. 

Besides other, in this context less relevant properties, the Borg mobile architecture features: 

• Strong mobility 
A component can migrate between agent systems during its evaluation. Strong mobility is 
seldom found in current, Java-based, agent systems due to some technical drawbacks of Java. 
Because Borg has the ability to reify the complete computational state of a running process, 
including its runtime stack, strong mobility is one of its standard features. 

• An easy to use agent communication layer. 
 The communication layer consists of a serializer and an objectcall-like syntax; it allows 
agents to pass messages to each other. Agents always communicate in an asynchronous 
fashion. The reasoning behind this design decision is the notion of being autonomous: an 
agent should be designed as a separate entity, sending messages to, and receiving messages 
from other agents, not as an entity which transfers its control flow to other agents. 
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• A hierarchical naming / routing system 
Every agent has a human-readable name, which is always used to reference it. The naming 
system favors late binding, in the sense that we bind agents to each other at evaluation time, 
not at compile time, as we partially do with objects. There is no distinction between the name 
of an agent and the address of an agent. Instead of resolving the name of an agent to its place, 
messages are immediately routed to an agent based upon the receiver's name. This means, of 
course, that we need to change the existing communication infrastructure substantially. We no 
longer have a statically interconnected routing infrastructure and a separate, statically 
interconnected naming infrastructure; instead we have one hierarchical infrastructure in which 
we name agents and route messages between them. 

• A location-transparent distribution layer 
An agent can send messages to other agents, without having to know where the other agent 
resides. For example, if agent 'Alice' talks to agent 'Bob', and 'Bob' migrates to the agent 
system at the end of the universe, Borg keeps on routing messages between Bob and Alice 
using the shortest path between them. To provide this functionality the name server and 
router are merged into one entity. 

• Resource Transparency 
All resources in the mobile agent system (disks, user interfaces and so on) are represented as 
static agents (which cannot migrate). So whenever we migrate an agent, it stays connected to 
the resources it was using. 

• Garbage Collection 
A state of the art, highly performant garbage collector is incorporated into the system. 

• Synchronizing agents 
This is performed by using a rendez-vous between multiple agents. This rendez-vous can be 
in time and/or in space (synchronize at a certain computer). The primitives themselves are 
based upon CSP [Hoare 1985], with the exception that as guards, unification is used instead 
of sequenced statements. 

2.2.11.2  Java 
Java is a language that has been widely adopted for writing mobile code.  The reason for this 
is the built-in support for a lot of features needed in mobile code. Java supports class 
serialization; this enables objects to be written to a serialized stream or to be read from a 
serialized stream into an object.  Remote Method Invocation (RMI) [Sun 2002] is also a 
standard feature of Java; it allows a program to invoke methods of objects that exist on other 
Java Virtual Machines. It is possible to run a Java program on any machine that implements a 
Java Virtual Machine (JVM), because Java compiles its source-code into byte-code.  This 
allows mobile code to be used on heterogeneous networks. Java also provides a class loader, a 
mechanism to retrieve and dynamically link classes in a running JVM, even from a remote 
location.  This automatically supports weak mobility (see section 2.3.1.6). 

 

RMI 
The Java Remote Method Invocation (RMI) system allows an object running in one Java 
Virtual Machine (VM) to invoke methods on an object running in another Java VM possibly 
on different hosts. RMI provides for remote communication between programs written in the 
Java programming language. RMI uses object serialization to marshal and unmarshal 
parameters and does not truncate types, supporting true object-oriented polymorphism. 



A Conceptual Framework for Progressive Mobility 

Page 46 

 

µCode 
Even with all the advantages of Java, it has one major drawback:  it is impossible to serialize 
the runtime stack which makes it impossible to make use of strong mobility in a standard Java 
environment. To overcome this limitation we deployed a mobile-code toolkit called µCode 
[Picco 1998], an extension of the Java environment. The basic operations provided by µCode 
enable creation and copy of thread objects on a remote µServer, and class relocation among 
µServers. A µServer is an abstraction of the run-time support and represents a computational 
environment for mobile threads. µCode supports synchronous and asynchronous invocation, 
as well as deferred and immediate evaluation of mobile code. 

The unit of migration is the group, a container for classes and objects. Classes can be added to 
the group either individually or collectively by computing the transitive closure of a given 
class. 

µCode contains a small set of abstractions and mechanisms that can be used directly by the 
programmer or composed in higher level abstractions for the creation of mobile code.  It is 
written in Java to make it portable on all platforms. µCode is not a mobile agent system, but it 
focuses on mobility of code and state (Java classes and objects). µCode features a 
CopyThread-method, which allows us to copy a running thread, while keeping its internal 
state. Threads are objects in Java that allow concurrent programming; they have their own 
namespace, and appear to run as if they have the processor for themselves. By using the 
CopyThread-method, threads can be moved from one host to another. 

µServers are µCode programs that form a layer between the Java code and the µCode 
programs. If we run µServers on two hosts, the available abstractions in µCode allow us to 
migrate a running thread from the sending to the receiving host. At arrival, the thread is 
restarted with the instance variables in the same state they had at the evaluation point where it 
was suspended before sending. This feature of µCode allows us to apply progressive mobility 
using component streams in a Java environment. There is no need to change the Java Virtual 
Machine or any standard libraries, so we preserve the full portability to all Java platforms.  

2.2.11.3 Smalltalk 
Smalltalk is a language, a complete class library, and an interactive programming 
environment rolled into one seamless whole. [Cincom 2003]. Smalltalk was developed at the 
Xerox Palo Alto Research Center in the '70s.  

Smalltalk runs on a virtual machine, an abstract computer that can be implemented on 
different processors to provide a binary-portable execution environment. More recently, Java 
has popularized this implementation scheme.  

In their desire to provide an interactive graphical environment the PARC Smalltalk group 
invented overlapping windows and pop-up menus, within the Smalltalk environment. Steve 
Jobs saw the Smalltalk environment at PARC in the eighties, took the ideas back to Apple and 
incorporated them in the Lisa and the Mac. The windowing environment pioneered in 
Smalltalk is now the common UI environment on most desktop computers. 

Smalltalk performs automatic memory management (known as garbage collection), to relieve 
the programmer of the error-prone task of reclaiming unused storage.  

Smalltalk introduced the notion of a reflective programming language, whereby the objects 
that define the language are themselves built with the language. Hence in Smalltalk, code 
entities such as classes and methods are themselves programmable and extensible objects, just 
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like any other Smalltalk object. Smalltalk even represents processes and method activations as 
objects. The use of Smalltalk objects to define the Smalltalk system itself allows the 
programmer to extend the language and environment. 

Smalltalk is a dynamic implicitly-typed language where objects, not variables, carry type 
information, freeing the programmer from declaring variable types, but still providing 
complete type-safety  [Cincom 2003]. 

 

Boss 
The VisualWorks “Binary Object Streaming Service” (BOSS) is an important tool for 
converting most types of Smalltalk objects into a compact binary representation that requires 
relatively little memory space. Although BOSS is used mainly to store objects in and retrieve 
from a file, it can also be used for other purposes such as sending objects across a network. 
BOSS is implemented by a group of Smalltalk classes in category System-Binary Storage. 
BOSS writes objects onto a Stream: the Stream class provides a framework for a number of 
data structures, including input and output functionality, queues, and endless sources of 
dynamically- generated data. A Smalltalk Stream is similar to UNIX streams and provides a 
sequential view on an underlying resource; when reading or writing elements, the stream 
position advances until the end of the underlying medium has been reached. 

 

Opentalk 
Opentalk is a VisualWorks add-on that provides an environment for the development and 
deployment of distributed applications. Opentalk contains frameworks and components for 
creating or extending communication protocols, object services, remotely targeted user 
interfaces, remote development tools, and other architectural components common to 
distributed systems. 

This Communication Layer consists of those components that define the base communication 
framework, several Smalltalk-to-Smalltalk communication protocols, and a select set of base 
services. It provides a set of frameworks and components for use by protocol developers who 
are creating protocol layers in VisualWorks, operating on top of either the TCP/IP or UDP 
transport layers. 

Apart from being a distributed component “construction kit,” the Opentalk Communication 
Layer provides a number of immediately useful components. There is a complete object 
request broker implementation that supports configurations using several kinds of object 
adaptors that exploit either TCP or UDP sockets. Brokers can be configured to use standard 
unicast communication or multicast and broadcast messaging. A set of basic services is also 
provided. Any application wishing to send or receive remote requests needs to create and 
maintain a request broker. Request brokers provide transparent remote communication 
between Smalltalk images and represent the communication layer to communicating 
applications. 

The latest version of Opentalk (VisualWorks 7.1) provides four passing modes: Pass-by-
reference, the default passing mode, pass-by-value for small objects, pass-by-name for 
entities with a more global scope such as Classes and pass-by-OID (Object IDentifier), a 
species of 'pass-by-name' for domain class instances. The standard passing mode can always 
explicitly overridden by another passing mode. 
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In the case of anticipative mobility and proactive migration and evaluation some selected 
objects are replicated to all involved potential receivers. In such cases, if a replicated object is 
an argument to a remotely invoked operation, it is a waste of resources to pass the replicate by 
either reference or value. Pass-by-reference entails remote message sends; pass-by-value 
entails the marshaling of a complete copy. In contrast, pass-by-OID allows anticipative 
migrated objects to be passed by no more than the object identifier under which they were 
pre-registered in the object tables of both the sending and the receiving object adaptors. A 
passed-by-OID object, on receipt, resolves to either (a) its local replicate or (b) an exception if 
the passed OID has not been pre-registered at both sending and receiving locales.  

2.3 Techniques 
In this section we describe the relevant entities of the techniques dimension of the conceptual 
framework. 

2.3.1 Mobility 
Mobility (the quality of moving freely) and migration (moving from one place to another) are 
natural processes and stem from a desire to move either toward resources or away from 
threats. 

If we look at the entities available in a computational process, we distinguish the host 
environment, the evaluator, the data, the code and the state of the process itself. All of these 
entities, separate or grouped, are possibly subject to migration (Figure 6). 

 

 

Figure 6: Entities subject to migration 

2.3.1.1 Host Mobility 
Portable computers, PDA’s and wearable computers are intended to move by their own nature 
and by moving the host we also move its code, data, evaluator and process. Since they are 
contained in the host machine they are an integral part of it. Moreover, motion is relative, if 
we walk around with a PDA in our pocket all the host computers of the world are in a relative 
motion too. Some of the applications on these host machines need to be aware of their relative 
motion. 

One of the goals of ubiquitous, pervasive computing is to embed more computers into our 
daily environment, and yet make them less noticeable. To do so, applications in these smart 
spaces or intelligent environments use information about the environment to adapt to the 
changing context in which they run. These applications need to be aware of their 
environment; they need to know the location of people and of their mobile devices, the 
current weather or traffic conditions, the status of computational and human services, and so 
forth. 

Pervasive-computing applications must be aware of the context in which they run and move. 
These context-aware applications should be able to learn and dynamically adjust their 
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behaviors to the current context, that is, the current state of the user, the current computational 
environment, and the current physical environment, so that the user can focus on his current 
activity [Chen 2002]. 

2.3.1.2 Evaluator Mobility 
A mobile evaluator seems a strange idea at first glance but they are common practice. If Java 
byte codes arrives in a Web browser they trigger automatically the launch of an evaluator for 
the byte codes, here a Java Virtual Machine. The evaluator code, available on the hard disk, is 
loaded to the memory to be evaluated by the underlying host machine. Sometimes if the 
evaluator code is not yet available on the hard disk it can be migrated over the internet to the 
host machine. 

Some mobile code security mechanisms attach the evaluator to the code so as to be sure that 
the code will be evaluated with the correct non-tampered-with evaluator.  

2.3.1.3 Data Mobility 
Historically data was the first entity that became mobile. A large amount of data was stored 
on external memory as magnetic or optical cards, tapes or disks. This external memory was 
monitored by a powerful machine. The combination of the two is usually called a Database. 
If a user needs some information he7 would launch a query and the resulting data was 
migrated to the user. It leads to the very popular client-server paradigm. 

Client-Server Paradigm: In this paradigm, see Figure 7, a server provides a set of services 
including access to resources like databases. The implemented code of these services is 
realized on the server and processed by the server. The server has the know-how, the 
resources, and the processor. The client uses the services provided by the server [Lange et al. 
1998]. 

 

Figure 7: Client-Server Paradigm 

2.3.1.4 Code Mobility 
Sometimes code is hardwired, in the host machine. Often this is the case in embedded 
systems, a combination of computer hardware and software that is specifically designed for a 
particular kind of application. But most of the times before the code is evaluated it is loaded 
from a storage medium as a hard disk to a fast memory medium as DRAM to become 
evaluated. Although this kind of internal code transport is not called mobile code or code 
migration, several techniques described in this dissertation are also applicable to code loading. 

In recent years we have witnessed the appearance of new paradigms for designing distributed 
applications where the application components can be relocated dynamically across the hosts 
in a network. This form of code mobility lays the foundation for a new generation of 
technologies, architectures, models, and applications in which the location at which the code 
is evaluated comes under the control of the designer, rather than simply being a configuration 
                                                 
7 he should be read as he or she throughout this dissertation. 
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accident [Picco 2001]. It allows for new functionalities such as local resource access and 
dynamic load balancing.  

Mobile code has an inherently dynamic character: Component interaction models need not 
be fixed at design time, but can change according to the states of the software environment. 
Mobility holds the promise of truly dynamical architectures, capable of changing their 
topological layout and their interactional properties in response to split-second changes in 
system requirements. 

Security can be implemented less statically: mobile agents can go to secure locations when 
security is important, or can choose to roam in less strict environments when it is not - and a 
better performance can be gained. The concept of security in a system will move from being a 
static property to being a service that can be offered for those components that might need it 
at some point in time, and that will be ignored if the service is not needed.  

Besides the fact that a mobile agent can move to resources to interact locally with them, the 
agent itself can also be considered a computational resource.  As such, it might be 
summoned when it is needed in a local computation somewhere else in the system, and be 
dismissed afterwards. 

Mobile code comes in many forms and shapes. [Fuggetta et al. 1998] Mobile code can be 
represented by machine code, allowing maximum evaluation speed on the target machine but 
in doing so sacrificing platform independence. Alternatively, the code can be represented as 
bytecodes, which are interpreted by a virtual machine (as is the case for Java in the Jini 
framework [Arnold et al. 1999] and Smalltalk). The use of intermediate bytecodes provides 
platform independence, a vital property in worldwide heterogeneous networks. The third 
option, which also provides platform independence, consists of transmitting source code or 
program parse trees [Franz and Kistler 1997].  

Using source code as a transport medium in low data rate networks appears to be not such a 
bad idea at all: The same program representation contains less bytes if it represented by its 
source code instead of its compiled version since (1) It does not contain the libraries and other 
stuff added by the linker, (2) since a higher level language is more expressive than machine 
code; it allows: “saying more with less words”. (3) The source code in ASCII allows a high 
compression rate using standard compression algorithms. 

To obtain maximum execution speed an extra compilation step is necessary after the 
transmission but the speed of the compilation process that generates native machine code is 
typically much faster than the transportation time of the resulting byte codes over a low-data 
rate network . 

In what follows we describe three mobile code paradigms. 

 

Code-on-Demand Paradigm  
According to this paradigm, see Figure 8, you first get the know-how when you need it. A 
host, called the client, gets the code from another host, called the server, when it needs it. The 
client holds the processor capabilities and the local resources, but does not need preinstalled 
code. The server has the know-how and resources. Java Applets are typical examples. Applets 
get downloaded in Web browsers and evaluate locally [Lange et al. 1998]. 
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Figure 8: Code-on-Demand Paradigm 

 

Remote Invocation Paradigm   
According to this paradigm, see Figure 9, the know-how is sent to a server for evaluation. A 
host, called the client, sends the code to another host, called the server, when needed. The 
server holds the processor capabilities and the local resources, but does not need preinstalled 
code. The client has the know-how. Java Servlets are examples if they get uploaded to remote 
servers and evaluate there [Carzaniga et al. 1997]. 

This paradigm can also be viewed as a special case of the code on demand paradigm [Lange 
et al. 1998] where it is the server that “asks” for the code. 

 

 

Figure 9: Remote Invocation Paradigm 

 

Mobile Agent Paradigm 
Clients and server merge to hosts. Any host in a network holds any mixture of know-how, 
resources, and processors. The code in form of mobile agents is not tied to a single host, but is 
available throughout the network [Lange et al. 1998]. See Figure 10. 
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Figure 10: Mobile Agent Paradigm 

Mobile code and mobile agents hold the potential to share the next generation of technologies 
and models for distributed computation. The first steps of this process are already evident 
today: Web applets provide a case for the least sophisticated form of mobile code, Java-based 
distributed middleware makes increasing use of mobile code, and commercial applications 
using mobile agents are operational [Picco 2001].  

The term agent refers to the function of the mobile code i.e. the task of representing a query 
or a service for a human or non-human client. Also the term mobile objects is often used to 
indicate that code, data, and a thread is moved. In this thesis we will use the term agent only if 
we want to focus of its representative function, but mostly we make abstraction of the current 
task and structure and use the more generic term mobile code. 

2.3.1.5 Process Mobility 
A process is an instance of a program running in a computer. It is started when a program is 
initiated and is characterized by a state and an address space trough which the code and data 
can be accessed. At the machine level the state contains at least the program counter, the 
program status (flags) a stack pointer and the general registers. 

Mobile agents that move as a process are called strong migration agents in contrast to weak 
migration agents where only the code is moved from one host to another and restarted from 
scratch. [Fuggetta et al. 1998].  

Not all high level programming environments provide the necessary reflection to grant the 
application access to its own computational state, but if this level of reflection is available we 
may apply similar approaches on process mobility as the one we find at lower levels in the 
computer architecture hierarchy e.g. the operating systems. 

A process is a key concept in operating systems. It consists of data, variable storage, and the 
state specific to the underlying Operating System (OS), such as parameters related to process, 
memory, and file management. A process can have one or more threads of control; threads, 
also called lightweight processes, containing their own variable storage, but share a process’s 
address space and some of the operating-system-specific states, such as signals.  

Migration performance of operating systems depends on initial and run-time costs introduced 
by the act of migration [Milojicic et al. 1999]. The initial costs stem from state transfer. 
Instead of at migration time, some of the state may be transferred lazily (on-demand), thereby 
introducing extra run-time costs. Both types of cost may be significant, depending on the 
application characteristics, as well as on the ratio of state transferred eagerly/lazily.  
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If only part of the process state is transferred to another node, the process can start its e 
valuation sooner, and the initial migration costs are lower. This principle is called lazy 
evaluation: and was also applied in our pre-fetched code experiments. Actions are not taken 
before they are really needed with the hope that they will never be needed.  

However, when everything is needed, penalties are paid for postponed access. For example, it 
is convenient to migrate a huge address space on demand instead of eagerly. In the lazy case, 
part of the space may never be transferred if it is not accessed. A process address space 
usually constitutes by far the largest unit of process state; not surprisingly, the performance of 
process migration largely depends on the performance of the address space transfer.  

Various data transfer strategies have been proposed in order to avoid the high cost of address 
space transfer [Milojicic et al. 1999].  

• The eager (all) strategy copies all of the address space at the migration time. Initial costs 
may be in the range of minutes. 

• The eager (dirty) strategy can be deployed if there is remote paging support. This is a 
variant of the eager (all) strategy that transfers only modified (dirty) pages. Unmodified pages 
are paged in on request from a backing store. Eager (dirty) significantly reduces the initial 
transfer costs when a process has a large address space.  

• The Copy-On-Reference (COR) strategy is a network version of demand paging: pages are 
transferred only upon reference. While dirty pages are brought from the source node, clean 
pages can be brought either from the source node or from the backing store. The COR 
strategy has the lowest initial costs, ranging from a few tens to a few hundred microseconds. 
However, it increases the run-time costs, and it also requires substantial changes to the 
underlying operating system and to the paging support. 

• The flushing strategy consists of flushing dirty pages to disk and then accessing them on 
demand from disk instead of from memory on the source node as in copy-on-reference. The 
flushing strategy is like the eager (dirty) transfer strategy from the perspective of the source, 
and like copy-on-reference from the target’s viewpoint. It leaves dependencies on the server, 
but not on the source node. 

• The precopy strategy is used to augment the process availability in the same sense as 
proactive migration. It reduces the “freeze” time of the process, the time that process is 
neither evaluated on the source nor on the destination node. While the process is evaluated on 
the source node, the address space is being transferred to the remote node until the number of 
dirty pages is smaller than a fixed limit. Pages dirtied during precopy have to be copied a 
second time.  

2.3.1.6 Weak and Strong Mobility 
If an executable component is migrated before the application has started it suffices to send 
over its code and start it up in the same manner as applets are loaded to a web browser and 
started. If, however, the application was already running before migration, one should send 
not only the bare code but also the intermediate values of the local variables of that evaluation 
unit and the information of the exact point in evaluation where the entity was stopped to be 
able to resume it at the same point. This extra information is usually referred to as the 
computational state and runtime stack. This kind of migration is known as strong mobility 
while the former is called weak mobility [Fuggetta et al. 1998]. In the remainder of this 
dissertation we will refer to the computational state to indicate the values of all the variables 
of the application including the runtime stack. 
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A typical way of moving an application from host to host is composed of the nine sequential 
steps from Table 1 (page 26). Strong and weak mobility only differ in the way the current 
state of the process is packed and unpacked. In strong mobility the computational state and 
runtime stack is contained in the same package, in weak mobility the state (or part of it) is 
passed by parameters under control of the programmer.  

2.3.2 Server - Push versus Client - Pull 
The dominant paradigm of communication on the world-wide web and in most distributed 
systems is the request-reply or client-pull model. In this model of distributed information 
systems, a client actively “pulls” information from the server. Since the early days of the 
Internet, systems such as electronic mail and Usenet News have attempted to overcome the 
deficiencies of this pull model by allowing producers of information to “push” their 
information closer to the clients. In the push model, an information producer announces the 
availability of certain types of information, an interested consumer subscribes to this 
information. The producer periodically publishes the information (pushes it to the consumer).  

Several reasons motivate the need for push systems. The most important one is that the 
WWW is based on a simple request/reply scheme [Berners-Lee 1996] that requires the user to 
issue a request whenever he needs information. This imposes a “synchronous” interaction 
scheme, whereas push systems allow asynchronous information distribution: Ideally, 
whenever information of the user’s choice becomes available it gets distributed [Hauswirth 
1999]. 

The idea behind code-on-demand was the thin client or network computer. In this view a 
workstation should only contain the bare minimum of the operating system, possibly in a non-
volatile ROM, all the extra software that is needed is loaded from the network, in the same 
sense that Java Applets are loaded and evaluated on the client. The main advantage of this 
scheme is that it allows maintaining a centralized codebase and that installation and 
maintenance problems of the clients are virtually eliminated. Software update mechanisms 
become very simple since they only need to adapt the central code base. Larger applications 
may apply dynamic binding of lean software [Wirth 1995] where, as an example, the help 
dialog is only loaded if activated. 

The main disadvantage of this setup is that interoperable code always needs to be available 
behind the scenes and that long delays may be expected at start up. Moreover a client-pull 
setup will always need an extra communication step to send the request to the server. This 
makes the pull strategy inherently slower than the push strategy we adopted for progressive 
anticipative mobility using pre-fetching of permuted code. 

A combination of the two paradigms is possible however. If a pre-fetching scheme is applied, 
then, once the predictable time zone is surpassed and the not all the code is loaded yet, the 
server has to rely on statistical data to predict the next chunk of code that is needed at the 
client. This is the time that the client can come to help by giving some hints to the sender. If 
the client communicates to the sender the exact place in the code it is halted, at a semaphore 
or another synchronization mechanism, the sender might be able to determine the appropriate 
next chunk of code. 

2.3.3 Parallelism  
Actual computer architectures provide separate processors for input/output (code loading) and 
main program evaluation. Disk controllers, modems and network controllers contain their 
own processing units. This enables us to send code to another host in parallel with the 
evaluation of the main application. We also see new upcoming techniques that favor the use 
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of parallelism e.g. hyper-threading technology [Intel 2002] which enables thread-level 
parallelism by duplicating the architectural state on each processor, while sharing one set of 
processor evaluation resources. When scheduling threads, the operating system treats the two 
distinct architectural states as separate "logical" processors. This allows multi-processor 
capable software to run unmodified on twice as many logical processors. While hyper-
threading technology will not provide the level of performance scaling achieved by adding a 
second processor, benchmark tests show that some server applications can experience 30 
percent gain in performance [Intel 2002]. We now already witness the introduction of high 
performance architectures as the Cray MTA-2 processor. Each MTA processor has up to 128 
RISC-like hardware threads. Each thread is a hardware stream with its own instruction 
counter, register set, stream status word and target and trap registers. In a few years we may 
expect up to 20 different threads running on one standard microprocessor chip. 

To take full advantage of possible parallelism one is compelled to split up a problem in 
independent threads. 

Amdahl's Law [Amdahl 1967] is a law governing the speedup of using parallel processors on 
a problem, versus using only one serial processor.  

In chapter 4 we propose a technique that requires the division in components of an existing 
application. Since we have to split our application in different components anyhow we might 
apply existing techniques devised for parallel programming [Attali et. al 2000, Caromel et al. 
1998] to split up the application in different components. Moreover, it might be advantageous 
to obtain concurrent processes at the same time. We will report on our experiments in section 
4.6.5.2. 

2.3.4 Reflection 
Reflection is the ability for a program to manipulate its state and behavior as data during its 
evaluation [Maes 1987]. There are two aspects to reflection: 

• Introspection: 
Makes it possible for an application to observe and reason about its state and behavior. 

• Intercession:  
The ability for the application to modify its evaluation state or alter its interpretation or 
semantics. 

We will rely on reflection to be able to capture the computational state of our applications, 
mostly to implement strong migration. This level of reflection is not offered by most classical 
programming environments, this why we will make use of languages as Borg, Smalltalk and 
special toolkits for Java. 

2.3.5 Compression 
File compression is used to hide network latency by decreasing the number of bytes 
transferred through the use of compact encoding mostly without the knowledge of the type of 
underlying data.  The resulting size of compressed files (compression ratio) is dependent upon 
the complexity of the encoding algorithm. Typically, a similar complexity is required for 
decompression of the file prior to its use. Techniques with a high compression ratio 
necessarily need more time to decompress. Techniques with fast decompression rates are 
unable to achieve aggressive compression ratios. 
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Since compression techniques must trade of compression ratio for decompression time the 
latter must also be considered a source of invocation latency since it occurs online while the 
program is executing. 

To minimize this latency, a compression technique should be selected based on the underlying 
resource performance, network, CPU, etc… Moreover since such performance is highly 
variable [Wolski 1998] selection of the best compression algorithm should be able to change 
dynamically. Such adaptive ability is important since the selection of a non-optimal format 
may result in substantial total latency. 

In order to address this selection problem Krintz [Krintz 2001] introduces Dynamic 
Compression Format Selection (DCFS) a methodology for automatic and dynamic selection 
of competitive compression formats. Using DCFS, mobile programs are stored at the server in 
multiple compression formats. DCFS is used to predict the compression format that will result 
in the smallest amount of network latency given the data rate predicted to be available when 
transfer is triggered. 

Code compression is another way to reduce overhead introduced by network delay. Several 
approaches to compression have been proposed to hide network delay in mobile code 
environments. J. Ernst [Ernst et al. 1997] describes an executable representation that is 
roughly the same size as gzipped x86 programs and can be interpreted without 
decompression. M. Franz [Franz and Kistler 1997] describes a compression format called 
Slim binaries, a compression scheme based on adaptive methods such as LZW [Ziv and 
Lempel 1977], but tailored towards encoding abstract syntax trees rather than character 
streams. It takes advantage of the limited scope of variables in programming languages, which 
allows to deterministically prune entries from the compression dictionary, and uses prediction 
heuristics to achieve a denser encoding. 

The technique of code compression is orthogonal to the techniques proposed in this paper, 
and can be used to further optimize our results. 

2.3.6 Reordering and Pre-fetching  
One way to avoid invocation delay is to ensure that only those methods that will be executed 
are transferred across the network. Sirer et al. [Sirer 1999] describes such an optimization 
based on repartitioning of Java applications into modules that utilize network data rate more 
effectively.  Other Java based techniques, Class File Splitting and Pre-fetching and Non-Strict 
Execution for Mobile Programs are proposed by Krintz [Krintz et al. 1999, Krintz et al. 1998]. 

2.3.6.1 Profiling 
To determine the optimal ordering of code so that pre-fetching becomes possible, a more 
thorough analysis of the code is needed. This can be done either statically, using control flow 
analysis, or dynamically, using code instrumentation. Both techniques are empirically 
investigated in [Krintz et al. 1998] to predict the first use ordering of methods in a class. 
These techniques are directly applicable to our approach as well. More sophisticated 
techniques for determining the most probable path in the control flow of a program are 
explored in [Jason and Patterson 1995].  

The static and dynamic profiling techniques used to determine the hot and cold parts can also 
be used to measure the dynamic behavior of our application. The obtained profile will allow 
us to predict ideal proactive migration points so that possible complications with sudden large 
memory allocations (section 5.6.4) can be avoided. 
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2.3.6.2 Class File Splitting and Pre-fetching  
Reordering of code and data is also essential for reducing transfer delay. One possibility to 
accomplish this is by splitting Java code (at class level) into hot and cold parts [Krintz et al. 
1999]. The cold parts correspond to code that is never or rarely used, and hence loading of 
this code can be avoided or at least postponed.  

Class file splitting partitions a class file into separate hot and cold class files, to avoid 
transferring code that is never or rarely used. Class file splitting helps reduce the overall 
transfer delay and invocation latency. Invocation latency is the time required to begin 
evaluation of a program. In Java, this includes the time for transfer and load as well as any 
additional file processing required by the evaluation environment, e.g. verification. 

Class file pre-fetching inserts pre-fetch commands into the bytecode instruction stream in 
order to overlap transfer with evaluation. The goal is to pre-fetch the class file far enough in 
advance to remove part or all of the transfer delay associated with loading the class file. 

Java class file splitting was proposed by T. Chilimbi [Chilimbi et al. 1992] to improve 
memory performance. The goal of their research was to split infrequently used fields of a 
class into a separate class. 

The splitting algorithm relies on profile information of field and method usage counts. With 
the profile information as input, a static bytecode tool performs the splitting. 

Class file pre-fetching is an optimization that is complementary to class file splitting. Pre-
fetching class files masks the transfer delay by overlapping transfer with computation, i.e., 
class files are transferred over the network while the program is evaluated. In the optimal 
case, this overlap can eliminate the transfer delay a user experiences. Effective pre-fetching 
requires (1) a policy for determining at what point during program evaluation each load 
request should be made so that overlap is maximized, and (2) a mechanism for triggering the 
class file load to perform the pre-fetch. 

 

 

Figure 11: Splitted classes 

 

Global Data 
 
Void main(...){ 
... 
A Thread.pre-fetch(Class 
B); 
... 
foo(); 
... 
varB =  new B(); 
... 
} 
 
void foo() {...} 
 
void mumble(){...} 
 

Global Data 
 
B() {...} 
 
Bar(...) 
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Figure 12: Class pre-fetching 

Figure 11 and Figure 12 show the benefit of splitting and pre-fetching, The first class to be 
transferred is class A, and evaluation starts with the main routine. While executing main, a 
pre-fetch request initiates the loading of class B. We insert a pre-fetch request for class B, 
since it is needed when the first-use for class B is evaluated at the new B() instruction in main. 
If the evaluation of class A, after the pre-fetch and before this first reference to class B, takes 
more time than the transfer of B, the statement new B() will evaluate without waiting on the 
transfer of B. On the other hand, if there are not enough useful compute cycles to hide class 
B’s transfer (that is, the time to transfer class B is greater than the number of cycles evaluated 
prior to A’s instantiation of B), then the program must wait for the transfer of class B to 
complete before performing the evaluation of new B(). In either case, pre-fetching reduces the 
transfer delay since without pre-fetching evaluation stalls for the full amount of time 
necessary to transfer class B.  

With verified transfer, class file splitting reduces the startup time by 10% on average. Without 
code verification, the startup time can even be reduced slightly more. 

2.3.6.3 Non-Strict Execution for Mobile Programs 
Overlapping execution with transfer using non-strict execution [Krintz et al. 1998] was 
proposed and simulated to parallelize the processes of loading and compilation/evaluation, a 
technique that is also adopted by this dissertation. To reorder the procedures in a first-use 
mode they used as a first approach static program estimation to predict the order of invocation 
for procedures, a second approach uses first-use profiling to create a profile indicating the 
order of invocation. 

Static First Use Estimation uses a static call graph. To obtain the ordering, they construct a 
basic block control flow graph for each procedure with inter-procedural edges between the 
basic blocks at call and return sites. The predicted static invocation ordering is derived from a 
modified depth first search (DFS) of this control flow graph, using a few simple heuristics to 
guide the search. A flow graph is created to keep track of the number of loops and static 

Class A Class B 

varB = new B() 

A Thread.pre-fetch(Class B) (Pre-fetch Class B) 

(First-use of class B) 

main() 
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instructions for each path of the graph. When generating the first-use ordering, they give 
priority to paths with loops on them, predicting that the program will evaluate them first.  

If real-time profiling is not possible or practical this approach can be used instead. 

Profile Guided First Use Estimation uses profile information to determine the first-use 
ordering of procedures. A first use profile is generated by keeping track of the order in which 
procedures are invoked during a program’s evaluation using a particular input.  

All procedures that are not evaluated are given a first-use ordering during placement using the 
static approach described above. Since a program’s evaluation path may be input dependent, 
they attempt to choose adequate sets of inputs in order to provide an evaluation path that is 
similar to most of the possible inputs. 

Krintz et al. also proposes different transfer strategies that can take advantage of non-strict 
execution and program restructuring: 

Parallel File Transfer can made optimal use of the available data rate. Current Internet 
HTTP transfer technology allows multiple files to be transferred in parallel. The HTTP 1.1 
specification uses a single TCP connection that allows up to four transfers in parallel. To take 
advantage of this they model the transfer of multiple classes at once to assure that methods 
arrive as near to the predicted start of their evaluation as possible. The transferring files split 
the fixed amount of data rate available equally. Since data rate is shared, a schedule is 
required that indicates when class files should be transferred to obtain efficient overlap of the 
evaluation with transfer. A transfer schedule is created using the first-use procedure order 
determined by the reordering techniques. There are many factors that must be taken into 
account when developing a transfer schedule. First, information about the size of each 
procedure and class file is required. The size of global and local data is also needed. With the 
size information, the scheduler can make an informed prediction of the time it will take to 
transfer the various parts of each file. 

Interleaved File Transfer groups Java class files to speed up the loading process [Krintz et 
al. 1998]. In Java, an application is composed of multiple classes each containing global data, 
local data and code. This organization is similar to other programming languages for which 
multiple files comprise the executable program: for those languages, the final program is 
typically a single binary. With interleaved file transfer, we consider a group of Java class files 
and compose a program as a single entity (an interleaved file), consisting of multiple 
procedures and data. 

This technique transfers the procedures and data to the destination in the order specified in 
this virtual interleaved file. An interleaved file is a reordering of procedures. The transfer 
algorithm takes the application and the restructuring information as input. It generates an 
interleaved file from the input information and transfers it in the order dictated by the 
restructuring, e.g., methods from different classes may be interspersed for transfer. This 
transfer technique assumes that transfer proceeds at the method (procedure) level, in the order 
established by the restructuring algorithms. 

2.3.7 Progressive techniques 
The Interlaced Graphics Interchange Format (GIF) [Siegel 1996] is a format that tries to 
exploit the combination of low data rate channels and fast processors. An interlaced GIF file 
contains a picture that seems to arrive on your display like a fuzzy outline of an image that is 
gradually replaced by three successive waves of bit streams that fill in the missing lines until 
the image appears at its full resolution. Among the advantages for the viewers, using low data 
rate connections, are that the wait time for an image seems less and the viewer can sometimes 
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get enough information about the image to decide to click on it or move elsewhere. In the 
latter case the technique behaves as a form of data compression. Interlaced GIF is a widely 
used technique for speeding up image rendering on the Internet. Compression and rendering 
via the quadtree data structure called BCQ Progressive Image Transmission [Dürst 1997] 
seems to give even better results. Other progressive transmission methods are fractal images 
[Ghim and Chorng 2001] and progressive JPEG.  

A stream is a data structure that is accessible as a contiguous sequence of data units 
representing a stream of data, transmitted continuously over a communications path. If the 
data units encode audio or video signals we call this audio and video streaming. Streaming 
media consists of a sequence of images; sound or both that are transmitted in compressed 
form and played on the receiving computer as they arrive. With streaming media, a user does 
not have to wait to download a large file before seeing the video or hearing the sound. The 
encoding of the media is often combined with compression (section 2.3.5). A frequently used 
algorithm for compressing video data follows the MPEG standard [Le Gall 1991]. 

The main characteristic of these transmission schemes is that the processing of the digital 
stream is started long before the load phase is completed. These techniques which send data 
progressive in time has inspired us to develop techniques that send mobile applications 
progressive in time so that its evaluation can be started long before the load phase is 
completed. 

2.3.8 Other related techniques 
The idea of progressive anticipative mobility using pre-fetching of permuted code was 
inspired by mobile agent research at our lab where agents are represented by parse trees. 
[Van Belle et al. 2001]. The migration of an agent happens by migrating the visited nodes in 
the parse tree during a transitive closure. We noted that if we could permute the order of the 
migration of the nodes, the evaluation of the receiving agent could start before the whole 
parse tree was sent over. This increased the virtual migration speed. In a JIT compilation 
environment a parse tree representation may have other advantages. Not only does it allow 
higher level, domain specific, more efficient compression techniques, but the tree preserves 
the control-flow structure of the original program, making it much easier to perform code 
optimizations. 

A similar technique, although at a lower level of the computer architecture, where parallelism 
is exploited to speed up the processing of instructions is known as pipelining. With 
pipelining, the computer architecture allows the next instructions to be fetched while the 
processor is performing operations, holding them in a buffer close to the processor until each 
instruction operation can be performed. The staging of instruction fetching is continuous. The 
result is an increase in the number of instructions that can be performed during a given time 
period. 

With progressive anticipative mobility using pre-fetching of permuted code the evaluation of 
the code is triggered by the loading process, since it is the loading process that switches the 
semaphores. There is a similar but reverse relation between evaluation and code loading in the 
code on demand paradigm. Java for instance provides a mechanism, the class loader, to 
retrieve and link dynamically classes in a running Java Virtual Machine. The class loader is 
invoked by the JVM run-time when the code currently in evaluation contains an unresolved 
class name. Although the goals of pre-fetching and code on demand are the same (they both 
aim to reduce transfer delay), both techniques are complementary since they can be employed 
at the same time. If in a pure code on demand setup there is not an immediate demand for new 
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code after the loading of a previous part, empty time slots will be the result. This leads to a 
less efficient loading process. 

Another well-known example of code on demand is the use of dynamic link libraries. A 
dynamic link library (DLL) is a collection of small programs, any of which can be called 
when needed by a larger program that is running in the computer. The advantage of DLL files 
is that, because they don't get loaded into random access memory together with the main 
program, space is saved in RAM. 

Continuous compilation [Plezbert and Cytron 1997] is a technique where interpretation, 
compilation to native-code and native-code evaluation are intertwined. The goal is to have the 
native-form available by the time the call to it occurs. The system essentially uses two threads 
of control: one thread compiles interpreted code into native-code form, while the other thread 
handles program evaluation of the interpreted and compiled code. The technique is 
complementary with progressive anticipative mobility using pre-fetching of permuted code. 

Continuous compilation and ahead-of-time compilation are techniques that are typically 
used in a code on demand paradigm, such as dynamic class loading in Java. The goal of both 
compilation techniques, explored in [Krintz et al. 1999] and [Plezbert and Cytron 1997], is to 
compile the code before it is needed for evaluation. Again, these techniques are 
complementary to our approach, and can be exploited to further optimize our results. 

Partial evaluation provides a unifying paradigm for a broad spectrum of work in program 
optimization, compiling, interpretation and the generation of automatic program generators 
[Jones 1996]. Although the name suggest similarities with progressive mobility where also 
only parts of the code are evaluated, partial evaluation is basically a program optimization 
technique and should perhaps better called: program specialization. 

Much partial evaluation work to date has concerned automatic compiler generation from an 
interpretive definition of a programming language, but it also has applications to scientific 
computing, logic programming, metaprogramming, and expert systems. 

Program slicing is a source-to-source transformation technique that is useful in construction, 
analysis, testing and debugging of programs [Venkatesh 1991]. A program slice contains the 
portion of a program that captures some subset of the program behavior. Algorithms are 
available for constructing slices for a particular evaluation of a program (dynamic slices) as 
well as to approximate a subset of the behavior over all possible evaluations of a program 
(static slices). The technique may be used for the refactoring of an existing application in 
mutually independent components. 
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3 Progressive 
Anticipative Mobility 
using Pre-fetching of 
Permuted Code 

 
 
 
 
 

Trust no one. Always shuffle the cards yourself.  
 -- Unknown. 
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3.1 Abstract 
 

 

 

 

 

 

 

In an ambient intelligence environment, featuring ubiquitous communication that 
enables everyday objects to communicate with each other and the user by means 
of ad-hoc and wireless networking there will be also the need to migrate code. 

This migration will not be straightforward as in current stable networks since the 
timeframe in which we can send the code will be unpredictable. Therefore we 
need some kind of mechanism to break up code into smaller parts and send them 
one by one to increase the chance that it will fit in the current timeframe. 

Precaution should be taken to send the most important parts first, in a format that 
makes this partial block of code immediately ready for evaluation at the receiving 
object. 

We explore the possibility to harness the implicit parallelism found in the most 
simple network connections by starting the evaluation on the receiver in parallel 
with the migration of the last part of the code.  

From the perception of the user the application is up and running much faster than 
expected. Network latency is hidden.  

Streaming audio and streaming video are multimedia techniques that employ 
progressive transmission of encoded data and start the processing of the digital 
stream long before the load phase is completed.  

In this chapter, we explore the idea of progressive transmission of software code 
instead of other media. The processing of the digital code stream can start before 
the load phase is completed by anticipating on the sequence of evaluation.  



Progressive Anticipative Mobility using Pre-fetching of Permuted Code 

Page 65 

In this chapter, where we provide a proof of concept of the technique of pre-fetching 
permuted code, we start by presenting a technique to permute source code based on a 
profiling and reorder process. Then we can make use of the resulting data structure to 
implement a pre-fetching scenario in order to hide network latency and reduce system latency 
at the same time. We present the results of four experiments and discuss the results. 

 

Roadmap: 

• Introduction 
• Basic Observations, assumptions and restrictions 
• Profiling and reordering 
• Reordering algorithm 
• Pre-fetching  
• Experiment to hide network latency 
• Results  

o Benchmark 
o CoolImage 
o Gremlin 
o Adapted Gremlin 

• Discussion 
o Speedup 
o Application Speedup versus Data rate 
o Pre-fetching Guidelines 
o Dealing with Semaphores 
o Applicability in other Environments 

• Summary and Conclusion 
 

3.2 Introduction 
 

In an ambient intelligence environment, we will need to migrate code from one object to 
another in order to address some key issues as context dynamics or system adaptivity. The 
width of the timeframe available in such an environment to migrate the code depends on the 
movement of the components relative to each other and the reach of their wireless 
transceivers. The width of this timeframe will not be predictable, so we need some kind of 
mechanism to break up code into smaller parts and send them one by one, progressively in 
time, to the receiver. This will increase the chance that they will fit in the temporal time frame 
and that we will be able to migrate the complete block of code. 

A disadvantage of this approach is that it may take quit some time before the complete block 
of code is transmitted, so precaution should be taken to send the most important parts first, in 
a format that makes this partial block of code immediately usable (ready for evaluation) at the 
receiver’s end. 

For the users perception it is also important that the user does not have to wait to long 
between its request for a service and the first perceptible reaction of the system. Therefore, we 
migrate first all the code that builds the user interface. We migrate this code in a format that 
allows the system to start the evaluation of the code even if it is only partial available. 

In this first theme it is our goal to build a proof of concept of a system that breaks up code 
into smaller parts and sent them one by one, progressively in time, in a setting that supports 
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weak mobility. We will handle progressively strong mobility in chapter 4 and 5. The 
feasibility of the technique is validated by implementing prototype tools in Smalltalk. 

 

Our contributions here are: 

• Automatic permutation of compilable units based on a dependency graph so that the 
static structure of the representation of the application in a file structure reflects its 
dynamic behavior 

• Introduction of a synchronization mechanism to support evaluation of code that is only 
partially present 

• Pre-fetching of permuted code with focus on user interface latency 

An important question is: what should be the ideal unit of code to be split into?  We propose 
to use as unit those program abstractions that the code was built from. For example, in 
Smalltalk likely candidates at different levels of granularity would be: statements, methods, 
method categories, classes, class hierarchies, class categories, etc… 

We like to take the unit of code as small as possible to achieve a high flexibility in the 
possible places where the code can be split, which in turn will make it possible to obtain a 
high level of parallelism. The smallest level in source code is a statement or the sending of a 
message. In many languages, statements or messages are aggregated in higher level structures 
(functions or methods), in such a way that if one statement of the function or one message 
sent in a method is being evaluated, the other statements or methods from that aggregate will 
often soon follow. Therefore taking the level of functions or methods as unit of code seems 
more appropriate. Especially for well-written object oriented programs, adhering to the good 
programming practice of keeping methods small, the splitting flexibility should remain high. 

This is not possible in all languages. In Java for instance the smallest unit for code loading 
and therefore for code migrating is the class. In addition, the Java security model prescribes 
that this class file should contain al its methods and a security stamp to allow class file 
validation. In Smalltalk a much finer granularity is possible at the level of compilable units. 
We will split up our Smalltalk sources in methods, class descriptions, namespaces, window 
specs etc… 

We describe progressive anticipative mobility using pre-fetching of permuted code, a 
technique that permutes the application at the granularity of the method level and exploits 
parallelism between loading and evaluation of code to hide network latency. It may allow 
many applications to start their evaluation early, especially programs with a predictable, 
deterministic startup phase (such as building a GUI). The technique allows us to start up the 
code before it is completely loaded. The underlying technique is also known as interlaced 
code loading [Stoops et al. 2002] and non-strict execution [Krintz et al. 1998] where the 
technique was simulated in a Java environment. 

The feasibility of the technique has been validated by implementing a prototype tool in 
Smalltalk, and testing it on three different applications for six different data rates (ranging 
from very low to extremely high). Our results show that for applications that rely on a GUI, 
the time to build the GUI is reduced to 21 % of the original on the average. 
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3.3 Basic Observations, Assumptions and Restrictions 
A first important observation is that code transmission over a network in general and more 
specifically in a wireless network is inherently slower than compilation and evaluation and 
this will remain the case for many years to come (section 2.2.4). 

As a second observation we note that actual computer architectures provide separate 
processors for input/output (code loading) and main program evaluation and that in the near 
future we may expect more hardware support to employ parallelism  (section 2.3.3). 

We assume that the know-how and know-when of the migration of partitioned code is located 
in the sending host, so we apply a push strategy. However, this does not exclude the 
possibility of successful combinations with a pull-strategy but we did not implement this in 
our experiments. 

We restrict us to the Smalltalk programming environment since it allows rapid prototyping, a 
high degree of reflection and it provides a much finer granularity than found in other 
programming environments. 

The size of the applications and the data rate of the network are chosen under the restrictions 
imposed by current practical networks (see section 2.1.6 Window of Opportunity - page 39).  

Compared with the approach of C. Krintz [Krintz et al. 1999] we propose a push technology 
instead of the code on demand pull technology and we divide our source code at the level of 
compilable units instead of at the class-level. Moreover, we not only simulate the wide range 
of transmission rates and ran our experiments in real time while C.Krintz et al. by their choice 
of programming environment (Java) were forced to restrain themselves to simulations.  

Our experiments involve adapting and running real code and consequently our results are not 
obtained as part of some simulation technique. Only the different transmission rates are 
simulated in order to evaluate the technique on load channels ranging from very low to very 
high data rates. The results obtained for these simulated channels, with a constant data rate for 
all possible data sizes, can be adapted to a specific channel technology and protocol by taking 
in account the real data rate for the different data sizes. If for instance a TCP/IP network is 
considered, Figure 3 – page 38 can be applied to obtain these delays. 

3.4 Profiling and Reordering 
Before we can start to cut the code into different chunks we need to permute the source code 
in such a way that the code that will be evaluated first will be loaded first as well. After the 
cutting, we will need to apply some glue code. This glue code is needed to suspend the current 
evaluation of an application if the code to evaluate is not available yet. The detection of the 
presence of the code can be implemented at different levels. In languages that support 
reflection, each new method call can be forced to perform a reflective check to make sure all 
the resources are available but we choose for a more generic approach in the sense that it is 
applicable to all kind of programming languages. We add extra code at the end of each piece 
of code, implementing the function of semaphores. Semaphores will temporary suspend the 
application if the next chunk of code is not loaded yet.  

To simplify the permutation process somewhat, during this first setup we assumed that the 
code flow is completely deterministic. In other words, we assumed that for each run of the 
code the application always behaves in the same way, hereby neglecting possible different 
user inputs or other real random events. This makes the permutation process straightforward 
since it suffices to determine the method invocation sequence once and rearranging the 
methods accordingly. The static structure of the permuted file will then reflect more closely 
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its dynamic behavior. Although this presumption may sound very harsh, we found that it was 
sufficient for the experiments we ran, especially with our focus on avoidance on user interface 
latency. The building of a user interface seemed to be a very predictable deterministic activity 
for the three applications in our experiments. All the evaluations of these applications showed 
the same method invocation sequence during the build process of the user interface. 

Finding the ideal breakpoints is less straightforward. Profiling tools together with the dynamic 
behavior statistics, obtained as a side effect during the permutation process can give us some 
hints as where to split the code. In our experiments we will resort to some simple heuristics, 
such as cutting the file into four equal pieces. The permutation process, which is completely 
automated in our setup, consists of several distinct steps (Figure 13). 

 

 

 

Figure 13: Permuting the source code 

 

In order to obtain the necessary method invocation sequence the original source code is 
adapted (instrumented) with extra code that logs the time of invocation of each method. The 
instrumentation is accomplished by the source code adaptor component. 

Then the adapted source code is evaluated. The output is ignored at this time but the 
instrumented methods will generate the necessary log information, in this case an XML8 file 
that contains the method invocation sequence. As an additional output of the evaluator we also 
gather timing information that will serve as a guide to optimize the number of the different 
code pieces and the exact points to split up the pre-fetched source code. 

                                                 
8  We chose for XML for two reasons. First, XML is a standard way for information exchange between different 
components. Second, the standard output format in VisualWorks 5i for Smalltalk source code is also XML. 
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In another phase, which can be carried out in parallel with the above steps, the original source 
code is parsed by the source code parser component and the resulting descriptions (class, 
methods, comments and other descriptions) are stored in an intermediate object repository. 

In the final step a source code permuter will parse the XML file to retrieve the dynamic 
sequence of the method invocations and use this information to assemble the new permuted 
source code files that reflect this invocation sequence. 

3.5 Reordering Algorithm 
The algorithm used in this final step by the source code permuter is based on the 
dependencies between the different Smalltalk entities. A method cannot be loaded and 
compiled if the method’s class description is not already available in the system. In the 
Smalltalk environment a method depends on its class description. So the class description will 
be written to the permuted source code file before the actual method. 

In a dependency graph (Figure 14) this is depicted by an arrow from method to class. In the 
same spirit we notice that a class depends on its superclass, a class depends on its namespace, 
a class initialization method depends on its class description and depends possibly on 
semaphore code that eventually can prevent its invocation. A class also depends on the 
availability of relevant shared variables and, if the class is a subclass of 
ApplicationModel, the availability of the associated window specification resource.  

 

Figure 14: Smalltalk dependency graph 

These dependencies are not complete so as to cover all the possible Smalltalk applications but 
are sufficiently comprehensive to cover all the dependencies in our actual experimental setup. 
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3.6 Pre-fetching 
After the permutation process, we are now ready to pre-fetch the code. We propose 
progressive anticipative mobility using pre-fetching of permuted code as a technique that 
applies the idea of progressive transmission to software code instead of streaming sound or 
video. 

Figure 15 shows the sequence diagram of a classic weak code loading process as known from 
applets that are fetched to a browser. When an external trigger launches the migration of code 
from Host 1 to Host 2 preparations are taken at Host 1 to load the code. For weak migration 
schemes this preparation is minimal since the code is not running yet and is mostly available, 
pre-packed, in a file data structure. Then the code is transported over the network and its 
evaluation started at the receiving host. The sequence diagram focuses on the handling of the 
code, i.e. the preparation, migration and evaluation of the code and ignores the assisting 
input/output processes that run on both host during the migration. To present the sequence 
diagrams in Figure 15 to Figure 17, the time to load the application and the time to compile 
and evaluate it are chosen to be the same. In reality this will depend of the size and type of the 
application and the data rate provided by the network. 

 

 

 

Figure 15: Normal weak code loading 

Our proposed technique splits a code stream into several successive waves of code streams. 
When the first wave finishes loading at the target platform its evaluation immediately starts 
and runs in parallel with the loading of the second wave (Figure 16). The main difference with 
interlaced graphics such as progressive jpg is that we can use structural information about the 
code to determine the most ideal way of splitting the code into different waves. 
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Figure 16: Progressive anticipative mobility using pre-fetching of permuted code 

In a JIT compilation environment there is an extra compilation phase needed and therefore 
there are three processes that could potentially run in parallel: loading, compiling and 
evaluation (Figure 17). Extra time savings will only occur if different processors are deployed 
for the compilation and evaluation phase. Nevertheless, even if the same processor shares the 
processes of compilation and evaluation, the use of JIT compilation is advantageous for the 
proposed technique. Even code with a more complex flow of control, including system 
utilities and language processors such as optimizing compilers, written in C, are dominated by 
stable branches, and these branches usually vary little when the input data for the branch 
predictor changes [Fisher 1992]. Since the program flow of a classic compilation process is 
highly predictable, this guarantees that during this phase almost no unpredictable branches 
will occur, allowing a smooth parallel process between compilation and loading. In other 
words, incorporating a compilation phase in the evaluation flow of the program increases the 
predictable deterministic time zone at the start of that program. 
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Figure 17: Pre-fetching of permuted code cycle in JIT environment 

 

3.7 Experiment to Hide Network Latency 
We describe some experiments to illustrate a generic approach of progressive anticipative 
mobility using pre-fetching of permuted code and to provide a proof of concept. A prototype 
tool was implemented in Smalltalk (more specifically, VisualWorks Release 5i.4), a popular 
object-oriented language that allows fast prototyping. We choose the granularity of the units 
of loading at the level of methods.  

As a practical validation we tested our approach on three applications each exhibiting some 
typical but distinct behavior. It is not trivial to predict what type of applications will need to 
migrate in the upcoming ambient intelligent environment, therefore we tested three different 
applications with varying application size, number of classes, GUI size and use,  and the 
utilization of independent threads or not. These applications come with the VisualWorks 
environment. They all have a size that is considerably greater than the minimum size of 2 
kByte so that the transportation time is directly proportional with the size of the files. The 
maximum data rate applied is 42 Mbps, so below the limit of 1 Gbps by which, in networks 
over a great distance, the acknowledge protocol would dominate the transport time instead of 
the file size. See also section 2.1.6 : Window of Opportunity. 

Benchmark: (ver: 5i.4) (80 kByte, 7 classes) An application program that runs different 
benchmarks on the Smalltalk environment adapted in such a way that after its Graphical User 
Interface (GUI) appears, it launches a standard test immediately, thereby simulating prompt 
user interaction. 

CoolImage: (ver: 2.0.0 5i.2 with fixes) (184 kByte, 60 classes) an extended image editor that 
draws on a non-trivial graphical user interface. 
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Gremlin: (ver: Oct 7 ‘99)  (65 kByte, 4 classes) An application that lets an animated figure 
pop up from time to time without the need for a user interaction,  representing non-GUI 
applications that run as daemons in the background. 

In order to test these applications we designed a code loader to simulate different transmission 
rates. Essentially the code loader waits for the amount of time needed to load the file 
containing the code, under different network data rates before effectively loading the code 
from disk and passing it on to the compiler: 
[(Delay forMilliseconds: aFilename fileSize * 8 / self bps) wait] 

This delay is proportional to the file size and makes abstraction of the underlying technology 
but provides a good estimation since, independent of the protocol, the input/output processors 
of the sending and receiving hosts as well as the network processors (routers etc…) will need 
an amount of time proportional to the number of bytes processed. To get the real delay for 
each technology (TCP/IP, GSM, GPRS …), the results can be fine-tuned to a specific channel 
technology and protocol by taking in account the real data rate for the different data sizes. If 
for instance a TCP/IP network is considered, Figure 3 can be applied to obtain these delays. 

For this setup different transmission rates were simulated: 2400 bps (very low data rate), 14.4 
kbps (slow modem), 56 kbps (fast modem), 114 kbps (GPRS) en 2 Mbps (UMTS). These 
different transmission rates were complemented by the rate obtained without network latency: 
41 Mbps in our setup. 

We deliberately chose for a JIT compilation approach because of its advantages in a low data 
rate environment:  (1) Source code has a smaller footprint than the corresponding native code; 
(2) Source code preserves a high level of abstraction, thus enabling more powerful 
compression techniques; (3) JIT fits nicely in the proposed code pre-fetching technique since, 
as mentioned before, the compilation process is highly predictable, hereby increasing the 
deterministic time zone. 

We evaluated our approach on the source code of our different applications: Benchmark, 
CoolImage and Gremlin. These applications each represent a more or less different kind of 
behavior. 

First the source code of each application was automatically permuted using the different steps. 
For logging purposes a few extra lines of code were manually added to log the time the 
application needs to complete evaluation and also the time needed to produce its GUI or its 
first token of existence to the user. The application is loaded, compiled and run as is and then 
via a load channel simulating a number of different data rates, to gather the normal timing 
information referred to as “normal end” and “normal GUI” in the figures later. Next, the 
application is cut in four pieces. The following procedure is applied: 
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Figure 18: Percentage of code visited before the appearance of the graphical user interface 

By examining the permuted code, it is fairly easy to determine the part of code visited by the 
evaluator in order to build the graphical user interface (Figure 18). For the user the emergence 
of the GUI is often the first indication that the underlying application is loaded and ready to 
go. In order to favor a quick emergence of the GUI we will try to make the first cut 
immediately after the GUI code. If the method that finishes the GUI is in the first half of the 
source code, as in our three test applications, then the first cutting place will be after that 
method. This will reduce the user interface latency, one of the main advantages of this 
approach.  

As a result, the size of the first part is determined by the block of code visited by the evaluator 
in order to build the graphical user interface. The other parts are then constructed with, more 
or less, the same size as the first one. In the first experiment (Benchmark) the first part 
account for 25% of the total code, therefore the remaining code is equally divided in the three 
remaining parts: part 2, part 3 and part 4. We applied this approach to the other applications as 
well. 

The exact cutting place will be just before or just after a method description in the files. In 
order to complete the dividing process, the four files need to get the same header and footer 
tags so as to make them valid XML files again, the required format of Smalltalk source code. 

To prevent that code from part 1 calls code from part 2 before this part is arrived, a semaphore 
that halts evaluation until the code of part 2 is in place, is added at the end of part 1. The 
semaphore is placed at the start of the last method in part 1 to ensure that it will be 
encountered during the evaluation of that method. If the semaphore is placed at the end of the 
method it is possible that the evaluation of the method ends, as a result of a return statement, 
before the semaphore is encountered. 

In this manner, three semaphores are added at the end of the three loose ends of part1, part2 
and part3. The methods, in which the semaphores reside, are possibly invoked more than once 
during the evaluation of the application. This means that each semaphore must be disabled 
after its first use. In this setting this is done by enclosing each semaphore in a conditional 
structure in such a way that the semaphore is bypassed after its first use:  
Pre-fetcher.S1Active ifTrue: [Pre-fetcher.S1 wait. Pre-fetcher.S1Active := false]  
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The application is then loaded, compiled and run again in a pre-fetching style for each of the 
simulated channel data rates and the new timing results are gathered. These are referred to as 
“pre-fetched End” and “pre-fetched GUI” in the figures later. 

Each timing result is calculated as the average of three timing runs to be able to flatten 
occasional variations caused by the operating system or programming environment such as 
garbage collection.  

3.8 Results 
For each of the three test cases result times were measured with different data rates chosen 
under the restrictions imposed by current practical networks (see section 2.1.6 Window of 
Opportunity - page 39). 

Six different data rates are simulated: 2400 bps (very low data rate), 14.4 kbps (slow modem), 
56 kbps (fast modem), 114 kbps (GPRS), 2 Mbps (UMTS) and 41 Mbps (no network 
latency). For each of these data rates the time was measured in a normal set up (first load all 
the code and then compile and run) and a pre-fetched set up where the compilation and start 
of the code evaluation takes place after the first part is loaded. 

For both loading types we measured the time it took for the GUI to display itself and the total 
time to complete the loading, compilation and evaluation of the application9.  

3.8.1 Benchmark 
Benchmark is an application that runs selectable tests on the VisualWorks environment. In 
order to allow the code to run while the other parts are still transported, the application was 
adapted in such a way that after the GUI pops up the application immediately runs a number 
of standard tests. Figure 19  shows the parallel processes achieved for the lowest data rate of 
2400 bps where the load times are significantly larger than the compile times. The figure also 
shows that although the code to build the GUI takes 25% of the total code (Figure 18), the 
time to evaluate this part is a fraction of the evaluation time of the remainder of the code. As a 
result the GUI will appear almost immediately after the loading and compilation of the first 
part of the source code. The application finishes before the last part has loaded. This indicates 
that the code in the last part was not needed in our setup and we may decide to stop loading 
the rest of the application. 

Figure 20 and shows the behavior of the same application at increasing data rates. As the data 
rate increases to 114 kbps the load and compilation times become at the same order of 
magnitude. Here too, the application ends before loading completes. 

Figure 21 shows the behavior with maximum data rate of 41 Mbps. It shows that at maximum 
data rate the load times are too short to take advantage of the parallel processing so in this 
case the evaluation process will end after the full loading and compilation process. A possible 
optimization as in the previous examples is not possible here. 

GUI building indicates the first part of the evaluation process where the GUI is built. The 
second part of the evaluation process is indicated in de figure by application. The evaluation 
process has to share the processing power with the compile phases but can run in parallel with 
the load phases (except for load1). 

                                                 
9 The experiments where carried out on a  Dell® Inspiron 8100 computer with Intel® Pentium® III Mobile CPU 
AT/AT compatible processor at 1GHz processor speed and 256 Mb RAM running Windows® 2000 and 
VisualWorks 5i4. 
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Figure 19: Parallel evaluation Benchmark @ 2400 bps 

 

 

Figure 20: Parallel evaluation Benchmark @ 114 kbps 
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Figure 21: Parallel evaluation Benchmark @ 41 Mbps 

 

Average timing results are depicted in Table 2 and Figure 22. Table 2  shows in the first row 
(normal GUI) the time in milliseconds it normally takes to render the GUI for the different 
data rates. The second row (normal end) shows the time in milliseconds the application 
normally needs to end. The third and fourth rows (pre-fetched GUI and pre-fetched end) show 
the same time if the application is deployed in a progressive anticipative mobility using pre-
fetching of permuted code fashion. Finally the bottom rows (GUI ratio and end ratio) show 
the relative amount of time gained by pre-fetching to present the GUI and to finish the 
application. Table 3 shows the standard deviation of the different timing results to give an 
indication of the average deviation. 
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Table 2: Average timing results (ms) for Benchmark application 

 

Table 3: Standard deviation (ms) of timing results for Benchmark application 

 

 

Figure 22: Average timing results for Benchmark application 

 

Figure 22 puts the results of Table 2 in a graphical view. Note that the x and y scale are 
logarithmic to accommodate the wide range of data rates. Note also from Figure 22 that, if the 
application is loaded via a network, the application itself ends earlier (on average 75% of the 
original time needed) if deployed in a pre-fetched mode. This is possible because the 
evaluation of the application already starts after the load and compilation phase of part 1 and 
does not have to wait until the complete source code is loaded and compiled. 

3.8.2 CoolImage 
CoolImage is the largest application of the three which generates a large GUI and then waits 
for user interaction to draw icons. As a result, the end of the loading and compile phase is 
practically the same for the pre-fetched and normal deployment simply because in this 
experiment no action takes place after the GUI building.  
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end ratio 79,06% 77,22% 74,88% 69,44% 74,54% 101,10%
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Table 4: Average timing results (ms) for CoolImage application 

 

Table 5: Standard deviation (ms) of timing results for CoolImage application 

 

 

Figure 23: Timing results for CoolImage application 
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Figure 24: Parallel evaluation CoolImage @ 114 kbps 

 

Figure 24 shows the parallel processes achieved for a data rate of 114 kbps. Note the 
difference with Figure 20 were after the GUI building the application continued to evaluate 
some code. In this type of application the application stops and waits for user input after 
displaying the GUI. It is also clearly visible in Table 4 and Figure 23 that the time the 
application itself will needs to end will not vary. In this case this is the time to load and 
compile all the methods that can be invoked via the GUI. 

3.8.3 Gremlin 
Gremlin is an application that runs in the background of the VisualWorks environment and 
pops up an animated figure from time to time at the border of the active window. When the 
application is launched, the animated figure pops up for the first time and a help window 
shows up. Table 6 and Figure 25 show the delays of the Gremlin application. 

Since the Gremlin application starts with a popup of an animated figure and during the rest of 
its life it just does the same over and over again at different time intervals it means that all the 
resources need to be in place before the application can start. This is reflected in Figure 25 by 
the fact that only for data rates lower than 56 kbps the first popup can finish earlier than the 
complete loading and compile process. For data rates greater than 56 kbps it is the popup 
process itself that will determine the end of the process. The appearance of the GUI in the pre-
fetched deployment for data rates lower than 56 kbps however is much faster and in the same 
order as the other tests (on average 25% of the original time needed). 

0 5000 10000 15000 20000 25000 30000

execution time (in ms)

load1

compile1

load2

compile2

load3

compile3

load4

compile4

GUI building

evaluation time (ms)



Progressive Anticipative Mobility using Pre-fetching of Permuted Code 

Page 81 

Table 6: Average timing results (ms) for Gremlin application 

  

Table 7: Standard deviation (ms) of timing results for Gremlin application 

 

 

Figure 25: Timing results for Gremlin application 

3.8.4 Adapted Gremlin 
The poor results obtained with the Gremlin application led us to the question whether it is 
possible to adapt the design of the application in such a way that pre-fetching could be applied 
more advantageously. If we could change the application so that it would no longer depend on 
all of its resources, for its first sign of life, this would do the trick. 
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Table 8: Average timing results (ms) for adapted Gremlin application 

 

Table 9: Standard deviation (ms) of timing results for adapted Gremlin application 

 

 

Figure 26: Timing results for adapted Gremlin application 

To achieve this, we adapted the Gremlin application so that after it is launched only the help 
window appears (containing an explanation of the behavior of Gremlin and stating that the 
first popup is scheduled within 5 minutes). Conceptually this does not really change the main 
behavior of the application but as Table 8 and Figure 26 shows there is now a significant time 
gain possible for the GUI building (now the text window) and the end of the application (now 
the loading and compilation of the source code but before the first popup). 

Apparently small changes on the design level of the application sometimes suffice to get a 
more optimal behavior in a pre-fetching loading environment. High-level analysis is required 
however for this kind of optimization because the resemblance of the functionality of the two 
versions of Gremlin becomes only apparent at the level of the user perception. 
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3.9 Discussion 

3.9.1 Speedup 
If the graphs pre-fetched end and pre-fetched GUI appear below the normal end and GUI end 
graphs a speedup was achieved. Note that Figure 22 is the only diagram where none of the 
graphs coincide with each other. This is because the Benchmark application is the only 
example that runs some time consuming benchmark tests after the appearance of the GUI. The 
two other applications wait for user interaction after building the GUI. 

3.9.2 Application Speedup versus Data rate 
Figure 27 shows the relative amount of time needed to present the GUI compared with a 
normal non-pre-fetched setup for the different data rates. If we neglect the original non-
adapted Gremlin application we find that an average speedup of 25% is obtained. 

For applications were the GUI building takes a relatively large part (such as CoolImage and 
Gremlin) the speedup achieved by pre-fetching seems to decrease as loading speed increases. 
In the extreme case of Gremlin where the GUI building needs all the resources in place, the 
application takes even a slightly longer time to evaluate. This is because the extra semaphore 
code in the source code and the code to guide the pre-fetched loading process yield an extra 
overhead, and are responsible for time ratios higher than 100 %. 

 

Figure 27: Time needed to build GUI compared with original time 

Figure 28 shows the relative amount of time needed to end the application for the different 
data rates. The total time to load and evaluate the application at maximum data rate will be the 
same or slightly higher due the extra source code added. The dip in the original Gremlin graph 
indicates that for data rates smaller than 56 kbps the total time is determined by the load and 
compile processes but for data rates greater than 56 kbps it is the popup process that will 
determine the total time needed. Therefore, the right part of the figure the graph will look 
identical to the one in Figure 27.  
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Figure 28: Time needed to end the application compared with the original time 

3.9.3 Pre-fetching Guidelines 
As became apparent in the Gremlin case it can be advantageous to adapt existing programs to 
make full use of the power of pre-fetched loading. Especially when you write new 
applications from scratch it is possible to keep in mind some guidelines that will lead to an 
optimal progressive anticipative mobility using pre-fetching of permuted code. Some of the 
obvious ones are: 

• Keep programming modules independent from each other (i.e., use low coupling and high 
cohesion). 

• Start as soon as possible with building the GUI. 
• Keep the code and the resources to present the first user interface as small as possible. 

Mostly this is the GUI where the user is confronted with at startup. 
• If necessary enhance the GUI, e.g. extend the GUI menu, at a later time. 
• Postpone heavily resource-dependent actions as long as possible. 
• Postpone multithreaded processes as long as possible. 

3.9.4 Dealing with Semaphores 
As mentioned before, precautions must be taken to prevent methods from being called that are 
not loaded yet. Although it is possible to catch these exceptions on the level of the virtual 
machine or even on the level of the operating system, for this setup we chose for the approach 
of adding semaphores in the source code since this provides a very generic mechanism that 
can be applied in many programming environments. 

It can be assumed that for every application there will exist an ideal number of pieces to split 
the code in so as to obtain a maximum speedup. If the number of pieces increases so will the 
total size of the code since each piece of code will need extra statements to present the 
semaphore code. And if the code size increases so will the loading time and since the extra 
code needs to be evaluated too, so will the evaluation time. These are just the times that we 
wanted to decrease in the first place. Furthermore, there will be an extra overhead at the 
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receiver and sender platform to administrate the loading, compiling and evaluation of the 
different parts. 

Provisions need to be made to disable the semaphores once they have served their purpose for 
the first time. Placing them in a conditional branch that bypasses them after first use seems to 
be a valid option and this is the choice that we took in our experiments. 

If the method in which the semaphore is placed is triggered a significant number of times, 
complete removal of the semaphore code after its first use can be considered. Access to a 
precompiled version of the same method without the semaphore code can speed up that 
process. 

Another possible approach is deploying a dedicated kind of garbage collection agents to 
remove unused semaphores in the background. On the other hand, if we are dealing with 
mobile code that moves continuously from one host to another it may be advantageous to 
keep the semaphores in place. 

Semaphores will always have a negative influence on the performance of an application so 
caution should be taken for time-critical systems. 

3.9.5 Applicability in other Environments 
Smalltalk is a language that is interpreted by a virtual machine and is available on a wide 
variety of platforms. Therefore we expect that the general behavior of our experiments will be 
the same on different platforms such as MacOS or UNIX. We might expect some differences 
however for example related to character presentation in files and low-level window redraw 
events.  

Java is also a language interpreted by a virtual machine available on different platforms. The 
security model of Java however prohibits the segmentation of the code in methods. In Java, 
the unit of code loading is the class. A class needs to be loaded entirely to allow the security 
mechanisms to calculate his signature. Krintz et al. [Krintz et al. 1998, Krintz et al. 1999] ran 
simulation test on Java code and obtained similar results. Our results shows that even for 
environments without network latency the user interface latency can be diminished (31% on 
average) simply by running the disk-load and compile process in parallel with the evaluation 
of the first part of the program. The methodology proves to be very generic and applicable to 
all systems where code needs to be moved before it is evaluated.  

Experiments on interleaved file transfer [Krintz et al. 1998] (section 2.3.6.3 page 58) yielded 
comparable results. Transfer delay could be decreased between 31% and 56%. An important 
difference with our approach is the implementation language (Java instead of Smalltalk). 
Moreover, because of the limitations of the Java virtual machine security model, Krintz et al. 
simulated their experiments using a bytecode instrumentation tool called BIT [Lee 1997]. 
Additionally, they only considered two different data rates while we explored a wider range of 
6 different data rates. Alternatively, they proposed to transfer different pieces of Java code in 
parallel, so as to ensure that the entire available data rate is exploited.  

3.10 Summary and Conclusion 
In order to support the inherent dynamics in an ambient intelligent network we will need not 
only to send data but we will need to send behavior (code) also. Since the width of the 
timeframe available to migrate the code is not predictable, we need some kind of mechanism 
to break up code into smaller parts and send them one by one, progressively in time, to the 
receiver. This will increase the possibility that they will fit in the temporal timeframe.   
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Precaution should be taken to send the most important parts first, in a format that makes this 
partial block of code immediately usable (ready for evaluation) at the receiver’s end. 

In this chapter we proposed a technique that breaks up code in smaller parts and applies the 
idea of progressive transmission to migrate software code. We described the technique of 
code permutation. A technique to permute Smalltalk source code at the level of compilable 
units based on the dependency graph was presented. A prototype tool in Smalltalk was build 
that automatically permutes a Smalltalk source file and generates a set of source code files 
optimized for the pre-fetching process. 

Performance of an application is most commonly measured by overall program evaluation 
time and network performance is most commonly measured in network latency but in a 
mobile environment performance is also measured by application availability, invocation 
latency, and user interface latency. 

Overall program evaluation time is the time between the invocation of an application and 
the end of the evaluation of the last instruction.  

Application availability is the inverse of the time an application “freezes” during migration.  

Network latency is the time the application needs to travel over the network. 

Invocation latency is the time from application invocation to when evaluation of the program 
actually begins. 

User interface latency is the time a user has to wait between his demand and a user interface 
reaction of the system. 

Table 10 gives an indication of the performance of the presented technique in these different 
domains. If the technique has a small advantage in a particular domain it is indicated with a +, 
an advantage in a domain is indicated by ++ and if the technique excels for a particular 
domain it is indicated with +++. Note that the table only lists the positive performance 
properties. Other properties that may have a negative influence by the introduction of 
progressive mobility as the total size of the code, development overhead, maintainability, 
extra security issues etc… are not considered in this context and are left for future work. 

Table 10: Properties of the Pre-fetching Technique 
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To conclude this chapter we discuss these results in the most important dimensions of the 
conceptual framework provided in chapter 2. 

3.10.1 Network 
 

We optimized the experiments to reduce network latency in general and user interface latency 
in particular, so it will come as no surprise that these are the domains in which the results 
excel. Exploiting parallelism between loading and evaluation proves to reduce user interface 
latency considerably (21% of the original time on average in three applications tested). The 
overall program evaluation time decreases since not all the code has to be transported and 
compiled. The overall program evaluation time can be significantly reduced (79% of the 
original time on average in three applications tested).  

If the user interface latency is reduced, the invocation latency is reduced too but since we 
optimized the technique for user interface latency reduction at the cost of delaying the 
invocation of the other processes of the application the score of invocation latency is less. 

Latency is an important dimension in networks but it is important to keep in mind that also in 
an ambient intelligence environment two kind of networks must be considered, connection-
oriented networks that will need an extra setup time for each exchange of data and 
connectionless networks that can exchange block of data much faster. 

If the setup time in connection-oriented networks is very large compared to the time to send 
one of the parts in which we divided the application it would make no sense to send them one 
by one progressive in time and pay for each transmission the extra setup time. 

In this case, it would be better to use a classic migration scheme and transport the complete 
application at a whole so that only one setup time is needed. 

However if the setup time is of the same order of magnitude as the time to send one of the 
parts and the network architecture allows to keep the connection open after the first part is 
migrated then we can still apply the pre-fetching technique after the extra setup delay. 

Connectionless Networks are the ideal environment to implement progressive anticipative 
mobility using pre-fetching of permuted code. Compared to the connection-oriented networks 
the packets are typically a little larger since they need to contain the complete address of the 
receiver but in practice the size of this extra data can be ignored compared to the size of the 
actual block of data sent. 

3.10.2 Application 
The feasibility of the pre-fetching technique has been validated by implementing prototype 
tools in Smalltalk. As a practical validation we tested our approach on three applications each 
exhibiting some typical but distinct behavior, with varying application size, number of 
classes, GUI size, typical usage, and the utilization of independent threads or not. Our results 
show that for our test applications that rely on a GUI, the time to build the GUI is reduced to 
21 % of the original on the average. 

Application availability is not really an issue here since the application is not running at 
migration time but since it becomes available much faster than by using classic migration 
scenarios we give it a small positive indication in Table 10. 



Progressive Anticipative Mobility using Pre-fetching of Permuted Code 

Page 88 

3.10.3 Techniques 
The most relevant technique applied here is the exploitation of parallel processing of the 
migration of the code and the evaluation of the code on the receiver. 

Complete anticipative mobility using pre-fetching is only possible if the program flow is 
known in advance. If the program flow is not deterministic it still remains possible to permute 
the source code to reflect the most probable path to optimize parallelism as much as possible. 
Several techniques are developed to find out this most probable path [Jason and Patterson 
1995]. 

In this chapter we did restrain ourselves to weak mobility; we will handle progressively strong 
mobility in the next sessions 4 and 5. 
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4 Progressive Mobility 
using Component 
Streams 

 
 
 
 
 

Speed is good only when wisdom leads the way 
-- James Poe (1921–1980) 
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4.1 Abstract 
 

 

 

 

 

 

 

 

Networks in ambient intelligence environments are more volatile than static 
networks. In order to support this new network architecture where connections 
between partners are no longer predictable and where the connection time may be 
less than a second there is a new need for techniques to exchange information as 
fast as possible. In ambient intelligence environments the information exchanged 
will sometimes take the form of code in order to provide support for the systems 
dynamics inherent in these new environments. 

During the migration of this code the application itself is typically not available to 
interact with other processes, which in some cases might be not acceptable, so 
there is also the need for mechanisms that allows the code to continue its 
evaluation during the progressive migration so that the application remains 
available for users or other applications at all time.  

Progressive anticipative mobility using pre-fetching of permuted code migrates 
static code, code that is not started yet in a progressive mode.  

Progressive mobility using component streams takes this approach a step further 
by progressively migrating running code. 

Progressive mobility using component streams allows applications to migrate 
from host to host without sacrificing evaluation time during the migration phase 
and it hides network latency since it also allows the application to start at the 
receiving host much earlier. Progressive mobility using component streams goes 
beyond strong migration since the evaluation of the application will never be 
halted. 
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In this chapter, where we provide a proof of concept of the exploitation of components 
streams, we start by describing the proposed technique and the different migration strategies 
that follow from it. We describe the different experiments conducted on this theme and 
provide design guidelines to optimize applications that need to migrate by components 
streams. 

 

Roadmap: 

• Introduction 
• Proposed Technique 

o Basic Observations, assumptions and restrictions 
o Technique description  

 Compensating Network Latency 
o Migration Strategies 

 Self Triggered after Last Instruction 
 Self Triggered based on Profiling 
 Under Control of a Supervisor 
 Fixed Migration Strategy 
 Dynamic Migration Strategy 

o Discussion 
• Experiments 

o Experiment to hide network latency  
 Borg environment  
 Java environment 

o Experiment to reduce system latency in low data rate environment in the Java 
environment 

o Experiment to reduce system latency by parallel component evaluation in 
Smalltalk environment 

• Design Guidelines 
• Summary and Conclusion 
 

 

4.2 Introduction 
Ubiquitous Communication in ambient intelligence environments only makes sense if the 
objects that compose the network are available to respond to the requests of other objects. 

Besides the exchange of data between the everyday objects in an intelligent environment we 
will need to send also code in order to address some key issues to support the dynamics of the 
system. It will not always be possible to migrate this code as a whole, since the connection 
time between, possible moving objects, is not predictable. 

Connections between hosts in these new environments are more volatile than in static 
networks, so there is the need for mechanisms to split up the code in smaller parts that will fit 
in the limited timeframes in order to migrate the parts of the code progressive in time to other 
objects. 

To keep the application available during its migration we will also need a system that allows 
the code to continue its evaluation during the progressive migration so that the application 
remains available for users and other applications at all time. 
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In this second theme, it is our goal to build a proof of concept of a system that breaks up the 
code of an application in smaller parts and sends them one by one progressively in time, while 
the evaluation of the application continue. Since the evaluation should continue during the 
migration we will explore this theme preferably in a setting that supports strong mobility. 

We will explore three different possibilities to harness parallelism. We will exploit the same 
kind of parallelism as in the previous chapter, starting the evaluation of parts already received 
while the rest of the application still needs to migrate. But since the application is already 
running before its migration we will also exploit the parallelism of the migration of copies of  
components that still are running on the sender and the parallelism between components still 
running on the sender and components already arrived and running on the receiver. 

The feasibility of the technique has been validated by implementing prototype tools in the 
Borg mobile agent environment and later also in Java and Smalltalk. Our experiments show 
that this migration strategy can hide network latency almost completely. 

In this second theme, our contribution is the introduction of progressive mobility using 
component streams. 

The main characteristic of transmission schemes as audio and video streaming is that the 
processing of the digital stream is started long before the load phase is completed.  

The newly introduced term progressive mobility using component streams is inspired by 
streaming media but also by the transport mechanism for a sequential file, a data structure that 
allows only sequential access. During the streaming process, the first part of the file will be 
already located at the receiving host while the other part of the file still remains on the sender 
platform. When streaming a running application, part of the application will already run on 
the receiving host while another part is still running on the sending host. 

Progressive anticipative mobility using pre-fetching of permuted code also applies a technique 
where code arrives and starts its evaluation on the receiving host computer before the load 
phase is completed, but the main difference with component streams is that the technique of 
pre-fetching migrates code from an application that is not running yet. With progressive 
mobility using component streams we migrate running code. This kind of migration is known 
as strong mobility while the former is called weak mobility [Fuggetta et al. 1998]. 

Strong and weak mobility only differ in the way the current state of the process is packed and 
unpacked. In strong mobility the computational state is contained in the same package, in 
weak mobility the state (or part of it) is passed by parameters under control of the 
programmer.  

In a classical migration scheme the application that migrates from host to host is temporarily 
halted and is restarted at the receiving host after the code is completely loaded and restored in 
its original form. See Table 1: Typical Migration Steps (page 26).  

During steps 2-8 the application is not available for users or other processes that need to 
interact with it. After it is halted, it will become available again only when the migration 
process has completed. In time-critical applications, this may not be acceptable. In a control 
engineering environment, by example, the maximum time between the intakes of samples of 
the quantity under control is strictly defined and if the sample timing exceeds this threshold 
just one time this may compromise the complete control process.  

Progressive mobility using component streams goes beyond the standard way of moving code 
by moving the application piece by piece from sender to receiver. During the migration the 
application continues to run and will be available to react to any event that will trigger an 
action. If the sequence and load distribution of the different executable components is well 
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chosen the migration can happen in parallel with its evaluation thereby almost completely 
eliminating network latency. It is a form of migration that even goes beyond strong mobility 
since the evaluation of the application will never be halted. 

 

Experiments 
We will choose examples to investigate the possibility to: 

• Hide network latency 

• Reduce invocation latency 

• Reduce user interface latency  

• Enhance application availability 

• Reduce system latency by introducing parallel component evaluation 

We expect that network latency can be hidden by moving each component during its idle 
time. Moreover we can try to start up the application before or during the actual migration. 
Since at arrival of the first component at the receiving host the evaluation of this component 
might start immediately also invocation latency should be reduced. If one of the first 
components is able to draw the user interface this will also reduce user interface latency. 

By starting up the application at the sending host at the same time or before its migration is 
triggered we expect the availability of the application to increase. 

In addition, since parallel component evaluation becomes possible during the migration phase, 
a reduction in system latency is expected for those applications that can take advantage of 
parallel evaluation.  

In order to demonstrate the feasibility of progressive mobility using component streams we 
will first describe an experiment to hide network latency. We will provide some small 
existential examples in the programming environments Borg and Java. 

Then we describe an experiment to reduce system latency in low data rate environments. 
This experiment will also be conducted in the Java environment. 

Finally a similar experiment was set up but now focused on the reduction of system latency 
by parallel evaluation. This experiment was conducted in the Smalltalk environment to 
investigate the constraints of that environment too.  

We will provide some small existential examples in different programming environments in 
order to show that for these applications the technique is useful. The determination of the 
universal nature of the techniques or the demarcation of the domain in which the technique 
proves useful is left for future work. 

4.3 Proposed Technique 

4.3.1 Basic Observations, Assumptions and Restrictions 
As a first important observation we remind that the transmission over a network is inherently 
slower than compilation and evaluation and this will remain the case for many years to come 
(section 2.2.4.) 
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We remind also at the second observation, in the same chapter, that actual and future 
computer architectures provide separate processors for input/output (code loading) and main 
program evaluation (section 2.3.3). 

A third observation is that many new applications are built following the principle of 
separation of concerns (e.g. object-oriented, components-based or aspect-oriented software 
development techniques). This leads to a modular design with relatively independent 
components. The applied paradigm will influence the granularity of these components. During 
the evaluation of the application processor control is passed from one component to the other 
while all the other components are idle. 

We assume that the know-how and know-when of the migration of partitioned code is located 
in the sending host, so we apply a push strategy. However, this does not exclude the 
possibility of successful combinations with a pull-strategy but we did not implement this in 
our experiments. 

The size of the applications in our experiments, especially the first one in Borg, are so small 
that they fall outside the window (see section 2.1.6 Window of Opportunity - page 39) in 
which the transportation time to send a block of code is directly proportional with the size of 
the block of code. This makes it impossible to reduce invocation and user interface latency at 
the receiving host since the transportation time to send the complete block of code is the same 
as the transportation time to send part of it. 

However, from the perspective of hiding network latency and application availability the 
transportation time is not relevant. If we manage to migrate a component during its idle time, 
its transportation time is not important. From the perspective of the user or cooperating 
processes, the application remains available and is not influenced by transportation time 
constraints in the network. 

Moreover, we will be able to reduce invocation and user interface latency at the sending host 
by keeping the application alive during its migration. 

4.3.2 Technique Description 
The introduced term component streams is inspired by streaming media but also by the 
transport mechanism for a sequential file, a stream, a data structure that allows only sequential 
access. During the streaming process the first part of the file will be already located at the 
receiving host while the other part of the file still remains on the sender platform. When 
streaming a running application, part of the application will already run on the receiving host 
while another part is still running on the sending host. 

The application components described in this chapter are based on a limited component model 
where an application is build from different simple components that communicate with each 
other by sending messages and that does not involve events or other special architectural 
constraints and should not be confused with models that are more sophisticated as the J2EE 
Java component model. 

Figure 29 shows the components of an application during the streaming phase. The lines 
indicate the communications between the components. The figure shows that an application 
becomes temporarily distributed during the streaming phase. 
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Figure 29: Components of an application during the streaming phase. 

While the streaming unit for files is usually a byte or a word, for progressive mobility using 
component streams, the units need to be executable components and can take on a variety of 
forms: modules, functions, procedures, objects, agents, processes, threads and so on. If an 
executable component is sent over before the application has started it suffices to send over its 
code and start it up in the same manner as applets are loaded to a web browser and started 
(weak mobility). If, however, the application is already running before migration, one should 
send not only the bare code but also the intermediate values of the local variables of that 
evaluation unit and the information of the exact point in evaluation where the entity was 
stopped to be able to resume at the same point (strong mobility). This extra information is 
referred to as: the computational state (including the runtime stack).  

The efficiency of the streaming process to hide network latency depends mainly on the 
migration time and idle time of each component. In the next sections we discuss how these 
component properties relate to each other. 

4.3.2.1 Component Migration Time 
The time a component needs to migrate from host to host is composed of the different times 
needed in the steps of Table 11. 
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Table 11: Migration Steps Time Intervals 

Step(i) Action Time(Ti)
1 Halt the application T1 
2 Pack it T2 
3 Transform it T3 
4 Transport to the receiver T4 
5 Retransform it T5 
6 Check it T6 
7 Unpack it T7 
8 Adapt it T8 
9 Resume the application T9 

 
 

The transport time T4 depends mostly on the data rate B of the communication channel 
because this is mostly much lower than the clock speed of the sending or receiving host. The 
other times depend on the clock speeds Csender and Creceiver of the sending and receiving host 
processors, respectively (see units in Table 12). 

Table 12: Deployed Units 

base quantity symbol unit 
Data rate B bps 

Clock speed C Hz 
Number of bits b bits 

Number of instructions I instructions
 

If we call b4 the number of bits transported and I i the number of instructions needed in step i 
(Table 11) then the migration time Tmig becomes approximately: 

 

 

If Csender = Creceiver and if we call  
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 itot TT I  then Figure 30 shows the migration time of a component of 1KiB10 if 106 

instructions are needed for halting, packing, transforming, retransforming, checking, 
unpacking, adapting and resuming the code. 

                                                 
10 One KiB = 1024 Bytes 
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Figure 30:  Migration time for 1KiB code and Itot =106 

The figure shows that the total migration time depends mainly on the transport time T4 and 
thus the available data rate, for CPU clock frequencies up to 16 GHz11. 

4.3.2.2 Component Idle Time 
During the evaluation of an application that is built from components, the task of the 
application will be performed by the different components. In many languages the component 
structure reflects a functional decomposition of the application. During the control flow of the 
application the work is done by different components mostly one at a time while all others 
remain idle. If we assume as a first and rough approximation that the workload of an 
application is equally divided over all its components and the application runs in a single 
thread, the time a component remains idle depends on the number of components and the 
evaluation clock speed. 

Figure 31 shows the idle time per component in function of the system clock speed if we 
assume an idle time of 100 seconds at 1 MHz clock speed. The graph shows the relation 
between the idle time of a component and the speed of the components if the total workload is 
equally divided between all components. If your competitors work twice as fast, your idle 
time becomes half of the original one. 

                                                 
11 Intel expects to deliver CPU’s with a clock frequency of 24 GHz in 2007 
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Figure 31: Component idle time versus evaluation clock speed 

Figure 32 shows the idle time per component if the evaluation of the application takes 100 
seconds. If the number of workers increases to n for the same amount of work each of the 
workers needs only to work 1/nth of the original time. The remainder of the time becomes idle 
time. In practice the idle time will increase even faster since an increase of the number of 
components tends to make an application less efficient, and therefore more time-consuming 
due to the introduction of inter-component communication overhead. 

If the workload is not equally distributed, as we may expect from real world applications the 
times should be interpreted as average times. 
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Figure 32: Component idle time for 100 sec application 

4.3.2.3 Necessary Conditions for Removing Network Latency 
In order to be able to move every component in parallel with the evaluation of the application 
the following conditions (Table 13) must be satisfied: 
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Table 13: Necessary Conditions for Removing Network Latency 

1 Each component must have at least one period of idle time equal to or greater than the 
time the component needs to migrate. 

2 The relative point of time where this idle time period starts must be known in advance 

3 If different components have only one free slot of idle time equal to or greater than the 
time that component needs to migrate, these slots may not overlap 

 
If all these conditions are satisfied it suffices to migrate the components at the point of time 
where their idle period starts.  

If we build a new application that should be able to move by component streams, these design 
rules should be kept in mind. It will not always be possible to comply with them completely, 
but the more we approximate them the more the application will benefit from the proposed 
technique. If we need to stream an existing application, we may need to adapt it to comply 
better with the above conditions. 

If the first condition is not met, the technique can still be deployed but migration of the 
application will then cause some delay in its evaluation. We expect however that in many 
cases architectural transformations could be applied to transform the original application to an 
equivalent one that complies better with the first condition. 

If the second condition is not met the migration of the application will also cause some delay 
in its evaluation. If the exact onset of the idle time is not known in advance it will be possible 
in some cases to estimate the delay based on statistics obtained from application profiling. 
Modifying the application at its design level could transform the original application to an 
equivalent one that complies better with the second condition. 

If the third condition is not met the migration can only be optimized for one of the conflicting 
components although here also architectural transformations at the design level may resolve 
the conflict. 

4.3.3 Migration Strategies 
Progressive mobility using component streams will move a mobile application piece by piece 
from sender to receiver. During the migration the application continues to run and will be 
available to react to any event that will trigger an action. It is important that the sequence of 
the different components is guided in such a way that the migration can happen in parallel 
with its evaluation thereby eliminating the network latency almost completely. We describe 
some typical strategies below. 

4.3.3.1 Self Triggered after Last Instruction 
The first strategy lets each component trigger its own migration just after it releases its control 
to another component (Figure 33). This is a simple strategy that can be deployed if the 
workload of an application is more or less equally divided over its components and if the 
number of components is sufficiently large so that the average idle time is high and average 
migration time is low. The strategy implies that the underlying framework is powerful enough 
to allow the components to migrate completely autonomously. One environment that provides 
such autonomous components is the mobile multi-agent environment developed at our lab: 
Borg [Van Belle et al. 2001].  
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Figure 33: Migrate after last instruction 

4.3.3.2 Self Triggered based on Profiling 
The second strategy assumes the existence of a profiling process (Figure 34). The profiler is 
an independent process that runs in parallel with the application built from the different 
components. During the evaluation of the application the profiler generates a statistical profile 
of the application behavior. The appearance of the profile could be a dictionary containing the 
different evaluation contexts of a component as a key and the average idle time following the 
evaluation in this context as value. Each component will at the end of its evaluation consult 
the profiler to find out if the current moment in time is appropriate to migrate. The main 
disadvantage of self triggering is the extra time the components need to spend after their 
evaluation. 

 

Figure 34: Self triggered migration based on profiling 

4.3.3.3 Under Control of a Supervisor 
If a profiler is running in parallel with the application it is advantageous to transfer the 
migration control to this process which in this case we like to call a supervisor (Figure 35). 
The components itself are now freed from checking the opportunity to migrate each time they 
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run. It is the supervisor that will decide when to migrate based on the profile gathered so far, 
statistical data from the past, current host performance differences etc… 

 
Figure 35: Migrate under control of a supervisor 

4.3.3.4 Fixed Migration Strategy 
If new applications are developed from scratch, the developer can model the design to 
optimize its potential for progressive mobility using component streams. The development 
environment can provide support for that. The developer can use his knowledge of the high 
level purpose of the application to describe a fixed migration strategy of its components 
including the exact moments in time where a migration should start. If the application decides 
to migrate, or if another component asks the application to do so, a supervisor component, 
running in parallel with and independent from the application, will guide the migration of the 
application. The supervisor will trigger the migration based on fixed rules set up by the 
developer. If the application needs to migrate more than once during its lifetime the 
supervisor has to migrate with the application. 

4.3.3.5 Dynamic Migration Strategy 
If there is no fixed strategy available, the supervisor component, running in parallel with the 
application can do the profiling of the application’s behavior in the same sense as described in 
section 4.3.3.2. If the application needs to migrate, then the supervisor will guide the 
migration of the application based on the profile obtained so far. 

4.3.4 Discussion 
The simplest strategy: self triggered after last instruction (section 4.3.3.1) can only be applied 
if the underlying platform provides strong migration and complete autonomy to its 
components. Moreover, the accompanying naming and routing system should be able to 
maintain transparently the connections between the components. These are properties that can 
only be found in some mobile multi-agent platforms but not in more current program 
environments as Java. The second strategy: self triggered based on profiling (section 4.3.3.2) 
needs the same facilities since here too, a component is supposed to migrate itself 
autonomously after it consulted the profiler. 

:Component :Migrate 
Component :Supervisor 
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Therefore the only strategy that we can apply in a classic programming environment is: under 
control of a supervisor (section 4.3.3.3). This strategy is potentially the most efficient of all 
since this strategy does not introduce extra code in the components themselves but can run in 
parallel with the application, eventually on a separate processor.  

4.4 Experiment to Hide Network Latency 

4.4.1  Borg Environment 
Given the complexity of the implementation of this technique, we first start by building a 
proof of concept in Borg, an environment that by its nature facilitates the expression of 
mobile components. The Borg environment allows that components migrate completely 
autonomously which give us the opportunity to apply the self triggered after last instruction 
strategy. 

The Borg environment models applications as cooperating autonomous agents as shown in 
Figure 36.  

 

Figure 36: Cooperating agents 

This appears to be a natural environment to establish an object streaming proof of concept 
since it allows us to migrate the application components (the agents) one by one. Figure 37 
shows a snapshot after two of the components from the application in Figure 36 have been 
migrated. The migration can be triggered by the component itself or under control of another 
component. 

 

 

Figure 37: Components during the Migration Process 

Host sender Host receiver 
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An ideal migration strategy would be obtained if each component could be moved during its 
idle time by a separate processor. This can be done by making sure that the I/O processor runs 
parallel with the main processor or by providing each component of the (now distributed) 
application with a separate host (Figure 38). If every component migrates during its own idle 
time without claiming processing power of the application itself, the application can stream 
from one set of sending hosts to a set of receiving hosts without the burden of network 
latency. 

 

Figure 38: Components during the Streaming Process 

As a proof of concept we implemented a simple Borg application (Figure 39) that moves two 
components C1 and C2 (Figure 40) from their sending hosts to two receiving hosts. The only 
task of each component is counting to 20000 and then signaling a clock agent that it has 
finished its job and passing control to the other component which in turn will go trough the 
same procedure. The count of 20000 was chosen to make sure that the idle time of each 
component is greater than its migration time. The separate clock agent is introduced to be able 
to log timing events on different components in a distributed environment. The introduction 
of a separate timing agent avoids severe synchronization problems between the distributed 
components. Each component will start to migrate after it finished its counting job and during 
this time the other component does the counting. 

4.4.1.1 Implementation 
Figure 39 shows the Borg code. Basically it creates an agent a1 that can move from host a to 
host c and vice versa and an agent a2 that can move from host b to d and vice versa. Then 
each agent is told to remember that the next agent to do the counting is the other one and 
agent a1 gets the message to start the work. 

The work method of each agent starts a counter from 0 to 19999 and then the other agent is set 
to work, a time log is send to the clock agent and the working agent migrates to the other 
host. 

Sending Hosts Receiving Hosts 
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Figure 39: Borg proof of concept code 

 

Figure 40 illustrates the hierarchical naming/routing structure which is chosen in such a way 
that the path between the sending and receiving hosts is of equal length i.e. trough the Timing 
Host and that the path from the components to the timing host is as short as possible (i.e. 
directly to the Timing Host). In order to provide each component its own processor we used 
five different hosts12. 

                                                 
12 Each host comprises a Gentoo Linux environment running on a 1800 MHz AMD processor with 256 MB 
RAM. 

{ 
show_clock(ref): display(ref, " ", clock(), eoln); 
clock:agent("hostclock"); 
 
a:agent("hosta"); 
b:agent("hostb"); 
c:agent("hostc"); 
d:agent("hostd"); 
 
create_agent(num, places) :: 
{ next_agent :0; 
  pcount:1; 
  set_next(a): next_agent:=a; 
  work(): { for(i:0, i<20000, i:=i+1, void); 
            next_agent->work(); 
            clock->show_clock("loop done"+text(num)); 
            pcount:=(pcount\\size(places))+1; 
            agentmove(places[pcount]); 
            clock->show_clock("move done"+text(num)) 
          }; 
  agent:clone2agent("component"+text(num)); 
  agent->agentmove(places[pcount]); 
  agent 
}; 
 
a1:create_agent(1, [a,c] ); 
a2:create_agent(2, [b,d] ); 
a1->set_next(a2); 
a2->set_next(a1); 
a1->work(); 
} 
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Figure 40: proof of concept setup 

4.4.1.2 Results 
We allowed the two components to work 500 times without migration and then again 500 
times with migration and calculated the average time the application needed to complete. We 
calculated the average time in order to flatten out unpredictable time variations introduced by 
the Borg garbage collection, network data rate variations and/or other possible unpredictable 
events. 

The average time the application needed to complete without migration is 0.153 ms with a 
standard deviation of 0.076 ms. 

The average time the application needed to complete with migration is 0.106 ms with a 
standard deviation of 0.047 ms. 

4.4.1.3 Discussion 
Apparently the application runs even faster if it migrates at the same time. Borg agents use a 
polling mechanism to check for new messages in their incoming message queue. During the 
migration of an agent this polling mechanism is suspended, this may explain the gain in time 
if the application is migrated. 

In either case the experiment showed that it is possible to migrate this specific running 
application without slowing it down, as if there where no network latency at all. Even better, 
the migrating application runs faster than the without migration. Although we do realize that 
in real-world, non-distributed applications we might expect the application to slow down 
somewhat during the migration. 

4.4.2 Java Environment 
Encouraged by the proof of concept results we implemented the use of component streams in 
Java, a more established environment. We report on two more extended experiments in this 
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environment [Devalez 2003]. Java components are not able to migrate autonomously, 
therefore we choose to implement a fixed migration strategy under control of a supervisor, 
which appears to be the optimal architecture and migration strategy for the chosen 
experiment.  

As an example of the fixed migration strategy under control of a supervisor we migrate an 
fractal generation application JULIA 2 [Devaney 1992] that plots a fractal on a screen. The 
application is designed to consist of two largely independent components, one responsible for 
the calculation and one for the graphical presentation of the calculated points to the screen.  

Our main concern here is the efficiency of the migrating process itself, therefore we designed 
the fractal application in such a way that it can stream efficiently to the receiving host. The 
application is composed of two components, a component responsible for calculating the 
fractal (calculateFractal) and a second component responsible for coordinates conversion, 
scaling, plotting etc. (plotFractal). The total workload of the application is, as much as 
possibly, equally shared by the two components.  

To minimize the invocation latency [Krintz et al. 1998, Stoops et al. 2002] we send the 
graphic presentation component first so that a human observer at the receiving hosts will have 
a quick visual response after the migration starts. On the other hand, if we assume that the 
receiving host has much more computing power, it could make more sense to migrate the 
CalculateThread first to reduce the total evaluation time. 

4.4.2.1 Implementation 
Both components are implemented as a movable thread (PlotFractalThread and 
CalculatingThread), running on a µServer (Figure 41). Threads run in their own namespace 
and there is no standard mechanism that allows them to communicate with each other, so we 
introduce an RMI object SharedQueue to allow the two threads to pass and retrieve 
information from. CalculatingThread puts its results on a two-dimensional array of 50 pixel 
coordinates on the queue datastructure while PlotFractalThread polls the queue to get its 
input points. 

 

 



Progressive Mobility using Component Streams 

Page 107 

 

Figure 41: Java experiment architecture 

The µServers play the role of (distributed) supervisor and since the two components run on 
top of their µServers it is not possible to run the supervisor independently on a separate 
processor in this setup. In this example we apply a fixed migration strategy, the sequence and 
time of migration is hard-coded in the supervisor. The supervisor interrogates on a regular 
basis the status of the SharedQueue object and decides when the components are moved. In 
our setup PlotFractalThread is moved immediately while the CalculatingThread starts its 
calculations. If the supervisor detects that there are 300 elements available in the 
SharedQueue it migrates the calculating thread. Since migration happens only once there is no 
need to migrate the supervisor as well. 

In order to provide each component its own processor so as to obtain true parallelism between 
the migration of one component and the evaluation of the other at the sending and receiving 
side we used five different hosts13, four µServers to host the two components and one central 
RMI host for time logging and facilitating thread communication (Figure 41). 

4.4.2.2 Results 
First the application was evaluated without migration. The application was launched 30 times 
and we calculated the average time in order to flatten out unpredictable time variations 
introduced by the garbage collection, network data rate variations or other possible 
unpredictable events. The average time to complete the application without migration was 2 
sec 566 ms with a standard deviation of 20 ms. 

                                                 
13 Each host comprises a Gentoo Linux environment running on an 1800 MHz AMD processor with 256 MB 
RAM. The hosts are interconnected via a 100 Mbps LAN network. 
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Then we launched the application again 30 times but now the application was migrated from 
the sending host to the receiving host immediately after it was launched. The average time to 
complete the application now with migration was 2 sec 530 ms also with a standard deviation 
of 20 ms. 

The experiment showed that it is possible for a supervising component to migrate a running 
application without slowing it down, as if there where no network latency at all. Even better, 
the migrating application even runs slightly faster than the same application without 
migration.  

The µServer at the sending host maintains a logging process to find out when certain events 
take place. This logging process runs only at the sending host and is not necessary at the 
receiving host. This explains why in this setup the application runs faster if it is migrated at 
the same time since the parts at the receiving host are not hindered any more by this polling 
process. 

4.4.2.3 Discussion 
 

Threads 
To divide our program in different processes, we used the available Thread class in 
combination with the µCode toolkit to move the threads to the receiving host. However, 
threads cannot communicate with each other directly, because they run in different 
namespaces. We introduced the SharedQueue object to work around this problem. This slows 
down the original application, because all communication has to go through this object. On 
the other hand, this approach eliminates the direct connection between the migrating 
components, which makes it easier to transfer them. In order to minimize extra slowdown 
from the SharedQueue object, we ran it on a separate processor. 

 

RMI 
Since we migrate the threads to an other host, the SharedQueue object must also be available 
for the threads running on the receiving host. Therefore we decided to make SharedQueue 
accessible through RMI. The disadvantage of this is that a local stub must be available on all 
the hosts that use the remote interface SharedQueue. 

Reflection is very useful for its intercession part. In the context of mobile code, it would allow 
us to change references to objects into remote references once the objects are transferred. We 
would be able to introduce meta-objects that observe the running application and change the 
object references when needed. Java already supports a limited introspection part of reflection 
in the java.lang.reflect library. Unfortunately Java does not support intercession. In our 
experiments, we worked around this problem using RMI. Since the SharedQueue object does 
not move, we did not have to change references to this object. The threads we migrated also 
did not have direct references to one another, which makes the use of reflection in this case 
unnecessary. But when applying our techniques to other applications, we will have to 
consider reflection to change references at the meta-level. Reflex [Tanter et al. 2003] is a 
valid candidate to introduce intercession in the Java environment. 
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Frames 
To draw our fractal figure, we used the java.awt.Frame class. We can add an object which 
extends the Canvas class and overrides the Canvas paint() method to draw pixels on it. When 
a Frame is shown on the screen, it immediately invokes the paint() method from the object in 
the frame. And every time the Frame has to be redrawn, the paint() method is invoked again. 

In our experiment, we added the PlotFractal thread to the Frame, since it overrides the paint() 
method to draw the pixels. This made it difficult to synchronize the threads, because the 
PlotFractal thread has to show the Frame first, and then wait some time until the Calculating-
thread finishes calculating the pixels, and then draw the pixels. With every redraw of the 
Frame, this starts all over again. A possible solution to this is to keep the content of the 
Frame, so that whenever we restart the thread at arrival, it keeps the pixels that are already 
drawn. This would improve our experiment but re-initializing the thread also creates a new 
Frame, and the graphics needs to be redrawn again anyhow. 

 

µServers 
To send a thread to a receiver, we need to activate a µServer that runs on the same processor 
as the thread. We cannot make them run separately because we need to pack and unpack the 
thread we want to send. 

If we use the µServers as supervisors, they will use some of the processor time, which slows 
down the application. After the migration, the application will run faster, since the receiving 
µServers do not evaluate the extra supervisor instructions. This is a drawback of using threads 
as migrating objects. 

If we would have used autonomous agents, which contain everything needed to transfer them, 
we would not see a difference in time between an application running on the sending hosts 
and an application running on the receiving hosts. This also explains why the time to 
complete the migrating application is less than when the application is not migrated. 

 

4.5 Experiment to Reduce System Latency in Low Data Rate Environments 
The previous experiment showed that component streaming does not slow down the 
application, but it does not show the behavior of an application when it is migrated in low 
data rate environments. Therefore we did setup a data rate simulator and added a graphical 
user interface to the application to study its behavior. 

4.5.1 Implementation 
To be able to run experiments on selected data rates we need to put some simulation system in 
place. In this section we describe how we implemented different data rates in the Java 
environment. 

4.5.1.1 Finding the Size of Objects 
One way to simulate data rates is by blocking the migration a certain amount of time, 
depending on the size of the objects we want to migrate. To do this we will have to create our 
own outputstream, so that every time an object is serialized, the size of the object is calculated 
and the migration is delayed for the time needed to transfer it. In Smalltalk, there is a sizeof-
method available to get the size of objects directly. In Java, a fast way to get the size is by 
serializing the objects to a ByteArrayOutputStream first. Then we can get a byteArray from 
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this stream, and ask the size of it. This will give us the size of the serialized object. As we 
have to serialize the objects to an ObjectOutputStream afterwards, this means we have to 
serialize them two times, as the ByteArrayOutputStream does not keep the object information. 
But since serialization is an available feature of the Java language, it is the most efficient 
approach for determining the size of objects, so we will use this in our experiment. 

4.5.1.2 A Data rate Simulating OutputStream 
We created our own outputstream, we will call it the DRLOutputStream (Data Rate Limiting 
Output Stream). This DRLOutputStream inherits from the ObjectOutputStream, and overrides 
its methods to wait some time before serializing them. The time to wait depends on the size of 
the objects, and on the data rate, which is passed when starting our application. To suspend 
the migration, we must suspend the process responsible for migrating the components. This 
can be done using the sleep method from the Thread class. After waiting some time, we will 
then really serialize the objects by invoking the ObjectOutputStream methods. We replaced 
the ObjectOutputStream object used in µcode by our DRLOutput Stream. Different data rates 
can now be simulated by specifying them when starting our application. This will be useful to 
test the benefits of progressive mobility using component streams. 

4.5.2 Adding a Graphical User Interface 
In order to show the power of progressive mobility using component streams on low data 
rates, we decided to extend the fractal drawing application with a user interface. This interface 
consists of Swing components (labels, buttons and text fields), and a JavaCanvas for 
displaying the fractal. The user will be able to change the parameters for the fractal, and to 
zoom in on certain parts of it. The area that will be shown while zooming in can be chosen by 
moving a rectangle over the drawn fractal. We took a screenshot of this application showing 
the graphical user interface and several command line windows to monitor the threads (Figure 
42). 
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Figure 42: Graphical user interface and thread windows 

 
Applying a user interface will show the availability of the application while transferring the 
other components that are part of the same application. The user will be able to redraw, zoom 
in, or change the different parameters of the fractal while the components are migrated.  

4.5.3 Strategies 
We implemented different migration strategies in our experiments. We used a fixed migration 
strategy using a supervisor, and a strategy involving a profiler.  

In order to be able to compare application component streams and normal code migration we 
also migrated the components of the application without starting them on the sending host 
first. This strategy implements the normal download of applications, where only source code 
is transferred, and then started at the receiver.  

Some initial experiments to test our code however showed that we must be careful when 
transferring an initialized user interface object, because this object can suddenly become a lot 
larger than a non-initialized one, and can take much longer to migrate. Since we want to 
compare the migration of running components and components that are not started yet, we 
needed our application to send objects of almost equal size and with almost equal migration 
time. Therefore we implemented our application to do just this by applying the technique of 
progressive anticipative mobility using proactive migration, a technique that we will further 
explain in chapter 5 of this dissertation. 

Basically the application now migrates a non-initialized copy of the running component and 
after the migration the computational state is adapted to reflect the changes that occurred at 
the running version on the sender. In this set up this was not too difficult since most of the 
computational state is stored in the distributed SharedQueue object. 
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Again we provide each component with its own processor to allow the migration of one 
component to run in parallel with the evaluation of the other component14. 

The setup is shown in Figure 43 which is similar with Figure 41. In this setup however the 
PlotFractalThread will also contain the settings of the user interface, and will react on user 
interactions. The SharedQueue will also be extended to contain extra logging information to 
be able to adapt the computational state of the threads at arrival to reflect the changes that 
occurred at the running version at the sender during initialization of the user interface object. 

We simulated three low data rate environments: a 2400 bps data rate, as still used in some 
maritime networks, a 9600 bps data rate, as in cellular phone modem networks, and a 56 kbps 
data rate, as in the standard modems that are still used for dialup lines. We performed 
experiments with three strategies: 

• normal: Just send the components and start them up at the receiver 

• profiler: Thread decides to migrate based on number of points already put in queue 

• supervisor: Threads are migrated by a supervisor that polls the queue on a regular 
basis to check when number of points in queue reach a certain minimum 

 

 

Figure 43: Java experiment with GUI architecture 
 

Figure 44 shows the sequence diagram of the experiments. 

                                                 
14 For each host we used a Gentoo Linux environment, running on an 1800 MHz AMD processor with 256 MB 
RAM. 
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Figure 44: Sequence diagram of the extended fractal draw experiment 
The numbers on the sequence diagram indicate the moments on which we logged the time in 
the SharedQueue.   

In the sequence-diagram can be seen that the µServers at the senders run in parallel with the 
application and, check the SharedQueue at regular time intervals to get the state of the 
components. They also can act as supervisors and trigger the migration of the components, 
and after these components have migrated to the receivers, they halt their evaluation. The 
SharedQueue always stays available, since it logs the time and is needed for the 
communication between the threads, even after their migration. We will now describe the 
sequence-diagram in more detail at the different moments. The numbers correspond with the 
numbers found in Figure 44. 

1. The PlotThread asks to draw the fractal, because it received a redraw event by the user, or 
because the application started. It then notifies the CalculateThread that it can start calculating 
new points (using the SharedQueue). The PlotThread waits until the CalculateThread finishes. 

If the profiling strategy is used then CalculateThread halts when it has calculated enough new 
points, if the supervisor strategy is used it is the profiler that checks on a regular base the 
number of points calculated and that will halt the CalculateThread when the number of new 
points reach an certain minimum (300 in this setup). 
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2. While the CalculateThread is busy, the PlotThread starts migrating to the receiving host. 
This can take more time than the time needed to calculate the points, as the PlotThread 
contains the user interface, and is therefore a bigger object to migrate. 

3. The CalculateThread finished calculating the new points and notifies the PlotThread that it 
can start drawing. The migration of the PlotThread is not finished yet so it will be the original 
version that is still available on the sender that will draw the fractal graph, while a copy of this 
thread is migrating to the receiving host. 

4. While the PlotThread is busy drawing, the CalculateThread is also migrated to the 
receiving host. The migration of this component is usually shorter than the PlotThread, since 
it is a smaller object. As shown in Figure 44. This migration happens in parallel with the 
migration of the PlotThread and the evaluation of the original PlotThread at the server. 

5. The fractal was drawn on the sending host platform. The components are now idle and wait 
for the next redraw. 

6. The CalculateThread was sent. From this moment on, the µServer on which it was running 
halts, and the component starts evaluating at the receiver. 

7. The PlotThread was sent, and starts evaluating at the receiver now. The µServer on which it 
was running halts since the services as possible supervisor or migrator are not necessary 
anymore. 

8. A new redraw event makes the PlotThread ask for a new drawing. This time, the redraw 
takes place on the receiving host platform. The PlotThread notifies the CalculateThread to 
start. 

9. The CalculateThread finished calculating and notifies the PlotThread to draw. 

10. A fractal was drawn on the receiving hosts. 

The sequence-diagram is similar for the different strategies we used, except for the normal 
sending strategy where the components are not started at the sending host. It shows us that the 
user might have some extra time during migration on which he can still use the application. 
We will confirm this in the results of our experiments. To eliminate time variations due to 
external influences, we calculated the average over several runs of the same experiment. 

4.5.4 Results 
We applied the different strategies and data rates on our experiments. We will now compare 
the results from these experiments. 

4.5.4.1 Time Needed to Finish the Application 
In chapter 3 we noted that applications can finish earlier if parts of the application are sent 
progressively to a receiver and if we manage to startup the application at the receiver before 
the complete application is migrated. In applying progressive mobility using component 
streams, we also may evaluate a part (a component) of the application on the receiver before 
the complete application is migrated, so here too an application can finish earlier. Even if we 
do not start the application earlier at the receiver we will discover that in this experiment the 
application ends earlier if it is migrated.  

As we did in our previous experiments, we logged how much time was needed to finish our 
application while evaluating it with and without migration. We also logged the time while 
evaluating on the receiver. Table 14 shows the average time for each strategy; Table 15 gives 
an indication of the standard deviation of the times measured. As can be seen in Figure 45, the 
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supervisor seem to influence the evaluation time of the application on the sender, since it 
takes more time to complete the application in comparison to running it on the receiver. This 
was something we could expect, since we were using the µServers that are running in parallel 
with the components on the same processors, as supervisors. The results however show that 
while migrating the application, it does not slow down. In fact, it seems to run even faster. 
This is probably because when the application is migrating the supervisor is halted because it 
does not need to check on a regular base the number of points anymore. The extra clock 
cycles previous needed by the supervisor can now more efficiently be used by the application. 
We can conclude from these results that in this experiment the application was not slowed 
down during migration, as we already experienced in our previous experiments. Another 
observation is that the application seems to run somewhat faster when using a profiler in 
comparison to running it using a supervisor. If a profiler strategy is applied the 
CalculateThread can count the number of generated points by itself and doesn’t need the 
profiler to monitor the shared queue. 

Table 14: Average timing results (ms) to finish the application  

 

Table 15: Standard deviation (ms) of timing results to finish the application 

 

 

Figure 45: Average timing results to finish the application 
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4.5.4.2 Time Needed to Send the Components 
Table 16 and Figure 46 shows the time needed to transfer our components with the different 
data rates. This experiment was executed only one time, so we do not show standard 
deviations.  It seems that using a supervisor is beneficial for sending objects over the network, 
since they do not contain extra checking and migration code. It makes them smaller, and 
reduces the time needed to migrate them, even if we did transfer almost identical components 
in each case. Future experiments could show if this time we gain while sending could 
compensate for possible time loss when we use a supervisor to run the application (see Figure 
45).  

We can also observe that the time needed to send the objects seems almost identical for the 
normal sending and profiling strategy. This was something we expected, as our application 
was implemented to send objects of almost equal size.  

 

Table 16: Time to send the components (ms) 

 

 

Figure 46: Time to send the components 

4.5.4.3 Time Needed for the First Draw 
The benefits of progressive mobility using component streams are best shown if we calculate 
the time needed to see the first drawn fractal after we started sending the components. This 
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can be seen in Table 17. This experiment was executed only one time, so we do not show 
standard deviations. With normal sending, we have to wait until the application is completely 
downloaded and started. This waiting time can be very long if low data rates are applied. 
When using progressive mobility using component streams however, we can see the first 
drawing after a few seconds, while the transfer is still busy. This drawing is located on the 
serving hosts, where the application was started, since we only have two components in our 
application. In this setup the availability of the application is not compromised by its 
migration. 

This can demonstrate the use of the technique for hand-held devices. If an application needs 
to be transferred to a handheld device it can do so while it is still in use on the desktop 
computer, thereby generating immediate user feedback and minimizing user interface latency 
to a minimum. 

Table 17: Time to first draw (ms) 

 

 

Figure 47: Time to first draw 

 

In other applications, consisting of more components, we could send a small user interface 
component to the receiver first, so that the user will see the first results at the receiver after a 
shorter period. In our experiment, the displaying component was bigger, so it took most of the 
migration time.  
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The results on different strategies are compared in Figure 47. The graph represents the time to 
the first drawing using different data rates, and it shows that there is no latency while using 
progressive mobility using component streams. The time to wait is almost exactly the time to 
complete the application task, and this is the case for the profiler as well as the supervisor 
strategy. 

If high data rates are applied, we will not see such a difference with normal sending of this 
rather small application. As components are almost immediately transferred and started at the 
receiver, using progressive mobility using component streams might even slow down the first 
drawing. This happens for example when the drawing component is interrupted on the sender 
before it finishes its task. If however we design the application so as to prevent the 
interruption of the drawing component at the sender we always become a first complete 
drawing very fast after the start of the migration even with high data rates. In general 
however, as the size of an application increases then scenario’s as described above becomes 
possible even for higher data rates since the time of migration is defined by the size of the 
application and the data rate of the network. See also section 4.3.2.1: Component Migration 
Time. 

As we noted before in the adapted gremlin application (section 3.8.4), here too, apparently 
small changes on the design level of the application sometimes suffice to get a more optimal 
behavior if applying progressive migration. Much of the behavior of an application, migrating 
using components streams, can be modeled by smart engineering the number and size of the 
components and the decision which component(s) should migrate first. We will revisit these 
engineering and refactoring strategies later in section 6.4.4. 

4.5.4.4 Time Gained in Comparison to Normal Sending 
In Table 18 and in Figure 48 we show the time we gain in this experiment using progressive 
mobility using component streams with low data rates. Since our application keeps running, 
and is available while being transferred, we have some time during migration that can be used 
to continue the evaluation of the application. In this specific experiment, it was possible to 
make several drawings on the sender before the application was completely transferred. Here 
too, this experiment was executed only one time, so we do not show standard deviations. 

These extra drawings were only possible because of progressive mobility using component 
streams, since with normal sending, we would just be waiting. The results for this experiment 
should be interpreted as existential and does not reflect a universal rule. Even with the same 
application we will not benefit from this extra drawings on high data rates, since the size of 
the application to migrate is rather small the time gained will become insignificant in 
comparison to normal downloads. The migration time will become a lot shorter.  

Also important is the fact that the application must be available for the user to interact with it, 
since the application started running on the serving hosts. This is not a problem when the 
sending host is a hand-held computer, or when we have a bigger application and we send a 
small user interface first. 
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Table 18: Time gained versus normal sending 

 

 

Figure 48: Time gained versus normal sending 

 

4.5.5 Discussion 
Java is not an optimal platform for implementing progressive mobility using component 
streams. It does not feature the perfect autonomous components we find in languages as Borg. 
Therefore Java components will need to delegate certain tasks. For example, if a Java 
component decides to migrate it can prepare this task for another component and then release 
control to enable that other component to do the job.  

However, it seems that using a supervisor has some benefits for sending objects over the 
network, since they do not contain extra checking and migration code. It makes them smaller, 
and reduces the time needed to migrate them, even if we did transfer almost identical 
components in each case.  

We can also observe that the time needed to send the objects seems almost identical for the 
sending and profiling strategy. This was something we expected, as our application was 
implemented to send objects of almost equal size.  

The benefits of progressive mobility using component streams are best shown if we calculate 
the time needed to see the first drawn fractal after we started sending the components. This 
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can be seen in table 4.3. With normal sending, we have to wait until the application is 
completely downloaded and started. This can be very long on low data rates. When using 
progressive mobility using component streams however, we can see the first drawing after a 
few seconds, 

 Our experiments showed how progressive mobility using component streams is important for 
low data rates environments. While no time is lost during migration on high data rates, a lot of 
evaluation time is gained applying low data rates. This time can be exploited by the user, 
since the application is still available. The user will also see faster results, and will not have to 
wait for the application to start finally. These experiments on a real, but simple application 
proved we could eliminate network latency completely. Of course there is still a question of 
scalability. Future experiments may show if the progressive mobility using component 
streams technique is also useful for bigger applications, which have more components and 
less predictable behavior. 

Other experiments may even result in new interesting techniques. For example, we could send 
an interface of an application to a handheld device, and migrate the computation to it using 
progressive mobility using component streams. But we would keep the computation running 
on the server, which has more processing power, for as long as there is a network connection. 
We would only start the computation on the handheld device when the network connection 
fails. In this situation the application would run in the most efficient way during migration, 
and be able to adapt itself when a problem occurs on the network. 

4.6 Experiment to Reduce System Latency by Parallel Evaluation 
System latency can be reduced by exploiting the implicit parallelism of a network. In this 
section we describe an experiment where we split our application in two components and 
design the application so as to allow parallel evaluation of the components. 

In this experiment we will not only exploit parallelism between the evaluation of a component 
and the migration of another component but also parallel evaluation of the two components, 
one still on the sending host the other already arrived at the receiving host. This parallel 
evaluation is started immediately after the migration of the first component, 

We report on experiments in the Smalltalk environment to implement component streams 
[Evenepoel 2003] and the exploitation of parallel evaluation. We applied the same strategy as 
in the previous section: fixed migration strategy under control of a supervisor since this 
environment does not support autonomously migration either. In this setup we transformed 
the design of the application in order to achieve concurrent processing 

4.6.1 Process Migration with Opentalk 
According to the Opentalk manual, all objects can be sent over a network by value using the 
asPassedByValue method. Unfortunately we discovered an important exception to this claim: 
Process-objects. 

Exporting a process with Opentalk by reference is straightforward, and easy to implement. A 
process could be suspended, exported to a remote Smalltalk image, and resumed, as long as 
the connection to the source node was kept alive. But if we want to migrate a running 
application, the references to the source node must be cut off one time or another. So the 
processes should be passed by value, or the process’ instance variables should be passed by 
value. A deficiency in the current design of Opentalk prevented that, apparently because the 
suspended context of the process could not be passed by value. We also found that we could 



Progressive Mobility using Component Streams 

Page 121 

not export a process that was created in a workspace (an editable TextWindow), because it is 
bound to an empty namespace. 

4.6.2 Using BOSS 
If it is not possible to transport a Process-object by value, we could not implement process 
migration and application streams in Opentalk. We discovered however that Process instances 
could be transported by value under certain circumstances by deploying the Binary Object 
Streaming Service (BOSS), to pack objects in a binary format. 

BOSS seemed to be capable of packing a (running) process. If we transport the BOSSed 
process to another image on a different host, we can resume the process there. First, we pack 
the process into a binary file, transport the file via File Transfer Protocol (FTP), unpack the 
file at the remote location, and resume the process.  

The problem here was that we used the FTP-mechanism of the underlying operating system 
instead of the Opentalk environment. We know that BOSS first writes its data to a Stream, so 
we can also capture the BOSS-Stream and transport it via Opentalk to another host, where the 
BOSS-Stream is unpacked in a process-object.  

4.6.3 Limitations in Current Smalltalk Environment 
When we were trying to stream applications in Smalltalk, we discovered a number of 
limitations in Opentalk and BOSS when working with Process-objects. We managed however 
to develop some workarounds. We describe some of the lesser known problems in Smalltalk 
related to process migration: 

4.6.3.1 Passing by Value 
When we wanted to pass a process-object by value to another host, an error message “A 
Primitive has failed” is generated. This was caused by the fact that the Process instance 
variable suspended context could not be passed by value to another image. We found a 
workaround for this problem by packing/unpacking the process-object with BOSS, and 
passing this BOSS object by value to another image. As an extra advantage we noticed that 
sending BOSSed objects was on the average four times faster than just relying on the 
Opentalk object marshalling. 

4.6.3.2 Order of Object Instantiation 
It is not possible to create the necessary communication objects (e.g. RequestBroker, remote 
objects ...), before creating the BOSSed  process. If this is the case, the transported BOSS-
stream will fail to unpack the process-object at the remote location. After a while, a “Remote 
Invocation Timeout”-exception will be generated at the sender side. The workaround is to 
make sure that the process is BOSSed before the communication objects are set in place. 

4.6.3.3 GraphicsHandles Cannot be Stored by BOSS 
If the process to be BOSSed has references to graphical containers the following error 
message is generated: “GraphicsHandles cannot be stored by BOSS”. 

Since the fractal experiment that we want to implement in Smalltalk contains a window we 
where forced to create the graphical containers externally and draw on these containers by 
sending draw-messages to a reference of these containers or by painting the fractal on any 
active VisualWorks Window at the remote host. 
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4.6.4 Experiment setup 
In order to be able to compare the different environments we implemented the same fractal 
drawing application as in the previous experiment using the workarounds described above to 
cope with the current Smalltalk limitations. 

Again the application becomes divided in two processes: the CalcProcess responsible for 
calculating the fractal and DrawProcess responsible for drawing it. We consider the strategies: 

4.6.4.1 Calculate and draw the fractal, migrate afterwards 
This strategy would be beneficial when the sending host has a lot of computational power, 
while the remote host lacks this power. An example of this setup is a computer connected to a 
PDA: the computer can calculate the fractal and send the resulting fractal drawing to the 
PDA, minimizing the use of the PDA’s reduced computational power.  

4.6.4.2 Start CalcProcess and migrate the DrawProcess 
This strategy is appropriate when a user is waiting for the results of the DrawProcess at the 
remote host; the DrawProcess can start drawing the fractal immediately after migration, 
showing the user already a part of the generated image. This reduces the user interface 
latency. 

4.6.4.3 Migrate the CalcProcess first, then the DrawProcess 
If the remote host has more computational power than the local host, the CalcProcess finishes 
its computations faster, and the DrawProcess will have to spend less time waiting for new 
data. This way, the total evaluation time of the application is reduced. 

4.6.5 Implementation 
We implement the Start CalcProces, and migrate the DrawProcess (section 4.6.4.2) strategy 
because this strategy allows parallelism of the component evaluation. While the CalcProces is 
evaluation on the sender the Drawprocess is migrated to the receiver. At arrival its evaluation 
can start immediately and it will be able to draw the results calculated at the sender. The draw 
and calculate components can now run in parallel if appropriate. Later, the Calcproces at his 
turn can migrate to the receiver and continue his calculations there, this time on the same host 
as the Drawprocess. We compare it with the Calculate and draw the fractal, migrate 
afterwards strategy where no parallel processing is applied.15 

4.6.5.1 Strategy without parallel processing 
The application is composed of four loosely coupled components: CalcProcess, DrawProcess, 
SupervisorProcess and a SharedQueue. This example is an example of a combination of self 
triggered migration and the supervisor strategy. The processes CalcProcess and DrawProcess 
trigger their own migration by letting the SupervisorProcess know that they are ready to be 
migrated. Then the SupervisorProcess migrates the specific processes to the remote host. This 
technique has as advantage that the processes do not have to wait actively, occupying the 
processor, until the supervisor grants them the permission to migrate. The fourth component 
is a SharedQueue, this provides the communication channel between CalcProcess and 
DrawProcess: the Calc Process puts, after calculating a line segment and color, the data on the 

                                                 
15 There were two computers involved in the experiment, one Pentium II 266 Mhz Celeron 192 MB RAM, with 
Mandrake Linux 8.1 installed on, and one Pentium II 266 Mhz Intel 192 MB RAM, with Windows ’98 as the 
operating system. The computers are connected in a 10 MBit network. 
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SharedQueue, and the DrawProcess gathers these data to complete the drawing of the fractal. 
When the application is started, all processes are started simultaneously; the 
SupervisorProcess however runs at a slighty lower priority and waits for a signal from the 
other processes. The CalcProcess and DrawProcess both having a slightly higher priority, and 
signal the SupervisorProcess when they want to be migrated, after their task is finished. Once 
the SupervisorProcess got both signals, it migrates the processes and the SharedQueue to the 
remote host.  

4.6.5.2 Strategy with parallel processing 
This strategy applies the same component structure as the previous one but now the 
DrawProcess is migrated immediately to the remote host, after it signaled the 
SupervisorProcess it wanted to migrate. While this component is migrating, the CalcProcess 
is calculating the fractal’s line segments and sends them to the SharedQueue. When the 
DrawProcess has finished migrating, it starts collecting the data from the SharedQueue, and 
starts drawing the line segments on a Window at the remote host. When the CalcProcess has 
finished calculating, it signals the SupervisorProcess it needs to migrate too. Then the 
SupervisorProcess migrates the CalcProcess and SharedQueue to the remote host. Since in 
this strategy the CalcProcess and the DrawProcess are allowed to run in parallel on different 
processors we expect a decrease of the total evaluation time of the application. 

4.6.5.3 Results 
We ran the first experiment 50 times, and calculated the average time it took to calculate and 
draw the fractal and migrate the components afterwards. 

The average time needed was 21 sec 397 ms with a standard deviation of 2 sec 56 ms. 

We ran the second experiment also 50 times, and calculated the average time it took to 
complete the application. The average time for this experiment was 19 sec 637 ms. with a 
standard deviation of 2 sec 16 ms. 

4.6.6 Discussion 
If the workload of an application could be shared by two complementary processes running in 
parallel the total time needed would be half the original one. 

The gain in time in our experiment (9.1 %) is less than this hypothetical maximum of 50%. 
One of the reasons is that we did not deploy a separate processor for the migration phase, this 
means that the Calcprocess can only start its activity after the Drawprocess is migrated. 

4.7 Design Guidelines 

4.7.1 Necessary Conditions for Removing Network Latency 
In order to be able to move every component in parallel with the evaluation of the application 
independent of the chosen migration strategy, we identified a number of conditions that must 
be satisfied (Table 13). If all these conditions are satisfied it suffices to migrate the 
components at the point of time where their largest idle period starts.  

If we build a new application these design rules should be kept in mind. It will not always be 
possible to comply with them completely, but the more we approximate them the more the 
application will benefit from the proposed technique. If we need to stream an existing 
application, we may need to adapt it to comply better with the above conditions. 
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If the first condition is not met the technique can still be deployed but migration of the 
application will then cause some delay in its evaluation. We expect however that in many 
cases architectural transformations could be applied to transform the original application to an 
equivalent one that complies better with the first condition. 

If the second condition is not met the migration of the application will also cause some delay 
in its evaluation. If the exact onset of the idle time is not known in advance it will be possible 
in some cases to estimate the delay based on statistics obtained from application profiling. 
Modifying the application at its design level could transform the original application to an 
equivalent one that complies better with the second condition. 

If the third condition is not met the migration can only be optimized for one of the conflicting 
components although here also architectural transformations at the design level may resolve 
the conflict. 

4.7.2 Guidelines 
Based on the above conditions, we will now suggest a number of guidelines for building 
applications that are able to stream efficiently in an environment where efficiency, availability 
and fast migration are important. 

• Autonomous components 
In order to obtain components that are able to migrate independent from another host without 
the creation of extra inter-component communications infrastructure, the components should 
be able to communicate transparently with each other without knowing or even bother where 
their partners reside. Moreover the components should always communicate in an 
asynchronous fashion. An autonomous component should be designed as a separate entity, 
sending messages and receiving messages from other components, not as an entity which 
transfers its control flow to other components [Van Belle et al. 2001]. 

• Numerous components 
If the number of components increases so will the idle time per component. Architectural 
refactorings could be applied as an optimization technique to increase the number of 
components without affecting the applications behavior.  

• No monopolizing components 
Equal sharing of the workload over all components is the most ideal situation to allow each 
component to migrate during its idle time. This equal distribution of the workload is only 
possible in theory. However in practice it suffices that the component that needs most of the 
time, has a workload that is smaller than the sum of the workloads of the other components. 

• Strong mobility 
The underlying framework should support strong mobility. If a component migrates during 
the evaluation of the application it must be able to migrate including its computational state 
and runtime stack. 

• Separate processors 
If one needs to eliminate the network latency completely the migration of the components 
should be performed by a different processor than the one that evaluates the application itself. 
The ideal, but mostly unpractical setup is to run each component on a different processor, 
eventually a specialized co-processor. 

• Intelligent supervisor 
The supervisor needs to decide when which component has to move thereby freeing the 
components themselves from this task. These rules can range from simple static rules to 
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dynamic rules that change under control of the supervisor who reasons over the dynamics of 
the running program, over its rules and itself. 

4.8 Summary and Conclusion 
 

New network architectures in ambient intelligence environments where connections between 
partners are no longer predictable need new solutions to support the inherent dynamics of 
these environments. 

Mobile code is a plausible candidate to ensure the connection between different moving 
software components or devices but it will not always be possible to migrate this code as a 
whole, since the connection time between, possible moving objects, is not predictable. 

Ubiquitous communication in ambient intelligence environments only makes sense if the 
objects that compose the network are always available to respond to the requests of other 
objects even during their unpredictable migration time. Since connections between hosts in 
these new environments are more volatile than in static networks there is the need for 
mechanisms to split up the code in smaller parts that will fit in the limited timeframes in order 
to migrate the parts of the code progressively in time to other objects. 

To keep the application available during its migration we will also need to put systems in 
place that allows the code to continue its evaluation during the progressive migration so that 
the application remains available for users and other applications at all time. 

Precaution should be taken to send the most important parts first, in a format that makes this 
partial block of code immediately usable (ready for evaluation) at the receiver’s end.  

In this second theme, we have built a proof of concept of a system that breaks up the code of 
an application in smaller parts and sent them one by one progressively in time, while the 
evaluation of the application continue. 

Performance of an application is most commonly measured by overall program evaluation 
time and network performance is most commonly measured in network latency but in a 
mobile environment performance is also measured by application availability, invocation 
latency, and user interface latency. 

Overall program evaluation time is the time between the invocation of an application and 
the end of the evaluation of the last instruction.  

Application availability is the inverse of the time an application “freezes” during migration.  

Network latency is the time the application needs to travel over the network. 

Invocation latency is the time from application invocation to when evaluation of the program 
actually begins. 

User interface latency is the time a user has to wait between his demand and a user interface 
reaction of the system. 

Table 19 gives an indication of the performance of progressive mobility using components 
streams in these different domains. 



Progressive Mobility using Component Streams 
 

Page 126 

Table 19: Properties of the Component Stream Technique 
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Component streams - +++ +++ + ++ 

 

To conclude this chapter we discuss these results in the most important dimensions of the 
conceptual framework provided in chapter 2. 

4.8.1 Network 
We expected that network latency could be hidden by moving each component during its 
idle time, this expectation is confirmed by all our experiments, network latency was hidden 
completely. 

Invocation latency and user interface latency could be reduced by starting up the 
application at the sending host at the same time its migration is triggered (section 4.5.4.2). 

It is also important to keep in mind that in an ambient intelligence environment two kind of 
networks must be considered, connection-oriented networks and connectionless networks.  

If application availability is the main goal to implement component streams the setup time in 
connection-oriented networks is not so important since the application will remain available 
at al times even if its migration is delayed somewhat. However, if the application is designed 
to take advantage of the parallelism of its components then the initial setup time will delay 
this parallelism. 

In the case we deploy components streams with the goal to reduce user interface latency then 
the setup time will play a major role and may have a great influence on the users perception of 
the application. 

Connectionless Networks are also the ideal environment to implement progressive mobility 
using components streams. Compared to the connection-oriented networks the packets are 
typically a little larger since they need to contain the complete address of the receiver but in 
practice the size of this extra data can be ignored compared to the size of the actual block of 
data sent. 

If there is no setup time then one might also consider parallel file transfer to send more than 
one component in parallel to the receiver. This might be especially useful if some components 
exhibit a high degree of coupling between them. By sending these components together in 
parallel, one can avoid the heavy traffic over the network between these components while 
they become temporarily distributed. 
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4.8.2 Application 
Applying component streams excels in application availability but in general we expect the 
overall program evaluation time to increase since the application becomes distributed during 
the streaming phase. In some cases however we might exploit the temporary parallelism to 
compensate for the delay introduced by the distribution and for small applications in some test 
environment as in ours we might even see a decrease in evaluation time. 

We showed that application availability could be enhanced by continue the evaluation of a 
component on the sender while a copy of its code is migrated in parallel to the receiver 
(section 4.5.4.3).  

Besides a proof of concept in Borg we provided some existential examples in other 
programming environments as Smalltalk and Java in order to show that for these applications 
the technique is useful.  

We investigated in different designs of a fractal draw application so as to determine the 
possibility to reduce system latency by introducing parallel component evaluation. 

System latency could be reduced by starting up an application before the application is 
completely migrated (section 4.5.4.1) and by applying parallel component evaluation (section 
4.6.5.2). 

We noted the importance of the design of the application in function of the migration strategy. 
In this context, we provided some design guidelines. 

4.8.3 Techniques 
We explored three different possibilities to harness parallelism. We experimented with the 
same kind of parallelism as in chapter 3, starting the evaluation of application parts already 
received while the rest of the application still needs to migrate. But since the application is 
already running before its migration we also exploited the parallelism of the migration of 
copies of components that still are running on the sender and the parallelism between 
components still running on the sender and components already arrived and running on the 
receiver. 

In this chapter we migrated running applications so we made use of the technique of strong 
mobility. 

The determination of the universal nature of the techniques or the demarcation of the domain 
in which the technique proves useful is left for future work. 
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5 Progressive 
Anticipative Mobility 
using Proactive 
Migration 

 
 
 
 
 

He who would travel happily must travel light 
-- Antoine de Saint-Exupery (1900 - 1944) 
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5.1 Abstract 
 

 

 

 

 

 

 

The migration of code in ambient intelligence is needed to provide support for the 
dynamic character of these environments but at the same time this is not a trivial 
process. Ambient intelligent networks are more volatile than static networks, 
which makes the timeframe available for the migration unpredictable. 

Therefore we need some kind of mechanism to break up code into smaller parts 
and send them one by one to enhance the chance that it will fit in the current 
timeframe. 

There is also the need for mechanisms that allows the code to continue its 
evaluation during the progressive migration so that the application remains 
available for users or other applications at all time. 

We explored these mechanisms in the two previous chapters but we do realize that 
providing application availability by the mechanism of component streams comes 
with the price of reduced evaluation speed introduced by the temporarily 
distribution. 

In this last theme we explore an alternative mechanism to hide network latency 
where we migrate the large bunch of the code in advance thereby taking 
advantage of possible surplus bandwidth that will not be exploited otherwise. 
When the real code migration is triggered then there is only the need to send the 
difference between the current state of the code and the code that was sent in 
advance. If this delta is small enough, the migration of its representation can be so 
fast, that for the users perspective the application remains available at all time. 

 



Progressive Anticipative Mobility using Proactive Migration 

Page 131 

In this chapter, where we provide a proof of concept of the theme of proactive migration, we 
start by describing the proposed technique and more specifically the technique to calculate the 
difference between computational states, here called the delta. 

Then we describe an experiment to calculate the delta and discuss the expected results. 

 

Roadmap: 

• Introduction 
• Proposed Technique 

o Basic Observations, assumptions and restrictions 
o Technique description  

• Experiment to calculate the delta 
• Results 
• Discussion 

o Expected Gain  
o Applications without implicit stack operations 
o Dealing with Large Deltas 

• Summary and Conclusion 
 

5.2 Introduction 
With the advent of Ambient Intelligence (AmI), mobile code will become an important 
medium to support this intelligent environment. Objects that do not move relatively with 
respect to each other can rely upon current communication protocols to provide a stable 
connection but the connection between moving objects poses new challenges. 

Since connections between hosts in these new environments are more volatile than in static 
networks there is the need for mechanisms that allow the code to continue its evaluation 
during the migration so that the application remains available at all time. 

The theme of streaming components, explored in the previous chapter, proposed such a 
mechanism but it also introduced extra latency since the applications became temporarily 
distributed. 

In this third theme, it is our goal to build a proof of concept of a system that sends proactively 
the code to a potential receiving host so that most of the migration work can be done in 
advance thereby taking possibly advantage of surplus bandwidth in the network that would 
not be exploited otherwise. Then when the real migration is triggered we only need to send 
the delta between the computational state already sent and the new current computational 
state. If this delta is small then the migration of this delta and its adaptation to the already 
received code can be so fast that for the perception of the user the application remains 
available at al time. 

Network latency is hidden since at real migration time we only need to send a block of code 
that is  much smaller than the block of code we typically need to migrate. 

The feasibility of the technique has been validated by implementing a prototype tools in the 
Borg mobile agent environment. A simple experiment in Borg, to measure the size of the 
delta, shows that it allows to migrate the application in 2% of their original migration time. 

In this third theme, our contribution is the introduction of progressive, anticipative mobility 
using proactive migration. 
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Progressive anticipative mobility using proactive migration is proposed as a technique to 
compensate for network latency and to enhance application availability of migrating 
applications. In the same sense as progressive anticipative mobility using pre-fetching of 
permuted code and progressive mobility using component streams this technique applies 
progressive mobility. Progressive mobility potentially allows applications to migrate piece by 
piece what may result in early startup at the receiving host and possible smooth evaluation 
with limited or no disruption.  

Progressive anticipative mobility using proactive migration is proposed as an optimization for 
progressive mobility using component streams [Stoops et al. 2003a, Stoops et al. 2003b]. The 
main property of progressive mobility using component streams is that it migrates running 
code. A possible disadvantage of the technique is that applications become temporarily 
distributed during the streaming phase which may slow down some types of applications. As 
we will show, proactive migration has the potential to avoid this temporary distribution, 
thereby allowing the migrating application to run almost continuously at full speed.  

The technique presented here might be useful when we know in advance when we are going 
to migrate. In ambient intelligent environments by example, where hosts are moving in 
relation to each other, one may foresee that an application possible will migrate to a host that 
comes physically in the neighborhood. Shopping agents [Chavez 1997] often know in 
advance their migration path and even if they plan their itinerary dynamically they are often 
able to decide on the next host to visit before they start the actual work on the current host. 
Another possible application of mobile code is load balancing. Here too, the overload of a 
host can often be predicted as well as the host to flee to. 

If we manage to send the bulk of the application in advance to the receiving host we can, 
when the real time to migrate has come, obtain sometimes a high-speed migration of our 
running application in a fraction of the time needed for normal migration. It potentially allows 
applications to migrate very fast from host to host without a significant loss of evaluation time 
during the migration phase.  

Given the complexity of the implementation of this technique we start by building a proof of 
concept in Borg, an environment that stores the computational state of the application in one 
chunk of memory and by its nature facilitates the expression of mobile components.  

 

We demonstrate the feasibility of the technique by migrating an application in the Borg 
mobile agent environment [Van Belle et al. 2001] in order to measure the difference in 
migration time. In our setup the technique proves to be useful, but the determination of a 
possible more universal nature of the technique is left for future work. 

5.3 Proposed Technique 

5.3.1 Basic Observations, assumptions and restrictions 
As mentioned before, transporting mobile code over a network is in general the most time-
consuming activity, and can lead to significant delays in the migration of the application. This 
is especially the case in low data rate environments such as the current wireless WAN 
communication systems or in overloaded networks. In a classic migration scheme, everything 
that needs to migrate is sent in one big block of data over the network.  

Our approach of proactive migration allows us to send parts of the code in advance and 
therefore may gives us also the opportunity to take advantage of periods of low network 
traffic. 
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We assume two preconditions to apply proactive migration in an efficient way: 

 
1. The internal representation of the computational state is stored in one chunk of 

memory. 
2. The internal representation of the program code remains constant. 

 

The Borg environment, used for our experiment, represents the application code in an 
abstract syntax tree. The computational state of an application is represented by a stack (for 
continuations and intermediate evaluation values) and a dictionary that contains the names of 
the variables and references to a block of memory where the values of these variables reside, 
called the heap. In the Borg environment these entities are contained in one chunk of 
memory. This will satisfy precondition 1. 

The Borg environment also allows reflection. Reflection is the ability for a program to 
manipulate its code and computational state as data during its evaluation [Maes 1987]. The 
expressiveness of Borg allows an application to reason about itself and its computational state 
during its evaluation. In our first experiments we will allow all kind of reflective behavior 
except the adaptation of the abstract syntax tree. This will satisfy precondition 2. 

Here too, we assume that the know-how and know-when of the migration of partitioned code 
is located in the sending host, so we apply a push strategy. However, this does not exclude the 
possibility of successful combinations with a pull-strategy.  

The size of the application in our experiment in Borg, is so small that it falls outside the 
window (see section 2.1.6 Window of Opportunity - page 39) in which the transportation time 
to send a block of code is directly proportional with the size of the block of code. This makes 
it impossible to reduce invocation and user interface latency at the receiving host since the 
transportation time to send the complete block of code is the same as the transportation time 
to send even a small part of it. 

However, it is our only goal to provide a proof of concept in this very specialized 
programming environment. For the proposed technique itself, we do not make any 
assumptions on the total size of the application, so we may expect it to scale to larger 
applications. 

5.3.2 Technique Description 
The technique of proactive migration applies a progressive migration scheme. The running 
application is split into two components: a snapshot of the complete application and the delta 
of the computational states after a certain time. Basically the technique is a five step process: 

1. Take a snapshot of the running application, i.e. take a copy of the code and its 
computational state, on the sending host. 

2. Copy the snapshot to the receiving host while the original application continues to 
run. 

3. Once the copy has arrived at the receiving host (or later when the real migration is 
triggered) halt the original application. 

4. Define the changes, called the delta, in the original application during the copy phase 
of the snapshot. This delta contains the changes in the computational state. 

5. Migrate and apply this delta to the, already migrated, snapshot and resume its 
evaluation. 
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Since each application contains parts that remain constant, the size of the delta will always be 
smaller than the size of the complete snapshot. This is where we can gain in migration time. 
Suppose we know five seconds in advance that we're going to migrate. At that moment we 
capture the complete application including its computational state and forward it already to 
the receiving host. Then, five seconds later when we really want to migrate we identify the 
delta of the current computational state with the already sent computational state and only 
transmit this delta across the network.  

As an example, Figure 49 shows a simple Borg factorial program. 

Figure 50 shows a sequence diagram that illustrates the behavior of a classic strong migration 
of this example program. 

 

Figure 49: Calculation of factorial (n) in Borg 

 

 

Figure 50: Sequence diagram – classic strong migration of a factorial calculation 

 

fac(n): if (n=1, 
            1, 
            n*fac(n-1) 
        ) 
fac(100) 

step 5..9 

Host 1 Network Host 2 

fac(2) 

fac(100) 

fac(2) 
end 

code + CSfac(2) 

step 1..3 

step 4 

Migrate 
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We start by calculating fac(100). Suppose that the application receives an external trigger to 
migrate at the start of the recursive call with parameter n equal to 2. As a result of this trigger 
the first 3 steps of the classic migration scheme are launched on Host 1. If we call CS the 
computational state; then we transfer over the network during step 4: (code + CSfac(2)). After 
the transfer, steps 5..9 of the migration scheme allow the application to resume on Host 2. 

 

 
Figure 51: Sequence diagram - proactive migration of a factorial calculation 

 

Figure 51 shows an example of proactive migration of the same factorial program: 

We start again by calculating fac(100). At fac(10) we proactively migrate the bulk of the code 
and state but the application is not started on Host 2. As shown in the figure we assume that 
this migration process is able to run in parallel with the application itself. Then, at fac(2), we 
transfer the delta and resume the application at Host 2. We note that the migration of the bulk 
of data code + CSfac(10) takes much longer then the small delta CSfac(10) - CSfac(2). This allows 
the application, after the external trigger, to start up much sooner now at Host 2 resulting in a 
high-speed migration of the application. 

The most challenging part of the technique is the identification, extraction, presentation, 
migration and reapplication of the delta. The reapplication of the delta can be seen as the 
reverse process of the extraction so we will focus on the identification and extraction part. 

5.3.2.1 Computing the Delta 
In order to identify the delta we need to compute the difference between two computational 
states. Reflection, available in Borg, allows us to capture the current computational state at 
any time in the Borg language itself. To calculate the delta between two states in an efficient 
way we add a native function: delta() to Borg. This function is written in C, the 
implementation language of Borg. 

Host 1 Network Host 2 

fac(100) 

fac(2) 

fac(10) 

fac(2) 

end

code + CSfac(10) 

CSfac(10) - CSfac(2)   
fac(10)
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Taking a snapshot of the computational state is basically achieved by computing the transitive 
closure of all elements starting from the root of the stack and the dictionary. This closure will 
contain complete arrays, and objects pointed to by this root. In Borg this closure will also 
contain the abstract syntax tree. In the remainder of this paper we will refer to the Borg 
environment and our Borg prototype to explain the technique.  

In order to explain the techniques to compute the delta in an efficient way we explore 
gradually more complex memory operations. As to simplify the operations somewhat we 
assume that the garbage collector is disabled between the capturing of two computational 
states. We show later how possibly to deal with garbage collection. We will now study 
consecutively: 

• Non-destructive memory operations 
• Destructive memory operations 
• Random access memory operations 

 

Non-destructive Memory Operations 
Functional languages as Borg have the property that they never change the memory in a 
destructive way. Since there is no assignment operator available in a pure functional language 
the internal representation of the computational state will have certain properties that can be 
exploited to calculate the delta. 

As in many garbage collected languages, the memory in Borg is allocated sequentially, as is 
the case with a stack data structure, and since we know that no memory content will be 
overwritten, the difference in computational states will be the newly allocated memory. If we 
compare the two computational states CS1 and CS2 (Figure 52) then the delta will exist of all 
memory allocated after the first state capture. For easy identification of this memory block we 
add a watermark at the end of the CS1 memory block. This allows the serializer (step 2 of the 
migration process) to identify the newly allocated memory as the memory after the 
watermark. 

 

Figure 52: Watermark for delta definition in non-destructive memory 

This technique is also used in an optimization technique known as generation scavenging 
[Ungar 1984] for garbage collection. Indeed garbage collection and serialization are similar 
operations. Both need to make a transitive closure. Only the serializer flattens this closure, 

CS1 

CS2 

delta 

watermark 

old memory 
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while the garbage collector compacts it. The generation scavenging technique is usable by 
both. 

The old memory has been transferred to the receiving host, and when the new computational 
state has references to the old one (Figure 53), the pointers in memory must be adapted to 
point to correct addresses on the receiving host. This adaptation takes place during step 8 
(Table 1  page 26) of the migration process.  

 

Figure 53: Possible pointers in non-destructive memory 

 

Destructive Memory Operations 
Unlike the functional language Borg, imperative languages allow destructive changes in 
memory so the internal representation memory block can contain pointers in both directions 
(Figure 54). Even functional languages will sometimes use invisible destructive operations in 
memory for performance issues. 

 

Figure 54: Possible pointers and watermark in destructive memory 

In this case, we will need to compare both memory blocks byte by byte to determine all the 
differences. Fortunately a stack structure, heavily used by modern compilers [Grune 2000], is 
a friendly structure, it has no random access and once we find the 'lowest' change, we can be 
sure that everything above this point has changed too. Putting a watermark on the stack at this 
point makes it easy for the serializer to determine the part of memory to serialize.  

CS2 

delta 

lowest change watermark 

CS2 

delta 

Pointer across the watermark 
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Random Access Operations 
We have discussed how to calculate the delta in non-destructive and destructive memory 
environments in a stack data structure. We will now discuss how to handle migration and 
subtraction of computational states in random-access data structures. The dictionary with the 
variable bindings and the values in the heap in Borg are typical random-access data structures. 

When we wish to migrate a random-access structure we must explicitly keep track of the 
memory involved and changed. How to do this will be largely implementation dependent, but 
habitually memory can only be accessed through existing variables, so keeping a list of 
changed variables is often an option. Another alternative involves maintaining an array in 
which we explicitly keep track of all changed structures. 

We could space-optimize this further by using dirty-bits, bits that flag a change of a memory 
word. In a garbage-collected programming environment we may find that some bits are 
already reserved for this kind of operation [Wilson 1992]. Under the presumption that we 
won’t garbage collect we can reuse some of the spare garbage collector bits as dirty bits. This 
restriction isn't as harsh as it seems, if a garbage collect were to trigger, we could just 
calculate the delta and migrate early. Also, because a garbage collection and a serialization or 
very similar processes, we could trigger a garbage collect together with the first migration. 

5.4 Experiment to Calculate the Delta 
Figure 55 shows the Borg code used to calculate the size of the streams over the network. We 
declare an array a of size 100 and then declare and run an instrumented factorial function:  
fac() that fills up the array with the consecutive computational states. The factorial function is 
instrumented with the native function call: call(cont) that returns the complete current 
computational state. 

Then we apply the new native function delta() to calculate the delta d between CSfac(10) and 
CSfac(2). This function is written in C, the implementation language of Borg to be able to 
calculate the difference of two Borg computational states in an efficient way. 

Finally we display the sizes of the serialized instances of the computational states CSfac(10), 
CSfac(2) and the size of the delta between them. 

 

 
Figure 55: Borg calculation computational states 

a[100]:0; 
fac(n):if(n<2,n,{a[n]:=call(cont); n*fac(n-1)}); 
fac(100); 
d:delta(a[10], a[2]); 
display(size(serialize(a[10]))); 
display(size(serialize(a[2]))); 
display(size(serialize(d))); 
 
>: Size of serialized stream: 25664 bytes. 
>: Size of serialized stream: 25408 bytes. 
>: Size of serialized stream: 515 bytes.
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5.5 Results 
In this factorial experiment we note that the delta between the computational states contains 
515 bytes while the original computational state, including the abstract syntax tree was 25664 
bytes.  

For this small factorial calculation example the reduction in size is 515 / 25664 = 2% of the 
original stream size or a compression ratio of: 98%. 

If we envision a setup in a network where the migration time is proportional to the size of the 
application (section 2.1.4.2), then the reduction in size will also lead to a reduction in 
migration time of 2% of the original migration time. 

5.6 Discussion 

5.6.1 Gain for the Factorial Example 
If we run the factorial program (Figure 49) and send our first snapshot at fac(10) and then 
really migrate at fac(2) we can compare the stack and dictionary at those moments (Table 20). 

 
Table 20: Stack and Dictionary Values during Evaluation Factorial Program 

Stack  Dictionary
  fac(100)  n 100 
  fac(99)  n 99 
  fac(98)  n 98 
  fac(97)  n 97 

  ...  ... ... 
  fac(12)  n 12 
  fac(11)  n 11 
  fac(10)  n 10 
  fac(9)  n 9 
  fac(8)  n 8 
  fac(7)  n 7 
  fac(6)  n 6 
  fac(5)  n 5 
  fac(4)  n 4 
  fac(3)  n 3 
  fac(2)  n 2 

 
 

Migration of the full stack and dictionary at fac(2) would consist of 297 entries: 99 stack, and 
99 name/value pairs. When we migrate at fac(10) we would have to transfer 89 * 3 entries. 
But if we then migrate at fac(2) and only need to serialize the entries created between fac(10) 
and fac(2), this would be only 9 * 3 = 27 entries. This leads to a size compression ratio of 

%9
296
27

≈ . 

This gain in time can be attained if we only take the delta between the stacks and dictionaries 
in account. In reality we also need to include the abstract syntax tree in our first snapshot 
which will increase our gain in time even more. 

proactive migration 

actual migration 
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5.6.2 Applications without Implicit Stack Operations 
So far we have only looked at the factorial example. Such functions with implicit stack 
operations aren't very common in practice. In practice we expect more sequential function 
calls. So how does this affect the delta calculation? We will not to generalize but in this case 
of very small processes it might be favorably. Consider the program in Figure 56. 

 

Figure 56:  application without implicit stack operations 

We start by calling fun100(), anticipative migrate at fun10() and migrate the delta at fun2(). 

With each function call the stack expands. However after each function call, it shrinks again. 
Therefore, at fun2(), we will have a much smaller stack as compared to the growing stack in 
the previous factorial example. In fact it will only contain the data for the main function and 
for the fun2() function. This implies that our delta will only contain the fun2() data. 
Compared with the bulk of data anticipatively sent, this delta is so small that very large time 
compressions may be expected, although there might be a possible performance loss because 
of the extra delta calculation. 

If the stack is very large at the time of proactive migration and at the real migration time then 
the difference might be very small too. However, (1) we always need to proactively migrate 
the large stack, and (2) the difference between two stacks will never exceeds the size of the 
larger of the two, which will favor applications with little or no implicit stack operations. 

A typical program will not behave like either of the two presented examples but will most 
likely have a performance situated somewhere between these two extremes. This claim can be 
supported by the fact that a typical program stack does not become very big.  

5.6.3 Hardware Support 
The technique of proactive migration has the potential to hide network latency and reduce 
system latency at the moment that migration is triggered but possibly introduces extra latency 
at other moments in time. The most time consuming actions might be: 

• Taking a snapshot of the application, possibly more than once 

• Migrating a copy of the snapshot, possibly more than once, to the receiving host 

• Defining the delta 

If the delays introduced by these actions are not acceptable then in some cases extra hardware 
support could avoid some of these delays. 

One can imagine a dedicated shadow memory of the same size of the actual memory in use 
and connected with the main memory in order to allow snapshots to be taken in one machine 
cycle. 

The migration of the snapshot to the receiving host could be handled by a second parallel 
processor to avoid delays in the original application. 

If a shadow memory is in place, a bitwise XOR could define the delta also in one machine 
cycle. 

main(): 

{ fun100(); ...; fun10(); ...; fun2(); 

} 
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5.6.4 Dealing with Large Deltas 
Sometimes the size of a running application can increase a lot at a given point in evaluation 
time, e.g. the initialization of the Java user interface object as was the case in section 4.5.3. If 
we can foresee this increase in size it would be very beneficial to migrate the application 
before this point in time but under certain circumstances it is even possible to cope with these 
application enlargements afterwards. 

The program in Figure 57 shows an example of code that potentially can generate a large 
delta. 

 

Figure 57: Application with a potential large delta 

Suppose we migrate a first time right before the allocate and fill_up function call and transmit 
the delta right after it. Then the first transmission will be reasonably fast, but the second 
transmission will be a lot slower because the big chunk of new allocated memory filled up 
with calculated or retrieved data has to come with it. As a result there might be nearly no 
performance gain by applying proactive migration (Figure 58). 

 

 

Figure 58: Large delta 

Host 1 Network Host 2 

main() 

allocate(10000) 

CS2    

CS2 – CS1    

CS1    
code + CS1 

main(): 
{...; 
 fun: my_arr = allocate(10000); 
 fill_up (my_arr); 
...; 
} 
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Figure 59: Dealing with a large delta 

However, in the case that there are no interactions with external entities between the 
anticipative and the final migration and the application has a deterministic behavior as in our 
factorial example, there is something we can exploit. If we start the evaluation of the 
anticipative application immediately after arrival then the allocation of the new memory block 
can also take place at the Host 2 instead of only at Host 1. This scenario is depicted in Figure 
59 end described below. 

When the application is anticipatively migrated to Host 2 at computational state CS1, (1) 
nothing prevents this host from starting the application already (2) as shown in Figure 59. So 
we can allocate the huge chunk of memory on the Host 2 (3) and continue execution there. 
The equivalent chunk of memory, allocated on Host 1 at (4) and send as part of the difference 
between CS2 and CS1, will finally have crossed the network possibly at a time (5). At this time 
the computational state on the receiving host CS3 has already surpassed the computational 
state CS2 (6), the same state as the one captured on the sending host (7).  

Now we might detect that the application at Host 2 has spend more clock cycles than the 
original one at Host 1 since the last anticipative migration (1). In that case, it would be of no 
use to replace the current computational state CS3 with the superseded state CS2 obtained 
from the original application and therefore we may ignore the received state and continue our 
own thread of evaluation at Host 2. 

If Host 2 has no other tasks than to wait for the application of Host 1 we could choose to start 
computation always at the receiving host immediately after the anticipative load. Then if the 
sending host detects the big overhead of the second transmission, and there where no 
interactions with external entities since the proactive migration, it can discard the transmission 
and avoid the second migration completely. 

Host 1 Network Host 2 

main() 

allocate(10000) 

allocate(10000) 

CS2    

CS2   

CS3   
CS2 – CS1    

CS1    

CS1   

(4)
(2) 

(1) 

(7) 

(6)

(5)

(3) 



Progressive Anticipative Mobility using Proactive Migration 

Page 143 

If we adhere to the classic definition of network latency as: the time between the actual 
sending of an application and its startup at the receiver we notice that in these cases the 
application is started before the actual sending took place, so we obtain a negative network 
latency. We suggest a more general strategy of this approach in future work (section 6.4.5). 

5.7 Summary and Conclusion 
Mobile code will become an important medium to support an ambient intelligence 
environment. Objects that do not move relatively with respect to each other can rely upon 
current communication protocols to provide a stable connection but the connection between 
moving objects poses new challenges. 

The theme of streaming components, explored in the previous chapter, proposed a mechanism 
that allows the code to continue its evaluation during the migration so that the application 
remains available at all time but it also introduced extra latency since the applications became 
temporarily distributed. 

In this third theme, we provided a proof of concept of a system that sends proactively the code 
to a potential receiving host so that most of the migration work can be done in advance 
thereby taking possibly advantage of surplus bandwidth in the network that would not be 
exploited otherwise. Then when the real migration is triggered we only need to send the delta 
between the computational state already sent and the new current computational state. If this 
delta is small then the migration of this delta and its adaptation to the already received code 
can be so fast that for the perception of the user the application remains available at al time. 

Performance of an application is most commonly measured by overall program evaluation 
time and network performance is most commonly measured in network latency but in a 
mobile environment performance is also measured by application availability, invocation 
latency, and user interface latency. 

Overall program evaluation time is the time between the invocation of an application and 
the end of the evaluation of the last instruction.  

Application availability is the inverse of the time an application “freezes” during migration.  

Network latency is the time the application needs to travel over the network. 

Invocation latency is the time from application invocation to when evaluation of the program 
actually begins. 

User interface latency is the time a user has to wait between his demand and a user interface 
reaction of the system. 

Table 21 gives an indication of the performance of progressive mobility using proactive 
migration in these different domains. 
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Table 21: Properties of the Proactive Migration Technique 
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To conclude this chapter we discuss these results in the most important dimensions of the 
conceptual framework provided in chapter 2. 

5.7.1 Network 
Proactive migration excels in reducing the network latency especially for the transmission of 
mobile applications over a slow network. The technique is based on the observation that we 
can calculate the delta between two computational states and that this delta is always smaller 
than the original computational state. 

Network latency is hidden since at real migration time we only need to send a block of code 
that is much smaller than the block of code we typically need to migrate. 

In an ambient intelligence environment two kind of networks must be considered, connection-
oriented networks and connectionless networks.  

A large setup time in connection-oriented networks is not really a problem for applying this 
technique. The proactive migration can be launched even several times in advance during 
periods when extra bandwidth is available or when the connection time is guaranteed for 
longer time intervals. The exact point in time for this proactive migration is not important, so 
a possible large setup time will not influence this migration. 

The real migration should be happen as soon as possible after the external trigger but even 
there is the opportunity to let the application continue its evaluation until the connection is 
setup. After the connection is setup, there will be still time enough to calculate the delta en 
transport it over the network. The migration itself might be delayed but from the perspective 
of the user the application remains always available. 

If it is necessary to migrate very fast after the external trigger then a connectionless network 
is more opportune since it will not need an extra setup time before the delta can be 
transmitted. 

5.7.2 Application 
We limited ourselves to a very small application, the process to compute the factorial of a 
number. Since the environment needed to provide a high degree of computational reflection 
we where restricted to a very specialized programming environment: Borg. 
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We were not able to exploit this theme in more current environments as Smalltalk or Java. 

5.7.3 Techniques 
In this chapter we exploited parallelism between the evaluation of the application and the 
proactively migrating of a copy of that application. 

The technique migrates a running application so we also need to apply the technique of strong 
mobility. 

To be able to implement the proposed technique we need access to the computational state of 
a running application which is not a trivial task in current classic programming environments 
since they do not provide the level of computational reflection needed. 

This technique might be useful when we know in advance when we are going to migrate. In 
ambient intelligent environments by example, where hosts are moving to each other, one may 
foresee that an application will migrate to a host that comes physically in the neighborhood. If 
we manage to send the bulk of the application in advance to the receiving host, we can, when 
the real time to migrate has come, obtain a high-speed migration of our running application. 

At the receiver, the computational state need to be brought up to date by applying this delta to 
the previous received computational state before evaluation is continued. This kind of action 
will also require a high level of computational reflection. 

We demonstrated the feasibility of the technique by migrating a small application in order to 
measure the difference in migration time. In our setup the technique proves to be useful, but 
the determination of a possible more universal nature of the technique or the demarcation of 
the domain in which the technique proves useful is left for future work. 
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6 Conclusion 
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6.1 Wrap-up 
Ambient intelligence that builds on three recent key technologies: Ubiquitous Computing, 
Ubiquitous Communication and Intelligent User Interfaces, poses new challenges to build the 
underlying software in order to support cooperating systems. These systems will feature 
dynamic context and unpredictable connection times between a diversity of devices with their 
own autonomic characteristics. 

The emerging technique of mobile code is a new promising way to set up communication 
mechanisms between different parties but there is still much research needed to develop 
techniques to support and optimize these communication mechanisms. 

This thesis explores possibilities to hide network latency that can become very high if a block 
of code cannot be migrated as a whole in an environment where the width of the migration 
timeframes is unpredictable. 

A possible solution is to break up the block of code in smaller parts and send them one by one 
to the receiver. This will increase the possibility that they will fit in the temporal timeframe. 
Precaution should be taken to send the most important parts first, in a format that makes this 
partial block of code immediately usable (ready for evaluation) at the receiving host.  

Since connections between hosts in these new environments are more volatile than in static 
networks there is also the need for mechanisms that allows the code to continue its evaluation 
during the progressive migration so that the application remains available for users or other 
applications at all time.  

In order to break open this new, complex and difficult research domain we explored three 
different themes to take advantage of the implicit parallelism found in computer networks. 

It was our goal to provide a proof of concept of the different scenarios developed under these 
themes without pursuing completeness or universality. 

6.2 Results 
For the three themes we explored, pre-fetching of permuted code, component streams and 
proactive migration we delivered a proof of concept and we showed that for the experiments 
we performed under these themes, progressive mobility proved to be useful.  

At the end of each chapter, we presented a table with some indications about the performance 
obtained under these themes. Table 22 summaries these indications from the three tables. One 
should take caution however by interpreting this table because a vertical comparison is almost 
meaningless since each theme explored different experiments under very different conditions 
and restrictions. 

Again, we mention that performance of an application is most commonly measured by overall 
program evaluation time and network performance is most commonly measured in network 
latency but in a mobile environment performance is also measured by application availability, 
invocation latency, and user interface latency. 

Overall program evaluation time is the time between the invocation of an application and 
the end of the evaluation of the last instruction.  

Application availability is the inverse of the time an application “freezes” during migration. 
Especially in control engineering environments this may be a critical property. 

Network latency is the time the application needs to travel over the network. 
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Invocation latency is the time from application invocation to when evaluation of the program 
actually begins. 

User interface latency is the time a user has to wait between his demand and a user interface 
reaction of the system. From the viewpoint of the user this is the most crucial latency. 

 

Table 22: Summary of the performance indications 
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Component streams - +++ +++ + ++ 

Proactive migration + ++ ++ ++ + 

 

Table 22 summaries the performance indications in each presented theme. Again, note that a 
vertical comparison is not meaningful. 

Progressive anticipative mobility using pre-fetching of permuted code 
The results of our proof of concept excel in hiding user interface latency. Exploiting 
parallelism between loading and evaluation in our experiment reduced user interface latency 
considerably (21% of the original time on average in the three applications tested). The 
overall program evaluation time decreases since not all the code has to be transported and 
compiled. The overall program evaluation time could also be significantly reduced (79% of 
the original time on average in three applications tested).  

Progressive mobility using component streams  
The results of these experiments excels in application availability and the hiding of network 
latency but in general we expect the overall program evaluation time to increase since the 
application becomes distributed while streaming. In some cases however we might exploit the 
temporary parallelism to compensate for the distribution and for small applications in some 
test environment as in ours we might even see a decrease in evaluation time. 

With progressive mobility using component streams in our setup the running code is never 
halted and therefore will keep its ability to react to incoming events. 

We discussed the relation between migration time and idle time of the components that 
constitute the application and described the necessary conditions for removing network 
latency completely. We compared different migration strategies for progressive mobility 
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using component streams, and showed with our experiment that it is possible to migrate a 
running application autonomously and under the control of a supervisor component as if there 
where no network latency at all.  

In our experimental setup the migrating application even runs faster during migration than 
when it runs stationary. We where also able to start the visual presentation part of the 
application before the complete application was migrated thereby gaining the same 
advantages for user interface invocation as the progressive anticipative mobility using pre-
fetching of permuted code technique. We also showed that is possible to take advantage of 
parallelism between the evaluation of components on the sender and the receiver. Based on 
our experiments we provided some design guidelines for developing new mobile streaming 
applications. The determination of the universal nature of the technique or the demarcation of 
the domain in which the technique proves useful is left for future work. 

Progressive, anticipative mobility using proactive migration  
In the small experiment we conducted, we demonstrated that the technique may excel in 
reducing the network latency especially for the transmission of mobile applications over a 
slow network. The technique is based on the observation that we can calculate the delta 
between two computational states and that this delta is always smaller than the original 
computational state. 

We conclude that this technique might be useful when we know in advance when we are 
going to migrate. In ambient intelligent environments by example, where hosts are moving to 
each other, one may foresee that an application will migrate to a host that comes physically in 
the neighborhood. If we manage to send the bulk of the application in advance to the 
receiving host we can, when the real time to migrate has come, obtain a high-speed migration 
of our running application in a fraction of the time needed for normal migration. Our 
experiment showed that the reduction in size of the data to transport and thus, possible also 
the migration time is 2.01% of the original stream size or a compression ratio of: 97.99%. 

Whatever the behavior of our program, the delta of two snapshots will never be bigger than 
the original and therefore we will always obtain a gain in time even when we don't know in 
advance when we'll migrate. Therefore, we could send the computational state every few 
instructions to a potential receiving host. Or we could just transmit the program code itself to 
all potential receiving hosts at the beginning of the evaluation. The size of the code is constant 
and therefore should only be sent once. The determination of the universal nature of the 
techniques or the demarcation of the domain in which the technique proves useful is left for 
future work. 

6.3 Discussion 
We explored in the three themes some existential examples in order to show that it is possible 
to hide network latency by partitioning mobile code and exploit parallelism. As for now, it is 
still unclear how the implementation environment of ambient intelligence entities will look 
like but since such a system needs to have many dynamic properties, mobile code will be one 
of the key technologies to bring ambient environments to live. The explored themes suggest 
different ways to harness the implicit parallelism found in even the most simple computer 
networks but massively available in future ambients.  
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Validity of the result under current research restrictions 
In order to obtain our results we applied several research restrictions (see section 1.5 page 23). 
Most of our experiments are conducted in fixed TCP/IP networks, but an ambient intelligence 
environment, our environment under research, will rely on unpredictable networks.  

However, this is not contradictory. The support for these unpredictable networks needs to be 
offered by the distributed operating systems. In order to manage the ambient intelligent 
environment these operating systems will need to put systems in place to cope with these 
unpredictable networks and one of the tools we offer from this research path is the partition of 
mobile code in several parts to enhance the chance to fit in an unpredictable time frame. 

We did not run experiments in connection-based networks but we argued in the different 
chapters that even with the extra setup time in a network the techniques might remain useful.  

We feel that security aspects are orthogonal on all practical implementations of computer 
systems and although partitioning code may introduce extra vulnerability in the system more 
and more techniques to tackle these kind of security problems arise at the horizon or are 
already introduced and standardized. 

If there is a difference in the processing power of the hosts there will arise extra opportunities 
to exploit this by running the most important parts of the code on the most powerful 
processors but the basic scenario’s we introduced in the three themes will remain valid since 
we never assumed a difference or equality of the hosts processing power. 

We only applied a push strategy since we assumed that the know-how and know-when of the 
migration of partitioned code is located in the sending host. However, this does not exclude 
the possibility of successful combinations with a pull-strategy or with a pure pull-strategy. 
The coordinating software that steers the progressive mobility may be located at the sender, 
the receiver or even a third party and was never a critical issue in our experiments. 

As far as the technical restrictions of the programming environments are concerned we where 
always able to find a workaround for our proof of concepts. 

However, in an ambient intelligence environment, build in current programming 
environments and with current tools, we will not be able to implement all the themes we 
explored in this thesis since we will largely depend on the support for strong mobility, 
powerful communication mechanisms between autonomous components and computational 
reflection provided by the system.  

The proposed partitioning of code in this thesis is one of the first steps to the challenging 
problem in order to integrate computers into an ambient intelligence environment. 

6.4 Future Work 
We explored different themes in order to break open a new, complex and difficult research 
domain. We took the first steps in the exploration of possible network latency problems in 
upcoming ambient intelligence environments. 

Even in the limited domain we explored there is still a lot of research to do. In this chapter we 
propose some interesting directions to further complete the explored themes. 

6.4.1 Evaluate the Themes with other Criteria 
During the exploration of the themes we focused mainly on the performance of the migration 
process. There are however other interesting criteria that justify extra research. We mention: 
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• Memory footprint 
• CPU consumption 
• Connection oriented networks 
• Unstable networks 
• Vulnerable networks 
• Development overhead 
• Maintainability of partitioned code 
• Different processor speeds at sender and receiver 
• Pull strategy 
• Progressive mobility of data 
• Practical experience, a field-test 
• Deployment with realistic, reusable methodologies in a professional setting 
• Different programming environments 

o C++ 
o Java 
o .NET 

6.4.2 Other Topics Related to Pre-fetching of Permuted Code  
For the progressive anticipative mobility using pre-fetching of permuted code technique we 
need to develop a more formal approach to decide where to cut the original code and how and 
where to add semaphores or other guarding systems. Just cutting a permuted file in four equal 
parts will not always be sufficient.  

More experiments are necessary to determine the optimal number of parts, but as shown in the 
examples a simple heuristic of cutting the source in four pieces and trying to put the first 
break at the point where the first GUI is built provides already significant results. 

We also need to guarantee that the resulting source code behaves exactly in the same manner 
as the non-permuted version. For example: in multi-threading programs each thread should be 
guarded separately and for a reflective application that reasons over its own source code we 
need to take in account this special dependency. 

Since the progressive anticipative mobility using pre-fetching of permuted code methodology 
proves to be very generic and applicable to all systems where code needs to be moved before 
it is evaluated, cache optimization may become a target of the proposed technique. Cache 
loading could be triggered based on high level abstractions of the original source code. 

We plan also to use the technique for languages that internally represent their code as an 
abstract parse tree. One of the interesting properties of Pico [D’Hondt 2003] is that the 
program is internally represented as an abstract parse tree. Evaluation of the program is then 
evaluated by evaluating the parse tree, i.e., the tree nodes are traversed in the order imposed 
by the original Pico program. The traversal order is called the evaluation sequence. By tracing 
the evaluation sequence of the nodes it would be possible to send the program node by node 
to an other Pico evaluator which can start the evaluation of the nodes as they arrive, producing 
the same advantages as shown in our Smalltalk experiments. 

6.4.3 Pre-fetching of Permuted Code with Multi Node Hopping 
An application can only migrate directly to another host if the physical topology of the 
network allows this. In other cases applications may need to pass trough other hosts before 
they can reach their final destination. If an application is sent in a pre-fetched way the total 
transport time can be reduced significantly. Figure 60 shows the sequence diagram of an pre-
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fetched loaded application that passes trough host 2 before it reaches its final destination host 
3. Host 2 does not have to load the complete application before it is able to start forwarding it 
to the next host. The total invocation time will become approximately the load time of the 
first part multiplied by the number of host it visits. 

 

Figure 60: Multi node hopping 

At a lower level in the network layers, the network layer is concerned with getting packets 
from source to the destination. Getting to the destination may require many hops at 
intermediate routers along the way. For communication in the internet the transport layer 
takes datastreams and breaks them up into datagrams. In theory, datagrams can be up to 64 
KiB each but in practice they are usually not more than 1500 bytes so they fit in one Ethernet 
frame [Tanenbaum 2003]. So if the size of the datagrams is smaller than the size of the 
application parts a similar effect is obtained at a lower level. The fact that the first part of the 
application can be evaluated immediately after arrival remains due the pre-fetching at the 
transport layer.  

Some applications are evaluated on different hosts. In this case the speeding up effect of pre-
fetching the application will increase even more.  

One of the first advertised applications of mobile agents lies within the field of E-commerce. 
Agent technology would help the user when purchasing certain goods [Chavez, 1997]. 
Consider a pricing agent, which helps the user to obtain the lowest possible price for a given 
good. Let us imagine that, as an example, the user wishes to buy an mp3 player. The agent, 
which is located on the user's machine, will request the specifications the player should have, 
e.g. the number of songs it can contain and a maximum price. Once the specifications are 
gathered, the agent will migrate itself towards different known vendors of such players, and at 
each vendors' location request the prices of mp3 players matching the specifications. When all 
vendors have been visited, the agent will return to the user, and at this point it will present the 
information it has gathered.  
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Figure 61 shows a sequence diagram of such a multi node hopping and evaluation application. 
As the figure indicates, the evaluation of the application on host 3 can start immediately after 
the load time of the first part of the application. In this case the loading of part #3 of the 
application to host 1 runs in parallel with the evaluation of part #2 on host 2, the loading of 
part #2 to host3 and the evaluation of part#1 at host3. 

 

Figure 61: Multi node hopping and evaluation 

6.4.4 Architectural Transformations to make Applications Streamable 
Not all existing applications are suited for applying the technique of progressive mobility 
using component streams but we believe that architectural transformations can be carried 
out to make the proposed technique applicable. The proposed transformations should be 
investigated in and implemented in a transparent way. 

There currently exists a trend to make a software system comply with many important non-
functional requirements, such as reusability, extensibility and adaptability, enabling the 
developers to reuse major parts of it. This leads to systems in which a lot of attention is paid 
to the global architecture. How the different classes in a system are combined and the 
specified ways in which their objects interact becomes very important in order to be able to 
easily reuse or extend the system. Proof thereof is the tremendous success of programming 
conventions such as design patterns [Gamma et al. 1995] 

The only way to increase the idle time per component is optimizing the system by 
transforming the architecture but this should not interfere with the architecture as defined and 
viewed by the designer but instead this transformations should occur during a optimization 
step of the compiler. [Tourwé and De Meuter 2001] 

Current compilers are not able to optimize significantly highly flexible systems because they 
cannot automatically infer the intentions of the developer. A compiler does not know, for 
example, why a specific abstraction is introduced, so it cannot eliminate it or introduce other 
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abstractions to produce better code. Therefore, these intentions should be made explicit as in 
[Tourwé and De Meuter 2001] where an annotation language is provided in which these 
intentions can be expressed. In order for the compiler to be able to use this information in a 
useful way, it should incorporate some knowledge on how to optimize a certain intention. 
Again, this knowledge should be provided by the developer and can be expressed in the 
transformation language. 

A lot of user intervention is required for the optimization of a system. We believe this is 
unavoidable however, as systems tend to get more complex and because there are limits to the 
amount of information that can be deduced automatically by dataflow analysis techniques 
[Zima and Chapman 1990]. 

Optimizing architectural transformations for object-oriented languages will resemble 
refactorings [Fowler et al. 1999]. Refactoring is a technique to restructure code in a 
disciplined way. For a long time it was a piece of programmer lore, done with varying degrees 
of discipline by experienced developers, but not passed on in a coherent way. [Fowler et al. 
1999] 

In this context, refactorings should be interpreted as optimizations. The most obvious reason 
to optimize an application for streaming is converting it from a coarse-grained 
componentization to a fine-grained componentization in order to allow components to migrate 
as independently as possible. The ultimate goal of a refactoring process is to restyle the 
application in such a way that the model it describes maps as closely as possible to the model 
of the part of the real world it tries to emulate. In our case where only optimization is pursued 
this is not a concern. Our only goal here is to reduce the size of the components. 

6.4.5 Progressive Mobility using Proactive Migration and evaluation 
This technique is proposed as a new progressive migration scheme that also sends the code 
anticipative to the remote host but, instead of waiting for the computational state update, the 
incomplete application is proactively launched at the receiving host the same moment the 
migration is triggered and the new computational state is fetched at run-time. This could 
potentially allow applications to migrate at zero time. 

Proactive migration avoids the temporary distribution of progressive mobility using 
component streams and may allow the migrating application to run almost continuously at full 
speed. The application might be only stalled during the period the computational difference is 
calculated and transferred. Although this time might be only a few percent of the normal 
migration time there is still some time the application is not available for other processes or 
users. 

Proactive migration and evaluation can go one final step further by eliminating the waiting 
time completely by not only migrating anticipatory the application but also by starting its 
evaluation up proactively. It is a generalization of the special technique dealt with in previous 
section (5.6.4). Proactive migration and evaluation is a technique that needs certain 
precautions to enable an immediate startup of the application in all possible cases. To 
demonstrate the feasibility of the technique we built a simple prototype in Smalltalk. 

6.4.5.1 Proposed Technique  
The technique of proactive migration and evaluation also applies a progressive migration 
scheme. The running application is split in two components: a snapshot of the complete 
application and the delta of the computational states that will be fetched at run time. Basically 
the technique is a five step process: 
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1. Take a snapshot of the running application, i.e. take a copy of the code and its 
computational state, on the sending host. 

2. Copy the snapshot to the receiving host while the original application continues to 
run. 

3. Once the copy has arrived at the receiving host start the application at the receiving 
host. 

4. Halt the original application and define the changes, called the delta, which emerged 
during the copy phase of the snapshot. This delta contains the changes in the 
computational state. 

5. Migrate and apply this delta to the, already running application, in the same spirit as 
code pre-fetching, i.e. fetch the part of the state first that is needed first. 

 
Since the application at the receiving host is always started before the original sending 
application is halted the application could be always available and the migration will happen 
in zero time. A sequence diagram that illustrates this technique is shown in Figure 62. 

 

Figure 62: Proactive migration and evaluation 

6.4.5.2  Assumptions and Restrictions 
Applying the computational state to a running application is far from trivial. The most 
challenging aspect of it is that by applying a new computational state, return addresses of 
running functions or methods can change and in the case of recursive algorithms, the 
complete run-stack with return addresses and intermediate results can become completely 
different. 

We may however put some restrictions on the content of the computational state to make it 
more manageable. 

Basically a computational state contains the current evaluation position (a high level 
equivalent of the program counter, a register in the hardware processor), the values of 
application variables and implicit return addresses of subroutines, possible in a recursive call 
chain. 
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The current evaluation position is used when the application is launched at the receiving host 
and does not need adaptation later on. This leaves us with the values of application variables 
and return addresses of subroutines. 

If we could get rid off the return addresses and restrict the computational state to the set of 
values of the application variables this would make it much easier to adapt it at run-time.  

There might be a way to get rid off implicit return addresses in a computational state. You 
may eliminate the administration of return addresses by just not going anywhere. 

Implicit stack operations could be avoided by adapting the algorithms so that the data and 
return address stack is made explicit in the application. In practice this implies that in the 
application an explicit stack structure will be declared and that the application itself becomes 
responsible for maintaining its state (loop counters and intermediate results) on this stack.  

Calls to subroutines could be avoided by applying code inlining to the complete application. 
Code inlining is an optimization technique to speedup code just by getting rid of the return 
address management. Inlined code tends to grow bigger which may be not ideal for mobile 
applications. In our setting however, where static code is migrated in advance this may not be 
such a disadvantage. The equivalent of code inlining in object oriented programming 
languages is object inlining [Andrew and Chien 2000 ].  

If both techniques, avoiding of implicit stack operations and code inlining, are applied, our 
computational state is reduced to the set of instance variables of the main application. 

6.4.5.3 Handling Semaphores 
Even when the computational state of an application is reduced to its instance variables they 
should be handled with care. When the application is started proactively before its state is 
adapted one should take care not to rely on values that are possibly changed at the sender’s 
version of the program. The safest way is to guard all the variables by semaphores, in the 
same spirit as the code parts were guarded in the pre-fetched code technique, and suspend 
evaluation when one of them is accessed.  

If a variable is accessed for a write instruction then it doesn’t matter if the original is changed 
or not since the result is destroyed anyhow. This may allow us to relax the guarding policy 
somewhat so that only read instructions (get methods) need to be guarded.  

If a variable is updated by the sending host then the semaphore can be inactivated at the same 
time. The semaphore can also be physical removed now or this task can be delegated to 
dedicated garbage collecting agents. 

When the migration is triggered at the sending host and before the computational state 
changes are transferred a kind of change summary could be send in advance as a real avant-
première. This summary will allow the receiving host to optimize its semaphore settings by 
guarding only read instructions on variables that where not changed at the sending host since 
the proactive migration. 

Proactive migration and evaluation can only be deployed successfully if the sequence of 
adding the new computational state is chosen in such a way that the running application is not 
delayed. Developing methods to permute the presentation of the computational state so that it 
fits seamlessly in the running receiver may build further on the profiling techniques applied 
for progressive anticipative mobility using pre-fetching of permuted code. The development 
of algorithms to automatically inline objects and to avoid implicit stack operations will allow 
a simplification of the presentation of the computational state. This will in turn facilitate 
computational state adaptation at runtime. Also these proposed transformations should be 
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implemented in a transparent way so that they do not interfere with the architecture as defined 
and viewed by the designer but instead as the architectural transformations proposed for 
progressive mobility using component streams, these transformations should occur during an 
optimization step of the compiler. 

The result could be that, providing that the delta is applied in the ideal sequence, the 
migration can take place in no time. The application remains available at all time and the 
perceived network latency is virtually reduced to zero. 

6.4.6 Aspects 
The dynamic behavior of the different proposed techniques is clearly identifiable but scattered 
over many places in the software, cross-cutting the different software components. Aspect 
Oriented Software Design is an upcoming software engineering technique that promises the 
possibility to describe aspects of the proposed techniques in an insulated modularized 
component. Aspect-oriented programming (AOP) is based on the idea that computer systems 
are better programmed by separately specifying the various concerns of a system and some 
description of their relationships, and then relying an mechanisms in the underlying AOP 
environment to weave or compose them together into a coherent program [Elrad et al. 2001]. 

The introducing of distribution and migration generates cross-cutting concerns to the system 
as there are: security, encryption and authentication of the code, buffering, proxy and routing 
concerns, distributed transaction issues and the management of different possible modes of 
transparency: 

• Location transparent 

User can not tell where resources are located 

• Migration transparent 

Resources can move at will without changing their names 

• Replication transparent 

User cannot tell how many copies exist 

• Concurrency transparent 

Multiple users can share resources automatically 

• Parallelism transparent  

Activities can happen in parallel without users knowing 

In the different progressive migration techniques presented in this dissertation we distinguish 
two kinds of source code where an aspect oriented approach might be appropriate, the source 
code of the application to migrate (basic code) and the source code of the supervising system 
that guides the migration (supervising code). For each progressive migration technique we 
identify some crosscutting concerns that might be aggregated in aspects. 

• Progressive Anticipative Mobility using Pre-fetching of Permuted Code 

o Basic code 

Instrumentation of the source code with extra code that logs the time of 
invocation of each method. 

Instrumentation of the source code with extra code in order to delimit the code 
needed to build the GUI. 
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Synchronization code (semaphores). 

Code for removal of synchronization code after first use. 

o Supervising code 

Determines the number of files to create and therefore the join points in the 
basic code, those places where aspect code interacts with the rest of the 
system. 

• Progressive Mobility using Component Streams 

o Basic code 

In a self triggered strategy each component need to contain the same block of 
code to decide when and how to migrate itself. 

o Supervising code 

Determines the size of the components and therefore the join points in the 
basic code. 

• Progressive Anticipative Mobility using Proactive Migration 

o Basic code 

Instrumentation of the source code with extra code that logs the variations in 
the computational state to be able to determine possible proactive migration 
times and to detect possible large delta’s in the computational state. 

o Supervising code 

Addition of dynamically computational state monitoring code to the basic code 
during its evaluation. 

6.4.7 New Research Projects 
One of the most satisfying results of this research is that it will be embedded as a topic in new 
upcoming research projects that plan to deepen certain directions and/or will embed the 
techniques in a bigger framework. 

A new research project @Media (Advanced Media) is approved as a successor of the MPEG-
project and is aimed at developing prototypes and basic research. This new e-VRT research 
project, in close cooperation with our national radio and television broadcast company has 
started end 2003. 

This project is part of the effort to develop a Content Management System to manage new and 
existing content material (images, sound, graphic content, games, interactive scenarios and is 
situated around mobile code and MPEG-4 [Puri and Eleftheriadis 1998] environments. This 
setting will give us the real live test environment to validate our approach further on different 
platforms and will allow us to get more detailed results.  The project has not only the ambition 
to manage and support multi channel publications of data but also behavior (i.e. code). If 
users should be able to interact with certain scenes an application to support this interaction 
need to be available at the users platform as soon as possible. This is where our proposed 
techniques can possible play an important role. 

Experiments with progressive anticipative mobility using pre-fetching of permuted code, 
progressive mobility using component streams, proactive migration and proactive migration 
and evaluation will be performed to migrate the code needed for interactive television to the 
clients. 
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Also a strategic basic research project CoDAMoS (Context-Driven Adaptation of Mobile 
Services) is proposed and is aimed at solving a set of key challenges in the area of ambient 
intelligence where personal devices will form an extension of each user’s environment, 
running mobile services adapted to the user and his context. 

One of the work packages includes: Progressive mobility. The objective is to establish a 
framework for progressive mobility, i.e. a feature of mobile code whereby execution and 
migration are interleaved in such a way that network latency is minimized. Our results will be 
taken as a starting point.  

In a first stage, a high-level virtual machine developed in another task will be used to explore 
the various concerns of progressive mobility: partial ordering of code fragments using 
symbolic interpretation (how is migration sequenced?), pushing or pulling code fragments 
(who takes the initiative for migration?), evaluation overlap (destination evaluation start 
before source evaluation stop), etc. In a second stage, a pragmatic subset of the results 
obtained with the high-level virtual machine will be applied to a Java context, using aspect 
technology.
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