
SREVINU

ITEIT

EJI
R

V

BRUS
S

E
L

ECNIV
RE T EN

E
B

R
A

S

AI

T
N

EI
C

S

Vrije Universiteit Brussel
Laboratorium voor Programmeerkunde

Faculteit Wetenschappen - Vakgroep Informatica

Move Considered Harmful:
A Language Design Approach to

Mobility and Distribution for Open

Networks

Wolfgang De Meuter

Proefschrift ingediend met het oog op het behalen van de graad van
Doctor in de Wetenschappen

Promotor: Prof. Theo D’Hondt - Vrije Universiteit Brussel
Co-Promotor: Prof. Roel Wuyts - Université Libre de Bruxelles

A language that doesn’t affect the way you think about programming, is not
worth knowing (Alan Perlis, 1982)

i

ii

Samenvatting (Summary in Dutch)
Het onderzoek voorgesteld in dit proefschrift handelt in de context van zoge-

noemde “Ambient Intelligence”, een recent gepostuleerde visie die voorziet dat
mensen in de nabije toekomst omringd zullen zijn door een open Personal Area
Network bestaande uit draagbare computers, GSM’s, muziekspelers, domot-
icasystemen, PDA’s, wagens met boordcomputer, huishoudapparatuur, enz. De
basisdoelstelling is dan van al deze toestelletjes vlot te laten samenwerken op
alle niveau’s, gaande van technische netwerkinfrastructuur tot en met de log-
ica die huist in de toepassingen die erop draaien. Ons onderzoek gaat uit van
de veronderstelling dat dit zeer moeilijk, zoniet onmogelijk, zal zijn m.b.v. de
huidige generatie van gangbare programmeertalen, en dat een nieuwe stroming
van programmeertalen nodig zal zijn die speciale voorzieningen hebben om met
de dynamiciteit van zulke netwerken om te gaan.

In de plaats van het kind met het badwater weg te gooien, zijn we vertrokken
van het object-georiënteerde model aangezien de notie van ingekapselde objecten
haar nut in de context van distributie reeds bewezen heeft. We analyseren
eerst welke de gevolgen zijn van de dynamiciteit en openheid van de bedoelde
netwerken op de toepasbaarheid van gangbare klassegebaseerde en prototypege-
baseerde object-georiënteerde talen. Onze analyse toont dat beide taalfamilies
totaal ontoereikend zijn. Het dooddoend argument tegen klassegebaseerde talen
is dat hun klassen een verborgen relatie spannen tussen de objecten die ze gener-
eren. Deze relatie geeft aanleiding tot immense problemen als de objecten mobiel
worden. Klassieke prototypegebaseerde talen, langs de andere kant, hebben te
lijden onder inherente veiligheidsproblemen. Het probleem is dat ze verschil-
lende taaloperatoren aanbieden die “meer” met objecten doen dan het sturen
van berichten (bvb. kloning en overerving), maar dat deze operatoren dan ook
meer vrijgeven van de interne (ingekapselde) staat van objecten. Dit is extreem
problematisch voor de veiligheid in de context van open netwerken die bestaan
uit mobiele gebruikers en dito software.

We stellen een “derde weg” voor welke een doorsnede is van klassegebaseerde
en prototypegebaseerde talen in de zin dat het vele eigenschappen van klassen
overneemt zonder ze te introduceren. Ons model is louter gebaseerd op objecten
en berichten, een eigenschap die we extreme inkapseling noemen. Alhoewel men
zou kunnen besluiten dat dit enkel tot oninteressante talen kan leiden, tonen we
aan dat dit niet noodzakelijk het geval is. In ons model kunnen objecten speciale
soorten van methoden bevatten, wier aanroep resulteert in het uitvoeren van de
methode nadat een primaire actie zoals klonen, uitbreiden of verplaatsen over
een netwerk werd ondernomen. Op deze manier kunnen “ordinary methods”,
“cloning methods”, “view methods”, “mixin methods”, “move methods” en
“visit methods” objecten de mogelijkheid geven tot het creëeren van kopies en
uitbreidingen van zichzelf, verplaatsen van zichzelf, enz. Dit model geeft toegang
tot zeer krachtige prototypegebaseerde technieken zonder veiligheidsproblemen.
Ons onderzoek toont vervolgens eveneens aan dat het model makkelijk in lijn is
te brengen met concurrent, gedistribueerd en mobiel programmeren.

Ons concurrentiemodel en distributiemodel is gebaseerd op actieve objecten

iii

die met mekaar communiceren door het asynchroon versturen van berichten. De
idee is dat berichten die bij objecten aankomen meteen in de wachtrij worden
geplaatst en dat objecten slechts één bericht tegelijk kunnen verwerken. Moge-
lijke synchronisatie tussen zender en ontvanger van een bericht wordt geregeld
door een systeem van transparante “promises”, die dienen als plaatsvervanger
voor de waarde die de ontvanger uiteindelijk zal opleveren. Zowel de zender
als de ontvanger zetten hun uitvoering concurrent verder. Pas als de zender de
waarde van de plaatsvervanger nodig heeft, zal hij wachten op de ontvanger.

Dit model wordt vervolgens uitgebreid met object-gebaseerde overerving.
De idee is dat een speciaal type van methoden (“active view methods”) ac-
tieve objecten kunnen genereren die het object waarin ze ondergebracht zijn
uitvoeren. Het resultaat is dan een hiërarchie van actieve objecten. Om geen
concurrentieproblemen te krijgen werd de zichtbaarheid van afstammelingen
echter herleid tot nul. Speciale zichtbaarheidsfuncties laten echter toe dat de
vader en zijn afstammelingen op gecontroleerde wijze code in mekaars context
kunnen uitvoeren, en dit op atomaire wijze. Dat laatste garandeert dat er geen
twee afstammelingen tegelijk met gedeelde staat kunnen werken zodat er geen
consistentieproblemen opduiken.

Het model is ook de blauwdruk voor een distributiemodel vermits actieve ob-
jecten zich op verschillende machines kunnen bevinden, en geografisch verpreide
objecten berichten met mekaar kunnen uitwisselen. Bovendien kunnen, door
het feit dat afstammelingen gegenereerd worden door methoden, deze laatsten
er voor zorgen dat de afstammeling terecht komt op de machine vanwaaruit die
methode werd geactiveerd. Dit laat ons toe om object-hierarchieën te bouwen
waarbij objecten en hun vader zich op verschillende toestellen kunnen bevinden.
Dit model is een veralgemening van de proxy-idee die meestal in de context van
distributie gebruikt wordt: in ons model zijn proxies niets anders dan lokale afs-
tammelingen van objecten op een ander toestel. Maar ons model is expressiever
aangezien proxies methoden lokaal kunnen overschrijven. Standaard proxies
delegeren alles over het netwerk. Inderdaad, men kan een lokale afstammeling
van een object op een andere machine zien als een applet die verbonden is met
de server die het afgeleverd heeft. We noemen ze “geconnecteerde applets”.

Tenslotte hebben we dit model verder uitgebreid met sterke mobiliteit. Ons
mobiliteitsmechanisme wordt naar voor geschoven als een eerste voorbeeld van
wat we gestructureerde mobiliteit noemen. Dit is de tegenpool van de huidige
mobiliteitsmechanismen die allen gebaseerd zijn op een move instructie die een
object en een locatie verwacht en dat object boudweg op die locatie zal zetten.
Ons pleidooi schakelt deze move instructie gelijk met de goto instructie uit de
jaren zestig aangezien er met move geen zinnig woord valt af te leiden over de
uiteindelijke locatie van objecten in het netwerk. Vandaar de nood aan gestruc-
tureerde mobiliteit. Ons voorbeeld hiervan bestaat uit zogenoemde “move meth-
ods”, een nieuw type van methoden die ervoor zorgen dat de uitvoerder ervan
verplaatst wordt over het netwerk. De idee is dat de ontvanger van een bericht
verplaatst wordt naar de locatie van de zender. We tonen het nut van dit mech-
anisme aan door de distillatie van een reeks elegante programmeeridiomen die
hoog niveau mobiliteitspatronen belichamen.

iv

Abstract
Our research context is Ambient Intelligence, a research vision that postu-

lates that people will soon be surrounded by an open Personal Area Network
consisting of laptops, mobile phones, music players, household equipment, do-
motic units, PDAs, cars etc. The idea is to make the devices cooperate smoothly
at all levels,varying from the lower technical levels (i.e., networks) to the higher
logical levels (i.e., applications). Our research starts from the conjecture that
it will be hard, if not impossible to accomplish this using current mainstream
languages. A new generation of programming languages will be needed that
have special features to deal with the dynamics of such networks.

Instead of throwing away the baby with the bath water, we started out
from object-orientation because the notions of encapsulated objects have al-
ready shown to be beneficial for distributed programming. The consequences of
the dynamics and openness of the target networks are analyzed for both class-
based and prototype-based languages. Our analysis reveals that none of these
language families are adequate for application in our context. A knockdown ar-
gument for class-based languages is that classes impose an implicit relationship
between the objects they create. This relationship poses enormous problems for
mobile objects and mobile devices. Classical prototype-based languages on the
other hand suffer from inherent security problems because they feature several
operators on objects that do “more” with objects than just message passing
(such as inheritance and cloning). They therefore also reveal more than just the
interface of the objects. This is extremely problematic in the context of open
networks with mobile users and computations because of security reasons.

We present a new “third paradigm” of object-orientation that is shown to
intersect class-based and prototype-based languages in the sense that it adopts
class-based characteristics without introducing classes. The model is based on
objects and message passing alone, a property we call extreme encapsulation.
Extremely encapsulated objects can contain special types of methods whose
body is run after accomplishing some primary task such as cloning, extending
or moving the object. This way, upon invoking “ordinary methods”, “cloning
methods”, “view methods”, “mixin methods”, “move methods” and “visit meth-
ods” objects can spawn clones and extensions of themselves, move themselves
and so on. This model allows one to have most of the powerful prototype-
based features without suffering from their security drawbacks. Our research
shows how this strictly encapsulated object model aligns well with concurrency,
distribution and strong mobility.

The concurrency and distribution model is based on active objects that com-
municate through asynchronous message passing. Messages sent to an object
are immediately queued and objects can process only one request at a time. For
possible synchronization of the sender and the receiver, a transparent promise
is returned that is a placeholder for a potential return value of the method. The
sender and the receiver can concurrently continue their execution. However,
upon trying to do something with the value represented by the promise, the
sender will be blocked until the receiver is ready.

v

This model of active objects is subsequently extended with object inheri-
tance. A special type of methods (“active view methods”) can spawn active
objects that extend the active object in which they execute. This results in
an active object hierarchy. The philosophy of the model is to use shared par-
ents to contain the state shared by two or more active objects. To make this
practicable, the descendant objects cannot — in contrast to common practice
— automatically and freely access the slots of their parent object. Scoping
is strictly restricted by active object boundaries. Nevertheless, the super-this
relationship can be used in a beneficial way: special scope functions allow de-
scendants to execute code atomically in the context of their parent, rendering
the scoping between a descendant and its parent highly controlled. Because
the scoping functions guarantee atomicity, managing shared data without race
conditions in a very simple way.

This concurrency model is also the blueprint for a simple distribution model
because active objects can reside on different machines. Distribution trans-
parency allows for remote method invocation by means of asynchronous mes-
sage passing. Furthermore, because descendants are always created in response
of a message send, the special methods that spawn descendants can create these
descendants on the machine from where that message was sent. This allows
for networked delegation structures because an active object and its parent can
reside on a different machine. This hierarchical model of distribution is actu-
ally a generalisation of the proxy-notion that is heavily used in conventional
approaches to distribution: in our model, proxies are nothing but networked
descendants of objects that do not override or add any method, but forward
everything (because of the networked delegation mechanism) to the object they
represent. Our model is more expressive because proxies can locally override
some of the slots. The model can also be seen as a generalisation of the ap-
plet model. A local object is created by sending a message to a remote object
which spawns a descendant object on the machine on which the message was
sent. This new object can be seen as a local applet that extends the server that
spawned it. We call such applets “connected applets”.

Finally the model is extended with strong mobility. This strong mobility
mechanism is argued to be a first proposal of what we call structured mobil-
ity. Structured mobility is the antidote for today’s strong mobility mechanisms
which are all based on a move instruction that expects an object and a location
and that puts the object on that location. We argue that this move instruc-
tion has practically the same implications as the goto instruction in the sixties.
Analogously to the arguments against goto, we develop an argument against
move and formulate the need for structural mobility mechanisms in order for
human readers to be able to track the location of objects. Our model presents
a first example of such a mechanism: by adding yet another type of methods
(called “move methods”) objects that receive a message can be moved around.
The idea is that the object is moved towards the machine of the object that
sent the message corresponding to a move method. We show the adequacy of
the model by presenting a number of elegant programming idioms that allow
for the construction of some extremely high level mobility patterns.

vi

Acknowledgements
My deepest gratitude goes to my advisor Theo D’Hondt. Establishing an

exhaustive list of what I have learnt from him would take several pages. I have
deep respect for the way he manages the Programming Technology Lab and for
the way he inspires young people to do research in areas that are off the beaten
track. I thank him for his belief in me and for supporting me in all scientific
capers I have cut during the past decade. Thanks Theo!

My co-promotor Roel Wuyts joined this project much later but still provided
me with valuable comments. He pushed me to reshuffle the structure of the
dissertation significantly which, in the end, improved the quality of the text
drastically. Roel spent a lot of time meticulously proof-reading everything.

I thank the members of my jury, Prof. Eric Jul, Prof. Pierre Cointe, Prof.
Dirk Vermeir, Prof. Viviane Jonckers and Prof. Bernard Manderick for com-
ments on the first version of the text.

Jessie Dedecker, Tom Van Cutsem and Stijn Mostinckx were my partners
in crime during the last year and have often played the role of a mirror upon
which I could reflect my ideas. I look forward to continue working with them in
the future. An exceptionally big thank you goes to Jessie for helping me with
the implementation of my exotic language features.

I thank the other members of our lab for supporting me in the final stressful
period and for enduring me at our weekly research meetings, especially at those
moments when I knew that I was the only one in the room who was right
(again!). They all deserve a thank you: Johan Brichau, Thomas Cleenewerck,
Linda Dasseville, Dirk Deridder, Christian Devalez, Peter Ebraert, Johan Fabry,
Sofie Goderis, Kris Gybels, Andy Kellens, Isabel Michiels, Adriaan Peeters,
Lucas Stoops, Dirk Van Deun and Ellen Van Paesschen.

Special thanks to Dirk Deridder, Isabel Michiels and Linda Dasseville with-
out whom I would have missed several paychecks. They managed the research
projects on which we have been working in the past years. I also want to men-
tion our secretaries Lydie Seghers, Brigitte Beyens and Simonne De Schrijver
for taking care of my administration and for a friendly chat every now and then.

The lab’s “old” generation, Carine Lucas, Wim Lybaert and Patrick Steyaert
in particular, have shown me that participating in academic life is more than
publishing papers. They have introduced me in the enigmatic world of scientific
project management, industrial contacts and research proposal writing.

My friends Ellie D’Hondt, Maja D’Hondt, Sven Casteleyn, Johan Brepoels,
Peter Verbrugghe and Yann Leus who were there for me during the toughest
weeks of the writing period, entertaining me with both virtual and real-life chat,
and taking me for beers whenever I got in overdrive and needed a break. Special
thanks to Maja for transporting that bulk of breakfast cereals to my house that
prevented me from starving in the final writing phase.

Last but not least, I am grateful to my mother Anni Nicol. Without her
devotion and determination I would never have finished high school. In our
socio-economic situation starting and completing university studies was all but
trivial. I owe all of my current professional status to her. Thanks mum!

vii

viii

Contents

1 Introduction 1
1.1 Research Context & Motivation 3

1.1.1 A Futuristic Scenario: The Kitchen without Buttons . . . 3
1.1.2 PAN - Personal Area Networks 4
1.1.3 Why “Java” is Not Enough 5

1.2 Language Design Research Criteria 7
1.2.1 Measuring Expressivity 7
1.2.2 Language Design vs. Language Implementation 7
1.2.3 The MIT Approach vs. New Jersey Approach 8
1.2.4 Occam’s Razor . 10

1.3 Problem Statements . 10
1.4 Contributions . 12
1.5 Limitations . 14
1.6 Roadmap . 14

2 Prototype-based Languages 17
2.1 Introduction . 17
2.2 History Of Prototype-based Languages 18
2.3 Prototype-based Languages in Brief 20
2.4 Prototype-based Languages: Case Studies 22

2.4.1 A Case for the Cases . 22
2.4.2 Case 1: Self . 23
2.4.3 Case 2: NewtonScript . 28
2.4.4 Case 3: Kevo . 33
2.4.5 Conclusion: “is-a” vs. Reentrancy 37

2.5 Epilogue: The Treaty Of Orlando 38
2.6 Conclusion . 40

3 Classes, Prototypes and Open Networks 41
3.1 Introduction . 41
3.2 Evaluating Classes for Open Networks 42

3.2.1 Inconveniences Of Classes for Open Networks 43
3.2.2 Classes: Fundamental Problems in Open Networks 44

3.3 Prototypes in Software-Engineering 46

ix

3.3.1 Advantages of Prototypes in SE 46
3.3.2 Problems with Prototypes in Software Engineering 49

3.4 A Language theoretical Point of View 51
3.4.1 The Cook Semantics of CBL 51
3.4.2 A Semantics of PBL . 54
3.4.3 Encapsulation vs. Inheritance 55
3.4.4 Extreme Encapsulation: Objects + Messages 56

3.5 The Fundamental Problem of Prototypes 57
3.6 Evaluating Prototypes for Open Networks 58

3.6.1 Issues in Security . 58
3.6.2 Capabilities, Security and the Granovetter Operator . . . 60
3.6.3 The Security Performance of Prototypes 61

3.7 Conclusion . 63

4 Intersecting Classes and Prototypes: The Agora Family 65
4.1 Introduction . 65
4.2 Extreme Encapsulation Denotationally 66
4.3 The Agora Model . 70

4.3.1 Agora: A Language Family 71
4.3.2 A Concrete Agora Scion: Some Reifiers 72
4.3.3 Local and Public Attributes 75
4.3.4 The Semantics of Agora Expressions 76

4.4 The Power of Attributes . 80
4.5 Adding Reflection: Language Symbiosis 82

4.5.1 Reification of Implementation Objects 82
4.5.2 The Evaluator Reconsidered 83
4.5.3 Absorption of Ex-Nihilo Objects 84
4.5.4 The Agora MOP: Extreme Encapsulation 86

4.6 Agora Model: Evaluation and Epilog 86
4.6.1 General Conclusion . 86
4.6.2 Extension “from the outside” 87
4.6.3 Reflection Protection . 88
4.6.4 Agora: Intersecting Classes and Prototypes 88
4.6.5 The Treaty of Orlando Revisited 90

4.7 Conclusion . 92

5 Pic%: A Contemporary Agora Descendant 93
5.1 Introduction . 93
5.2 Problems with Agora . 94
5.3 Pico: the History and Rationale of Pic% 96
5.4 The Acting Forces . 97
5.5 Pico: The Original Language . 99

5.5.1 The Pico 3x4 Syntax System 99
5.5.2 The Apply (@) operator 102
5.5.3 Pico’s Parameter Passing Semantics 103
5.5.4 First Class Dictionaries and Qualification 105

x

5.5.5 Closing Pico’s Syntax . 107
5.5.6 Meta-programming and Reflection in Pico 108
5.5.7 Continuations . 109

5.6 Extending Pico without Special Forms 110
5.6.1 Control Structures . 110
5.6.2 A Scheme like cond . 111
5.6.3 An Exception Handling System 112

5.7 Pico: Evaluation and Epilog . 113
5.8 Pic%: A Lightweight Agora Scion 114

5.8.1 Problems with Adding Cloning to Pico 114
5.8.2 The Pic% Object Model 115
5.8.3 Pic% Scoping and Closure Creation 116
5.8.4 First Class Methods in Pic% 117
5.8.5 Adding Agora’s Features to Pic% 118

5.9 Pic%: Evaluation and Epilog . 120
5.9.1 Agora Problems . 120
5.9.2 First Class Methods and Extreme Encapsulation 121
5.9.3 Pic%: Reflection Protection 122
5.9.4 The Re-Entrancy Problem Revisited 123
5.9.5 Some Concepts are Inherently Abstract 124

5.10 Conclusion . 125

6 Pic% Idioms and Techniques 127
6.1 Introduction . 127
6.2 Pic% at work: Design Patterns 128
6.3 Overriding Views and Mixins: Factories 128
6.4 Cloning with Cloning Methods 129
6.5 The Proxy Pattern . 130
6.6 True Singletons: Destructive Constructors 131
6.7 The Iterator Pattern . 132
6.8 The MVC Pattern . 133
6.9 First Class Methods and Connectors 134
6.10 Listeners are First Class Methods 135
6.11 Conclusions . 137

7 OOP Concurrency and Distribution for Open Networks 139
7.1 Introduction . 139
7.2 Concurrency in Object-Orientation 141

7.2.1 Reasons for Concurrency 141
7.2.2 Issues in Concurrency . 142
7.2.3 Schools of OO Concurrency 142

7.3 Design Issues in Concurrent OOP 143
7.3.1 Axis #1: Threads vs. Active Objects 144
7.3.2 Axis #2: Synchronization and Message Passing 144
7.3.3 Axis #3: Objects as Unit of Distribution 146
7.3.4 Requirements of Concurrency in Open Networks 146

xi

7.3.5 The Actor Based Concurrent Language (ABCL) 148
7.4 Distributed Objects . 150

7.4.1 Problems with the Middleware Approach 150
7.4.2 Advanced Distribution Issues 156

7.5 Object-Oriented Distributed Languages 157
7.5.1 Emerald . 157
7.5.2 Argus . 159
7.5.3 Obliq . 160

7.6 Evaluation And Epilog: Open Networks 162
7.6.1 Emerald . 162
7.6.2 ABCL . 163
7.6.3 Argus . 163
7.6.4 Obliq . 164

7.7 Conclusion . 164

8 ChitChat: Delegation-Based Concurrency & Distribution 167
8.1 Introduction . 167
8.2 ChitChat in a Nutshell . 169
8.3 Active Objects & Synchronization 170

8.3.1 Behavioural Synchronization in ChitChat 171
8.3.2 Active Closures and First Class Methods 173

8.4 Pic% Object Model and Scoping Revisited 173
8.4.1 Return to Lexical Scope 174
8.4.2 Internal Object Scope: Frames 6= Objects 174
8.4.3 Scope Functions and Parent Sharing 175
8.4.4 An Experiment: The Dining Philosophers 176
8.4.5 Deadlock and Parent Sharing 177

8.5 Active vs. Passive Objects . 177
8.5.1 General Object Structure 177
8.5.2 Distribution Driven Hierarchy Restrictions 178
8.5.3 Delegation Driven Hierarchy Restrictions 179
8.5.4 Method Lookup and Method Execution Context 180
8.5.5 Wrap Up: ChitChat’s Semantic Rules 181

8.6 Distribution . 183
8.6.1 ’First’ Object Referencing: Channels 183
8.6.2 The Power of Attributes, Revisited 184
8.6.3 Distributed Object Creation 184
8.6.4 Arguments and Return Values 185
8.6.5 An Experiment: The Chat 185
8.6.6 Another Example: Remote Remote Controls 187

8.7 ChitChat: Evaluation and Epilog 187
8.7.1 Networked Method Lookup Foolish? 187
8.7.2 Distributed Scoping . 188
8.7.3 Briot’s Analysis . 188
8.7.4 Situating the Model . 189
8.7.5 (Mutual) Extreme Encapsulation & Security 190

xii

8.7.6 Rough Edges . 191
8.7.7 Implementation . 192

8.8 Conclusion . 192

9 Mobility in ChitChat: “Move” Considered Harmful 195
9.1 Introduction . 195
9.2 Mobility: Definitions and Taxonomy 196

9.2.1 The Computational Context 196
9.2.2 Kinds of Mobility . 197
9.2.3 A Case Against Semi-Strong Mobility 198
9.2.4 A Case Against Full Mobility 199
9.2.5 Conclusion . 199

9.3 Why Strong Mobility . 200
9.3.1 Intentional Strong Mobility 200
9.3.2 Distribution-Caused Mobility 201
9.3.3 Mobility from Mobile Computing 202

9.4 The Applicative Approach . 202
9.5 OOP Languages for Strong Mobility 204

9.5.1 TeleScript . 205
9.5.2 Obliq . 206
9.5.3 Emerald . 206
9.5.4 Borg . 207
9.5.5 Other Mobile Languages 208

9.6 Issues in Mobile Language Design 208
9.6.1 Push, Pull and Agent Technology 208
9.6.2 Classes vs. Prototypes . 209
9.6.3 Security Issues: Resource Rebinding 209
9.6.4 “Move” Considered Harmful 210

9.7 ChitChat Mobility . 214
9.7.1 Design Space Parameters 215
9.7.2 Move Methods . 215
9.7.3 Design Space Parameters, a Second Time Around 220
9.7.4 Experiment: The Mobile Chat Server 221
9.7.5 A Variant: Visit Methods 223

9.8 Mobile Programming Patterns 223
9.8.1 Itinerary . 223
9.8.2 Master-Slave . 224
9.8.3 Fixing Objects (a.k.a. “Stationary”) 226
9.8.4 Local Algorithm Execution 226
9.8.5 Swarms . 227

9.9 Evaluation and Epilog . 231
9.9.1 Rough Edges . 231
9.9.2 Security and Extreme Encapsulation 233
9.9.3 Us . 234
9.9.4 Mobility Models . 234
9.9.5 Implementation . 235

xiii

9.10 Conclusion . 235

10 Conclusions, Related and Future Work 237
10.1 Summary and Contributions . 237

10.1.1 Contributions to the OO Field 237
10.1.2 Technical Contributions 238
10.1.3 The Fundamental Problems, Continued 240

10.2 Related Work . 241
10.2.1 dSelf . 242
10.2.2 IO . 242
10.2.3 E . 242

10.3 Shortcomings and Future Work 243
10.3.1 Shortcomings and Design Mistakes 244
10.3.2 Future Work . 245

A Pic% Semantics 247
A.1 Values and Abstract Grammar 248
A.2 Dictionary Structures . 249

A.2.1 Tables . 250
A.2.2 Closure Creation . 250
A.2.3 Argument Binding . 250
A.2.4 Cloning . 250

A.3 Evaluation Rules . 250
A.4 Do (= apply) and Send . 251

B ChitChat Semantics 253
B.1 Abstract Grammar and Values 254
B.2 Local and Remote Active Objects 255
B.3 Tables . 256
B.4 Cloning and Remote Cloning . 256
B.5 Network Referring . 257
B.6 Move Semantics . 258
B.7 Dictionary Structures . 258
B.8 Evaluation Rules . 260
B.9 Closures and Bindings . 261
B.10 Apply and Send . 261

B.10.1 Message Sending . 261
B.10.2 Passive Closure Invocation 261
B.10.3 Active Closure Invocation (Pre-Queue) 262
B.10.4 Active Method Running (Post-Queue-Processing) 263
B.10.5 natives Invocation . 263

Index 265

Bibliography 267

xiv

List of Figures

1.1 The Language Tree of the Dissertation 13

2.1 Delegation vs. Messsage Forwarding 21
2.2 A Point Traits Illustrated . 27
2.3 The Treaty of Orlando Schematically 39

3.1 Language Values and Language Operators 58
3.2 Miller’s Granovetter Operator . 61

4.1 Mixin methods Illustrated . 68
4.2 Agora Message Expressions . 72
4.3 Frequently Used Reifiers . 75
4.4 Agora Abstract Syntax . 78
4.5 Agora Object’s Structure . 78
4.6 Agora Message Passing Operator 79
4.7 Evaluation Rules (part 1) . 80
4.8 Agora Attribute Invocation . 81
4.9 Agora Message Passing Operator for Upped Primitives ou 83
4.10 Evaluation Rules (part 2) . 83
4.11 Example of Evaluating x VARIABLE:3 84
4.12 Message Passing For Downed Agora Objects 85
4.13 The Implementation of Up and Down 85
4.14 The Treaty of Orlando Revisited 92

5.1 The Language Tree in this Dissertation 94
5.2 Pico Objects As First Class Dictionaries 107
5.3 Pic% Object Structure . 116

7.1 Synchronization Schemes Schematically 145

8.1 ChitChat Active Object . 171
8.2 ChitChat Active Scope Functions 175
8.3 ChitChat Active Object Structure 178
8.4 ChitChat Object Hierarchies . 180

9.1 Types of Mobility . 197

xv

9.2 Unexpected Sources of Strong Mobility 202
9.3 Move Considered Harmful . 212
9.4 Move Methods in Action . 216
9.5 The Mobile Chat Server . 221
9.6 The Master-Slave Pattern . 224
9.7 Star-Shaped Pattern . 227

xvi

List of Tables

5.1 Pico Basic Syntax . 100
5.2 Pico Qualification Syntax . 106
5.3 Pico Syntax Closure . 108
5.4 Pic% Complete Syntax . 120

8.1 Message Passing and the Meaning of Context Functions 181

xvii

xviii

Chapter 1

Introduction

The development of new programming languages has arguably been one of the
most driving factors in the progress made in six decades of computer science.
Algorithms, patterns, software engineering principles and methodologies devel-
oped in over half a century have very often seen a new impulse right after
the introduction of a new language. New languages have helped programmers
express solutions in more abstract ways and have lifted academic solutions to
levels that generated a need for technological, methodological and managerial
support. But how and why do programming languages progress? Why do peo-
ple and organisations decide to move from their familiar programming language
to a new one? In other words, what are the parameters that determine the
demand/supply curve that governs the “programming language market”? In
his essay on Post-Javaism [Bla04], Andrew Black tries to come up with an an-
swer by drawing a parallel between programming languages and 20th century
architectural styles. His conclusion is that there are four factors that make or
break new languages: technology, economics, function and fashion.

Unfortunately, there is not much computer scientists can change to the way
economics and fashion determine the (non) acceptance of new languages. The
software industry and tool supplier industry (e.g. the compiler industry) are
certainly among the most important factors in the spread of new languages.
Practically all “major” programming languages have been designed or at least
heavily supported by corporate organisations: from Fortran to Java via Basic,
Cobol, C and C++, all have been heavily supported by corporations such as Sun,
AT&T, IBM and Microsoft. Some of these languages were indeed designed by
academia but it is certainly not their academic quality (or lack thereof) that has
been the reason for their worldwide acceptance. This economy factor, together
with the fashion factor is something individual scientists cannot control.

But the aforementioned languages do recover features and characteristics
from languages designed by academics. These scientific predecessors are shaped
by academics and their development is purely influenced by technology and
function. Indeed, technological developments such as the mouse, a hard disk,
nearly free memory, the internet, garbage collection, peephole optimisers, just-

1

in-time compilers, branch-prediction and v-tables have had a huge impact on
language design. The programming languages we currently use hardly have
anything in common with those that were the basis of software development in
times of expensive batches intended for large mainframes with little memory,
slow processors, modem-based network connections, and whose major input-
output converters consisted of amber terminals, tapes and line printers.

The conjecture of this dissertation is that we are on the eve of a new tech-
nological and functional revolution and that this will have its impact on pro-
gramming languages all over again.

A “processor count” in an average meeting room or lecture theatre shows
us that pervasive computing and wireless network technologies are now swiftly
penetrating our society, transforming visionary ideas postulated by artificial in-
telligence researchers into massively available technology in less than a decade.
Devices such as domotic units, mobile phones, PDAs and digital music players
are getting ever easily accessible at reasonable prices. The average home nowa-
days already contains over a dozen micro processors, both visible in the form of
(miniaturised) computers, as well as hidden in consumer electronics and house-
hold equipment. Moreover, the advent of interconnection technology such as
Bluetooth and the next generation of mobile phones will connect these devices,
turning us into individuals that are constantly accompanied by a dynamically
defined cloud of cooperating devices that interact with their environment at all
times. This cloud is referred to as a Personal Area Network or PAN [Wik04]. At
the time of writing, these developments are already generating new functions as
well. It suffices to mention applications of GPS-technology, digital money and
internet music stores that are marketed along with new hardware to see that
this is just a glimpse of what we can expect in the following decades.

Writing applications for devices that participate in the kind of dynamically
defined networks mentioned above will be easier said than done. Indeed, a few
years of experience with some disappointingly simplistic applications already
shows that the construction of software that supports (both user and software)
mobility is far from easy to accomplish. It is not an exaggeration to say that
constructing distributed and certainly mobile systems is currently nothing more
than sheer handicraft. One of the reasons is that current day mobile applications
are mainly built by trying to deploy technology that was originally not conceived
for this purpose. This is often called the middleware solution. Middleware is
a layer of software that was written in an “ordinary” programming language
following “ordinary” software engineering methodologies and the goal of which
it is to map the concepts needed in the construction of distributed and mobile
applications onto concepts existing in mainstream programming and software
engineering technologies. Unfortunately, this turns out to be about as easy as
trying to express the subtleties of chinese opera in terms of primitive percussion
chords. It turns out that the dynamics arising in mobile computing is extremely
hard to realise and keep track of in conventional programming languages. Ev-
eryone who actually ever built even a small application that is partitioned on a
(statically defined) network topology will confirm this.

While recently a lot of effort has been spent on technology to support mobil-

2

ity and distribution in the context of middleware research, the status of program-
ming languages is deplorable, especially in the field of mobility. And even in the
case of distribution, most existing languages focus on networks whose topology
is known in advance. We practically have no knowledge about programming
language features and programming techniques (algorithms, patterns,...) to
conquer the task of implementing clouds of processors whose identity is not
known upfront and whose relative geographical position might change during
the execution of a given program.

1.1 Research Context & Motivation

Before we delve into the actual technical problem addressed by our research,
we want to clarify our vision of the future by giving a small scenario. This will
help us to formulate our research context in section 1.1.2 and to formulate our
technical goals in section 1.3 clearly. The scenario is presented in section 1.1.1.
Although it may seem a bit far-fetched at first, our experience with undergrad-
uate students taught us that it sets the right frame of mind to get a gist of the
kind of technology we are after. The scenario is a variant of the “Ambient Intel-
ligence” vision recently put forward as one of the strategic research directions in
software engineering by the European Council’s IST Advisory Group [IST03].

1.1.1 A Futuristic Scenario: The Kitchen without Buttons

Harry is single. His friend Gina is visiting him. They plan to prepare dinner
together for old times’ sake. Harry has an ultra modern kitchen of the famous
ZanuKnecht brand with all amenities: a gammaray oven, cooker, coffee machine,
blender, an old microwave oven, fridge, freezer and a cooker hood. Needless to
say, all equipment is 100 per cent free of buttons. All operation is done by
means of the latest handheld Gizmo model Harry always has at hand. These
days, such a device is as common as the good old European mobiles 20 years
ago. Gina also has one, albeit slightly obsolete, but it does what it is supposed
to do because it is good enough to run Utopia2 scripts. Gina’s old Baunussi
kitchen is completely different. But both run their own Utopia2 scripts. Harry
those of Zanuknecht. Gina the ones released by Baunussi.

They proceed. While Harry is chopping vegetables Gina sets about prepar-
ing the broth. Harry sends her (via the Gizmo2Gizmo-standard) his cooker
objects (kitchen-click-control-click-share-click-address book-Gina-click) and off
she goes. Although her Gizmo still works with old fashioned pixel technology,
she is perfectly able to use these objects because of the Gizmo-classic-pixels-
converter she installed. It ensures a best-possible projection onto pixel displays
of those modern liquid morph interfaces everyone is running these days.

While Harry is busy cutting veggies, Gina asks him from within the kitchen
if he is willing to run over to WallSmart to get some butter. Normally, Harry
always does his shopping at 7-isnot-11 around the corner, but Gina insists
on the “Le Chat Qui Pleure” brand that is being sold exclusively at WallS-

3

mart. So he has to upload the gamma of WallSmart into his Gizmo. He
points the Gizmo to the Gizmo-dock next to the cable-tv-plug and selects
www.wallsmart.supermarkets, clicks “dairy produce” and sets off. While walk-
ing on the pavement, Harry runs through the dairy produce assortment of WallS-
mart. After a while he finds Le Chat Qui Pleure butter and buys a pack. The
i-ticket on the Gizmo screen notifies him that the pack is indeed bought and
that the two euros are withdrawn from his bank account. Phone! Gina phones
to ask whether he can send her his cooker-hood-objects. The broth is boiling
and the kitchen windows are steamed up. Kitchen-click-cooker hood-click-share-
click-click-ok. He quickly sends her his apartment-environment-objects in the
same way, for otherwise, Gina wouldn’t even be able to switch on the radio
or turn on the light. But before doing so, he excludes the safety-box-objects
and the body-objects. After all, what he has seen on the scales this morning is
none of her business. House-click-domotics-click-share-click-excludefrom-click-
sca... scales-click-saf... safety box-click-click-click. Upon arrival at WallSmart,
he beams the i-ticket to the door. The Gizmo displays “counter 5”. He walks
to the counter, says hello to the friendly lady, beams her the i-ticket and re-
ceives his butter. Of course, the i-ticket is now erased from the Gizmo. If not
he could be eternally collecting butter with the same ticket. Back home, the
broth is simmering and the cooker hood is humming softly. Suddenly, Harry
wonders what those blinking red letters are doing on the microwave’s display.
Gina replies that she downloaded the new Utopia2 software for the device be-
cause Harry’s scripts already missed two new releases. A little agonized by
the freedom she permitted herself, Harry thinks that he should have exluded
the script-installation-objects from the apartment-environment-objects he just
sent her. Nevertheless, he points his Gizmo towards the microwave to get the
new controllers on his Gizmo as well. The handshake between the devices also
automatically notifies the recipes known by the kitchen such that they will
henceforth work together with the updated microwave.

Let’s stop here! Imagine this being programmed in a mainstream object-
oriented programming language. Which objects reside on which machine? Which
are shared? What is replicated? How is the i-ticket’s integrity ensured? It is
clear that it will not be an easy task to express this kind of complexity in today’s
mainstream procedural and object-oriented languages. It is our conjecture that
this kind of applications will require a new generation or programming languages
that have built in provisions to deal with this kind of complexity.

1.1.2 PAN - Personal Area Networks

In brief, the idea of Ambient Intelligence, or AmI for short, is that every in-
dividual will be (or better: is) surrounded by a dynamically shaped proces-
sor cloud consisting of devices such as digital cameras, mp3 players, cellular
phones, PDAs, laptops, microchip-enabled credit cards and wearable hardware
(e.g. clothes with built-in chips), and, that these devices will intelligently and
smoothly cooperate with each other and with the processors that unexpectedly
enter the cloud as a direct or indirect consequence of the fact that people and

4

devices move around. Examples of this phenomenon might include the sponta-
neous reaction of a domotics control system when one arrives at home, a car that
wakes up as one approaches it, traffic control sensors that one encounters while
driving, public amenities such as a railway station that beams its train sched-
ule to whomever approaches it, advertisements and special offers as one moves
about in a supermarket and so on. Even with the current state of hardware
developments these applications are not far-fetched. A lot of the consumer elec-
tronics that we see around us today are already equipped with wireless network
facilities such as WiFi, Bluetooth or infrared. Furthermore, the fact that all
but lightweight technology such as JVMs with their garbage collector and fairly
extended collection of standard libraries is currently running complex middle-
ware on such devices shows that it gets less and less utopian to think of these
devices as “real” computers that will be programmed in high-level languages.
However, as argued by the following section, putting a JVM on these devices is
not enough!

1.1.3 Why “Java” is Not Enough

We have deliberately put the name “Java” between quotes in the title of this
section because we want to stress that this section is not just about Java but
about the role of current mainstream languages in the evolution described above.
Nevertheless we have also deliberately chosen the name “Java” because many
people really seem to believe that Java is the final language computing science
will ever produce. Such a belief is not a new phenomenon in the history of com-
puter science. But what is new is that this time the belief is not restricted to
the ones in charge of economics and fashion. As time moves on, more and more
universities change their programmes into Java schools and renowned confer-
ences are ever more overwhelmed by Java related submissions. Not surprisingly,
research currently being conducted in the field of Ambient Intelligence is very
often formulated in Java terms.

It is one of the very explicit assumptions of our work that, in the long run,
the impact of Java on scientific progress in AmI will be limited. As the AmI
application demands will increase, the limitations of Java and its associated
technology will act as a drag and hamper new innovations from happening. Of
course, this is a claim that is hard to prove. Nevertheless, we have very good
reasons for the assumption:

• Even aside from AmI requirements, Java is pretty rudimentary as an
object-oriented language, a claim we will extensively defend. For ex-
ample, it does not feature constructs as basic as closures, but tries to
re-introduce them through the cumbersome anonymous classes proposal
with its extremely limiting technical restrictions.

• Java is a statically typed language with a fairly simplistic type system.
It is getting clearer and clearer by the experience with currently popular
middleware solutions that static typing and distribution are not each oth-
ers best friends. Distributed code written in Java is generally full of type

5

casts and many subtle errors such as the problem of non-interchangeability
of objects and their proxies are type-related. We claim that this will get
worse in software that has to run in open networks, i.e., networks the
number of nodes of which and the acquaintance relation is not predefined.

• Java has huge security problems unless one is willing to stick to the sand-
box model adhered to by applets. This model is pretty useless for realistic
applications because an applet can basically do nothing but communicate
with the server that delivered it.

• Java has no mobility provisions. Although there exist middleware solu-
tions that offer limited forms of mobility, Java is essentially stack-based
and has no provisions to manipulate that stack explicitly. As such, it is
extremely hard to implement truly mobile applications in Java.

• Java has no provisions to deal with unanticipated situations such as par-
tial failure of a network. The only language constructs it offers to deal
with such situations are selection (“if”) and exception handling (“try-
catch”). These are fairly primitive and often result in polling techniques.
Furthermore, they pollute the code with instructions that have nothing
to do with the actual application logic but with the uncertainties of the
hardware constellation.

• Java does not allow objects to change dynamically whenever they end
up in situations that might require such a change. This is because Java
objects belong to a class and the object-class relationship is fixed at object-
creation time for the entire lifetime of the object.

• Java has a very simplistic concurrency model and the distributed and
autonomous nature of the hardware described above requires concurrency
to be the norm in AmI applications instead of the exception.

• In contrast to what many people think, Java has extremely poor distribu-
tion facilities. We will extensively get back to this in chapter 7.

Of course, there are ample possibilities to work around these shortcomings
in specific situations. E.g. there exist experiments that preprocess Java code
in order to transform every method in such a way that it explicitly copies its
own stack frame to an object allocated in the heap [TRV+00a]. As such it gets
possible to implement mobility of running Java code. However, such solutions
are often cumbersome to work with and usually do not offer a complete solution
that is conceptually simple and consistent. Moreover, having such a “tool based”
solution to all of the problems discussed above seems simply unmanageable in
practice. What we need is an entirely new generation of programming languages
that offer an integrated solution.

6

1.2 Language Design Research Criteria

Since this dissertation is about language design, we should say something about
this topic in general. It is very difficult to come up with clear cut criteria
to evaluate programming languages scientifically. Ever since Alonzo Church
postulated his famous thesis, all languages are considered equally powerful and
hence it is very hard to “prove” that one programming language is “better” than
another one. However, this is also known as the Turing Tar-pit: in theory all
languages are equally powerful but often, the more one struggles to get some real
work done in them, the deeper its technical inadequacies suck one in. Of course,
expressivity is the keyword here and this is extremely hard, if not impossible,
to measure in a scientifically justifiable way.

1.2.1 Measuring Expressivity

Although there is no litmus test for expressivity, there are ways to study pro-
gramming languages. Roughly spoken, we can divide them into two camps:

• The pragmatic camp studies expressivity of programming languages purely
from a programmer’s perspective. The main issue here is how a language
can improve the way programmers think about their problems and struc-
ture their systems. This is often the perspective extolled by engineers.
Often, they consider a language expressive if it offers a fan of features a
programmer can choose from to tackle his problems.

• The language theoretical camp studies programming languages from a con-
ceptual angle. Issues such as orthogonality, semantic simplicity and regu-
larity are the main concerns. Although most of the comparative studies in
the language-theoretical camp are mathematical in nature (such as deno-
tational semantics [Sch86]) less formal, yet conceptual, comparisons have
been made too. An outstanding example is [Mac87].

Many languages result from an excessive adherence to one of both camps. C++
is a good example of language design in which the pragmatic point of view has
prevailed. Formal studies of full-fledged C++ are nonexistent to the best of
our knowledge. Examples of the other extreme are purely functional languages
which are theoretically very well understood but are considered to be not prac-
ticable by most practitioners. In our research, we were strongly inspired by
languages such as Scheme and Smalltalk because we think both Scheme and
Smalltalk are excellent combinations of both points of view. On the one hand,
they are conceptually well-understood and have relatively readable formal de-
scriptions [KCE98] [CP89]. On the other hand, they were designed with suffi-
cient pragmatism in mind such that they can be used to write realistic software.

1.2.2 Language Design vs. Language Implementation

In our conception of language features, we have supported the vision that pro-
gramming language design and programming language implementation are two

7

different fields of computer science and should — in principle — not influence
each other too much. If language designers in the sixties and seventies had
allowed the hardware and implementation techniques of those days to influence
their proposals, then surely Smalltalk, Lisp, Prolog and many others would
never have been invented. All these languages contain features that had inac-
ceptable performance penalties at that time. Nevertheless, their designers have
persevered in their goal without paying too much attention to speed and mem-
ory consumption. Later on, hardware improvements have made these languages
much more acceptable. Furthermore, the controversiality of the features itself
has resulted in implementation techniques some of which currently live on in
mainstream language processors such as the JVM. Although Prolog’s Warren
Abstract Machine did not find its way to the mainstream (yet), techniques such
as v-tables, selector table indexing and branch prediction for Smalltalk and
lambda lifting and garbage collection for Lisp did.

Of course, this does not mean that language designers can design just about
anything they want. Some features are inherently inefficient and one has to
be vigilant not to step into this trap when designing languages separately from
implementation level considerations. But having said this, it is our explicit goal
to keep language design and language implementation apart as long as possible.
As such, this dissertation proposes some features that have only been provided
with inefficient prototype implementations. This does not mean that we do not
consider those issues important. They are just the topic of another dissertation.

1.2.3 The MIT Approach vs. New Jersey Approach

As C.A.R. Hoare describes in his famous text Hints on Programming Language
Design [Hoa73], there exists a huge difference between designing language fea-
tures and designing languages. Hoare calls the former innovation and the latter
integration and explains that designing a language is much more difficult than
designing a language feature. So many years later, it has become clear that
Hoare was painfully right. While the world is full of well-designed language
features, only very few well-designed languages exist. Most languages are a
dreadful result of feature piling. Good examples of well-integrated languages
are Algol, Scheme and Smalltalk. Examples of feature piling are Cobol, PL1
and C++. Java started out as a reasonable example of integration but is with
each new release degenerating more and more into a pile of features.

The difference between results of integration and results of feature piling
is a reflection of the main activity of the language designer. Whereas design-
ers of integrated languages are constantly unifying (i.e., intersecting) features,
designers of feature piles are constantly uniting features. This activity is usu-
ally driven by “new programming examples” that cannot be expressed in an
existing language. Upon encountering such examples, the main reflex of the
intersectional school is to redesign existing features to make them cover the new
examples. The main design activity is reconsideration, integration, polishing
and generalisation. The reflex of those belonging to the uniting school is to
add a new feature that covers the intended examples. Very often this results

8

in unexpected interactions between the newly added features and the existing
ones.

These diametrically opposed visions on programming language design have
been well-characterised by Richard Gabriel in his famous “Worse is Better” pa-
per series [Gab94]. In this series, Gabriel contrasts the so-called MIT/Stanford-
approach in language design with the New Jersey approach. He characterises
them as follows (cited literally):
The MIT Approach strives for The Right Thing:

• Simplicity – the design must be simple, both in implementation and in-
terface. It is more important for the language to be simple than the
implementation.

• Correctness – the design must be correct in all observable aspects. Incor-
rectness is simply not allowed.

• Consistency – the design must not be inconsistent. A design is allowed to
be slightly less simple and less complete to avoid inconsistency. Consis-
tency is as important as correctness.

• Completeness – the design must cover as many important situations as is
practical. All reasonably expected cases must be covered. Simplicity is
not allowed to overly reduce completeness.

The New Jersey philosophy is mainly driven by pragmatics:

• Simplicity – the design must be simple, both in implementation and inter-
face. It is more important for the implementation to be simple than the
language. Simplicity is the most important consideration in a design.

• Correctness – the design must be correct in all observable aspects. It is
slightly better to be simple than correct.

• Consistency – the design must not be overly inconsistent. Consistency can
be sacrificed for simplicity in some cases, but it is better to drop those
parts of the design that deal with less common circumstances than to
introduce either implementational complexity or inconsistency.

• Completeness – the design must cover as many important situations as is
practical. All reasonably expected cases should be covered. Completeness
can be sacrificed in favor of any other quality. In fact, completeness must
sacrificed whenever implementation simplicity is jeopardized. Consistency
can be sacrificed to achieve completeness if simplicity is retained; especially
worthless is consistency of interface.

After years of reconsideration, Gabriel is still doubtful about what is the
best philosophy to follow. Having published follow-up papers entitled “Worse
Is Better Is Worse”, “Is Worse Really Better?”, “Back to the Future: Is Worse
(Still) Better?” and “Back to the Future: Worse (Still) is Better!”, he finally
gave up and writes “Decide for yourselves.”[Gab].

9

In this dissertation we have mainly followed the MIT-approach. This is
consistent with the fact that we decided to disconnect language design from
language implementation as explained in section 1.2.2. It also aligns very well
with our opinion about finding the right balance between the theoretical and
the pragmatic camp we have presented in section 1.2.1, and with our application
of Occam’s Razor reviewed below.

1.2.4 Occam’s Razor

Apart from considerations specific to computing science, the general scientific
principle called Occam’s Razor has been adhered to as much as possible. In
general, this principle states that when there are two explanations for the same
phenomenon, then the explanation which uses the smallest number of assump-
tions and concepts must be the right one. Literally the principle states that one
should not increase, beyond what is necessary, the number of entities required
to explain anything.

We have always kept to this view on research in the sense that we have
always preferred a small number of conceptually simple (yet general) language
features over huge numbers of features that finally result in big programming
languages. Whenever “example programs” could not be expressed in our model,
we have tried to reshape, generalize and polish the model instead of adding new
features to cover the examples.

1.3 Problem Statements

The work presented in this dissertation does not claim to be a complete solu-
tion to the AmI problems addressed in section 1.1.3. But it does make some
contributions to the field. The main contribution of the dissertation is that it
presents a consistent, relatively small, yet very powerful language in the MIT-
camp that addresses four fundamental problems that will have to be solved by
a new generation of programming languages targeted at Ambient Intelligence:

Problem #1: The Ambient Object Paradigm Problem.
The first problem is a seemingly unresolvable stalemate. We will argue that

it will be very hard if not impossible to program such systems using
class-based object-oriented programming languages. We will present a
thorough analysis that will show that class-based object-oriented programming
languages induce a number of fundamental paradigmatic problems when being
deployed in the context of open distributed, and especially, in mobile systems.
We will argue this in great detail in chapter 3. This analysis in itself is one
of the contributions of this dissertation. Part of the solution to this problem
will be the promotion of prototype-based languages. However, as we will show
in section 3.4, existing prototype-based languages have a number of en-
capsulation problems that are unacceptable in the context of mobile
and distributed programming for open networks which is disastrous for
security. Expressed in a nutshell, the current suite of prototype-based program-

10

ming languages make it impossible to implement the i-ticket of the scenario.
Therefore, a large part of our research was about redesigning prototypes-based
languages in order to render them applicable in the AmI context, without having
to resort to classes.

Problem #2: The Concurrent Parent Sharing Problem.
A second fundamental problem is a fundamental mismatch between sharing

of state and code as extolled by prototype-based object-oriented pro-
gramming paradigms on the one hand, and the obsessive attempts to avoid
sharing in concurrency models for object-oriented programming languages
on the other hand. The latter is due to the fact that state sharing in general
does not combine very well with concurrency because of a phenomenon called
“race conditions”; situations in which the semantics of two concurrent processes
that manipulate shared resources depends on whichever process wins the race.
Such problems have made designers of concurrent object-oriented programming
languages shun state sharing as much as possible by resorting to systems in
which objects solely communicate by message passing. However, in the context
of pure prototype-based programming this nearly automatically leads to actor
systems which have extremely nice scientific properties but which do not seem
to scale up precisely because of their lack of sharing mechanisms. We will show
in chapter 8 that there is a way out of this situation. By cleverly aligning parent
sharing as advocated by prototype-based programming with state sharing be-
tween concurrently running objects, a “third paradigm” is possible that seems
to combine the best of two worlds.

Problem #3: The Distributed Sharing Problem.
The third fundamental problem has to do with sharing as well and is strongly

related to the second one. It boils down to the fact that whereas conceptually,
distributed systems are all about structural sharing, current distributed pro-
gramming languages merely offer referential sharing. This is best explained
on the basis of a virtual white board, i.e., a big sheet of distributed paper onto
which different cooperating parties can draw simultaneously. From a modeling
point of view, the sheet of paper really is on all those machines at the same time.
This is in sharp contrast to the technical provisions offered by programming lan-
guages. Although distributed languages come in several versions, most of them
only offer objects the ability to refer to objects on different machines and not to
be or be part of an object on a different machine. We will make an initial
proposal in this direction in chapter 8. In alignment with the solution put for-
ward to tackle the second problem, we will exploit the parent sharing technique
of prototype-based programming languages to offer programmers objects that
are truly distributed on different nodes of a network.

Problem #4: Move Considered Harmful.
A fourth fundamental problem is that currently existing language ab-

stractions for mobile systems inevitably lead to “unmanageable ob-
ject soups” whose relative locations are totally unpredictable, even by human
readers of the code that have generated this object graph. As we will motivate in
chapter 9, the basic problem is that current day mobile languages introduce mo-
bility by means of a “move” instruction that explicitly takes the mobile object

11

and its destination node as parameters. This instruction, combined with stan-
dard object-oriented techniques such as message passing and double dispatch
will easily lead to programs human readers of which can no longer predict which
object is residing where. We will argue that this “move” instruction therefore
relegates current day mobile programming languages to the same level
in software engineering as languages with “goto” at the end of the sixties.
We will formulate the need for languages supporting “structured mobility” and
make an initial technical proposal.

1.4 Contributions

The goal of our research is to develop a high level language prototype that
has features dedicated to deal with the dynamics induced by the sort of net-
works described above. Needless to say, not all aspects of such a language can
be developed within the context of one PhD dissertation, a statement that is
endorsed by the size of our future work section. Nevertheless this disserta-
tion presents a language prototype which we claim to be a step in the right
direction. The language is a full-fledged prototype-based object-oriented pro-
gramming language with powerful features like delegation-based inheritance,
cloning, first-class methods, active objects, synchronous and asynchronous mes-
sage passing, distributed objects, distributed inheritance and last but not least
an initial proposal for structured mobility. The language, called ChitChat, is
an integration of three fairly independent research tracks in the field of
object-oriented programming language design:

1. Although ChitChat has characteristics of class-based languages, it inherits
the powerful features of prototype-based languages such as Self with-
out adopting their insecurity due to their flexibility. Some of ChitChat’s
characteristics as a prototype-based language are innovative on their own,
notably its provision of first-class methods.

2. It inherits much of the concurrency model of ABCL, one of the most
advanced concurrent object-oriented languages in existence. Active
and passive objects are combined and a powerful asynchronous message
passing is adopted.

3. It inherits distribution and strong mobility provisions from distributed
and mobile languages as advanced as Obliq, Argus and Emerald. How-
ever, it has a very innovative vision on distribution to wit the idea that
parts of objects can reside on different machines and share attributes by
having two objects sharing the same part. This is mapped onto networked
delegation with parent sharing.

ChitChat is the result of a language design exercise that is both interesting as
an integration of earlier language features and as a suite of innovative language
features. Its most important contributions are:

12

Scheme

Pico

Pic%

ChitChat

Smalltalk

Agora

Figure 1.1: The Language Tree of the Dissertation

1. It is a marriage of class-based and prototype-based programming lan-
guages. It combines the advantages but avoids their disadvantages.

2. It proposes first-class methods and thereby intersects lambda-based lan-
guages such as Scheme and prototype-based languages like Self.

3. It proposes a delegation-based model for concurrency and distribution.
Shared parents are applied as the way to share mutable state between
distributed and/or concurrently running objects.

4. It proposes a set of language features that enable mobile objects in a
structured way, i.e., without resorting to an explicit move instruction that
results in uncontrollable distributed object-soups.

The research leading to these contributions was conducted at the Program-
ming Technology Lab (PROG) of the Vrije Universiteit Brussel. This Lab has
quite a rich history in dynamic (object-oriented) programming languages. Ever
since the early eighties, members of the lab have been actively involved in the
design, use, implementation and teaching of such languages. PROG was one of
the driving forces of introducing MIT’s Scheme-based Abelson&Sussman fresh-
men course at the Vrije Universiteit Brussel and was arguably one of the very
first promotors of object-orientation — in the incarnation of Smalltalk — in
Belgium. The work presented here is in many aspects a consolidation of that
history. As shown in figure 1.1, the ChitChat language presented in this dis-
sertation is a direct intellectual descendant of Agora and Pico, two languages
previously designed by former and current members of PROG. Since research
at PROG is never a strictly individual matter we have also contributed to (the
comprehension of) these languages before consolidating that knowledge into a
new research artifact. Hence, instead of bluntly introducing ChitChat we have
decided to present the contributions made to these projects as well. They form
an inseparable part of our work.

13

1.5 Limitations

As already mentioned in section 1.3, ChitChat is not a complete programming
language that solves all AmI problems. Its most important limitations are:

• ChitChat does not deal with exception handling. Although most modern
programming languages feature an exception handling mechanism, some
basic assumptions of such mechanisms no longer hold in an AmI setup.
The main problem is that (because of the independence of devices) the
code that detects an exceptional situation and the code that is able to deal
with it might no longer be connected or might be in a different execution
context because of asynchronous communication. Existing exception han-
dling schemes will probably need to be redesigned.

• ChitChat was merely given a prototype implementation in which network
connections where simulated and in which only very little effort was spent
on performance issues, both from an execution speed as well as from a
memory consumption point of view. Furthermore, no studies where un-
dertaken to measure the impact of an actual unreliable network on the
semantics of ChitChat’s language constructions.

• Although the ChitChat research spent a lot of effort on how to deal with
new objects that unexpectedly appear in the network, no effort was spent
on objects that disappear from the network and the consequences this has
on the rest of the system. This instance of the so-called partial failure
problem was beyond the scope of our research. However, as mentioned in
the future work section, we are not avoiding the problem. It is one of our
current research topics.

1.6 Roadmap

Although ChitChat surely has some rough edges left and needs more polishing
here and there, we consider it as a fairly good language design attempt with
respect to the language design criteria set out in section 1.2.

An inconvenience that all such languages seem to have in common is that
they are hard to explain because they are based on a very small number of
fundamental concepts that can be combined endlessly. Moreover, continuous
integration has related these concepts into a sophisticated network with subtle
and deep interactions. This phenomenon also renders languages like Scheme
and Smalltalk hard to master fully. We have nevertheless tried to decompose
our proposal into independently digestible principles and have structured the
dissertation accordingly.

• We already indicated that ChitChat is a prototype-based object-oriented
programming language. Chapter 2 therefore reviews some of the proper-
ties and characteristics of prototype-based languages in general and dis-
cusses a number of important languages of this family.

14

• Chapter 3 is the main motivation for our work. We show that class-based
languages have a number of inherent paradigmatic shortcomings (that are
due to the very class concept) for being deployed in the context of open
networks. We also show that classical prototype-based languages have in-
herent problems in the context of encapsulation and security. From this
analysis we will formulate the need for a third way — a classless language
family that does not suffer from the security problems prototype-based
languages suffer from. Three important criteria, to wit extreme encapsu-
lation, reflection protection and Granovetter-connectivity, will be postu-
lated as yardsticks against which we can evaluate the languages discussed
in the dissertation.

• Based on a comparison between the denotational semantics of class-based
languages and that of prototype-based languages, chapter 4 proposes such
a third paradigm of object-orientation that inherits the advantages but
avoids the drawbacks of classes and classical prototypes. We present the
Agora model put forward by Steyaert’s PhD dissertation [Ste94] as the
technical incarnation of this model. Agora will be shown to be a powerful
object-oriented programming language that does not contain classes yet
endorses the extreme encapsulation and reflection protection principles.
However, although the Agora model will be shown to have the right lan-
guage theoretical properties, Agora has many problems when it comes to
practical applicability.

• To overcome Agora’s problems, in chapter 5 we will take a step back and
derive Pic%. Pic% is an object-oriented programming language that is
based on Pico, our homeground Scheme derivative the keyword of which is
small. Pic% will be shown to incorporate Agora’s characteristics and thus
be a scion of the “third family” we propose. But Pic% is much simpler,
avoids Agora’s drawbacks and is in some respects even more expressive
than Agora. Two particularly innovative language features of Pico and
Pic% are a new form of parameter passing and first class environments.

• Both Pic% and Agora have been around for quite some time in the form
of more or less experimental implementations. This has made it possible
to expose other members of PROG and a few generations of graduate and
undergraduate students to the languages. The result of this small user
committee is the distillation of some programming techniques and idioms
some of which are presented in chapter 6.

• Chapter 7 will review the most important literature on concurrency and
distribution in object-oriented programming languages. We will review
several radically different approaches to concurrency and distribution vary-
ing from the application of libraries, over reflection to dedicated program-
ming languages. Apart from reviewing the literature this chapter will also
evaluate existing approaches in our context of open networks.

15

• Based on the knowledge of chapter 7, the problem statements of chapter
3 and the intermediate Pic% language presented in chapter 5, chapter
8 will present, ChitChat, our approach to concurrency and distribution.
ChitChat will be an extension (and re-iteration) of Pic% with concurrency
and distribution features. The main characteristic of ChitChat is that it
extolls networked delegation, i.e., the ability for objects to extend objects
that reside on other machines. Since two such objects can share the same
object, this gives rise to networked parent sharing. It is exactly this kind
of parent sharing that will be used to have a controlled form of state
sharing between concurrently running objects. Parent sharing will also be
used as a way to physically share the state that is conceptually shared by
distributed objects.

• Chapter 9 extends the ChitChat model of chapter 8 with features for
strong mobility. The chapter extensively reviews different kinds and causes
of mobility and gives an overview of existing language proposals for code
mobility. Subsequently, a suite of desired properties for mobile program-
ming languages is distilled by conducting a number of gedankenexperi-
ments and by considering the restrictions of the open networks we target.
This will allow us to formulate one of the main theses defended by this
dissertation: a “move” instruction in mobile languages is a harmful fea-
ture. Based on this thesis, the design of ChitChat’s strong mobility is
presented and a collection of mobile programming patterns is presented.

• Chapter 10 presents our conclusions, related work and formulates some
future topics of investigation spawned by our research.

16

Chapter 2

Prototype-based Languages

As explained in the introduction, one of the keys to our solution to the prob-
lems outlined in section 1.3 is the promotion of prototype-based programming
languages in the context of distribution and mobility. This will be extensively
argued in chapter 3. We will now give a general overview of prototype-based
languages, review their characteristics and have a closer look at three impor-
tant case studies that have put prototype-based programming languages on the
map. In order to have a solid frame of reference, section 2.5 presents a general
language theoretical framework that is often used to contrast prototype-based
programming languages with their class-based analogues.

2.1 Introduction

In contrast to what most people think, object-oriented programming is not
necessarily about writing programs using classes and inheritance. Classes and
inheritance constitute but one branch in the object-oriented programming lan-
guage taxonomy. The languages in this branch are known as class-based lan-
guages. An entirely different branch is the branch of so called prototype-based
languages. In these languages, programs are written in an object-centered way.
This means that instead of designing classes and building class hierarchies us-
ing inheritance, the main activity of a programmer consists of building concrete
objects and specifying the relations between objects.

Although prototype-based languages are far less well-known than class-based
ones, from a purely scientific point of view, we can safely say that the space of
object-oriented programming languages is fairly neatly divided into class-based
ones and prototype-based ones. Indeed, if we count the number of prototype-
based languages and have a look at the richness of the set of features described
in the context of prototype-based languages, they can safely be considered to
constitute at least half about what is currently known about object-oriented
programming languages. Contemplating the field from a certain distance, this
binary division of the object-oriented programming language design space is

17

not really surprising. They simply emerge from two radically different ways to
model the world around us. Roughly spoken, prototype-based languages emerge
from frame-based languages that AI used for knowledge representation. These
frame-based languages were particularly well-suited to formalize concept graphs
which consist of concepts linked together by relational connections. Class-based
languages too emerged from the need to formalize concepts. Indeed, the first
class-based language, Simula67, was designed to model objects and their move-
ments in the physical world. But although frame-based languages put the em-
phasis on “real” objects, Simula required the programmers to make an abstract
specification of the set of all the objects to be modeled (i.e., the class). As
we will see in the following section this is a technical reflection of two radi-
cally different ways of thinking that philosophers have put forward to describe
the world we live in. This is the philosophical history of prototype-based lan-
guages. The bridge between these two branches of object-oriented programming
languages was made by the influential paper of Henry Lieberman [Lie86] who
introduced the work done in cognitive sciences (i.e., prototypes) into the object-
oriented programming languages research community (that was dominated by
the class-based way of thinking). From that point onwards, the language the-
oretical perspective took over in the history of prototype-based object-oriented
languages. From this perspective the development of prototype-based languages
can be explained as the result of “language simplification efforts” undertaken
by researchers in object-oriented programming languages.

2.2 History Of Prototype-based Languages

A language theoretical perspective of the how-and-why of prototypes is deferred
to the following chapter because it requires a deeper understanding of the un-
derlying semantics of both class-based and prototype-based languages. In this
section, we briefly summarize the philosophical origin of prototype-based lan-
guages. Prototype-based language originally emerge from the field of knowledge
representation in AI (mainly developed by Minsky), a field which, in its turn,
owes a lot to late twentieth century philosophers like Wittgenstein. The bulk
of the material presented here is a summary of the excellent article written by
Antero Tailvalsaari in [Tai98].

The idea of dividing the world around us into “objects” is almost as old as
science itself. Ancient Greek philosophers like Plato and Aristotle classified the
things around them into “ideal ideas” and “instances of these ideas”. The ideas
were some form of idealized “template” desription of the instances. New ideas
were formulated by describing the “genus” plus “differentia”, i.e., the basis of
the idea (another idea, that is) and the differences of the new idea with respect
to the basic idea. Through the ears of a computer scientist this all sounds
extremely familiar. Ideas are classes, instances are objects and the mechanism
to describe new ideas based on old ones is known as inheritance.

This framework of classifying the world into classes and objects withstood
the test of time for more than two thousand years. It is only in the late nine-

18

teenth and in the course of the twentieth century that philosophers seriously
started questioning them. In [Tai98] many arguments are listed illustrating
that this way of describing the world is probably not the right one. The most
important criticisms, for our purposes, against the Greek school are:

• There does not exist a unique objective classification of the world because
there is that there is no general algorithm to determine the properties upon
which such a classification ought to be done. Deciding which properties
are characteristic for a particular class of objects is a human process that
uses a lot of interpretation. For instance, many people will not agree to
call Conway’s Game of Life a game, simply because it does not involve
players. But others will, simply because it is fun to play with.

• For many classes of objects, humans consider some objects to be “better
members” of the class than others. Indeed, probably everyone except
mathematicians will consider zero, one and two to be “better numbers”
than 0x13FEED2. So there is more to it than “just” ideas and instances.
Apparently, some instances are “better” instances than others.

• Many classes that we use on a daily basis do not even have clear bound-
aries. For instance, how does one define “a work of art”?

The theory of prototypes was invented as a solution to these deficiencies of
the Aristotelian view of the world. The most prominent philosopher to defend
this theory of prototypes was Wittgenstein. The general idea of prototype-
based thinking is to tie the world of objects together according to “resemblance”
links: some objects are named “prototypes” and other objects “resemble” these
prototypes. They “point to” the prototype but also list their differences with
respect to the prototypes they point to. As such the world gets modeled as a
network of representative prototypes and similarity links.

Just as the Aristotelean way of thinking can be considered the philosoph-
ical basis for class-based languages, the prototype theory of Wittgenstein can
be considered as the fundamental basis of prototype-based programming lan-
guages. As we will see, in prototype-based languages, all programming activity
consists of direct manipulation of concrete objects. Classification consists of
linking prototypes together with one or more sharing links to exisiting proto-
types. This view of organising systems with prototypes that share knowledge is
largely the work of AI researchers such as Minsky, Winograd and Goldstein who
designed knowledge representation mechanisms based on Wittgenstein’s proto-
type theory in the mid to late seventies. The basic idea of their models was to
declare knowledge frames (sort of like “a struct”), and to construct networks of
knowledge by linking these frames together with all kinds of meaningful rela-
tions. A second important step to get prototypes into the realm of programming
languages was made by Lieberman in the early eighties with Act1. He intro-
duced the prototype-based way of thinking into OO research with his influential
paper at OOPSLA’96 [Lie86]. As indicated before, from that point onwards,
the language theoretical history of prototype-based languages took over.

19

The verb “take over” in the previous sentence was deliberately chosen.
Whereas Lieberman proposed prototype-based languages as a new way to think
about the organisation of systems, almost everything that was subsequently
published about prototypes was about the design and technical properties of
prototype-based programming languages from a language design perspective,
and no longer about designing and structuring systems. This language theo-
retical driving force nevertheless produced a lot of research and is responsible
for the body of knowledge that forms the current state of prototype-based lan-
guages. This driving force can be briefly summarized as the quest for smaller,
simpler and conceptually cleaner languages.

In section 2.4 we will discuss three concrete prototype-based languages in
detail and in section 2.5 we will give a taxonomy of prototype-based languages
according to the language features they implement. Let us first give a general
overview of the idea of a prototype-based language.

2.3 Prototype-based Languages in Brief

A prototype-based language is actually just an object-oriented programming
language without classes. The general idea of a prototype-based language is
that all programming is done in terms of concrete directly manipulatable ob-
jects, called prototypes. In class-based languages, objects are created by in-
stantiating a class and classes can share behaviour by means of inheritance.
In prototype-based languages, the most commonly occuring ways to create ob-
jects are ex-nihilo creation (e.g. by putting a number of fields and methods
between matching parenthesis), cloning (i.e., shallow copying) and extending
other objects (a new object is an extension of an existing object).

Creating an object ex-nihilo means “just write down an object”, out of the
blue in the same way functional languages allow one to “just write down a
function” using a lambda. In many languages this is done by simply listing a
number of slots between a pair of matching parenthesis. Cloning a prototype
yields a shallow copy of that prototype. Here all the slots of the shallow copy get
automatically initialized to the value of their corresponding slot in the original
prototype. In some languages, new objects are created by listing a number of
attributes that will distinguish it from another object. In other words, an object
gets created by extending and overruling an existing object.

The structure of the objects in a prototype-based language is often much
more flexible than the structure of the objects in class-based languages. Indeed,
many prototype-based languages feature mechanisms to add and delete methods
and data fields to an object during the lifetime of that object.

The sharing role that inheritance plays in a class-based language is taken over
by a (possibly dynamically modifiable) “inheritance relation” between objects.
This relation is usually referred to as delegation or object-based inheritance.
The idea is that one object can dynamically identify another object to be its
parent (through a so called “parent-of-link”) in such a way that every message
that cannot be handled by the object itself is (automatically) delegated to the

20

self
a) (b

delegatingchild

delegateeparent

self

self

self

Figure 2.1: Delegation vs. Messsage Forwarding

parent object. This “inheritance link” between objects can vary substantially
from one language to another. This is the topic of section 2.5. But in almost
every language1 it basically allows a programmer to state that “messages not
understood by this object, should be delegated to the parent of the object”.

A crucial point made by Lieberman [Lie86] is that delegation in prototype-
based languages is not quite the same as a “simple” message forwarding mech-
anism often erronously called “delegation”. The epitome of this error is the
“delegation pattern” in the famous book on design patterns [GHJV95]. The
important difference is that real delegation goes hand in hand with late binding
of self as illustrated in figure 2.1a. Messages sent to the self (or this) pseudo
variable in the parent have to “come back” to the object that originally received
the message. This dynamic meaning of the self variable is exactly the same
as the dynamic meaning of this in superclasses in a class-based language. The
only difference is that delegation has this result on a per-object basis instead of
classes. This is a crucial feature of delegation as originally defined by Lieberman
and most prototype-based languages implement it that way.

Delegation gives rise to a feature of prototype-based languages that is com-
monly known as parent sharing . When two different objects designate an object
to be their parent, then this parent is a shared parent and the meaning of self
in the parent depends on the delegating object. Messages send to self will
“come back” to the object that originally delegated the message to the parent.
Notice that state changes of one child in the parent will affect all the other
children as well: the parent is truly shared between the children. This is a
feature of prototype-based languages that can only very clumsily be simulated
in a class-based language with lots of “pointer plumbing”.

Based on what we have explained so far, a brief (and very rough) initial com-
parison between prototype-based and class-based object-oriented programming
languages is summarized in the following table we took from [NTM98].

1Kevo is a notable exception, see section 2.4.4.

21

Class-based Prototype-based
inheritance relationship instance-of, inherits-from delegates-to
creation metaphor build according to a plan clone an object
initialization execute a plan clone an example
one-of-a-kind need extra class object no class needed
infinite regres class of class of ... ∞ not required

As already stated, objects in a prototype-based language obtain their char-
acteristics from other objects using delegation. Objects in class-based languages
obtain these characteristics both through the inheritance relationship between
classes and subclasses, and through the instance-of relationship that exists be-
tween the class and the object. The object creation metaphor in a prototype-
based language is the biological metaphor of cloning. In class-based languages,
objects are created by “unwinding” a creation and initialization plan, to wit
the constructor of the class. One-of-a-kind objects such as True and False
(and singletons [GHJV95]) are extremely natural in a prototype-based language.
Class-based languages require one to design a special (and often useless) class
for them. This leads to strange situations such as in Smalltalk that has True
and False classes as well as true and false objects. The last row of the table is
a topic that was often treated in a stepmotherly fashion outside the incrowd of
language designers. This is because it is only applicable to languages that enable
meta-programming, a technique that was largely academic until recently. The
problem is as follows. Uniformity of the language and the existence of meta-
level information in a class-based language implies classes to be objects and
thus implies classes to have a class. The result is an infinite conceptual chain of
classes being classes of each other. This problem is absent in prototype-based
languages. Everything is an object and that’s really it, also at second sight.

2.4 Prototype-based Languages: Case Studies

Now that we have given a general background on prototype-based program-
ming, we can move on to some representative prototype-based programming
languages. We briefly review three important prototype-based ones: Self, Kevo
and NewtonScript. Before we dig into the languages, let us briefly explain why
we have chosen them, and, why we have omitted others.

2.4.1 A Case for the Cases

Here is an motivation for the languages.

• Self. Self is a pure prototype-based language with a uniform Smalltalk-
like syntax. We have chosen to give an in-depth overview of Self, because
Self can be considered a pearl in language design. Furthermore, Self is
considered to be the prototype-based language “par excellence” by most
people in the research community.

22

• NewtonScript. NewtonScript is a language the designers of which them-
selves “admit” that it is not really a shiny beacon in the sea of languages.
Nevertheless we consider NewtonScript important because it was the first
language (besides JavaScript, see below) to show that prototype-based lan-
guages are industrially viable. NewtonScript was the language in which
the operating system and the applications of Apple’s Newton palmtop
series were implemented.

• Kevo. Kevo is a language developed by Taivalsaari in the context of his
PhD thesis [Tai93]. The reason for discussion Kevo is that it is a prototype-
based language that does not feature some derivative of delegation in order
for objects to share properties. Instead, Kevo uses a mechanism called
concatenation instead.

There are a few languages, which are for some particular reason “important
enough” to appear in any text on prototypes, but which are not discussed here:

• Omega. Omega was developed by Blashek [Bla94]. At first sight, Omega
is special as it is a statically typed prototype-based language. On second
sight, Omega distinguishes between objects and prototypes. Objects are
always created from prototypes and inheritance is only statically allowed
on prototypes. As far as we are concerned, Omega’s prototypes are simply
called classes in other languages.

• JavaScript and Flash. JavaScript is probably the most widely used
prototype-based language. Nevertheless, we will not discuss it as it cannot
really be considered an example of good language design. Moreover, the
new JavaScript 2.0 standard [Wal] adds a class-like feature to the language.

2.4.2 Case 1: Self

Self [UCCH91] [US87] was designed by a group of researchers at Sun Microsys-
tems in the late eighties and early nineties. Self can be considered as a prototype-
based version of Smalltalk that has been cleaned up considerably. Self is ex-
tremely minimal. It provides no classes, no variables and no control structures.
Instead, everything is an object and all computation proceeds by sending mes-
sages to objects. Even methods are objects, and their activation records are
conceptualized as clones of methods.

Self is more than a programming language. Just like Smalltalk, Self is a
“world”, a system in which one is is exploring and manipulating objects. But
instead of working on “different levels” as is the case in Smalltalk (instance,
class, meta class, ...), Self has mere objects. In a highly uniform world of
malleable objects, the Self user interface provides an extremely direct object
experience: e.g. the mouse pointer in Self is called “the hand” and the result of
object manipulating operations “sticks to the hand”. The resulting objects can
be given a name in the global name space, which is again, an object. Having
mere objects implies that programmers also use objects to build abstractions.

23

These emerge by copying objects and factoring out methods to shared parents.
The system contains drag&drop tools to facilitate these programming patterns.
By building a realistic programming environment, the Self group has also shown
that the language can be provided with an industrial-strength, highly efficient
implementation [SU98]. As a matter of fact, just about all of the JIT technology
currently available in Java implementations was discovered by the Self team.

In Self, an object is a collection of slots. Slots map a name onto a method.
Variables are emulated as a pair of read and write methods that access the same
memory location. Some variable slots can be marked with an asterisk (*). In
this case, the object that fills the slot is considered to be a parent object of the
object in which the slot resides. Being a parent objects means that messages
that are not found in the child object, will be automatically delegated to that
parent such that the parent object will have the initial object as “self”.

Self: The Language

Everything in Self is an object and all computations are triggered by sending
a message to some object. Following the Smalltalk example, Self distinguishes
between unary messages (e.g. myDict size), binary operator messages (e.g.
3+4) and keyword messages (e.g. myDict at:key put:value). Self features
three kinds of objects which are all created by a different syntactic construction:
plain objects, method objects and block objects. Plain objects are created by
putting their slot names (together with a possible initial value for that slot)
between vertical bars and separated by dots (e.g. | x. y |). Self allows any
such ex-nihilo object creation to be followed by an expression. In that case, we
speak of a method object. The idea is that the variables between vertical bars
will act as the local variables of the method such that the evaluator will execute
the expression in the context of the object every time the method is invoked
through an invocation. Hence, in (| x. y | x:3. y:4. x squared + y
squared), x and y only exist in the context of the code to the right of the
bars. Hence, it can be considered as a method with local variables x and y. In
order to initialize the slots of an object, we can use the <- operator followed by
an expression whose value will be the slot value. In the same vain, the = operator
is for immutable slots. The following method object expressions illustrate this:

(| x = 3. y = 4 | x squared + y squared)

(| x <- 3. y <- 3 | y: y + 1. x squared + y squared)

Method objects can be parametrised by preceding the local variables of a
method object with a colon. Those variables preceded by colons are considered
to be arguments for that method object. For example, the code (| :x. :y |
x squared + y squared) is a method object expression that is parametrized
by the variables x and y. Hence, the code represents a method with two argu-
ments x and y. These method objects can be given a name by using them as
the filler value for a slot in another object. For example, the expression add:
= (| :el | addLast: el) could be used as part of an object definition. It

24

binds the expression | :el | addLast: el to the name add:. Like Scheme,
a Smalltalk-like shorthand is provided to allow parametrized methods with a
name to be specified more naturally. This allows the object (read: method)
add: = (| :el | addLast: el) to be written more naturally as the follow-
ing expression shows: add: el = (addLast: el).

Combining the syntax construction rules described until now, allows us to
construct complex objects that look like this:

(|
parent* = traits cloneable.
x <- 0.
y <- 0.
r = (| x2y2 |

x2y2: x squared + y squared.
x2y2 squareRoot).

+ p = (| newPt |
newPt: copy.
newPt x: x + p x.
newPt y: y + p y.
newPt)

|)

This code excerpt shows an ex-nihilo created plain object that inherits from
traits cloneable with 5 slots: parent, x, y, r and +, the latter two of which
are methods. The object represents a point prototype.

Just like Smalltalk, Self features blocks which are nothing but Scheme-like
lambdas. Besides plain objects and method objects, block objects are the third
kind of objects in Self2. The difference between a method object and a block
object is that a block object belongs to the lexical scope in which it was cre-
ated. They are used to pass around code, together with the context in which
that code was created (i.e., together with the lexical environment). A block’s
code is evaluated when it is sent a value message. Block objects in Self are
created in the same way method objects are, with the only difference that the
parentheses are replaced by square brackets. The following code excerpt shows
these concepts. First, a bank account is created and subsequently, a block b is
declared in the context of the bank account. (Much) later on in the code, the
block is executed twice. When doing this, the account is still visible to the block
as one would expect from lexical scoping rules.

acc: bankAccount copy.
acc balance: 100.
b: [acc deposit: 50].
acc balance. "returns 100"
\\a lot of code here

2Technically, blocks differ from ordinary objects because the “self” of a block is the object
in which it appears, and not the block itself”.

25

b value.
b value.
acc balance. "returns 200"

Just like the methods discussed above, blocks can be parametrized with
arguments. This in shown in the following excerpt

adder: [| :x. :y | x + y].
adder value: 3 With: 4 "returns 7"

In order to illustrate blocks, we notice that true contains a method IfTrue:False:
that implements the well-known Church boolean system:

ifTrue: t False: f = (t value)

As in Smalltalk, it is used in combination with blocks to delay evaluation:

x != 0 ifTrue: [x reciprocal] False: 0

The final language feature to be discussed is Self’s inheritance system. As
indicated before, any slot can be assigned an asterisk. This turns the slot
into a parent slot and makes the child inherit all the slots of the parent slot.
Notice that multiple parents are possible in Self. Since Self is not a statically
typed language, it is in general not possible to determine in which parent(s) a
message will be found. Self therefore uses (several experimental method) lookup
mechanisms [SU98]. As explained before, Self implements the “late binding of
self” rule which means that self references in the parent will automatically refer
to the child that delegated to the parent. Since many objects can take the same
object to be their parent, Self implements the feature commonly referred to
as parent sharing. The language feature commonly known as “super sends” is
called resends in Self. For resends, a special dot syntax is used. The expression
preceding the dot is either resend or a parent object. In the former case, the
default method lookup in the parent is used. In the latter case, we talk about
a directed resend. Examples follow:

at: key = (resend.at: hash: key)
(|
parent1* = (| foo = 3 |).
parent2* = (| foo = 4 |).
foo = (parent1.foo + parent2.foo)

|)

This concludes our overview of Self. Before moving on to the second lan-
guage we discuss two techniques which can be applied to any prototype-based
language, but which were developed in Self.

26

a) (b

x x

move

y
56
22

print
move

print
y5

3

x x
y

print
move

y5
3

traits*traits*
56
22

Figure 2.2: A Point Traits Illustrated

Idioms and Techniques in Self: Traits and Maps

The experience acquired by programming in Self has yielded two important
idioms that can be used for other prototype-based languages as well, namely
traits and maps [UCCH91]. Both are useful to reduce the amount of memory
used by prototype-based programs.

Traits The idea of a traits object corresponds to method-tables in class-
based languages. In class-based languages, it is often said that objects contain
the state (i.e., instance variables) of a program together with “a pointer to their
class which contains the methods”. The latter is exactly what constitutes a
traits object in a prototype-based program. Consider a point object p1 that
is copied in order to yield a second point p2. Both objects will list the same
number of slots containing a pointer to the values of those slots. For “value
slots”, this duplication is useful as both points will probably contain different
values. But for the method slots, the duplication is hopelessly inefficient. Even
though the methods themselves are never really copied, all the pointer-slots are.
This is depicted in figure 2.2.a. It is better to abstract these slots in a separate
object, called a traits objects (this point-traits will contain all the “traits” of
all points). This is depicted in figure 2.2.b. The traits object contains all the
slots that are shared by all objects sharing the traits. The “actual” objects
then inherit from the traits. Because of the late binding of the self variable, a
method in the traits will always correctly refer to the right slots in the “actual
object”. The advantage is of course a severe gain in space.

In a language like Self, traits are not treated in a special way by the language.
Traits are to be seen as one of several programming techniques to be used by
prototype-based programmers in general. Explicitely introducing traits in a
prototype-based language would yield a class-based language.

Maps Maps are not really linked to the notion of prototypes, but rather
to dynamically typed object-oriented programming languages in general. Fur-
thermore, instead of being a programming technique or language feature, they
are to be considered an optimization technique that should be implemented by
the language processor, i.e., the interpreter or the compiler. Consider two point
objects with slots x, x:, y: y and pointTraits* to acces the coordinates and
the point traits which contains all the methods applicable to points. Although
we already have applied the traits technique presented above (leading to the

27

pointTraits), it is easy to see that a lot of space is wasted just to store the
field names themselves. And indeed this is a waste of space: although the val-
ues of the fields are different for both objects, the field names x, x:, y:, y,
pointTraits and pointTraits: themselves are the same for all the clones.
Nevertheless, the names are really necessary at run time because the language
processor needs them for method lookup. This can be made more efficient sim-
ply by providing every object with a pointer to its “map”. The map is nothing
but a mapping from slot names to slot indexes. The “real” objects then merely
consist of tables of things. Message passing thus becomes a combination of
“index determination” and “memory indexing”. When a message is sent to an
object, first the map pointer of the object is followed. In the map, the index
beloning to the slot name is determined and, subsequently, the index is used
to read and invoke the slot in the actual object. For readers acquainted with
C++, maps are actually v-tables for dynamically typed languages.

Conclusion

Self is a very pure language which is implemented in terms of a few primitives
used to construct and modify objects. Self was very important to put prototype-
based languages on the map. Perhaps one of the reasons why Self never really
broke through is that Self required more than 50MByte of RAM to run, in times
when 8 or 16 MByte were standard practice. Nevertheless, many Self techniques
are still alive today: the morphic user interface still lives on in Squeak Smalltalk
[GR01] and the Self compiler technology is at the heart of the Just In Time
compiler in Java JDK [CU89].

2.4.3 Case 2: NewtonScript

In this section we shortly discuss NewtonScript, the second prototype-based
language we will consider in detail [Smi98]. NewtonScript is a prototype-based
language that is pretty unique, not because of its design but, because of the fact
that it is one of the few ones that was so widely used in an industrial setting.

Prototypes on the Palm

NewtonScript was specifically designed to run the Apple Newton operating sys-
tem. Programs written in the language had to run on different kinds of hardware
and this portability requirement had to be combined with severe restrictions con-
cerning memory size and processor speed (we are talking early nineties here).
This is reflected in some aspects of the language where purity was compromised.
The designers claim that “the language cannot be held up as a pristine example
of language purity” [Sic, [Smi98]]. The language is said to be “simplified Scheme
augmented with prototype-based features”. NewtonScript is not object-oriented
all the way down because it combines prototype-based features with procedural
characteristics. Furthermore, it has “objects” that correspond directly to under-
lying parts of memory such as bitmaps. NewtonScript was compiled to bytecode

28

(to be loaded onto the machine) with access to C++ primitives. Apart from the
general design, the way objects are mapped onto the RAM-ROM architecture
of the Newton gave it some unique characteristics:

Memory model The small memory size (640 K first version) of the Newton
series had a big influence on the language. The Newton was shipped with a
number of standard applications such as a note pad, an address book and an
appointments manager which all read and write their data into so called object-
soups, logic groups in the object-store. Third party products can extend these
applications and access the data in the object soups.

View model Another major force that influenced NewtonScript was the
user interface model of the machines. This model gave rise to a pretty exotic
inheritance mechanism that was specifically designed for it. The idea behind
the inheritance mechanism comes from the fact that the user interface is decom-
posed into views (e.g. a window) with subviews (e.g. a button in that window).
Every view is represented by an object and one aspect of the inheritance mech-
anism consists of linking views with a parent link to their surrounding view.
Therefore (this aspect of) the inheritance mechanism of NewtonScript is some-
times called “visual scoping”: messages not answered by objects (e.g. a button)
get delegated through the parent link to the surrounding view (e.g. a window).
But aside from this parent link, objects also have a proto parent and it is
the combination of these two that yield a fairly complex inheritance mechanism.
The philosphy is that a view’s parent resides in RAM while its proto is lo-
cated in ROM. The parent is the “data parent” of the view and the proto
is the “traits parent” containing the behavior. Hence, objects in NewtonScript
consist of two inheritance chains. One chain is the chain of data objects linked
with parent links in RAM. Every part of this chain has a proto link and these
proto-parts also form a chain (by their respective parent pointers) that resides
in ROM. One can think of the parts in RAM as the traits while the parts in
ROM are the real objects, and both the traits and the objects are linked in an
inheritance chain.

NewtonScript: The Language

Let us now look at what NewtonScript programs look like and which features
it possesses. As explained above, the proto/parent structure of the inheritance
chain is the most interesting feature from a language theoretical point of view.

Non OO features. NewtonScript has a Pascal-like syntax and Pascal-like
control structures. The exception handling mechanism looks like those of C++
and Java. Numbers, strings, arrays, nil, true, symbols, and binary objects are
not objects. NewtonScript features two kinds of functions: global functions and
user functions. Their difference is syntactically visible at the call-site. Global
functions are called as expected: Length(ar). User functions are called with
the call with construction as exemplified by the following code excerpt:

fact:= func (n) if n=0 then 1 else n * call fact with (n-1)

29

Basic OO features: frames. The basic object-oriented notion of Newton-
Script is a frame. A frame is a collection of slots, inspired by Self [Sic [Smi98]].
This is illustrated in the next code excerpt which shows how a frame checkBox
is defined with 5 slots (caption, bounds, state, Click and Redraw). Note the
double colon syntax for message passing.

checkBox := {
caption: "Checkbox",
bounds: { left:0, top:0, right:100, bottom:100 },
state: nil,
Click: func()

begin
state:= not state;
self:Redraw();

end,
Redraw: func()

begin
DrawText(left+20,0,caption);
SetFill(if state then Black else White);
DrawSquare(left, top, left+16, top+16);

end }

checkBox:Click(); - draws black cb
checkBox:Click(); - draws white cb

Inheritance and Variable Lookup. Inheritance in NewtonScript is some-
times called “comb-inheritance” because the hierarchy looks like a comb. Ob-
jects can contain two special slots named parent and proto that define inher-
itance in NewtonScript. For variable referencing and method lookup, these are
interpreted as follows. When a message is sent to a frame, or when a variable
reference is resolved, the rule is to look for a matching slot name in the receiver’s
frame. If it is not found, the lookup tries the frames in the receiver’s proto
chain (recursively), then goes up to the parent frame and tries that proto
chain, and so on. Hence the inheritance hierarchy looks like a comb whose teeth
are proto-chains tied together by parent-chains. For variable assignment, the
algorithm is subtly different. The assignment is only allowed to alter an object
in the parent chain, not one in the proto chain. This is because the latter
usually resides in ROM. If necessary, a new slot is created in the object on the
parent chain nearest to the object where the slot was found. This mechanism
was called value sharing in Malenfant’s classification [DMC92]. We will explain
it further by the following two sample NewtonScript programs.

Example 1 The first example shows assignment along the “ proto-chain”.
The example shows how a traits object protoCheckBox for a check box is used
to implement two concrete check boxes that have the traits as proto parent.

protoCheckBox := {
state: nil,

30

Click: func ()
begin

state := not state;
self:Redraw();

end,
Redraw: func ()

begin
DrawText(left+20,0,caption);
SetFill(if state then black else white);
DrawSquare(left,top,left+16,top+16);

end };

check1 := {
_proto: protoCheckBox,
caption: "Checkbox 1",
bounds: {left:0, top:0, right:100, bottom:16} };

check2 := {
_proto: protoCheckBox,
caption: "Checkboc 2",
bounds:{left: 0, top:20, right:100, bottom:36},
Click: func()

begin
inherited:Click();
Print(state);

end };

The focus of our attention will be the state variable. In the beginning,
both check1 and check2 “have” a state variable because they “inherit” it
from the protoCheckBox traits. Its initial value is nil which is the same as
false. So this means that upon receiving the message Redraw, the color will be
white. But now look at what happens when the message Click is sent to one of
the objects. Although the message will be found in the protoCheckBox traits
object, the assignment will happen in the original receiver. This is because
the protoCheckBox object is the proto chain of the receiver and assignments
never happen in the proto-chain. Hence, the Click method will actually add a
state slot to the receiver. This slot wil then shadow the original state slot and
from that point on, all references to the state variable will refer to the new slot.
Notice that this aligns perfectly with the idea that objects in the proto-chain
usually reside in ROM: if they execute assignment statements, these will happen
in the part of the object that is in RAM (i.e., the part in the parent-chain).

Example 2 The following example exemplifies parent inheritance and
shows how NewtonScript’s visual scoping works. This example shows a cluster
of radio buttons (called cluster) that has protoRadioCluster as its traits ob-
ject. Hence it inherits from that traits via the proto link. Both radio buttons
radio1 and radio2 have protoRadioButton as their traits and therefore inherit

31

from it along the proto link.

protoRadioButton := {
state: nil,
SetState: func (newState)

begin
state := newState;
self:Redraw();

end,
Click:func ()

self:ChooseButton(self),
Redraw: func () end};

protoRadioCluster := {
clusterValue: nil,
chosenButton: nil,
ChooseButton: func (whichBtn)

begin
if chosenButton <> nil then

chosenButton:SetState(nil);
whichBtn:SetState(true);
clusterValue := whichBtn.value;
chosenButton := whichBtn;
self:ValueChanged();

end};

cluster := {
_proto: protoRadioCluster,
ValueChanged: func() Print(clusterValue)};

radio1 := {
_proto: protoRadioButton,
_parent: cluster,
caption: Cheddar,
bounds: {left:0, top:0, right:100, bottom:16},
value: cheddar };

radio2 := {
_proto: protoRadioButton,
_parent: cluster,
caption: Swiss,
bounds:{left: 0, top:20, right:100, bottom:36},
value: swiss }

Apart from objects and traits objects (along the proto-chain), the example
also illustrates the visual inheritance mechanism of NewtonScript. Because the

32

radio buttons are visual subcomponents of the cluster, they name the cluster as
their parent parent. This means that messages sent to the radio buttons will
first be looked up in the radio button traits along the proto. When this fails,
the parent pointer is followed and the message is looked for in that object and
again in the proto pointer of that object, and so on.

Conclusion

The authors of [Smi98] conclude that “programming with prototypes is pleas-
antly concrete. ...” and “we feel that prototype-based languages have great
potential to improve programmer productivity and hope to see plenty of com-
mercial applications in the future”. As the most important design flaws in
NewtonScript, they list:

• NewtonScript programs seldom contain full objects: a prototype is written
with the assumption that another object will be self and will fill in the
gaps using the special assignment semantics. This is an indication that
programs are written by specifying traits (read: classes). We will see in
chapter 4 that this reveals a deeper problem, namely that the construction
of many objects inherently requires the unfolding of a construction plan.

• They missed private slots. They had troubles with method capture when
developing the second version. Methods in parents (that were conceptually
private to those parents in a new version) were by accident overriden by
existing applications [SLMD96].

• Inheriting behaviour through the parent chain turned out to be less
useful than hoped. In many cases, a “view method” is specifically not
intended to be inherited from parent views.

Nevertheless, NewtonScript showed that prototypes can be succesful in the
real world. Apart from its intriguing inheritance scheme, this was also one of
the reasons why we spent so much space on NewtonScript in the dissertation.

2.4.4 Case 3: Kevo

Kevo is the third language we discuss. The reason for including it is that Kevo
does not feature delegation or inheritance at all. Its sharing is accomplished in
exactly the way Wittgenstein’s prototype theory proposed: clones are related
to their prototype by a “similarity” link thereby sharing information because
changes to one object can propagate to others. To this end, Kevo maintains a set
of cloning families which are sets of clones spawned from the same object without
modifications made to them. From a language theoretical point of view, Kevo
shows that other organizational structures than delegation for prototypes have a
lot of benefits too. The three concepts that play a central role in Kevo are cloning
families, propagation and concatenation. Concatenation is the mechanism that
takes care of incremental modification in Kevo.

33

Kevo is a system in which the programmer finds himself in a unix-like shell
where commands can be executed. But instead of interpreting these commands
in the context of “the current object”: in Kevo, objects are like directories of
variables and methods. The variables contain other objects.

Kevo: the language

Kevo is a keyword-based language with a syntax similar to Forth. This means
that there are actually as good as no syntax rules and that control structures
are used in the same way other keywords are. Message passing is denoted by a
dot operator. In Kevo terminology, message passing is a special case of what is
generally called binding. Kevo features four binding variants:

x early binding in self
self.x late binding in self
resend binding of the same message in parent
object.x late binding in other object

The table shows the four different ways an identifier x can be bound in code.
Notice that the self keyword cannot simply be omitted. Omitting it causes the
identifier x to be statically bound in the current object. self.x on the other
hand will cause x to be looked up in a late bound way. Hence, in contrast to
languages with modifiers like final or static, Kevo allows the binding to be
specified at the access site instead of the declaration site. The consequences
thereof are thoroughly explained in [Tai93].

Kevo objects are collections of named attributes. The object attributes are
of the following four categories.

• REF-attributes are similar to class variables in a Smalltalk or static vari-
ables in Java. The share operation — to be discussed later — will not
copy these variables such that all members of a clone family (see later)
will share the same variable.

• VAR-attributes are similar to instance variables in a class-based language.
Each time a clone of the object is made, the VAR-attributes are copied.

• CONST-attributes are like REF-attributes. Apart from being shared by the
members of a cloning family they are immutable as well.

• METHOD-attributes contain methods. Conceptually these are deep-copied
every time a copy of the object is made. This is the way Kevo accomplishes
“late binding of self” [sic, see [Tai93]].

There are two operations (HIDE and SHOW) programmers can apply to these
attributes. This way programmers can encapsulate object attributes to preclude
other objects from accessing them. Strangely enough, Kevo’s encapsulation
mechanism is actually class-based encapsulation because objects that belong
to the same cloning family can access each other’s private parts just like Java
objects of the same class can access each other. Hence when a Kevo object
spawns a copy of itself, it can access its own as well as the copy’s private parts.

34

Objects and Object Operations

Kevo objects always belong to a cloning family which is a set of clones that
are created from the same object without modifications. Cloning families are
maintained automatically and the programmer has no access to them. Each
time attributes are added to or deleted from an object, a new cloning family is
started and the system tries to keep the number of cloning families as small as
possible. To this extent, “reversible object manipulation operations” will give
rise to annihilation of generated cloning families as much as possible.

Kevo objects do not inherit from each other but are organised in a composition-
based hierarchy: objects contain other objects. Hence, a Kevo system is to be
thought of as hierarchically organized name space much in the style a unix
directory system is organized. In contrast to a delegation-based system, the
properties of the objects are independent from their position in the name space.
This hierarchical organization is totally independent from the organization of
the cloning families. As such, Kevo allows a programmer to organize her appli-
cations in the same way she would organize her libraries. Furthermore, multiple
classifications are possible because objects can reside in several hierarchies. In
general, these name spaces are manipulated by so called module operations as
first specified by Bracha [BL92]. The module operations fall in two categories:
those that operate on a single object and those that operate on an entire cloning
family. The latter is always denoted by adding an asterisk to the name of the
former. In general the syntax for applying a an operation to an object is object
OP attributes. The different operators are summarized in the following table:

ADD and ADD* add attributes to an object or a cloning family
REMOVE and REMOVE* remove attributes from an object or family
RENAME and RENAME* rename an attribute
REDEFINE and REDEFINE* assign an attribute
HIDE and HIDE* encapsulate an attribute
SHOW and SHOW* decapsulate an attribute

Although Kevo has syntax to apply these operations, the general way to in-
voke them is through the programming environment. This environment works
with respect to its propagation settings with determine how changes to objects
are propagated to other objects. These settings can be “this object only” or
“clone family”. In the first case the operations applied to an object will only
affect that object (and thus usually generate a new cloning family) or the en-
tire cloning family the object belongs to. The reason why “this object only”
generates a new cloning family is that Kevo works with so called concatenation:
every object in Kevo is a linear composition of a clone and added properties.
This means that operations on an object are always applied on a copy of that
object. As explained, this will automatically spawn or merge elements in the
network of cloning families. This is the topic of the following section.

35

Cloning in Kevo

Kevo does not have a clone operation that is applied to objects. Instead cloning
happens by sending a message to an object. Although every new object con-
tains a default implementation for the Kevo cloning methods, it is possible to
redefine them in order to have a dedicated cloning strategy. This is a very useful
feature. Indeed, as stated in [Tai93] shallow cloning is usually too shallow and
deep cloning is usually too deep. Therefore designers of objects may want to
implement their dedicated cloning strategy by redefining the standard cloning
methods. Kevo objects generally feature three cloning methods:

• share is the primitive to make shallow clones. The idea is to implement
more complex cloning operators based on this primitive. share will make
a shallow clone of the receiving object thereby copying all the VAR and
METHOD attributes, where a new “self” is filled in for the method. The
CONST and REF attributes are shared between original and clone.

• new is a cloning method that corresponds to constructors in class-based
languages. The idea is that this method calls share and performs some
initialization on the copy.

• clone is a cloning method that is akin to new. The only difference is that
clone will generate an exact clone of the receiver, while new will generate
a “freshly initialized clone”.

In Kevo terminology the inheritance mechanism of class-based languages is
replaced by the cloning mechanism: when copying an object, one “receives”
(Kevo terminology) all the methods from the original object. In order to keep
the cloning families generated this way automatically consistent, the system
executes a suite of pre and post modification rules. The pre-modification-rules
are executed immediately before and the post-modification rules immediately
after one of the operations of the previous section is efffectively executed.

There are three pre-modification rules that take care of spawning new cloning
families whenever necessary.

• if the operation is object-specific and if the target object is the only one
in its cloning family, then nothing happens.

• if the operation is object-specific and if there is more than one object in
its cloning family, then a new family is created for the modified object.

• if the operation is family-oriented (i.e., an operation with an asterisk),
then the operation is propagated to all the objects that are in the cloning
family of the target object.

After applying these rules, the operation itself is applied and after that, the
post processing rules are triggered. These might annihilate cloning families such
that the number of cloning families is kept to a strict minimum:

36

• if the operation is object specific and if the attributes of the object match
the attributes of a cloning families that resides “next” to the cloning family
the object belongs to, then both cloning families are merged.

• if the operation is family-targeted and the attributes of the object after
modification match the attributes of some of the families that reside “next”
to the cloning family, then all the members in the family will be merged
to that family.

Conclusion

Kevo was included in this dissertation because it shows that prototypes and
delegation are not necessarily the same thing. Kevo objects are organised by a
sophisticated “copy and modify” strategy, making them a true implementation
of Wittgenstein’s ideas.

2.4.5 Conclusion: “is-a” vs. Reentrancy

Class-based languages make a clear distinction between objects and classes. In a
class-based system organisation, there are two important relationships between
software entities: the is-a relationship is established between classes and help
programmers to structure their object soup in a hierarchical way. Another
relationship is the reentrance relationship between objects and classes. Classes
contain code which can be re-entered for every object that belongs to the class.
When looking at the software organisation techniques promoted by each of the
three concrete case study languages, we notice that they have to deal with these
same relationships as well, most of them quite clumsily:

• In Self there is only one kind of relationship between objects and this
relationship is used both for conceptual purposes (“is-a”) as well as for
reentrancy purposes (i.e., the traits technique). This is problematic as
it easily gives rise to multiple inheritance hierarchies: objects delegate to
each other along an is-a link and delegate to their traits objects to establish
a reentrancy link. But the traits objects in their turn also delegate to
each other along an is-a link. In the best case this results in a multiple
inheritance hierarchy, which is problematic in itself [SU98]. In the worst
case it can result in strangely warped hierarchies the implications of which
have never been thoroughly investigated[VDD94].

• In NewtonScript, the designers have also bumped into this duality in links.
They have solved this by an inheritance mechanism that is quite unique
but at the same time pretty hard to understand. Objects have both a
proto and a parent pointer. The former is used to take care of reen-
trance. The latter is used to establish the is-a relationship. This results in
a complicated comb-inheritance scheme with complicated combinations.
For example, it is unclear whether proto-objects have proto pointers
themselves.

37

• Kevo seems to provide a satisfying solution to the problem. Objects are
conceptually idiosyncratic entities that do not share code. Reentrance is
accomplished by conceptually copying all the methods thereby filling in
a new “self”. The is-a relationship is established precisely according to
Wittgenstein’s theory: objects are-like the prototypes from which they
were created and from which they differ in some ways. The downside of
Kevo is that it requires complex implementation technology that keeps
cloning families consistent behind the scenes. Unfortunately very little
has been published about it.

We will return to this is-a versus reentrancy discrepancy in section 5.9 when we
discuss the innovative solution to this problem put forward by our Pic% model.

2.5 Epilogue: The Treaty Of Orlando

Now that we have a really good view on prototype-based languages we will put
them further in context using The Treaty of Orlando. The Treaty of Orlando
[LSU87] was an influencial taxonomy paper that was written by David Ungar
(one of the chief designers of Self), Henry Lieberman (the inventor of prototype-
based languages in the OO sense) and Lynn Andrea Stein (author of a paper that
“proves” that delegation is the same as inheritance [Ste87]). In the Treaty of
Orlando, the authors explain having reached an agreement on some fundamental
characteristics of object-oriented programming languages, during a meeting at
the OOPSLA conference in Orlando. The result is an abstract taxonomy that
can serve as a framework for classifying object-oriented programming languages.

The Treaty of Orlando states that both prototype-based languages and class-
based languages can be considered as languages that feature objects and mes-
sage passing, enriched with two fundamental mechanisms called empathy and
templates. Templates are entities from which new objects can be created by
a “cookie-cutting” mechanism. In prototype-based languages, templates are
objects, while in class-based languages, they are classes. The other mecha-
nism is called empathy. Empathy is the ability of a language to allow sharing
of behavior between templates without explicit redefinition of that behaviour.
In prototype-based languages, the empathy mechanism is being taken care of
by delegation (or copying in Kevo), while in class-based languages, inheritance
between classes plays the role of the empathy mechanism. The abstraction
presented by the Treaty of Orlando can be depicted as in figure 2.3.

The Treaty of Orlando classifies object-oriented languages according to how
their empathy mechanism varies along the following three dimensions:

• when: static vs. dynamic When is the sharing relation fixed? In
pure class-based languages, the relation is usually fixed statically, although
languages like Smalltalk allow the dynamic generation of subclasses. In
“extreme” prototype-based languages, the relation is entirely dynamically
fixed. Self, e.g., even allows objects to change their parent at run time.

38

objects templatescookie-cut

empathymessage
passing

Figure 2.3: The Treaty of Orlando Schematically

• how: implicit vs. explicit Does sharing between objects happen auto-
matically, or does a programmer explicitly have to direct the patterns of
sharing? Most object-oriented languages have an implicit sharing mecha-
nism: code does not have to specify “by hand” that it is shared amongst
objects or classes. Messages that cannot be found in an object or class,
are searched for in the parent.

• for: per object vs. per group Is behaviour specified for an entire
group of objects or just for one single object? Can idiosyncratic behavior
be specified for a single object.

Besides this classification of the empathy mechanism, the Treaty of Orlando
classifies object-oriented languages according to the following two dimensions in
which the template mechanism can vary:

• what: objects vs. classes A template is a “cookie cutter” produc-
ing objects. In class-based languages this role is played by classes. In
prototype-based ones, objects play the role of cookie cutters as new ob-
jects are created from existing objects.

• how: strict vs. nonstrict Templates are strict if objects cannot acquire
new attributes after they have been cookie cut from a template. This is
typically the case in class-based languages. In prototype-based languages
the templates are often nonstrict.

Based on these criteria for classifying the empathy and the template mecha-
nisms, the Treaty of Orlando classifies object-oriented programming languages
in the following table. Since the Treaty was published in 1987, we have added
some more recent languages. Our own additions are added below the double
line. We have added Agora and Pic% for completeness although they are the
topic of the chapters to come.

Empathy Templates
Language When? How? For? What? How?
Actors runtime explicit per object objects nonstrict
Delegation runtime both per object objects nonstrict
Self runtime implicit per object objects nonstrict
Simula compile implicit per group classes strict
Smalltalk creation time implicit per group classes strict
Hybrid runtime both both any nonstrict

39

C++ compile implicit per group classes strict
Java compile implicit per group classes strict
Kevo compile implicit both objects strict
NewtonScript runtime implicit both objects nonstrict
Agora, Pic% runtime implicit both objects strict

For a complete in-depth explanation of the table, we refer to the Treaty itself
[LSU87]. Perhaps worth noticing is the Hybrid language that was proposed by
L.A. Stein [Ste87]. In this language, both classes and objects exist. Besides the
usual mechanisms, an extra promotion mechanism is provided to turn objects
into templates. In the following chapters, we will argue against this kind of lan-
guage design that emerges from unifying distinct features of other languages.
As we will argue in section 4.6 our view on language design is more “intersec-
tional” in the sense that good languages are distilled by trying to remove and
redesigning features, instead of by adding them. This view on language design
was also promoted in section 1.2 of the introduction.

2.6 Conclusion

In this chapter we have given a thorough introduction of prototype-based lan-
guages. We have introduced their general properties and we have put them in
historical and scientific perspective. Furthermore we discussed three important
example languages in detail. Finally we have situated prototype-based lan-
guages in the realm of object-oriented languages using the Treaty of Orlando.

This chapter presents a frame of reference in which we can position our
research of chapters 4 and 5.

40

Chapter 3

Classes, Prototypes and
Open Networks

This chapter presents the main motivation for our work. We show that class-
based languages are bound to perform extremely poorly in the context of open
networks set out in chapter 1. However, prototype-based languages are shown
not to be a panacea either. We will show that their property which most of their
antagonists describe as “too flexible“ can actually be traced back to identifiable
shortcomings both in their denotational semantics as well as in the programming
practices they promote. This chapter unravels these problems and concludes
by pinpointing the fundamental problem of prototype-based programming lan-
guages. Subsequently, the manifestation of this fundamental problem will be
shown to yield unacceptable security problems of prototype-based languages in
open networks and mobile software.

3.1 Introduction

Now that we have an initial insight about the main differences between prototype
and class-based languages, we can evaluate both paradigms in the context of
the open networks we described in chapter 1. In section 3.2 we will demonstrate
that classes are not really a viable option and that the very class-based paradigm
poses fundamental problems for constructing the kind of software envisioned in
chapter 1. This is the main motivation for using prototypes in our research.
However, prototype-based languages have their problems too.

Antagonists of prototype-based languages often consider them to be “too
flexible to write robust software”. Solutions for this problem seem to point
towards class-like features. To understand this tension and get a characterisation
of the fundamental semantical differences between both paradigms, we will look
at them from two radically different points of view:

• We will first have a critical look at prototype-based languages from a

41

software engineering point of view. This analysis will list a number
of tangible problems of prototype-based languages all of which seem to
ask for classes in order to solve them.

• Our second critique of prototype-based languages will be based on a lan-
guage theoretical point of view. By having a look at the denotational
semantics of prototype-based languages and comparing it with the stan-
dard denotational semantics of class-based languages the arguments of the
first analysis will find their mathematical counterpart.

These two analyses are the topic of sections 3.3 and 3.4 respectively. Both
analyses will allow us to clearly formulate the basic problem of prototype-based
languages in section 3.5 which will essentially be that too many language fea-
tures are defined on objects. In section 3.6 we show that this property results
in severe security problems in the context of open networks and mobility, which
renders the prototype-based languages we discussed in chapter 2 totally unac-
ceptable in this context. A large part of our research consisted of distilling a
powerful object-oriented programming language that does not suffer from these
drawbacks without having to resort to classes again. This will be the topic of
chapters 4 and 5. Let us now first have a look at our main motivation for using
prototypes in the first place.

3.2 Evaluating Classes for Open Networks

In this section we argue that it is nearly impossible to write software in a class-
based language for open networks that is not bound to result in inconsistencies
and runtime errors after some time. In a nutshell, the argument boils down to
the fact that:

According to the Treaty of Orlando reviewed in section 2.5, classes
are a static, implicit (i.e., transparent) sharing mechanism of state
and behaviour between objects. In [GF99] the authors argue that
“distribution transparency is impossible to achieve in practice, and
precisely because of that impossibility, it is dangerous to provide the
illusion of transparency.”

As a consequence, we argue throughout the dissertation that prototype-based
programming is fundamentally better suited to program software that is to run
in open networks because:

Idiosynchratic objects help abstracting semantically coherent soft-
ware units by merging state and behaviour, the two essential ingre-
dients in computer chemistry. Furthermore, thanks to encapsulation
and polymorphism they are prepared for highly dynamic environ-
ments where emphasis is put on unanticipated interaction.

42

Before we start zooming in on these fundamental claims starting from section
3.2.2, we first mention some technical problems which might be circumvented
by future class-based languages, but which currently are not. We therefore call
them mere “inconveniences” because they are not inherently “unfixable”.

3.2.1 Inconveniences Of Classes for Open Networks

Besides some general software-engineering drawbacks of class-based program-
ming to be listed in section 3.3.1, the context of open networks raises a few
extra difficulties when applying them. One of them is that the nature of the
network will often require new objects of new types to be introduced
dynamically into the network. This requires that new classes are somehow
injected into the network. Technology in the form of dynamic class loaders can
be a solution for this problem. However, as explained below, dynamic class
loaders are a severe source of security related problems. In general, introducing
unforeseen idiosyncratic objects, as featured by prototype-based languages, in
a network is much easier and expressive a solution.

Another problem with classes and class-loaders is that, in current main-
stream languages, classes induce an inheritance relationship and class
loaders explicitly use this relationship to check type compliance of newly
loaded classes. For example, if a networked system is written referring to a
certain class c then it is not possible to dynamically inject a new class c’ into
the system that is to be substitutable for c and that is not a subclass of c, even
if c’ has the same method signatures as c. Of course a solution is to type the
original system with an interface that is implemented by both c and c’ but this
solution is not feasible “after the facts”. Again, prototype-based languages offer
a much higher flexibility and render things much easier to manage.

Classes have two possible links, the implicit instance-of link and the subclass-
of link. An inconvenience of that instance-of link is that, upon transmitting an
instance over a wire, the corresponding class must be sent along. The subclass-
of link forces the recursive transmission of all the superclasses as well, for
the object would not be well defined otherwise (the set of methods and attributes
would be incomplete). In a dynamically typed language (e.g. Smalltalk), the
transitive closure problem ends here. But in a statically typed language like
Java, argument-type classes, result-type classes and exception-type classes must
be transmitted also — together with their corresponding transitive closures. In
classless systems this is conceptually much simpler because objects are transmit-
ted self-contained, with their state and behaviour together, without requiring a
priori recursive transmission of peripheral classes.

Finally, in [SV97], Vitek makes an analysis of security problems in open
networks and mobile contexts. He finds no less than five ways to circumvent
the encapsulation of objects, every time by cleverly combining class-based in-
heritance and static (class) variables. But even before starting his devastating
analysis he already remarks that class loaders are already a (technical) prob-
lem on their own as they only load classes once. This means that when two
networked applications running on the same (virtual) machine use the same

43

class, then they will start influencing each others behaviour by manipulating
the class’s static variables. Vitek shows that the security breaches due to
the implicit sharing relation established by the static variables that reside
in classes can be devastating.

3.2.2 Classes: Fundamental Problems in Open Networks

Apart from these inconveniences of class-based languages (notably Java) for
open networks presented above, there are more fundamental problems. We re-
peat the quote from [GF99] that “distribution transparency is impossible to
achieve in practice, and precisely because of that impossibility, it is danger-
ous to provide the illusion of transparency.” A painful illustration of the truth
of this statement is precisely the main problem with class-based languages in
the context of distributed and mobile programming. The problem is that the
implicit, unavoidable class-instance relationship becomes explicit under distri-
bution and mobility because the cost of keeping the class-instance relationship
consistent (and thus implicit) behind the scenes in a dynamic distributed system
is prohibitive. Hence, the programmer has to deal with the relationship all the
time, yet he has no way to control and manipulate it, or to avoid its in specific
situations. The following sections elaborate on this problem.

Sharing vs. Distribution

The main problem of using classes in distributed systems and mobile systems is
that classes call for the well-known conflicts between sharing and distribution:

• When shared data is kept centralised, the node containing the data be-
comes a bottleneck, and worse, the entire system is fragile because there
is a dependency on that single node.

• If, on the other hand, the data is replicated among multiple nodes, the
system must keep all the copies synchronized and we have a replica man-
agement problem.

In class-based programming, classes must be either centralised or replicated
in every node. Both alternatives are no option in the open networks we target.
Note that we do not argue that information sharing can or should be avoided
in distributed systems: in fact it is essential. We do argue that using classes as
the carriers of code and data in open networks is extremely problematic because
instances cannot exist without their classes. Two concrete manifestations of the
sharing vs. distribution conflict in classes are shown next.

State Sharing: Class Variables

A patent manifestation of the sharing vs. distribution problem is class variables
(a.k.a. static variables) as already mentioned in [BGL98]. All current class-
based languages overlook it. The semantics of class variables is not enforced
in the presence of distribution: copying a class containing class variables from

44

one node to the next does not start an underlying replica management system
that would keep all the variable copies synchronised1. Hence distribution easily
breaks the semantics of class variables. This is even more problematic in our
context of open networks: if two devices go out of reach and they update a class
variable with different values and afterwards rejoin the network, the inconsis-
tency cannot be resolved unequivocally. The alternative of centralising classes
is also not possible in processor clouds: in these dynamic networks there cannot
be a central authority, e.g. suppose a device goes out of reach; who would be its
central authority? It would have to stop operating until rejoining the network,
wich is unacceptable.

One might reply to this state sharing argument by eliminating class variables
from class-based programing, which is feasible. This would fix the problems
presented so far. But the problem is in fact the sharing of any resource. As
shown next, similar problems arise with code sharing — one of the principal roles
of classes. One can eliminate class variables from class-based programming as
suggested before, but one cannot “fix” the paradigm by overruling methods.

Code Sharing: Class Methods

Apart from class variables, method implementations are also shared among
class instances2. As such, the problem is identical for methods. Suppose a node
receives the same class along two different paths, but the two versions have a
different implementation for a method. Which one is to be considered correct?

In class-based technologies, classes (e.g. class libraries) are often replicated
among nodes without an appropriate replica or version management mecha-
nism. The effects on distribution are somewhat relaxed by the standardisation
of the basic classes (e.g. all the java.* packages in Java). Since a copy of the
basic classes can be assumed to exist in every node, replication consistency is
guaranteed. It is clear though that this is a partial solution only, as any user-
written class breaks the replication harmony. But even for standard libraries,
there might be many versions of a class circulating in the system (e.g., JRE
1.1 vs. JRE 1.2). This issue can be solved by backwards-compatibility, i.e., by
marking obsolete methods “deprecated” as in Java. This way, given any two
versions of the same class, one class will be a subset of the other (i.e., the newer
class will contain all the methods of the older class, some possibly deprecated).
The interference problem is solved then by choosing the newest version, which
is supposed to be compatible with the older one. This solution is weak and
ad hoc, as classes would grow forever, full with deprecated methods, becoming

1Some middleware technologies such as PerDis [FSB+99] offer programmers in class-based
languages library support to circumvent this shortcoming. However as we will explain in
chapter 7, these middleware solutions are not free of problems either.

2Changing a method implementation is analogous to changing a class variable value. Either
dynamically (e.g. in Smalltalk) or statically (e.g. by editing source code and recompiling),
methods can be modified. The dynamic/static distinction does not add to the discussion in a
distributed setting: the only important point is that nodes might have different definitions of
the same class at the same point in time.

45

incontrollable entities. And even if only a few methods are deprecated, sharing
this legacy code all the time is inefficient.

Workarounds

A solution is to make classes constant, so that replicas can be distributed with-
out any synchronisation issues arising. This not only implies turning class vari-
ables into class constants (which is equivalent to overruling class variables from
class-based programming), but also freezing method implementations. The con-
sequence is that every change in the implementation of a class would forcibly
imply the introduction of a new class in the system. However, defining a new
class each time renders existing instances (which might live on another device)
incompatible with the new version.

A class-based programming protagonist could argue that one can make class-
instance relation explicit, e.g. letting an object specify, upon migration, if its
class will stay in the origin node and be invoked remotely, or it will move
also to the destination node; or letting a class specify whether its superclass
will migrate together with it or not (in the latter case a remote-parent link
would be established). But making these relations explicit and managing them
“manually” is precisely what prototype-based programming promotes!

3.3 Prototypes in Software-Engineering

The previous section presented our main motivation for promoting prototype-
based languages in the research context set out in chapter 1. However, prototype-
based languages have their problems too and, as we will see, solving them seems
to point back to classes. We now try to pinpoint this tension. First, this section
presents a software-engineering driven comparison, and then section 3.4 presents
a denotational vision on the matter. Both analyses will allow us to formulate
clearly the fundamental problem of prototype-based languages in general and
for open networks in particular in sections 3.5 and 3.6 respectively.

3.3.1 Advantages of Prototypes in SE

Arguments used to extoll prototype-based languages usually are pragmatic ones
concerning the flexibility of prototype-based languages, and cultural ones con-
cerning the underlying systems and visions on programming in general.

Pragmatic Differences

A general comparison of prototype-based and class-based languages is presented
by Taivalsaari in [Tai98]. We merely summarize his analysis:

• In uniform class-based languages where everything is an object, one easily
ends up with very complex concepts such as “the parallel hierarchy” in
Smalltalk. Likewise, in Java classes are objects of the class Class and

46

Class is an object that is its own class. Prototype-based languages do
not suffer from this problem. Everything is an object, also on second
sight.

• Bugs or incompleteness in constructors can lead to meaninglessly initial-
ized objects. In prototype-based languages, fields in clones always have a
meaningful initial value, namely the value of the field of the cloned object.

• In class-based languages it is not possible to individualize the behaviour
of objects unless one makes extra subclasses. In Self, we can e.g. put a
“halt”-statement in one object which will only affect that object.

• Prototype-based languages support singleton objects [GHJV95] (such as
True, False) for which no class needs to be constructed. Smalltalk has
the classes True and False with true and false as only instances.

• In prototype-based languages two or more objects can inherit (by dele-
gation) from the same object such that changes in the parent applied by
one child are also “felt” by the other children. This powerful mechanism,
called parent sharing , allows one to define views on objects. Simulating
this in a class-based language leads to extremely cumbersome indirections
as illustrated by the entire role-modelling problem [Fow97].

• Classes play no less than eleven roles [BL92], amongst others, object gen-
eration, description of representation and behaviour of objects, taxono-
mization of objects, code reuse, modularity, encapsulation and visibility
definition and types definition. Of course by removing classes a lot of these
roles will be taken over by objects. But in that case we know objects fullfil
all the roles without arbitrarily deferring a few of them to classes.

• Prototype-based languages allow classes to be reintroduced to literally
classify objects, possibly at the level of the programming environment.
For instance, the language StripeTalk [GBO+98] allows programmers to
attribute objects with “stripes” and to query (groups of) objects according
to their stripes (e.g. “Give me all the blue objects”).

The Look-and-Feel of Prototype-based Languages

Apart from these rather technical arguments a lot of the argumentation in favor
of prototype-based languages has to do with culture. These arguments are not
very scientific in nature but proponents of prototype-based languages keep on
citing them as being important [NTM98]:

• Prototype-based languages are closer to the way people think about
knowledge [Lie86]. People think in terms of examples and not in terms of
abstract descriptions. When talking about elephants, people have one or
several elephants “in mind”. We simply do not think in terms of “grey
mammals with four legs, a trunk and big ears”.

47

• Teaching a prototype-based language is simple. The student only has to
learn how to handle concrete objects. Even at the level where one really
starts to master a language and starts digging deeper into it, everything
stays concrete. Concepts like meta-classes never pop up.

• One can argue that abstract concepts are only useful in mathematics or
in fields that have been highly formalized by mathematicians (such as
physics). Most modeling activities, however, do not involve abstract con-
cepts. Proof of this is the tremendous difficulty with which programmers
have to “distil” abstract classes from already made concrete implementa-
tions. Most “things” a requirements engineer encounters in the real world
are concrete. Extracting the abstractions is actually the difficult phase
called design. It has been argued that this phase becomes unnecessary in a
prototype-based language. Instead, Rapid-prototyping-development
(RAD), which turns a domain analysis directly into code, seems to be at
the heart of pure prototype-based programming.

Inheritance vs. Delegation

In the late eighties and early nineties, when research in prototype-based lan-
guages was taking off, people started to wonder about the theoretical differences
between delegation and inheritance. It was clear that delegation could simulate
inheritance. Indeed, every class is simulated by an object that contains no state
but only methods. The inheritance link is played by a delegation link between
such objects. Instances are represented by objects that only contain state and
have their class object as a parent. This simple scheme shows that it is fairly
easy to simulate class-based programming in a prototype-based language. But
is it also possible to do the simulation the other way around? In her paper
“Delegation is Inheritance”, [Ste87] Lynn Andrea Stein “proved formally” that
it is, but we strongly disagree with her results. The paper essentially shows that
in a Smalltalk-like language (where classes are objects and where subclasses can
be dynamically created!) it is possible to do all the programming with classes.
State is represented by class variables and delegating objects are represented
by dynamically created subclasses. Parent sharing is also accomplished because
two objects (read: classes) share the same parent object (read: common super-
class). Of course, Smalltalk is a bit of an exception in the class-based world.
Most class-based languages do not allow classes to be subclassed dynamically
nor do they attribute “object facilities” like message passing, a this and a super
pseudo variable to classes. I.e., in most class-based languages it is not possible
to do object-oriented programming using classes alone. We therefore strongly
disagree with Stein and consider prototype-based languages more powerful due
to the dynamic mechanisms they feature.

Traits: The Malenfant Analysis

In section 2.4.2 we have presented the traits technique developed in Self. Al-
though traits objects are but a programming idiom and are not an enforced

48

language feature, we have to face the fact that the traits technique actually
boils down to writing class-based programs in a prototype-based language: the
traits objects play the role of classes and the instances refer to the “class” by
means of a “parent pointer” instead of an “instance-of pointer”. Aside from
some technical details this is the same as class-based programming. Therefore,
Dony [DMC92] argues that it is better to speak about object-centred program-
ming instead of prototype-based programming. Object-centred programming
refers to writing programs that do not use these “class-centered techniques” too
much but instead put the object as a “design entity” in a central position.

Conclusion

These comparisons resulting from our literature study seem to turn out ex-
tremely positive for proponents of prototype-based languages. However, the
following section shows that prototype-based problems have their problems too.

3.3.2 Problems with Prototypes in Software Engineering

Most people that hear about prototype-based languages have the general vague
feeling that they are “too flexible” and do not offer programmers the ability
to specify or impose a “rigid design” in the way classes do. We have tried
to characterise this feeling by reducing it to a number of technical problems
[DDD03b].

• The construction of certain objects requires a construction plan to be
executed (e.g. building up a GUI). In class-based languages, it is possible
to formalize this plan as a constructor residing in the class of the object. In
prototype-based languages objects are created by cloning and it requires a
lot of discipline to make sure the right initialisation procedures are applied
to the clone. This problem is worsened by the fact that prototype-based
languages are often equipped with very powerful programming environ-
ments that enable a direct manipulation of objects on the screen. As
a result it is easy to end up with “half baken objects”, objects that are
copied and left behind somewhere without being properly initialized. Part
of this problem is that a cloning operator is applied to the object without
active participation of the object being cloned.

• The prototype corruption problem was described in [Bla94]. Proto-
types (e.g. the empty string) can be inadvertently modified. This can
lead to subtle bugs in other objects that are created from that prototype
and that rely on certain properties of the prototype (e.g. that it is the
empty string) because a state change to the prototype might affect future
clones. Again this is because the clones are created by an “external” clone
operator that is applied to the prototype and the prototype has no active
role in this cloning process.

• As concluded in section 2.4 on Self, NewtonScript and Kevo, prototype-
based languages suffer from a re-entrancy problem in the sense that

49

two orthogonal relationships seem to be needed to express object-oriented
software, to wit an is-a relationship and a code-reuse relationship. As
explained explained in section 2.4.2, the problem can be circumvented
using the traits technique which easily gives rise to multiple inheritance
problems. Another solution is a fairly complicated inheritance strategy
such as the comb-inheritance proposed by NewtonScript (see section 2.4.3)
that works differently along proto and parent links. The basic problem
is that the better modeling capabilities of prototype-based languages (e.g.
use parent sharing to model roles) are paid for by weaker code reuse giving
the programmers the feeling of yielding less structure.

• Some concepts are inherently abstract. E.g. in order to describe a stack
one has to go to the abstract level. When writing the code for push and
pop, one writes code for all possible stacks (empty stacks, full stacks,...)
and hence one is by definition “writing a class”. The problem is that
“stack” is an inherently abstract concept because the code is written for
stacks in general. Writing the code for “the empty stack” as a prototypical
stack e.g. would be counter-intuitive: since it is impossible to pop an
element from the empty stack, the empty stack prototype would not need
a pop method. But a stack without a pop method can hardly be considered
a prototype for stacks.

• Some prototype-based languages allow for varying template hierar-
chies. Indeed, if we look back at the table presented in section 2.5 on the
Treaty of Orlando we see that quite a few prototype-based languages offer
a non-strict definition of templates (i.e., objects in prototype-based lan-
guages). Many languages allow objects to change structure dynamically.
In Self, e.g. it is possible to change the parent of an object simply by
assigning one of its parent slots. Many programmers consider this as far
too flexible. Whatever taxonomy they come up with, a single (accidental)
assignment instruction might change the entire structure of the program.

• A common problem of most prototype-based languages is their complete
lack of what we call reflection protection. Whereas reflective class-
based languages define their reflection operators in classes, most prototype-
based languages feature such operators to modify the structure and be-
haviour of objects dynamically. Also, these operators usually allow one to
bypass the encapsulation boundaries of objects: by switching to the meta-
level, malicious programmers can circumvent encapsulation and protection
barriers. Until now, this seemed to be a binary situation: either one avoids
reflection, or one accepts the fact that the language is totally unsafe. We
show in chapter 4 that this does not necessarily have to be case.

All these software engineering problems can be solved by re-introducing
classes but we want to avoid that because of our analysis of section 3.2. In
chapters 4 and 5 we distill a new family of object-oriented programming lan-
guages that do not suffer from these problems and that do not feature classes

50

as an implicit sharing mechanism. The new language family will be distilled
by analysing the denotational semantics of class-based and prototyp-based lan-
guages which is the next topic.

3.4 A Language theoretical Point of View

In the previous section we have presented the software-engineering arguments.
In this section we present our second, language theoretical, analysis of prototype-
based languages. This analysis is based on our study of the denotational se-
mantics of prototype-based languages with respect to the one of class-based
languages. Before we can present our argument we will briefly summarize the
denotational semantics of class-based languages.

3.4.1 The Cook Semantics of CBL

In this section we briefly review the main results of W. Cook [CP89] who was
the first to give a satisfactory denotational semantics for classes, inheritance and
instantiation. Although older denotational descriptions of class-based languages
exist (e.g. [Wol88] and [Kam88]) they are mere mathematical versions of the
classical method lookup algorithm. The Cook semantics is simple, concise and
really explains the classes-inheritance-instantiation phenomenon.

Objects are records

The functional version of the Cook semantics3 treats objects as records of at-
tributes. Attributes are methods4 which are procedures that can refer to a “hid-
den” self and a super pseudo-variable. The domain equations used to model
objects for such a language are mere records mapping names to methods:

Object = Identifier → Method

whereby methods transform argument objects into a result object:

Method = Object? → Object

Message passing consists of method lookup (i.e., record indexing) followed by
method invocation. This is characteristic for every implementation of class-
based programming languages:

passCBL : Object× Identifier ×Object? → Object

passCBL(o,m, os) = o(m)(os)
3In his PhD thesis [Coo89] Cook gives a full semantics of several languages, with state.

The state makes the formalism much more complicated without adding to the understanding
of classes, instantiation and inheritance.

4We will only focus on classes, objects, inheritance and message passing. We will ignore
important features such as updatable state and exception handling. Adding them to the
semantics is not a trivial exercise, but does not really add much to the understanding of the
concepts under investigation.

51

Generators and Fixed Points

Given this definition of objects, let us now have a look at how classes and
inheritance are modeled by the Cook semantics.

A class can be considered as a reentrant object: the code of a class of an
object is like the code of the object itself, except that it should be usable for
other objects of the same class as well. Hence, the code of a class can be thought
of as the code of a true object, except for the state that resides in “self”. Hence,
we say that a class is an object that is parametrized over “self”. Mathematically:

Class = Object → Object

Object instantiation then takes a class c and “fills in the self of that class with
a real object s”. The result of that operation is the required instance i. Hence
i = c(s). But which real object s should that be? It is of course the instance
i itself. Therefore i = c(i). This equation gives us the specification for one of
the essential results of W. Cook, namely that an instance of a class is a fixed
point of that class. In other words, instantiation of a class is mathematically
explained as taking the least fixed point of that class:

new : Class → Object

new(c) = fix(c)

Since new objects are generated from the class by taking the fixed point
of that class, the semantic analogue of classes is called generators. For the
mathematical details we refer to [CP89].

Inheritance in class-based languages

One of the reasons of the success of Cook’s semantics is that it also explains
inheritance in a satisfactory way. To inherit from a class is “to add some delta
to the class” so that a new class emerges. This “delta” can be seen as another
class that has another variable, namely super with the well known semantics.
Hence, the set of subclasses (often called mixins when they get a special status
in a language, see [BC90], [Hen91]) can mathematically be denoted as:

Mixin = Object → Object → Object = Object → Class

I.e., a mixin is parameterized by itself and by its parent, i.e., a class that is
further parameterized by a parent. Inheritance takes a mixin (the code of the
subclass) and a class, and produces a new class. In this new class, all self
references of the original class and the self references of the mixin code now
have “to point” to the same “new” self reference of the resulting class. The
corresponding inheritance operator thus looks as follows:

inheritCBL : Class → Mixin → Class

52

inheritCBL = λc.λm.λs.c(s) +r m(c(s), s)

where +r is the right-preferential record combinator that takes care of overrid-
ing. The inheritance operator takes a class c and a mixin m and produces a
class λs.... We clearly see that the passing around of self variables takes care of
correctly binding “self” in sublasses, the famous “late binding of self” property
of object oriented languages.

For more details of the Cook semantics, we refer to [Coo89] which proves that
its is indeed applicable to a wide range of class-based object-oriented languages:
the semantics was shown to cover Smalltalk, Simula, Beta and a few others.

Super is NOT a first class object

In the above semantics, we can see that, once inheritance is involved, the ex-
istence of a super variable emerges such that the resulting subclass can refer
to the code in the superclass. From the domain equations we infer that this
super variable denotes an object: the “parent object” of the object under inves-
tigation. This is however misleading. The reason is as follows: since the super
variable is an Object, it is a record whose “self” is already fixed, and since “the
self of the super has to refer to the new object”, this self is indeed fixed to refer
to the new object. This implies that, if we would require the super object to be
a referable entity in our language, we would have an object whose self does not
refer to itself! That is the reason why:

• In Smalltalk, a super pseudo variable exists which looks as if it denotes a
regular object that can be used just like any other object. However, the
programming tools preclude programmers from using it as such. Therefore
in Smalltalk, the expression super eq:self is valid, while self eq:super
is not. Indeed, the first expression can be classified as a super send and
not as a super reference. In the second code excerpt on the other hand,
a message is sent to self with super as an argument: this means that
super is referred to as if it were a normal object. But as we stated this is
not semantically consistent because “the self” of that object is not itself,
but the inheritor. That is why the Smalltalk programming tools will reject
the second expression.

• In Java, the super pseudo variable was removed alltogether. Instead, a
dedicated syntax was added to do super sends (i.e., super.m()). Again,
the reason is that it does not make sense to allow “a first class super
object” to be accessible from within running programs: it is an object
whose “self” is not itself!

In brief, in a class-based language super is not an object. In class-based
languages, objects are indivisible entities even when inheritance is involved.
Class-based languages do not allow us to speak about “parent objects”.

53

3.4.2 A Semantics of PBL

Now that we have explained the essentials of the denotational semantics of class-
based languages, we can present our analogous treatment of prototype-based
languages. One of the things the Cook semantics teaches us is that basic inher-
itance (i.e., to make “old” attributes visible to the newly created class/object)
can easily be achieved through right preferential record combination, but that in
order to get correct late binding of self (i.e., to make “old” self references point
to the “new” self), we need to parametrize the records with a self variable and let
this variable be bound by the inheritance operator. This insight leads us to the
conclusion that in any satisfactory denotational semantics for a prototype-based
language, objects need to be represented as generators and not as records. In-
deed, in addition to message passing, inheritance (or some other form of object
extension) is also defined on objects. And since inheritance requires generators,
objects necessarily have to be modeled as generators.

But there is more to explain. Since objects are modeled as generators, and
since self is also an object, self also has to be modeled as a generator. This leads
us to a new generator domain:

Generator = Generator → Record

Object = Generator

Here we see that objects are now modeled as generators that take themselves as
an argument. This is done by a self application, an operation we dubbed wrap
in [SD95]:

wrap(g) = g(g)

Notice that this wrapping of objects cannot be done at object creation time.
This would “fix the self” of an object such that it becomes impossible to inherit
from the object later on. Hence, objects are modelled as unwrapped generators.
This defers the time of wrapping to the latest possible moment, which is when
the record is really needed: message passing time. Hence, the message passing
operator of prototype-based languages looks fundamentally different from the
class-based one. It consist of first wrapping the receiver, subsequently doing
the standard method lookup in the resulting record, and applying the found
attribute to the actual parameters:

passPBL : Object× Identifier ×Object? → Object

passPBL(o, i, os) = wrap(o)(i)(os)

This theoretical result is also very tangible in practical implementations of
prototype-based languages: the message passing operator is parameterized with
an extra “hidden” argument denoting the receiver of the message.

Again, this generator model is very satisfactory because of its ability to
model the inheritance mechanism (called delegation) of prototype-based lan-
guages. Indeed, in a stateless model an extension of an object is simply created

54

by “applying” a mixin to an existing object. The result is a new object which
has the original object as a parent object:

inheritPBL : Object → Mixin → Object

inheritPBL = λo.λm.λs.o(s) +r m(o(s), s)

Now that we have presented the essentials of a denotational description of
prototype-based languages, our language theoretical critique can be presented.

3.4.3 Encapsulation vs. Inheritance

Our language theoretical critique against prototype-based languages is essen-
tially that the prototype-based model suffers from an inherent encapsulation
problem. From a certain distance this is already visible in the above message
passing operators. By “feeding” a “strange self” to an object, the object can
be “fooled” and encapsulation can be broken.

From a more technical point of view, it is easy to come up with examples
of inheritance breaching encapsulation. This was also noticed by Snyder for
class-based languages [Sny86]. Snyder distinguishes between message sending
clients and inheriting clients. Inheritance is always a breach of encapsulation
because inheriting clients are granted more access to the implementation than
message sending clients. In a class-based language there is a clear separation
between inheriting clients and message sending clients: inheriting clients are
(statically declared) subclasses and cannot access living objects. But the prob-
lem becomes more severe in prototype-based languages as inheriting clients can
dynamically breach the encapsulation of existing objects. To illustrate this,
consider the following example (which was also the running example in [SD95])
written in an imaginary prototype-based language where objects can be dynam-
ically extended. The example show how an inheriting client (in this case, the
extension of the circle that is local to the window thief) can inadvertently access
the private variable of the object from which it inherits, simply by overriding a
method.

CircleWithExpensiveGoldenWindow IS OBJECT
PRIVATE VARIABLE ExpensiveGoldenWindow
METHOD DrawInWindow(aWindow)

...
METHOD Draw()

SELF.DrawInWindow(ExpensiveGoldenWindow)

WindowThief IS OBJECT
METHOD StealGoldenWindow (aCircle)

RETURN (aCircle EXTENDED WITH OVERRIDE
METHOD DrawInWindow(aWindow)

RETURN Window).Draw().

WindowThief.StealGoldenWindow(CircleWithExpensiveGoldenWindow)

55

Our example shows the most extreme way an inheritor can breach the en-
capsulation of a parent object: by intercepting self sends where private variables
are passed around. But the situation is much worse in real-world languages. A
real world language will typically have access modifiers such as the protected
modifier in Java. This modifier states that only inheriting clients are allowed
to access a variable which is normally not accessible by message sending clients.
But in a prototype-based language with objects and nothing but objects, any
object can play the role of an inheriting client and hence any object can access
those protected variables! In the research context of objects that roam net-
works described in section 1.1, we consider this a severe problem. We will
get back at this in section 3.5. The problem is inherent to prototype based
languages. Indeed, whereas class-based languages make a clear cut distinction
between “inheriting clients” (i.e., classes) and “message sending clients” (i.e.,
objects), this distinction is absent in prototype-based language with only ob-
jects. To avoid this kind of problems, the language family we will propose will
adhere the extreme encapsulation principle: objects should be subject to mes-
sage passing and message passing alone. As we will show in chapter 4, this will
still allow for more complex language features like object extension and object
cloning.

3.4.4 Extreme Encapsulation: Objects + Messages

When it comes to encapsulation, the fundamental problem of prototype-based
languages is that inheritance and message passing are both defined on objects.
Denotationally this is clearly expressed by the fact that objects and generators
are aligned. In class-based languages this problem does not exist. Message
passing is defined on records of methods and fully respects encapsulation. In-
heritance is an operation that is not defined on objects, but on a special kind
of language entities: generators, i.e., classes.

In section 3.3 we have already coined the term “reflection protection” refer-
ring to the fact that reflection operators should not allow clients to access more
of an object at the meta level than they already can at the base level. This is
an important point because many prototype-based languages define reflection
operators and require these reflection operators to be applied, again, to objects.
Needless to say, this application of relection operators on objects is another
source of encapsulation breaching.

A final similar argument that can be made is focused on cloning. While
class-based languages define object-creation on classes, prototype-based lan-
guages define a cloning mechanism on objects. It is very easy to construct an
analysis about cloning similar to the one we have presented here for inheritance.
By having a cloning operator that operates on objects, the language makes it
possible to make copies of objects that “should not be copied”. We will show
in section 3.6 that this can lead to severe security problems in open networks.

We therefore conclude that we should look for languages in which objects
can be mathematically modeled by records and in which the class-
based message passing operator of section 3.4.1 can be used. All models

56

in which clients of object can do more than send messages to those objects are
potentially dangerous. We will refer to this property as extreme encapsula-
tion. It will not be very surprising that this property is of vital importance to
mobile and distributed systems as described in section 3.6.

3.5 The Fundamental Problem of Prototypes

Now that we have thoroughly investigated the problems of prototype-based
languages both from a software engineering point of view (section 3.3) and from
a language theoretical point of view (section 3.4) , we can pinpoint the exact
problem of existing prototype-based languages: The fundamental problem
of existing prototype-based languages is that, from a semantical point
of view, too many operators are defined on objects. This statement is
motivated by the analysis we gave in the previous sections:

• Every prototype-based language has the notion of message passing. So all
these languages define a message passing operator on their object domain.

• As we have discussed in our language theoretical analysis, a major problem
with conventional prototype-based languages is that they align their object
domain and their generator domain. This is a breach of encapsulation.
The main cause is that the inheritance operator is defined on objects.

• Section 3.3 explained the problem of incomplete objects and the prototype
corruption problem. This problem is pretty much the same as the inheri-
tance case: the object that is subject to cloning plays no active role in the
process, and as such, message passing clients can “mess up the object”
inadvertently. Both problems are due to the fact that prototype-based
languages feature an external cloning operator that is applied to the ob-
ject being cloned in such a way that that object does not play an active
role in the cloning process.

• Section 3.3 identified the problem of varying templates. It basically boils
down to the fact that parent assignment is too flexible a language feature
for most programmers. Combined with the language theoretical argu-
ments presented in section 3.4 parent assignment it also is a source of
encapsulation problems. Again, this can be characterised by the fact that
parent assignment is an operator defined on objects.

• A more severe manifestation of the problem occurs if we (as most prototype-
based languages actually do) add introspection or reflection operators to
the language. We have already called this problem the reflection protection
problem in section 3.3.2. Indeed, by introducing reflection in the language,
the operators defined on objects become really accessible in the language
itself. This has the consequence that nearly all protection mechanisms of
the language can be bypassed. As discussed in section 3.6, this is really

57

implements

.class
new

invokeI

objects

interface

extends

send
clone
extend
send
addslot
delslot
setparent

send

class

extends

objects

a) (b

Figure 3.1: Language Values and Language Operators

problematic in a language used for distribution and mobility because of
the importance of protections against hostile hosts.

The situation is schematically depicted in figure 3.1. Whereas class-based
languages have a multitude of language values that are connected by language
operators (fig 3.1a), prototype-based languages have only one kind of value,
to wit objects. They therefore define all their language operators directly on
objects (fig 3.1b). The consequence thereof is that prototype-based languages
give programmers the feeling of being too flexible and that they suffer from
inherent encapsulation problems.

3.6 Evaluating Prototypes for Open Networks

Prototype-based languages suffer from inherent encapsulation problems because
of the multitude of language operators they define on objects. During our
analysis we already heralded the problems this poses in an open distributed and
mobile setting. In this section we analyse this further. But let us first shed
some light on the different levels of security in network-oriented programming.

3.6.1 Issues in Security

It is clear that security is an important issue in distribution on open networks.
This is especially the case when combined with code mobility, the topic of
chapter 9. Thorn [Tho97] carefully distinguishes safety from security . Safety is
what language designers can relegate to system software. Security, is not.

• safety means that bugs in applications will never affect the execution of
other parts of the computational environment. This involves the guarantee
that applications do not manipulate pointers outside their address space
and so on. Safety is largely an aspect of the operating system and of

58

the runtime of programming languages. An example of the latter is the
guarantee to check for array operations to stay within their bounds.

• security primarily concerns applications or hosts whose application logic
was explicitly devised to be malicious. Thorn [Tho97] distinguishes be-
tween four levels of security:

– Communication level security is meant to avoid communication with
a malicious partner. It involves secure communication protocols
based on cryptography. This is beyond the scope of our research.

– Operating system level security is close to safety. Safety is often
ensured by hardware. Operating system level intervention is needed if
hardware protection is impossible, absent or undesirable. An example
is access control to files. This is not the focus of our research.

– Abstract machine level security is the security one gets when an ad-
ditional layer exists between applications and the operating system.
The Java sandbox model is a good example of this. But as section
3.6.2 shows, there are better solutions for this.

– Finally, and most important for our work, there is the programming
language level of security. This involves issues such as scope rules
and access rules for the way data is manipulated. Unfortunately, pro-
gramming language level security is often treated in a stepmotherly
fashion by language designers5. As we will shown in section 3.6.3
prototype-based languages are weak in this. As Thorn [Tho97] puts
it “...especially, security are issues that have not received enough at-
tention so far in the area of programming languages”. The principles
of extreme encapsulation and reflection protection described in sec-
tions 3.4.4 and 3.5 are to be viewed in this light.

The boundaries of safety and security are not crisp. Safety is a necessary
ingredient of security. It is not a sufficient condition.

Continuing the analysis of security at the programming language level,
Vitek [SV97] distinguishes between four types of security problems in mobile
systems. They are especially relevant for open networks.

• breach of secrecy: Breach of secrecy occurs when a computation unautho-
rizedly accesses the direct state of another computation.

• breach of integrity: Breach of integrity means that a computation can
somehow change the state of another computation illegally.

• masquerading:. A computation that pretends to be a computation which
it is not by usurping its identity.

5At “The first European Lisp Workshop” it was generally agreed in a plenary session that
the absence of security is a painful shortcoming of Lisp in modern application engineering.

59

• denial of service:. A computation can excessively consume the finite re-
sources of another computation.

By illustrating these security breaches in Java, Vitek shows that object-oriented
encapsulation is not enough to protect objects. However, the attacks he presents
all involve a combination of inheritance and static (class) variables. So his anal-
ysis for class-based languages is akin to the one about inheritance and encapsu-
lation in prototype-based languages we presented in section 3.4.3.

3.6.2 Capabilities, Security and the Granovetter Operator

An issue often found in the literature when combining objects, distribution
and security is the notion of capabilities as found in the Eden Programming
Language (EPL) [Bla85]. The idea is that kernels can create capabilities that
represent access rights for objects. Objects can never create them but can only
pass on capabilities to other objects. As Miller puts it, in a capability-based
system, connectivity begets connectivity [MMF01]. This is important for the
abstract machine level security discussed above. Instead of letting distributed
software (applets, say) read your system in all kinds of uncontrolled ways (using
string-based file and directory descriptors in combination with native libraries,
e.g. getFile(f,d)) it is better to pass along an initial reference to the code. All
other references to resources should be obtained through, and only through, that
object. Although a capability can be anything (it might be an integer indicating
which access rights one has), in an object-oriented system they are best repre-
sented by objects. Based on this, Miller describes that all connectivity should
result from successively applying the Granovetter operator6 as depicted in
figure 3.2. The figure shows that, if Alice has a reference to Carol and Bob does
not, then the only way for Bob to get a reference to Carol is that Alice intro-
duces Carol to Bob. This can happen by sending a message foo containing
a reference to Carol. However, it can also take the form of introducing Carol
to Bob upon creation of Bob, in the case that Alice creates Bob. Yet other
forms of the Granovetter operator are programming language scoping mecha-
nisms that introduce Carol to Bob by using the scope rules that relate Bob and
Alice. Miller argues that architectures that allow objects to obtain a reference
to resources in other ways than applying this operator are very likely to have
security holes. Good examples of flagrant bypasses of the operator typically are
string-based object accesses (e.g. System.getDatabase("Secret Database"))
of which the security is very hard to manage without leaks popping up. As we
will see, the ChitChat model endorses this vision completely. The only way an
object is able to access a resource is when it was give a reference to that resource
by another object as a consequence of message passing.

6The operator was named after the sociologist Mark Granovetter who introduced the kind
of diagrams depicted in figure 3.2 to study the evolution of human acquaintance relationships.

60

Carol
Bob

Alice

foo

Figure 3.2: Miller’s Granovetter Operator

3.6.3 The Security Performance of Prototypes

The analysis of section 3.2 leads us to conclude that for open networks, especially
compared with mobility, prototype-based languages fundamentally outperform
class-based ones. Surely language implementations can apply aggressive optimi-
sation techniques to improve code sharing (such as Kevo’s family algorithm of
section 2.4.4). However, the very definition of prototype-based languages forces
programmers to think about idiosyncratic objects, to reason carefully about the
relationships between those objects (possibly via shared traits — see section
2.4.2) and above all, to make these relationships explicit in the design of their
systems. As seen in section 3.2.2, shunning implicit relationships this way is a
vital property for on open networks.

As thoroughly explained in sections 3.4 and 3.5, conventional prototype-
based languages have fundamental problems too. The fact that they define all
their language operators (message sending, cloning, inheritance, reflection,...)
on the concept “object” results in them being too flexible and possessing inher-
ent encapsulation problems. We conclude this section by showing that this leads
to severe security problems when deployed in open networks and mobile envi-
ronments. All cases shown below are examples of objects that obtain references
to other objects by circumventing the Granovetter operator.

Delegation vs. Security. Until now, we have extensively discussed the
encapsulation problem from a software engineering point of view. But in open
networks, this situation is totally unacceptable. By dynamically extending an
object, techniques such as overriding, self sends and privileged access to private
state, unacceptable security breaches such as the ones discussed above are im-
possible to prevent. Especially Vitek’s breaches of secrecy can be constructed
easily. As explained in section 3.4.4 a radical adherence to message passing is
really the only available option.

Cloning Operators vs. Security. A similar argument holds for cloning
operators defined on objects. We have already explained how problematic this

61

is in the context of regular software engineering (see section 3.3) but in the
context of distribution on open networks and in the context of mobile systems
this problem is far more severe, taking into account the programming language
level security outlined above. The following code excerpt shows the consequences
of a cloning operator that is to be applied on objects without sending them a
message. By copying the money without sending a message, a malicious object
can buy for ever on the network.

badAmazoneProxy IS OBJECT
VARIABLE Amazone = Ref(www.amazone.com)
METHOD buy(book, iMoney, shippingAddress)
WHILE not(theCowComesHome) DO
Amazone.buy(book, CLONE(iMoney), shippingAddress)

In our scenario of section 1.1.1, Harry carries an i-ticket on his Gizmo the very
identity of which has to be transfered to the cashier in order not to use it
multiple times to buy the butter. In a classic prototype-based language, this
cannot be assured. These are the kind of problems the Vitek analysis presented
above calls masquerading.

Reflection vs. Security. It is commonly accepted that modern object-
oriented programming languages “should” feature meta programming and re-
flection techniques. However, as we already explained thoroughly in section 3.5,
reflection is a potential source of problems when contrasted with encapsulation.
Indeed, if objects reveal more on the meta level than they do on the base level,
then the meta level can easily be used to breach the object’s encapsulation
boundaries, unless the meta level is restricted to some objects that belong to a
certain “class”. In all other cases, access to the object is virtually free simply
by going to the meta level. In 3.3 we have called the requirement that objects
should not reveal more at the meta level then they do at the base level reflec-
tion protection. In an open distributed and mobile setting, this requirement
becomes tremendously important. The following code excerpt shows how a ma-
licious client can try to break the encapsulation boundaries of an object given
that the meta level allows one to “dissect” objects using slot access operators
like HASSLOT, SETSLOT and SETSLOT. The problems illustrate Vitek’s breach of
secrecy and breach of integrity.

METHOD break(safeObject)
LOCAL slotName = void;
REPEAT
slotname:=generateRandomNameContaining(’’visa’’)

UNTIL HASSLOT(safeObject,slotName)
visaNr := READSLOT(slotName,safeObject)
SETSLOT(slotName,0)

62

3.7 Conclusion

In this chapter we have shown that class-based languages have paradigmatic
problems in order for them to be viable in open networks combined with mo-
bility. This was our main motivation for arguing in favour of prototype-based
solutions. However, we have also shown that prototype-based languages as de-
fined in the previous chapter are no panacea. We have done this by scrutinized
existing prototype-based languages, both from a software engineering and from
language theoretical point of view. We have identified a number of problems
which basically boil down to the fact that prototype-based language define too
many language operators on their object model. This results in encapsulation
problems and in a number of software engineering problems which programmers
usually perceive as prototype-based languages being too flexible.

In the context of distribution and mobility, especially the encapsulation prob-
lems are extremely problematic. We have therefore formulated the extreme en-
capsulation and reflection protection principles which states that objects should
be fully encapsulated in such a way that every operation performed on ob-
jects should be accomplished through message sending. The following chapter
demonstrates that this not necessarily has to lead to uninteresting languages
that only feature record-like objects without any structure.

63

64

Chapter 4

Intersecting Classes and
Prototypes: The Agora
Family

In chapter 3 we have stated that class-based languages have fundamental paradig-
matic problems in the context of open networks and that classic prototype-based
languages have unacceptable encapsulation problems. We have identified this
problem from a denotational point of view and have formulated clear criteria for
a denotational semantics to avoid these problems. Built hereupon, a new fam-
ily of object-orientation is distilled in this chapter. First a denotational model
is conceived based on the observations of chapter 3. Subsequently, it is used
to define a full-fledged object-oriented language family called Agora. The new
family combines the advantages of class-based and prototype-based languages
but avoids their disadvantages.

4.1 Introduction

Now that we have a solid understanding of the semantical tension between class-
based languages and prototype-based languages, based on the denotational ar-
guments presented in section 3.4.3 and the related argument about language
operators being defined on objects in section 3.5, we can try to resolve the
stalemate outlined in chapter 3. Building further on the denotational analysis of
section 3.4 this chapter drafts a denotational model for classless object-oriented
programming that endorses our extreme encapsulation principle explained in
section 3.4.4. Subsequently, this denotational model will direct us in distill-
ing a full-fledged object-oriented programming language family that has the
desired properties of both class-based and prototype-based languages without
re-introducing classes.

Although combinations of prototype-based and class-based language families

65

have been proposed in the past, the resulting languages are usually straight-
forward unions of prototype-based and class-based languages features. They
typically feature classes, instantiation, dynamic extension of objects previously
instantiated from classes, reclassification schemes, and sometimes operators to
“promote” objects to classes. Unfortunately, as explained in section 1.2, such
languages not only combine the advantages of the desired features but also their
disadvantages. Furthermore unexpected interactions of the features arise, often
with undesirable side effects. Therefore, these languages are often hard to reason
about and tend to be big with lots of baroque features. In contrast, our work
adheres to a more intersectional point of view. The language family we propose
unifies the positive features of class-based and prototype-based languages into
one consistent model that avoids their drawbacks.

In the following section, we continue our denotational analysis of chapter 3
by presenting a theoretical language, called MiniMix, that clearly shows — by
construction — that powerful classless languages exist that do not suffer from
the encapsulation and security problems outlined in chapter 3. Subsequently,
the Agora model will be introduced in section 4.3 as a full-fledged program-
ming language family that endorses the ideas of MiniMix. Section 4.4 restates
the essence of the MiniMix denotational semantics in Agora terminology. It
will be the central yardstick for many language features presented
throughout the remainder of the dissertation.

4.2 Extreme Encapsulation Denotationally

The most obvious difference between class-based and prototype-based languges
is the difference in inheritable entities. As explained, class-based languages
strictly separate their objects and inheritable entities into objects and classes
which at the semantic level boils down to records and generators. Prototype-
based languages strive towards a unification of these entities by removing classes
and, instead, define inheritance directly on objects. Therefore, the object
model employed by conventional prototype-based languages consists of genera-
tors which suffer from inherent encapsulation problems.

But rather than conclude that pure class-based languages (or uninteresting
languages featuring only objects and messages) are the only solution, we will
reconsider the design characteristics of object inheritance, keeping in mind the
need for a clear distinction between inheriting and other clients. However, a
straightforward restriction of the visibility of the internal details of objects to
a limited “set of valid inheriting clients” must be approached with caution. As
long as objects can arbitrarily subscribe to such a set by some kind of decla-
ration, the problem remains. Solutions where the object under extension itself
is not an active participant in the subscription process are not a substantial
improvement. We will now propose an inheritance mechanism that takes this
into account. The mechanism is characterised by the fact that the object under
extension is the one in control of the extension process. Inheriting clients thus
have no option but to send the object a message. The message might give rise to

66

an extension process, if the object receiving the message agrees to be extended.
At the denotational semantics level, this boils down to the fact that gener-

ators are always encapsulated. This is achieved by a hygienic use of wrapped
generators to denote objects. Wrapped generators are encapsulated objects and
therefore adhere to the extreme encapsulation principle presented in section
3.4.4. But the semantics of inheritance requires generators. This can still be
accomplished by giving objects a limited access to their own generator. So,
objects will be wrapped generators and some messages sent to these objects will
give rise to a mechanism being triggered that accesses the (unwrapped version
of the) generator and performs extensions to it. The mechanism is exemplified
by a toy language, called MiniMix, the single goal of which it is to give a solid
foundation of Agora. The basic idea of MiniMix is that some messages might be
implemented by a special kind of methods, called mixin methods. These mixin
methods access the generator of the object in which they reside and define an
extension of this generator. The resulting generator is immediately wrapped
before it is returned as the result of the method.

In what follows, we present the syntax of MiniMix. A program is an object
expression OE. Object expressions are identifiers, message expressions, self,
super and ex-nihilo created objects. These objects are abstractions AB list-
ing attribute descriptions AD. Every attribute description is either a regular
method1, or a mixin method. Mixin methods also list attribute descriptions.

P → OE
OE → ME

| I
| self
| super
| object AB

ME → send OE1 (OE2)
AB → [AD?]
AD → method I1 (I2) OE

| mixin I1 (I2) AB

The idea of mixin methods [SCD+93] is as follows. When someone sends a
message to an object and when that message happens to be implemented by
a mixin method, then a new object is created whose parent is the receiver of
the message, and whose extra attributes are the ones that are listed inside the
mixin method. The new object is a “view” on the original one. To illustrate
this, consider the following code that is used to construct points and circles.

[mixin Point1D (x) [
method getX (ignore) x,
mixin Point2D (y) [
method getY (ignore) y,
mixin Circle (r) [

method getR (ignore) r]]]]

1We only consider unary methods.

67

Point1D

Point2D

Circle

getX

getY

getR

x

y

r

Figure 4.1: Mixin methods Illustrated

Suppose this object is known as Root then the expression send (send (send
Root Point1D (0)) PointD2 (0)) Circle (1) will construct the trigonomet-
ric circle. This object can be depicted as shown in figure 4.1. It clearly shows
how the object results from subsequent mixin method applications to the root.

Let us now have a look at the denotational semantics to explain why mixin
methods do respect the extreme encapsulation principle described in the section
3.4.4. For the sake of clarity, the semantic domains of MiniMix are summarized
below:

Object = Ident → Attribute

Attribute = Object → Object

Generator = Generator → Object

Env = Ident → Object

Mixin = Object → Generator

In the semantic equations of MiniMix, object expressions are always evaluated
using the current unwrapped self (g in the equations below), the current envi-
ronment (e in the equations) and the current super object (p in the equations).
The interpretations of identifiers and pseudo variables then are

evalOE : ObjExpr → Env → Object → Generator → Object

evalOE(self) = λe.λp.λg.wrap(g)
evalOE(super) = λe.λp.λg.p

evalOE(I) = λe.λp.λg.e(I)

68

The interpretation of self confirms that objects are modelled by encapsulated
objects. A self reference is achieved by wrapping the “current generator”. Stated
differently, generators are only passed around behind the scenes and will never
be injected into the programming language value space.

The semantics of message passing consists of selecting the appropriate at-
tribute in the receiver and applying it to the semantic object denoting the ar-
gument. Notice that this is the same kind of message passing as the class-based
one discussed in section 3.4.1. No self parameters are being fed into the object.
Objects are fully encapsulated.

evalME : Msg → Env → Object → Generator → Object

evalME(sendO1I(O2))
= λe.λp.λg.evalOE(O1)(e)(p)(g)(I)(evalOE(O2)(e)(p)(g))

As can be seen from the grammar, an object can be created ex-nihilo by
writing an abstraction object AB. Therefore, the semantics of ex-nihilo created
objects requires understanding the semantics of abstractions. The body of a
mixin-method is also an abstraction. Since the body of a mixin-method is a
modifier, its denotation is a “Mixin” and hence abstractions are denoted by
values from the Mixin domain:

evalAB : Abstr → Env → Mixin

evalAB([AD?]) = λe.evalAD(AD?)(e)

An ex-nihilo created (encapsulated!) object is nothing more than a wrapped
mixin with an empty super object ([]):

evalOE(objectAB) = λe.λp.λg.wrap(evalAB(AB)(e)([]))

An abstraction is a sequence of attribute declarations. As above, all attribute
declarations are evaluated making use of the current environment, the current
super and the current unwrapped self. This gives us a specification for the
semantic function of attribute declarations. A list of attributes is recursively
defined by the concatenation of two such other lists2. The same therefore goes
for its semantics.

evalAD : AttDec → Env → Object → Generator → Object

evalAD(A1;A2) = λe.λp.λg.(evalAD(A1)(e)(p)(g) +r evalAD(A2)(e)(p)(g)
2We are aware of the fact that this is actually an ambiguous grammar. However we decided

to keep it that way for notational convenience as it makes the semantics much simpler.

69

At the lowest level in such a sequence, methods and mixin methods are de-
clared. This declaration binds a name to a single parameter function containing
the effect of invoking the attribute (records are represented as [i→ λo....]).
For methods this effect consists of evaluating the object expression making up
its body. But for mixin-methods however, that effect consists of taking the
current (unwrapped) generator (i.e., the receiver, unwrapped) and extending it
with the mixin that corresponds to the body. The resulting generator is cleanly
wrapped to yield an encapsulated object that can be returned as the result of
the mixin method.

evalAD(methodI1(I2)O)
= λe.λp.λg.[I1 → λo.evalOE(O)(e[I2/o])(p)(g)]

evalAD(mixinI1(I2)AB)
= λe.λp.λg.[I1 → λo.wrap(inherit(g, evalAB(AB))(e[I2/o])]

Since all objects in MiniMix are denoted as encapsulated records, MiniMix
adheres to the extreme encapsulation principle. However, by cleverly allowing
objects to passing around their own unencapsulated generator, they are capa-
ble of delivering extensions of themselves upon reception of a message. This is
exactly what mixin-methods do. Hence, MiniMix shows that it is possible to
design a prototype-based language that features nothing but extremely encap-
sulated objects but that still features dynamic object extension.

4.3 The Agora Model

The argument developed in the previous section merely focusses on inheritance.
This section uses the MiniMix model as a basis to devise a full-fledged classless
object-oriented programming model, called Agora, that features object exten-
sion, cloning and reflection, without sacrificing extreme encapsulation.

Agora was actually the topic of Steyeart’s PhD thesis [Ste94], but we have
contributed sufficiently to the language and to its full comprehension in order
to include it in this dissertation [De 98a]. Historically, Agora was defined as a
minimal object-oriented language in which nothing but objects and messages
where incorporated. It was planned to add richer features on top of this model
in order to study their semantic interactions with the basic message passing
model. As a surprise however, it was perfectly possible to add these features
without changing the initial message semantics passing at all. Agora has shown
that it is possible to construct a language that is solely based on objects and
messages, and to which features like inheritance, cloning and reflection can
be added without adding extra language values such as classes, and, without
defining extra operators on objects the way other prototype-based languages
do.

In what follows we will often draw the parallel between Agora and Scheme.
This is because many of Agora’s features are the object-oriented equivalent of

70

similar Scheme features. One of the similarities of the languages has to do with
syntax. In the same way Scheme’s syntax actually defines a syntax framework
instead of just one single syntax, the syntax of Agora is a framework that allows
for the definition of many different languages. Indeed, in the same way versions
of Scheme can be completely different because of the different set of special forms
they implement, different scions of the Agora family can be completely different
because of the different “reifier messages” they implement. Hence, Agora is not
a language but a language family instead. Just like Scheme’s suite of special
forms can be extended by macro-programming, Agora’s suite of reifier messages
can be extended by reflection. This, however, will be deferred to section 4.5.

4.3.1 Agora: A Language Family

Apart from the syntax, there are plenty of other similarities between Agora
and Scheme. These are in fact consequences of the syntactical choices made for
Agora. As we will see, one of the consequences of Agora’s syntax is that Agora
allows for an easy treatment of programs as data structures, which opens up the
possibilities for reflection. This will be the topic of section 4.5. In the vanilla
variant explained here, the emphasis is completely on objects and messages.

Agora Message Expressions. Scheme uses a uniform notation but dis-
tinguishes between “ordinary functions” and “special forms”. Whereas Scheme
uses applicative order evaluation for its ordinary functions, special forms are
evaluated differently. E.g., when encountering (define x 2), Scheme will ap-
ply the ‘define’ procedure to the unevaluated x and 2 parameters. The fact that
x is not evaluated and that 2 will get evaluated depends completely on define.
Each special form uses its own evaluation order. Likewise, Agora knows two
sorts of messages: ordinary messages and reifier messages. Ordinary messages
correspond to ordinary function applications. An example is 3 + 4 where +
is sent to the evaluated 3 with the evaluated 4 as argument. Reifier messages
correspond to the special forms of Scheme. An example is x VARIABLE:3 which
is used to define a variable in Agora by sending the VARIABLE: message to
the identifier x with the expression 3 as parameter. Hence, as in Scheme, the
essential difference between ordinary messages and reifier messages is their eval-
uation order. Agora reifier message names consist of completely capitalized or
boldfaced identifiers, depending on the implementation3.

Agora also distinguishes between receiverful and receiverless message expres-
sions. Receiverless message expressions are exactly like “receiverful” message
expressions, except that a receiver expression is syntactically missing. At this
point it is not far wrong to think of them as function calls.

Finally, all messages come in unary, operator and keyword form, just as in
Smalltalk and Self. Hence, Agora features 12 kinds of messages that vary along
the dimensions {receiverless, receiverful}, {ordinary, reifier} and {unary,
operator, keyword}. The complete system of messages is summarized in figure
4.2. We do not give an example of operator reifier messages because there is no

3Another possibility is to prefix all reifier messages names by a special symbol such as µ.

71

capitatised analog of things such as +4 to have reifier operators.

Receiverful Operator 3 + 4
Ordinary Unary 3 abs

Keyword dict at:"key"
Operator

Reifier Unary message SUPER
Keyword myVariable VARIABLE: 4

Receiverless Operator - 5
Ordinary Unary myVariable

Keyword at:key put:athing
Operator

Reifier Unary SELF
Keyword CURRENTLY:not IN:use

Figure 4.2: Agora Message Expressions

Example: The following expression elaborates on the Agora syntax. The in-
formal meaning of the expression is to install a method compute:value in the
object in which the expression occurs.

compute:value METHOD: ((SELF try:value) + (5 abs))

This is a reifier keyword message METHOD:. Its receiver is the receiverless or-
dinary keyword message expression compute:value, here acting as a formal
pattern. The argument value is a receiverless ordinary unary message expres-
sion. The argument of the METHOD: message is an ordinary operator message
expression + with 5 abs as argument. The receiver of the operator message is an
ordinary keyword message expression SELF try:value with SELF as receiver.
SELF is a receiverless reifier unary message expression.

Agora Objects. The simplest Agora objects are literals such as integers,
floats, characters, strings, booleans and null. In addition to these built-in
objects, new objects are constructed ex-nihilo by listing their attributes between
square brackets, separated by semicolons.

[...; ...; ...; ...]

The entries of the object must be valid Agora message expressions. This typi-
cally will be reifier messages such as x VARIABLE:4.

4.3.2 A Concrete Agora Scion: Some Reifiers

Just as variants of Scheme are defined by their special forms, variants of Agora
are defined by their reifier messages. This section explains some elementary

4In versions where reifiers are recognised as boldfaced or prefixed with µ, this poses no
problems.

72

reifier messages defined in most members of the Agora family5. Most of them
define new attributes.

Variables. The simplest kind of attributes one can install in an object’s slots
are variables. Variables are created by sending the VARIABLE: reifier message to
an identifier with the initial value of the variable as argument. The VARIABLE:
message installs two slots. Whenever a variable x is declared by sending the
message x VARIABLE: 5, a reading slot named x and a writing slot named x:
are installed. These slots are accessor methods to the variable. As in Self, users
of the object can read the variable by sending x to the object. They can modify
the variable by sending x: with the new value as an argument.

Methods. As illustrated before, sending the METHOD: reifier message installs
a method in an object. The receiver of that message must the formal pattern
of the new method. The argument of METHOD: can be any expression serving
as the body of the method. Expressions may be grouped between curly braces
as in Java. Recursive methods are programmed by sending messages to SELF.
Evaluation of this receiverless reifier unary message expression always returns
the ‘current’ receiver.

Views. In section 4.2 we have explained “mixin methods” that deliver
extensions of their receiver upon invocation. In Agora, we have two versions of
such mixin methods: mixins and views. A view is what we have called a mixin
method in MiniMix6. It is a method whose body contains a group (delimited
by { and }) of expressions which will be evaluated in a new object that has the
receiver as parent link. The following example shows a point onto which circle
views can be added by sending circle: messages to the point object.

point VARIABLE:
[x VARIABLE:0;
y VARIABLE:0;
circle:r VIEW:
{ radius VARIABLE:r;
inCircle:p METHOD:
{ ((p x) sqr + (p y) sqr) sqrt <= (SELF radius) }

}
]

Just as in MiniMix, invocation of a view creates an extension of the receiver
(i.e., an object whose parent is the receiver) but does not destructively change
the receiving object. Each time a circle: message is sent to the point, a
new object is created with the receiver (point) as parent-of link. The slots of
this extension are determined by evaluating the body of the view in the context

5The exact technicalities of the reifiers discussed here come from Agora98, a version of
Agora implemented on top of Java [De 98b].

6Over the years, the terminology has changed somewhat. Whereas originally Patrick
Steyaert talks about mixin-methods [SCD+93], [CDDS94] makes a distinction between func-
tional mixin-methods (that add a layer to an object but do not change the object itself,
and imperative mixin-methods which effectively change the object. From Agora98 onwards,
functional mixin-methods are called views and imperative mixin-methods are called mixins.

73

of the extension. The extension is the result of sending the ‘view message’.
Notice that views automatically yield parent sharing because all the views are
extension of the same parent object.

Mixins. While views do not destructively change their receiver, mixins do.
In the following example, sending circle: to the point object, really adds a
radius variable and an inCircle: method to the original point. All objects
that can access the point, can now also access radius and inCircle:.

point VARIABLE:
[x VARIABLE:0;
y VARIABLE:0;
circle:r MIXIN:
{ radius VARIABLE:0;
inCircle:p METHOD:
{ ((p x) sqr + (p y) sqr) sqrt <= (SELF radius) }

}
]

It is important to understand the difference between views and mixins. While
views only put an extra inheritance layer around an object, with the original
object as parent, mixins really change the object. Everyone refering to the
object, including views, will notice that the object has been destructively ex-
tended. Mixins thus allow one to change an entire object hierarchy in one stroke.
This shows that parent assignment is possible, without adding an extra parent
assignment operator to the language.

Cloning Methods. Until know we have argued that mixin methods in
the incarnation of mixins and views show how inheritance is possible without
introducing extra language operators on objects. Here we show that the same
is true for cloning. Agora does not feature a security-breaking (see section
3.6.3) cloning operator that is applied on objects. Instead, a cloning method
must be used to clone objects. A cloning method is installed by sending the
message CLONING: to a pattern, just like an ordinary method is declared. Upon
invocation of a cloning method, its body is executed in the context of a clone of
the receiver instead of the context of the receiver itself. The following example
illustrates this. It shows a new cloning method in the listnode object. Upon
sending new to the listnode, the next and elmt variables in the copy are
initialised to null. By default, the result of a cloning method is that copy and
SELF in a cloning method refers to the copy.

listnode VARIABLE:
[next VARIABLE: null;
elmt VARIABLE: null;
new CLONING:
{ SELF next:null;
SELF elmt:null

}
]

74

Some Other Reifiers. Figure 4.3 gives an overview of some other fre-
quently used reifiers. We refer to the language manual [De 98b] for more details.

SUPER Forwards a message to the parent object.
TRY:CATCH: Catches an exception when needed.
RAISE Raises an exception.
IFTRUE:IFFALSE: Tests a conditional and evaluates one of the branches.
WHILETRUE: Leading-condition loop.
UNTILTRUE: Trailing-condition loop.
FOR:TO:DO: Bounded loop.

Figure 4.3: Frequently Used Reifiers

Agora and Extreme Encapsulation. It is important to note from the
previous paragraphs that Agora is a full-fledged prototype-based programming
language with inheritance and cloning. Nevertheless, objects are its only lan-
guage values and message passing is its only built-in operation. Hence Agora is
a non-trivial prototype-based language that adheres to the principle of extreme
encapsulation. A commonly uttered criticism against Agora is that all the ex-
tensions and possible cloning algorithms have to be within the object at object
creation time. This will be dealt with in section 4.6.2.

4.3.3 Local and Public Attributes

In section 4.3.1 we made the distinction between receiverless and receiverful
messages. We stated that it is not very wrong to think of receiverless messages
as function calls. Agora objects actually consist of a local part and a public part
and accessing the local part is what receiverless messages are good for. Hence,
a receiverless message expression of the form msg:arg will be searched for in
the local part of the object. This means that an object can send two kinds
of messages to itself. Receiverless messages are sent to its local part, while
receiverful messages to SELF are sent to its public part. Note that SELF is itself
a receiverless unary reifier message expression that returns the current receiver.

By default, attributes are added to the public part. In order to define an
attribute locally, the unary reifier message LOCAL can be used. The default
modifying unary message is PUBLIC. In the following example, the elmt variable
is accessible to everyone while the next variable is only visible to methods
declared inside the list node.

listnode VARIABLE:
[elmt VARIABLE: null; // same PUBLIC VARIABLE
next LOCAL VARIABLE: null

]

Agora’s syntax really requires receiverless messages: indeed, if we did not
have receiverless messages, the syntactic receiver of a message expression would

75

have to be a message expression again, ad infinitum. In order to find a semantics
for them, an alignment was chosen of access rules for private attributes and
the semantics of receiverless messages. But unfortunately, this yields a very
complicated semantics: since receiverless messages have to be thought of as
lexically scoped function calls, this required us to align local parts of objects with
their lexical scope, yielding a combination of two hierarchies (the inheritance
and the scoping hierarchy) that does not appear to make sense. In section 5.9
we will show how Pic% fixes this problem.

4.3.4 The Semantics of Agora Expressions

In order to completely appreciate Agora, it is necessary to have a look at its se-
mantics which is an adult version of the MiniMix semantics described in section
4.2. Again the parallel with Scheme will be drawn. Looking at the details of a
Scheme evaluator [AS85], it essentially consists of the following ingredients:

• A memory of cons cells containing Scheme data structures and programs.
Both are internally represented as Scheme cons cells.

• A procedure eval that can be applied to any Scheme list. eval dispatches
over its argument list and calls the appropriate evaluation rule for it.

• An environment system binding names to their values. eval is parame-
terised by an environment with respect to which it evaluates the expression
at hand. The environment is recursively passed down the evaluator.

• A procedure apply to apply a function to a suite of arguments. When
this happens, the body of the function is evaluated with eval which might
again consist of function applications handled by apply. This recursive
game between eval and apply is the heart of the evaluator.

An Agora evaluator ought to be implemented in an object-oriented lan-
guage7. This is part of the definition of Agora, just like functional list process-
ing (i.e., applying procedures on lists) is an inherent part of a Scheme evaluator
[De 98a]. But except for this difference, each of the above ingredients can be
found back in Agora, albeit translated to their object-oriented equivalent:

• A memory of objects. These objects represent data structures (i.e., Agora
objects) and parse trees (i.e., Agora programs). Hence, just as in Scheme,
programs and data structures are represented in the same way.

• All Agora parse tree objects understand the message eval. While the
Scheme eval dispatches over the expressions it has to evaluate, this dis-
patching is automatic in the Agora implementation by virtue of polymor-
phism: eval is sent to a parse tree.

7Notice that we have also created an evaluator in Scheme, but still, closures were used to
implement the implementation structures. Closures can be regarded as objects.

76

• The eval message is parameterised by a context object that represents
the environment in which the expression is evaluated. This context object
recursively travels through the evaluator. It contains a reference to the
‘current’ lexical scope, the ‘current’ self, the ‘current’ parent etc.

• Each Agora object is internally represented by an implementation level
object. This implementation level object understands a message send
which takes a message and a list of arguments and produces another Agora
object. We consider send as the object-oriented analogue of apply.

General Evaluator Architecture. In the same way that the execution
of a Scheme program can be considered as a recursive interplay between eval
and apply, the execution of Agora programs can be seen as an alternating in-
teraction of eval and send. The following properties further elaborate on the
fundamentality of send and eval:

• Seen through the eyes of the Scheme evaluator, functions are represented
as an abstract data type for which apply is the only operation. Once apply
is called, it can access the internal details of a function consisting of its
formal parameters, its lexical environment and its body code. However,
these constituents are invisible outside the function concept. In the same
way, seen through the eyes of the Agora evaluator, send is the only
message for Agora objects. This is the reflection in the evaluator of
our extreme encapsulation principle.

• In Scheme, apply takes a function and a list of arguments. apply evaluates
the body of the function using the environment of definition, augmented
with new bindings of arguments to formal parameters. The same is true
for the send message in Agora. send takes the name of the message
to be sent together with a list of actual arguments. It uses no hidden
arguments like self references, environments or other, but evaluates the
method corresponding to the message in the context of the receiving object
and the actual arguments.

The remainder of this section studies this architecture in detail. First, we sum-
marize the abstract syntax. Then, Agora’s object model and send are studied.
Finally, we focus on eval.

Agora Abstract Syntax. Figure 4.4 gives an overview of the Agora ab-
stract syntax. Of course, the difference between operator, unary and keyword
messages is a mere lexical issue and thus not visible here.

Object Structures and Method Lookup. As we already explained, an
Agora object consists of a local part and a public part. Internally, these are
tied together by an object identity. Hence, every ex-nihilo created object has
a reference to an object identity. The object identity has a reference to the
public part and the local part of the object. Figure 4.5 exemplifies this. The
reason for making a distinction between objects and their identities is amongst
others to enable the evaluation of mixins, a topic dealt with in section 4.4. The

77

Basic Literals b
Ex-nihilo Objects [e1, . . . , en]
Grouped Expressions {e1, . . . , en}
Ordinary Message Expressions e.m(e1, . . . , en)
Reifier Message Expressions e.M(e1, . . . , en)
Ordinary Receiverless Message m(e1, . . . , en)
Reifier Receiverless Message M(e1, . . . , en)

Figure 4.4: Agora Abstract Syntax

self

id
priv
pub

par

priv

...

...
par...

...

par
priv

pub
par
pub...

...
...
...

Figure 4.5: Agora Object’s Structure

object itself is what message sending clients get to see. It implements the send
message. Internally send is implemented by delegating the message through
the chains of frames that constitute the object. These arise from successive
applications of views and mixins, exactly as in MiniMix. Once the attribute
corresponding to a message is found in this way, it is processed by sending do.
While searching for the attribute, a context is gradually built up that contains
the internal frames of the object. This context is necessary to evaluate the body
of the corresponding method because eval is parameterised by a context. This
is summarised in figure 4.6. When a message m is sent to an object o with
arguments a1, . . . , an, o will refer to its own private identity generator id. From
this identity it further delegates the message to the public generator. In each
generator g, delegating the message consist of looking up the message in the
method table. If it is found, the corresponding attribute is invoked by sending
do to it. If it is not found, the message is delegated to the next generator in
the chain. In this delegation process, a context c is passed around that contains
references to the object itself, the identity generator, the public generator and
the local generator. This context is used in do to evaluate the body code of the
found attribute. Note that all the semantic rules in this chapter are given in an
imaginary object-oriented programming notation. As we have said before, the
fact that Agora is implemented in an object-oriented medium is inherent to the
definition of Agora. We will explain this further in section 4.5.

78

It is important to understand the difference between message passing and
delegation in Agora. The evaluator uses message passing to send messages to
objects using the send operation which is only parameterised by the message
name and the arguments. Delegation in Agora consists of implicitly traversing
the internal generators of the object structure (following parent-of links formed
by succesive invocation of view and/or mixin attributes) until the method is
found. The distinguishing fact between message passing and delegation is the
context object which contains the information about the object itself. In an
object, nothing is allowed to enter an object except for the message pattern
and the arguments. Delegation on the other hand, manipulates several extra
‘hidden’ arguments in the context. In terms of the analysis presented in section
4.2, message passing is defined on wrapped generators, i.e., objects. Delegation
is defined on the frames constituting the object, i.e., generators. The same
way as in MiniMix, unwrapped generators never enter the language.

o.send(m,a1, . . . , an) = o.id.pub.delegate(m, c, a1, . . . , an)

where c =

slf = o
loc = o.id.loc
pub = o.id.pub
id = o.id
par = o.id.pub.par

g.delegate(m, c, a1, . . . , an) ={
att.do(c[par → g.par], a1, . . . , an) if att = g.lookup(m)
g.par.delegate(m, c, a1, . . . , an) otherwise

Figure 4.6: Agora Message Passing Operator

Evaluation Rules. Let us now turn to the evaluation rules for the syntax
outlined in figure 4.4. These rules are given in figure 4.7, in which we use angular
brackets 〈 and 〉 to delimit parse tree objects.

• The evaluation rule for basic literals consists of creating a new basic object
which understands send as its only implementation level message.

• Ex nihilo created objects are constructed by creating new public and local
generators by extending existing frames (a.o. the root of the system).

• Evaluating a group of expressions in a context simply consists of evaluating
all the expressions from left to right in that context.

• Evaluating an ordinary message e.m(e1, . . . , en) is accomplished by eval-
uating the receiver and the actual arguments in the current context, and
then sending the message using send.

79

〈literal〉.eval(c) Create new basic object understanding send
〈[e1; . . . ; en]〉.eval(c) 〈e1〉.eval(c′); . . . ; 〈en〉.eval(c′) where

c′ =

loc = c.loc.addFrame()
pub = rootPublic.addFrame()
id = new Identity(pub, loc)
par = rootPublic
slf = new Object(id)

〈{e1; . . . ; en}〉.eval(c) 〈e1〉.eval(c); . . . ; 〈en〉.eval(c)
〈e.m(e1, . . . , en)〉.eval(c) 〈e〉.eval(c).send(m, 〈e1〉.eval(c), . . . , 〈en〉.eval(c))
〈m(e1, . . . , en〉.eval(c) c.loc.delegate(m, c, 〈e1〉.eval(c), . . . , 〈en〉.eval(c))
〈e.M(e1, . . . , en)〉.eval(c) adHocEval(c, 〈e〉,M, 〈e1〉, . . . , 〈en〉)
〈M(e1, . . . , en)〉.eval(c) adHocEval(c,M, 〈e1〉, . . . , 〈en〉)

Figure 4.7: Evaluation Rules (part 1)

• As explained in section 4.3.3, receiverless messages are looked up in the
local generator of the object. This local generator can be read from the
evaluation context because it was put there when send was invoked.

• The final syntactic category to be evaluated are reifier messages and re-
ceiverless reifier messages. As explained earlier, reifier messages are the
object-oriented analogue of special forms. They are thus handled in an ad-
hoc manner. For instance, the ad hoc evaluator for the VARIABLE: reifier
message evaluates the initial value in the current context, ands installs a
read and a write slot in the public generator that resides in that context.

4.4 The Power of Attributes

This section shows the very essence of the Agora model: i.e., how it is pos-
sible to have a full-fledged prototype-based programming language with features
like dynamic object extension and cloning, while adhering to the principle of
extreme encapsulation which dictates that objects should be subject to message
passing and message passing alone.

As we have seen in figure 4.6, a message to an Agora object generates a
method lookup process that finally results in do(c, a1, . . . , an) being sent to the
attribute corresponding to the name of the message. This is where it all happens.
Just like MiniMix, Agora features different kinds of attributes. Let us briefly go
through figure 4.8 which gives the semantics for each kind of attribute discussed
in section 4.3.2. Apart from the variable accessor methods, the technique used
is always the same. When do is sent to an attribute object with a given context
c, a new context c′ is constructed in order to evaluate the body expression of the
attribute. In each case, the local generator is extended to contain the formals-
actuals bindings. In the do for cloning methods, a copy of all the generators is
created and a new object is made with the copies. The body of the method is

80

evaluated in the context of the copied generators. Particularly interesting is the
difference between mixins and views. In both cases, generators are extended.
In the case of views, a new object is created in which the body expression is
evaluated. A view frame is attached to the id such that later mixins on the
parent will affect that view. In the case of a mixin, the given object identity is
provided with the extended public and local generator, but the object and the
object identity stay the same. Thus, the difference between views and mixins is
the motivation distinguishing between objects and their identities.

varGet.do(c) = return contents of the variable
varSet.do(c, a1) = assign variable to a1

method.do(c, a1, . . .) = method.bodyCode.eval(c′) with

c′ =

loc = c.loc.addFrame(a1, . . .)
pub = c.pub
id = c.id
par = c.par
slf = c.slf

cloning.do(c, a1, . . .) = cloning.bodyCode.eval(c’) with

c′ =

loc = c.loc.copy().addFrame(a1, . . .)
pub = c.pub.copy()
id = new Identity(pub, loc)
par = c.par.copy()
slf = new Object(id)

view.do(c, a1, . . .) = view.bodyCode.eval(c’) with

c′ =

loc = c.loc.addFrame(a1, . . .)
pub = c.id.addFrame()
id = new Identity(pub, loc)
par = c.id
slf = new Object(id)

mixin.do(c, a1, . . .) = mixin.bodyCode.eval(c’) with

c′ =

loc = c.loc.addFrame(a1, . . .)
pub = c.pub.addFrame()
id = c.id.assign(pub, loc)
par = c.pub
slf = c.slf

Figure 4.8: Agora Attribute Invocation

As we have already shown in our presentation of the MiniMix model, this
is the heart of the Agora paradigm: instead of defining all kinds of operators
on objects such as cloning, slot addition and deletion, parent assignment and
so on, attributes of an object are evaluated in the context c containing the
internal details of the object in which the attribute was found. Each kind of
attribute knows what to do with these details. Stated differently, Agora objects
are extremely encapsulated (due to send) but upon invocation of a message,

81

attributes can access the internal generators of the object they reside in. By
cleverly using these internal generators, extensions and clones of the receiver can
be returned by the attributes. This model can be extended: the more complex
the internal structure of objects is, the more types of attributes that can be
invented. This will be exploited in chapters 8 and 9 to add distribution and
mobility language features to the basic model.

Conclusion: As shown in section 3.5, other prototype-based languages im-
plement their language features by enriching their object model with several
operators such as cloning and slot addition and deletion. In our theoretical anal-
ysis of chapter 3, this was called a ‘change in object model’ as it required objects
to be represented as generator. Agora shows that a full-fledged prototype-based
language can be built that has much of the flexibility of other prototype-based
languages but that inherits the extremely encapsulated object model of class
based languages. The key to the solution is the fact that objects can
react differently to messages depending on the type of attribute with
which the message happens to be implemented [DMS96].

4.5 Adding Reflection: Language Symbiosis

As promised in section 4.3, this section extends Agora with reflection operators.
Wand and Friedman [WF88] have shown that a language can be made reflective
by reifying implementation level structures into the language, and absorbing
language values back into the evaluator. They have investigated this in the
context of Brown, a fully reflective variant of Scheme. It is one of Agora’s
merits to transpose their reflection model to object-orientation in a clean way.

4.5.1 Reification of Implementation Objects

In order to talk about reflection, it is necessary to distinguish two levels in the
Agora semantics. The ‘down’ level is the level of the (object-oriented) imple-
mentation language such as Java, Smalltalk or C++. The ‘up’ level is the Agora
level being evaluated by the ‘down’ level. Using more standard terminology, the
‘down’ level is the meta level and the ‘up’ level is the base level.

The evaluation rules of figure 4.7 show that Agora actually knows two kinds
of Agora objects, namely basic literals, and ex nihilo created objects that consist
of chained generators. As can be seen in the evaluation rule for basic literals,
Agora also represents them as objects that understand the send message. These
objects are actually wrapped versions of their corresponding ‘down’ object. For
example, the Agora literal 3 is represented by wrapping the corresponding (Java,
Smalltalk or C++) object 3. This wrapping process is accomplished by sending
the up message to the implementation level object. Hence, 〈3〉.up() is an Agora
object that understands send. The implementation of send for upped objects
will map every message onto the corresponding message at the down level. This
is accomplished by bringing both the receiver and the arguments to the down
level. After actually sending the message, the resulting down level object is

82

brought back to the up level by sending up. This addition to the message
passing operator of figure 4.6 is shown in figure 4.9. The evaluator therefore
knows two kinds of objects with the same send interface. However, due to
extreme encapsulation (i.e., only send is possible), the evaluator is unable to
distuingish between these two kinds of Agora objects: only the objects know
whether they are ex-nihilo created or upped implementation level objects.

ou.send(m,a1, . . . , an) = ou.down().m(a1.down(), . . . , an.down()).up()

Figure 4.9: Agora Message Passing Operator for Upped Primitives ou

4.5.2 The Evaluator Reconsidered

The idea of upping implementation level objects can not only be applied to
primitive literal objects, but to all implementation level objects. In each Agora
implementation, all implementation level objects understand the message up8.
This can be used to give a much cleaner semantics to reifier messages. Instead
of handling a reifier message in an ad-hoc manner, the model with up treats
reifier messages as real Agora messages to upped syntax objects. Together with
the treatment of literals as discussed in the previous section, this gives us figure
4.10 which is an improved version of the evaluation rules outlined in figure
4.7. As we can see in figure 4.10, reifier messages are no longer implemented
in an ad-hoc fashion. Instead they are really sent to the reified (i.e., upped)
versions of their syntactically appearing receiver. This is why messages like
VARIABLE: were called reifier messages in the first place: they are reifications
of the corresponding messages defined on the implementation level objects that
represent parse tree nodes. The advantage of processing reifier messages this
way is that by the late binding of reifier messages (i.e., they are really looked
up in the upped object), we can install our own reifiers which turns Agora
into a reflective language. This is also the justification why Agora must be
implemented in an OO medium.

〈literal〉.eval(c) 〈literal〉.up()
〈e.M(. . . , ei, . . .)〉.eval(c) 〈e〉.up().send(M, c.up(), . . . , 〈ei〉.up(), . . .).down()
〈M(. . . , ei, . . .)〉.eval(c) c.loc.delegate(M, c.up(), . . . , 〈ei〉.up(), . . .).down()

Figure 4.10: Evaluation Rules (part 2)

In figure 4.11, we illustrate the computational process induced by sending
the reifier message x VARIABLE:3. The applied rules are the ones for evaluating

8In each Agora implementation, we had to come up with a different technical trick to make
sure every implementation level object understands up.

83

a reifier message (figure 4.10) and the ones for mapping Agora messages on
upped objects onto their corresponding implementation level message (figure
4.9). When encountering the message x VARIABLE:3, the VARIABLE: message is
sent to the upped version of x with the upped version of 3. Of course, the result
must be brought back to the evaluator level by sending it down. Because of the
message passing operator outlined in figure 4.9, this means that the VARIABLE:
Agora message will be mapped onto the implementation level message variable
defined on identifiers (or more precisely: receiverless unary patterns).

〈x.V ARIABLE(3)〉.eval(c)
= 〈x〉.up().send(V ARIABLE, c.up(), 〈3〉.up()).down()
= 〈x〉.up().down().variable(c.up().down(), 〈3〉.up().down()).up().down()
= 〈x〉.variable(c, 〈3〉).up().down()
= (install slots ‘x’ and ’x:’ in c.pub bound to 〈3〉.eval(c)).up().down()
= (return 〈3〉.eval(c)).up().down()
= (return 〈3〉.up()).up().down()
= 〈3〉.up().up().down()
= 〈3〉.up() (i.e., the Agora object 3)

Figure 4.11: Example of Evaluating x VARIABLE:3

One of the distuinguishing features of reifier messages is that they are dy-
namically scoped: the first argument of each reifier method is the context in
which the reifier message occurs. This is in contrast to ordinary methods that
are completely lexically scoped. Parameterising reifier messages with their con-
text of invocation is not some ‘dirty’ trick but completely follows the spirit of
special forms in Scheme. When evaluating the (if) special
form, the expressions have to be evaluated in the context where the special form
occurs, and not in the context of definition of the ‘if’ procedure.

4.5.3 Absorption of Ex-Nihilo Objects

In the previous sections we have seen that any ‘down’ level object can be reified
in Agora by sending up and that an upped object can always be brought back to
the ‘down’ level by sending it down. The final step for full reflection is to extend
the down mechanism for ex nihilo created objects as well. This is called absorp-
tion. Absorption allows one to down an ex nihilo created Agora object into
the implementation, such that the implementation can send (implementation
level) messages to it. Each Agora implementation uses its own technical trick
to accomplish this, depending on the implementation language. In most cases,
this was far from trivial to realize. In Java for example, we have to generate
class files dynamically in order to wrap an Agora object in a Java object. Each
message sent to this native Java object must be mapped onto the corresponding
message in Agora: if od.m(a) is sent in Java, and od is a downed Agora object,
the message must be resent in Agora yielding od.up().send(m,a.up()).down().

84

Hence, when sending implementation level messages to downed Agora objects,
the receiver and all arguments must be upped. Then the message must be sent
to the Agora object using send. The resulting Agora object must be brought
back to the implementation language using down. The technique is summarised
in figure 4.12. It allows us to replace implementation level objects (i.e., objects
of the evaluator) by our own objects written in Agora. We show how to use this
technique in section 4.6.2.

od.m(a1, . . . , an) = od.up().send(m,a1.up(), . . . , an.up()).down()

Figure 4.12: Message Passing For Downed Agora Objects

Combining the message passing operators of figures 4.6, 4.9 and 4.12 yields
the implementation of up and down as shown in figure 4.13. Upping a downed
up level object ou consists of returning the original up level object ou. Upping
a non downed object consists of creating a new up level Agora wrapper for
it. The same mechanism is used for down. As already mentioned, each Agora
implementation uses its own technical trick to implement these rules.

∀ o : o.up() ={
new UpWrapper(o) if o is not a downed object
ou if o = ou.down()

∀ o understanding send : o.down() ={
new DownWrapper(o) if o is not a upped object
od if o = od.up()

Figure 4.13: The Implementation of Up and Down

This technique for establishing a language symbiosis between Agora and its
implementation language has proven its usefulness in other settings as well.
In [GBD02] and [GD02] we show its applicability in the context of a meta
language (Prolog) that reasons about a base language (Smalltalk). The same
configuration is used to connect a forward-chained meta language that reasons
about Smalltalk in [DDGD01]. Finally, in [DDW99] we show its applicability in
the context of aspect languages that reason about a base program. In all cases
two language layers are involved and objects can float freely from one language
to another.

85

4.5.4 The Agora MOP: Extreme Encapsulation

The system of ‘upping’ and ‘downing’ objects implies that all objects in the
implementation understand up, and that all Agora objects understand send,
up and down. These mechanisms form the meta object protocol of Agora and
can be regarded as the object-oriented analogue of the meta functions used
in Brown [WF88]. In Brown, function and special form application are seen
as the only control structures9, and the operators ∨ and ∧ are the conversion
operations between the base and the meta level. In the same way, message
passing and reifier message passing (with hidden context argument) are the only
control structures in Agora. up and down are used to switch objects consistently
between the base level and the meta level10.

4.6 Agora Model: Evaluation and Epilog

In the previous chapter we have shown that prototype-based languages are no
panacea. Two critiques have been developed against classic prototype-based
languages. From a software engineering point of view, we have identified many
shortcoming which are more tangible and measurable criteria for the sentiment
prototype-based languages usually evoque: they are too flexible. From a lan-
guage theoretical analysis, we have learned that prototype-based languages suf-
fer from inherent encapsulation and security problems. Both analyses have been
traced back to the single fundamental problem of prototype-based languages in
section 3.5: prototype-based languages feature only objects but define a plethora
of language operators on these objects and this is what renders them too flexible
and unsafe. We have therefore identified the extreme encapsulation principle
which states that message passing should be the only language operation appli-
cable to objects. The Agora model has shown that adhering to this principle
does not imply that we are condemned to classes or uninteresting languages
with only objects and methods. Now that we have described the model in deep
detail, let us look at its implications for the problems we identified.

4.6.1 General Conclusion

In this chapter, we have shown how a ‘very Scheme like’ object-oriented prototype-
based programming language can be constructed with a meta object protocol
that only offers send, a property we referred to as extreme encapsulation. Al-
though not possible at first sight, such a semantic architecture still allows fea-
tures like cloning and object extension by a clever use of special purpose at-
tributes that can access an object’s internal details. As we have explained in
section 3.5 other object-oriented programming language either introduce differ-

9In Brown, special forms are also called reifier functions.
10Note that implementing down directly on Agora objects is not strictly necessary because

we can replace it by send(‘down′) which is supposed to invoke a ‘downing method’. However,
for efficiency reasons we implemented down directly on Agora objects.

86

ent language values like classes to accomplish this, or, take only objects, but
then define a multitude of meta level operations on these objects.

In the second part of the chapter we have shown how adding the up and
down message to our meta object protocol extends the basic language to a fully
reflective prototype-based language. To some people this seems strange: if one
cannot do more at the meta level than at the base level (i.e., message passing),
then why add a meta level in the first place? Agora refutes this criticism by
consistently mapping every base level message onto a meta level message, and
the other way around. As such, every implementation level message can be
intercepted (and thus reprogrammed!) at the Agora level. This makes Agora
a fully reflective language kernel in which both structural and behavioural re-
flection are possible. We will further elaborate on the reflective capabilities of
Agora in the rest of this section.

4.6.2 Extension “from the outside”

In this dissertation, we will not go into the details of how reflection in Agora
can be used to extend the language from within itself. This was discussed
extensively in Steyaert’s PhD thesis [Ste94]. Nevertheless an insight we have
developed during our research is that the principle of extreme encapsulation
does not necessarily preclude the extension of objects “from the outside”.

Every Scheme programmer is familiar with quoting, a mechanism to trans-
form a program into a data structure. In Agora, quoting an expression is accom-
plished by sending it the QUOTE reifier. The result thereof is the expression itself
in the form of an Agora object. That is, sending QUOTE reifies the underlying
parse tree as an object in Agora (i.e., an object understanding send). Internally,
this is accomplished by sending up to the expression. Hence, internally, each
expression object understands the reifier message quote(c), just like identifiers
understand the message variable(c, expression). The implementation of quote
is to return the receiver as an upped object, i.e., “this.up()” yielding an Agora
object that understands send.

The opposite of quoting is called unquoting. In Agora, this is accomplished
by sending UNQUOTE to an expression. The receiver of this reifier must evaluate to
an expression object. The resulting expression object will be downed (yielding a
real expression understanding eval) which can then be evaluated in the context
of unquoting. Hence, the implementation of the unquote(c) reifier on expressions
is “this.eval(c).down().eval(c)”.

These two reifiers are particularly interesting for extending objects “from the
outside”. Extension from the outside is accomplished by a view or mixin that
does not list the new slots itself, but takes a parameter being the expression
to be evaluated in the view. By unquoting this parameter, the parameter is
evaluated (yielding a quoted expression), and this expression is then evaluated
in the context of the view or mixin:

mySlots LOCAL VARIABLE: ({ ...slots ...} QUOTE);
myObject LOCAL VARIABLE:

87

{ ...
extend:slots VIEW: (slots UNQUOTE)

};
myObject: (myObject extend:mySlots)

But if we can extend objects “from the outside”, then what about extreme
encapsulation? The answer is that objects are always extremely encapsulated,
but can be extended from the outside if they want to. In other prototype-based
languages, objects cannot avoid being subject to extension because the extension
operators are applied to the object in such a way that the object cannot play
a role in the process. Hence, the Agora model shows that a language can be
created that is acceptable from a software engineering point of view and that
adheres the extreme encapsulation property.

4.6.3 Reflection Protection

The ability of the language to guarantee reflection protection is extremely im-
portant. We speak about reflection protection when a language does not allow us
to bypass “base level protection mechanisms” (such as extreme encapsulation)
through the reflection operators. Agora has full reflection protection because
the meta level essentially does not contain anything more than the base level
does. Although meta level programming and reflection in Agora offer the same
power other reflective systems have, the meta level does not allow programmers
to bypass the restrictions of the base level. Note that this reflection protection
is really important. In Java e.g. the fact that objects can be dissected at the
meta level is the source of many security breaches.

4.6.4 Agora: Intersecting Classes and Prototypes

In the introduction of this chapter, we claimed to introduce an intersection
between class-based languages and prototype-based languages. Let us now ex-
plain why we feel the Agora model is indeed such an intersection in the sense
explained in section 1.2 of the introduction of the dissertation.

First there is the language theoretical point of view delivered by the deno-
tational semantics we developed in section 4.2. It was shown by Cook that a
satisfactory denotational semantics for class-based languages consists of a record
based object model and a generator-based inheritance model. In class-based lan-
guages these are clearly separated from each other and generators never interfere
with the realm of objects and their message-based way of accessing them. In
prototype-based languages, on the other hand, the inheritance mechanism re-
quires objects to be generators “with a self hole in them”. The MiniMix and
Agora model are indeed intersections of class and prototype-based language
because they inherits the semantical possibilities of prototype-based languages
(incorporated in the inheritance and other operators discussed in sections 3.4
and 4.4) and the record-based object model of class-based languages. This is
possible by allowing objects to access and manipulate their own (but only their

88

own!) generator. But objects themselves are the only language values and mes-
sage passing is the only operation possible on objects. We therefore can say
that the Agora model inherits the object model from class-based languages and
the language operators of prototype-based languages.

Also from a software engineering point of view, the Agora model is the
middle ground between class-based languages and prototype-based languages.
Although the model does not have classes, a lot of the properties of class-based
language are inherited due to the strict adherence to message-passing as the way
to accomplish inheritance and object creation. As such, inheritance and object
creation can only be accomplished if some “predefined constructions are installed
at the right place”. In conventional prototype-based languages this is not the
case: because of the many language operators defined on objects and because
objects have no active role in when and how these operators will be applied
to them, inheritance and object creation are completely unstructured. Let us
have a look at the implications of this on the software engineering problems of
prototype-based programming languages we identified in section 3.3:

• We identified a flexibility problem due to the fact that objects can be
cloned in the absence of a construction plan leading to unfinished
objects. This is easily solved in Agora. The only way to create objects is
by listing all their attributes, or by sending them a message that is han-
dled by a cloning method or a view method. The cloning method or the
view method that delivers the new object (i.e., the clone or the extension)
can ensure that the delivered objects are always “complete” and mean-
ingfully initialized. And since message passing is the only operation, this
pre-programmed construction plan cannot be circumvented. Of course,
programmers can still implement buggy cloning methods or view meth-
ods. This is the same as constructors with bugs in a class-based language.
But “half cloning” an object is a bug that is not easily made in our model.

• The prototype corruption problem consists of the fact that it was pos-
sible to accidentally modify prototypes such that the modifications have
repercussions on the clones delivered later on in the code. Our encap-
sulated cloning mechanism easily refutes this critique. By programming
cloning methods in the right way, delivered clones are always correctly
initialized. After all, cloning methods act like constructor methods in
class-based languages. E.g., the cloning method to clone strings can en-
sure that the clone delivered is always initialized to be the empty string.

• The varying templates problem basically stated that it is very danger-
ous to change the parent of an object destructively, both from a flexibility
as well as from a security point of view. In the Agora model, the parent
object of an object is a frame (or generator) and not a real object. As
such it is impossible to change the parent generator of an object because
this would imply that such generators become first class in the language.

• Finally, we identified the problem of reflection protection which boils

89

down to the fact that, by allowing reflection operators to be defined di-
rectly on objects, it is possible to circumvent the base level restrictions
a language imposes on objects. As shown in section 3.6, this can have
disastrous effects in objects in open networks. In Agora, it is impossible
to access more at the meta level than at the base level. Nevertheless, our
experiments with extensions from the outside and Steyaert’s PhD thesis
show that this does not mean that reflection is not useful when it adheres
to the reflection protection criterion.

Note that two additional problems cited in section 3.3 are not solved by
Agora. First, there was the problem of some concepts being inherently ab-
stract. This is not solved more by Agora than by other pure prototype-based
languages. It is inherent to the pure prototype paradigm. In the following
chapter we will present a contemporary multi paradigm language that has both
procedural and prototype-based characteristics. The presence of functions in
this language will prove to be a solution to this problem as functions can act as
constructors for objects belonging to inherently abstract concepts. Hence, these
functions will play the role of classes. Nevertheless, the functions are not really
an addition to the language as they are implicit self-sends. Another problem
addressed in section 3.3 was the re-entrancy problem which boils down to the
fact that code-reuse (re-entrancy of code) and the modeling hierarchy are often
orthogonal to one another. This is also not solved by Agora. On the contrary,
Agora makes the problem worse as it does not feature multiple inheritance, nor
does it contain a complicated comb-like inheritance as in NewtonScript to com-
bine the need for both traits and the modelling hierarchy. So programmers are
to structure their hierarchies solely based on “the right” combination of view
methods. The language proposed in the next chapter will solve this problem.

4.6.5 The Treaty of Orlando Revisited

In section 2.5 we have presented the Treaty of Orlando as a general taxonomy
of object-oriented programming languages. The Treaty of Orlando classifies
object-oriented languages according to how they fill in the notions of objects,
message passing, templates and empathy. In a class-based language, templates
are classes and empathy is class-based inheritance. Cookie-cutting is instantia-
tion. In a prototype-based language, objects are templates and the two types
coincide. We like to refer back here to figure 2.3 that reflects this schematically.

Now that we have explained the MiniMix theoretical model and the Agora
language family derived from it, we have to adapt this picture slightly. The
analysis of this chapter has clearly shown that a third concept is needed to
correctly classify object-oriented programming languages. It appears that, apart
from objects and templates, an object-oriented programming language is also
largely determined by the way objects can relate to (and “perceive”) themselves.
We will refer to this as the self representation model and we argue that its
understanding is crucial to object-orientation11. Indeed, existing class-based

11This can already be noticed from the way OOP languages handle recursion, i.e., by mes-

90

languages such as Java and C++ actually already reveal the fact that there is
a need for a self representation model to classify languages: objects are granted
different access rights to themselves than to other objects. Proof of this are
different access modifiers (like protected and private) these languages are
equipped with. They clearly show that the semantic domain behind self or
this is not necessarily the same as the semantic domain used to model the actual
objects. For example, in Java, this is not the actual object because calls such as
this.do() will succeed even when do is a private method. Another example that
shows the relevance of the self representation model is the distributed language
Obliq discussed in section 7.5.3. It will appear that some Obliq objects can
apply more operators on themselves than other objects.

The study of inheritance in prototype-based languages and MiniMix indi-
cates that this self representation model can be made much more important
than one would expect from existing languages. Including the self model in
the Treaty Of Orlando gives us the model of figure 4.14. The figure shows an
improved version of 2.3. The figure shows how the template model has a self
reference model which it uses to define empathy. Empathy is defined on the
self representation model and not on the empathy model. This is also the case
in class-based languages where access to protected superclasses attributes is al-
lowed during inheritance. The objects are still created by cooking cutting a
template, but it will refer to its self representation model to accomplish this.
Furthermore objects refer to their self reference model through the template
from which they were cookie-cut. E.g. in a class-based language, an object can
access more from itself than from other objects precisely because the access is
funneled through the class declaration properties. The Revised Treaty of Or-
lando is a proper extension of the original one in the sense that it still classifies
existing language in the same way. However, if we try to align the object domain
with the template domain (which is what defines a prototype-based languages,
according to the original Treaty), we now have two options:

• Either we also align the object domain with the self representation domain.
In that case, we get a classical prototype-based language.

• Or we explicitly do not align the self representation domain with the object
domain. In that case, we get the Agora model because the object model
will coincide with the template model and thus the object model will have
a self representation model without objects being their self representation
model. It is exactly this insight that was used in Agora: objects adhere
to the extreme encapsulation principle and only define message passing.
However, objects can refer to their self representation model thereby de-
livering extensions (empathy) and clones (cookie-cutting).

sages to self. The self representation model is included in all formal treatments of OOP.
Another hint is the importance of MyType in type-theoretical treatments of OOP.

91

objects

templates

cookie-cut

empathy

message
passing

self
representation

have-a

self
reference

Figure 4.14: The Treaty of Orlando Revisited

4.7 Conclusion

The analysis presented in chapter 3 provided us with an apparent stalemate. On
the one hand, class-based languages have fundamental paradigmatic problems in
order for them to be deployable in the context of open networks and distribution.
The reason is that classes establish an implicit relationship between objects that
becomes painfully explicit. Prototype-based languages solve this by sticking
to idiosyncratic objects. The consequence is that all the interesting language
features (which we called language operators) are defined on objects. This yields
unacceptable security problems. We have therefore introduced the extreme
encapsulation and the reflection protection principles.

In this chapter, we have shown that the principles can be adhered to by con-
sistently sticking to the “objects+message passing” boundaries, but by allowing
the language processor to pass around hidden information about the “self” of
an object behind scene. A number of well-designed types of methods (e.g. view
methods, mixin methods and cloning methods) can access this hidden informa-
tion to allow all kinds of special operations to be performed on the receiving
object. But this information is only available for the “current receiver” and not
for other objects. The result of those methods is always a fully encapsulated
object that cannot be tinkered with. Even when moving to the meta level, ob-
jects only reveal a “send” method that can be used to send messages to them.
This corresponds to reflection protection.

The Agora model shows that by cleverly rethinking the principles of prototype-
based languages, a family of programming languages can be distilled that inher-
its the advantages from both paradigms but avoids there disadvantages. The
overal result is a full-fledged secure prototype-based programming language with
powerful language features like inheritance and cloning.

92

Chapter 5

Pic%: A Contemporary
Agora Descendant

Chapter 4 presented the Agora model as an intersection of class-based and
pure prototype-based programming. Agora is classless and does not suffer from
the encapsulation problems outlined in chapter 3. However, Agora has many
problems when it comes to the practical applicability of the language. We will
present a descendant Pic% that overcomes them but still endorses the principles
of extreme encapsulation and reflection protection principles that were presented
as a yardstick to measure prototype-based languages

5.1 Introduction

This chapter introduces Pico and Pic%. Pico is a very tiny Scheme like lan-
guage that was designed for educational purposes. Pico might be considered
as a simplification of Scheme [DDD04]. Pic% is a prototype-based extension
of Pico (called Pico - hence the name Pic-oo or Pic%). Central to the design
and implementation of both Pico and Pic% is simplicity. Moreover, Pic% was
designed following the Agora principles outlined in chapter 4. In chapter 8 we
further extend Pic% with concurrency and distribution facilities and chapter 9
adds mobility constructs. The resulting language is called ChitChat. Figure 5.1
shows how the languages have fertilized each other.

Pic% is a contemporary prototype-based language in the sense that it incor-
porates the scientific knowledge of prototype-based languages and that it solves
the problems and avoids the critiques put forward in the previous chapter. To
this extent, Pic% is heavily based on the Agora model. However, Pic% also
avoids a number of drawbacks of the Agora model. As we will see in the fol-
lowing section, most drawbacks of Agora can be reduced to the fact that Agora
is all but a lightweight language. It contains quite a number of concepts and
implementing Agora is a non trivial task mainly due to its uniform treatment
of reflection.

93

Scheme

Pico

Pic%

ChitChat

Smalltalk

Agora

Figure 5.1: The Language Tree in this Dissertation

The following section starts by listing the major drawbacks concerning Agora’s
size and complexity. Section 5.3 clarifies the origin of Pico. Section 5.4 enumer-
ates the design options we have at our disposal to simplify the Agora model.
Section 5.5 introduces Pico which was the initial inspiration for Pic%. Section
5.8 explains how Pic% incorporates the Agora ideas in Pico.

5.2 Problems with Agora

The Agora model originally proposed Steyaert’s [Ste94] and semantically anal-
ysed in chapter 4 at first sight seems to satisfy our requirements outlined in
chapter 3 perfectly. Agora is powerful classless language that offers all the se-
curity needed. Furthermore, Agora’s ideas are deep. This was shown in section
4.3.4 where we presented Agora as the Scheme of object-orientation. However,
aside from this language theoretical positive news, Agora as a concrete program-
ming language also has a number of important drawbacks:

• Agora has many problems concerning syntax. Most people find the
Smalltalk-like syntax hard to grasp. Although language theorists are fond
of regular syntactic schemes such as those of Lisp, Scheme, Smalltalk, Self
and Agora, the average programmer seems to have a lot of problems in
fully grasping it1. Because of cultural reasons, people seem to be better at
reading infix-notation-based programs. We believe that syntax was one of
the major reasons why Java was so easily accepted by industry: although
Java has more in common with Smalltalk, it looks like C++.

• Agora requires advanced programming environments that support
rich text as the lexical difference between ordinary messages and reifier
messages is made based hereupon. For example, Steyaert distinguishes
reifier messages from ordinary messages by their boldfaced appearance.
Unfortunately, ”richer text formats” such as colors and boldfaced are still
not accepted as part of the lexical layer of the definition of a language.

1In our own computer science programme, it is our experience that it takes students more
than a year to fully grasp and oversee the implications of Scheme’s regular syntax.

94

• A true problem is that Agora features no less than 12 types of mes-
sages which all look alike but the semantics of which is subtly different.
They vary along the three dimensions { receiverless, receiverfull }, { key-
word, unary, operator } and { ordinary, reifier }. For example, in section
4.3.3 we explained how the interaction of receiverless messages, lexical
scoping and the complex internal structure of objects yield scoping rules
which are very hard to grasp, even for specialists in the field.

• One of the biggest problems of Agora is that it is all but a lightweight
model. The reflection model based on a linguistic symbiosis between Agora
and its implementation language using up and down puts high demands
on the implementation. Indeed, the example in section 4.5.2 shows how
a variable is declared. Without the technical housekeeping messages that
were discarded for the sake fo clarity, the example shows that a simple
operation such as declaring a variable requires at least 13 messages being
sent by the evaluator. Also, the “pointer plumbing” of its object structure
(see 4.3.4) requires a lot from the implementation, both from a memory
consumption point of view and from a processor speed point of view during
variable and method lookup.

• Despite the very powerful reflective architecture of Agora, as a language
it is extremely hard to extend. As we have shown in [De 98b], writing
new receiverless messages is not that hard because the new reifier message
will be a lexically scoped “function”. It is the same as programming a new
macro in Lisp: when one uses the macro, it is looked for in the scope.

However, it is not possible to program new receiverful messages. For exam-
ple, suppose we would like to design a new receiverful message PRIVATEVAR:
to be used in expressions like x PRIVATEVAR:4 to install a new private
variable named x and initialized to 4. In order to do this, we have to
express in Agora that “from now on, every identifier has to understand
the PRIVATEVAR: message”. But this is really problematic for two reasons.
First, identifiers, like all objects, are ”encapsulated implementation level
objects” that cannot be extended. Indeed, e.g. in the Java implementa-
tion, identifiers are represented as Java objects which are not dynamically
extensible2. So it is not possible to add behaviour to identifiers from within
Agora. In [Ste94], Steyaert “solves” this problem by making a distinction
between dynamic reflection and static reflection: the newly defined reifiers
could statically be compiled into the implementation before it is run. The
second problem we have with the construction of new reifier messages is
that this is an inherently class-based activity! Indeed, when programming
the meaning of PRIVATEVAR: we want to specify this code once for all
identifiers. But since there is no such thing in the Agora language this is
a really problematic thing to solve. Traits, e.g. are no option as there is
no such thing at the implementation level.

2In Smalltalk, this is possible because of the reflective capabilities.

95

• In the previous chapter we have identified a number of problems of con-
ventional prototype-based languages. We have solved a number of those
problems (especially the encapsulation problem) with the Agora model,
but as explained in section 4.6.4 two problems remain, namely the prob-
lem that some things are inherently abstract and thus fit poorly in the
prototype-based philosophy, and the re-entrancy problem. Just as with
Agora’s reflection problem, these two problems seem to point towards an
inherent need for some class-like construction.

To alleviate these problems, this chapter introduces Pic%, a prototype-based
variant of Pico, a small Scheme derivative developed by Theo D’Hondt [DDD04].
Pic% is an extension of Pico in which we tried to incorporate as many properties
of the Agora model as possible without ending up with a language hard to
implement as Agora. Relaxing on purity was part of the solution.

5.3 Pico: the History and Rationale of Pic%

As explained, the roots of Pico lie in education. After years of teaching Pascal
in a computer science introductory course for freshmen in exact sciences other
than computer science3 we had to face the fact that the overall results were de-
plorable. Many students kept on struggling with the syntax, static typing rules,
the positioning of semicolons, the difference between procedures and functions,
the necessity to compile and so on. We therefore started a project to redesign
the entire course. One of the things we really wanted to get rid of was the
laborious edit-compile-run cycle which we experienced to be an obstacle. Pure
functional programming was ruled out for we want to accustom students with
the notion of a changing memory, a notion that is still inherent to mainstream
computer science practice. All these restrictions led us to languages like Scheme
[KCE98], Smalltalk [GR89] and Agora. But we were left no other choice than
to admit that their simple regular syntax and semantics even take our computer
science students two years to master fully.

That is why we started to explore a simple language in which students were
motivated to explore programming in a read-eval-print-loop as is the case with
Scheme, but with a language that is:

• easy to read. The language had to look like calculus because that is about
the only experience the intended audience has with formal languages.

• as powerful and simple as Scheme. We wanted a small number of powerful
concepts instead of the baroque concept set of Pascal, Ada or Java.

• extensible in the same way Scheme, Smalltalk and Agora are. Instead of
focussing on learning a fixed control structures suite by heart, we wanted
that set to be easily extensible, much in the same way Smalltalk and Agora
control structures are.

3Physics, Chemistry, Mathematics, Biology, Biotechnology, Geography and Geology.

96

• lightweight both in support and implementation. E.g. we did not want
a language that requires complicated editing facilities like Smalltalk and
Self. Nor did we want an interpretation model that requires the rather
heavy message passing interplay the Agora semantics require.

At first sight, this seemed impossible. The extensibility of a language in the
spirit of Smalltalk, Self, Agora or Scheme goes hand in hand with the simplicity
and regularity of their syntax. However, the “easy to read” requirement seemed
to be diametrically opposed to this. As we show, the exploration of an original
suite of parameter passing techniques was the key to our quest. The outcome
is called Pico.

5.4 The Acting Forces

In current day academic language design, syntax is no longer an exciting study
field. But as explained in the previous sections, in our case this was one of the
actual objectives of the project. The Pico experience taught us that it is not
easy to come up with a syntax that is easy to read, very orthogonal, and, that
allows the specification of a simple and regular extensible semantics.

When looking at existing languages, we can divide them into three flavors
when it comes to their syntax:
An Irregular Keyword-based Syntax. The first kind of syntactic flavor
is best known because so many popular languages have a syntactic system be-
longing to this flavor. The general idea is that the language is built around a
number of keywords each with dedicated rules of how sub-expressions or sub-
statements are to be centered around and grouped by those keywords. Examples
of such languages are C, Pascal, Ada, Java, C++ and many more. These syn-
tactic systems are irregular in the sense that every construct of the language has
dedicated rules as to how instances of that construct are to be written down.
Languages like these have the advantage of being easy to read. But they are
harder to write programs in because one has to know their syntactic system
thoroughly to construct programs correctly. As such, teaching the syntax in
an encyclopedic, long-winded way is about the only option. Moreover, it is not
easy to equip such a language with an extensible syntax and semantics.
A Regular Syntax without Special forms. In languages of the second
flavor, the syntactic rules are extremely simple in the sense that everything is
expressed using one single syntax rule. Examples of such languages are pure
functional languages (where everything is a function application), Smalltalk and
Self (where everything is a message send). In pure functional languages, it is
possible to express everything as a function application because these languages
usually support lazy evaluation allowing “keywords” to be functions whose ar-
guments are not evaluated unless this is really necessary. However, in stateful
languages this is not possible because laziness does not work together very
well with imperative features. Therefore, languages like Smalltalk and Self use
eager evaluation, meaning that arguments are always evaluated before a mes-
sage is sent. Therefore, in Smalltalk, arguments of “language messages” like

97

ifTrue:ifFalse: must be manually wrapped in a lambda (called a block in
Smalltalk) to delay them. This is also known as manual thunkification. The
lambda, called a thunk, is passed around and calling it then causes its body
expression to be evaluated. Important for our work is that the regularity of
Smalltalk’s syntax combined with its eager evaluation forces programmers to
use its block system to clumsily prevent some expressions from being evaluated.
Therefore, although languages in this second category are extremely easy to
extend, programs written in them are often obscure, especially to novices.
A Regular Syntax with Special Forms. A third and final way of specifying
syntax is a mixture of these keyword-based and regular syntax definition flavors.
It is adopted by languages like Scheme, Agora, and Prolog. These languages are
highly regular in the sense that all constructs are specified using exactly the same
rules even though they semantically behave quite differently. In Scheme, almost
every expression looks like a function call. Normal function calls follow eager
evaluation, but for some “function names” (like define, if) a special -partially
lazy- evaluation is defined. These “functions that bear a special status in the
evaluator” are called special forms in Scheme. In Prolog we have the same sit-
uation where some predicate names behave differently from regular predicates.
In Agora, reifiers (i.e., special forms) are recognized by their boldfaced appear-
ance. Just as is the case for languages in the second category, languages in this
third category are easy to extend as is illustrated by the Scheme macro system.
Furthermore, constructing programs in languages of this third category is quite
simple. However, students have to meticulously “parse” programs to read them.
We found that even sophomores in computer science that have been extensively
exposed to Scheme still find deciphering Scheme programs troublesome.

To the best of our knowledge an intersection of these three flavors that
combines only their advantages is empty. What we were actually after was a
language with a syntax as easy to read as keyword-based languages, as easy
to write as ordinary calculus, yet as orthogonal in syntax and semantics as
the languages with a regular syntax. Furthermore, instead of hard coding all
control structures with ad hoc rules to be taught in an encyclopedic tedious
way, we wanted them to be specifiable and extensible in the language itself
as in Smalltalk. But simpler. It will seem that the key to solve our problem
lies in a rather original parameter passing technique. Parameter passing used
to be a hot topic in the seventies when differences between call-by-value and
call-by-reference were exploited in programming languages. However, the dis-
tinction between these parameter passing schemes was not really a result of
language design considerations, but was driven from an implementational point
of view: should a thing or a pointer to the thing be passed around. As far as we
know, Algo60 (with its call-by-name and call-by-value scheme) and Ada (with
its IN, OUT and IN OUT parameter annotation system) were the only languages
in which programmers were able to specify how parameters had to behave from
a conceptual point of view.

In the following section, we will explain Pico and its innovative parameter
passing technique and show how it is a simple, extensible lightweight Scheme
variant that is also easy to read. Especially section 5.6 shows how the technique

98

yields an extensible language, without having to introduce special forms. In
section 5.8 we introduce Pic%, a Pico extension with object-oriented mecha-
nisms that follow the extreme encapsulation principle explained in the previous
chapter. We will do this by designing a Pico extension, called Pic%. However,
in contrast to Agora, Pic% does not suffer from Agora’s problems outlined in
section 5.2.

5.5 Pico: The Original Language

Pico is best explained in two stages. First, in section 5.5.1 the raw foundations
are presented. Second, some orthogonal additions turning Pico into a realistic
language are discussed one by one, from section 5.5.2 onwards.

5.5.1 The Pico 3x4 Syntax System

Before moving on to an in-depth explanation of the language, the following Pico
code snippet, meant as a teaser, gives a general flavor of the language. It is a
straightforward implementation of the famous quick sort algorithm:

QuickSort(V, Low, High)::
{ Left: Low;
Right: High;
Pivot:: V[(Left + Right) // 2];
until(Left > Right,

{ while(V[Left] < Pivot, Left:= Left+1);
while(V[Right] > Pivot, Right:= Right-1);
if(not(Left > Right),

{ Swap(V, Left, Right);
Left:= Left+1; Right:= Right-1 },

false) });
if(Low < Right, QuickSort(V, Low, Right), false);
if(High > Left, QuickSort(V, Left, High), false) }

The first layer of the Pico syntax and semantics is explained by means of
the three by four matrix depicted in table 5.1. This two dimensional matrix
emerges from taking all possible combinations of two design decision di-
mensions. First, a Pico expression is always evaluated in the context of an
environment (called a dictionary in Pico terminology) and one dimension of
understanding Pico consists of viewing Pico in terms of manipulations of this
dictionary. Therefore, each row in table 5.1 gives syntax to add something mu-
table or immutable to the dictionary (with :, resp. ::), to refer to something
in the dictionary, and to update something in the dictionary (with :=). Second,
all Pico values (aside from literal values like integer numbers, fractions, texts
and void) are described by what we call invocations. These invocations consti-
tute the horizontal dimension of the Pico language design space. Invocations
are used to refer to values in an atomic way, to refer to functions, and to refer

99

Table 5.1: Pico Basic Syntax
kind of name invocations table invocations function invocations
invocation: nam nam[e1] nam(e1, ... ,en)

reference nam nam[e] nam(e1, ... ,en)
definition nam: e nam[e1]: e2 nam(e1, ... ,en): e
declaration nam:: e nam[e1]:: e2 nam(e1, ... ,en):: e
assignment nam:= e nam[e1]:= e2 nam(e1, ... ,en):= e

to tables. Tables are Pico terminology for what is usually known as arrays.
The first kind of invocations, called name invocations, are ordinary references
like nam. The second kind are of the form nam[exp] and the final ones look like
nam(exp1,...,expn). Combined with the other dimension, this gives us syntax
to declare variables with an initial value, to update them and to refer to them.
Likewise, we can declare tables and functions, we can update a table position
and we can change the body of the function. All these concepts are clarified in
the explanation that follows4.

Before doing so, let us emphasize the fact that in Pico, everything is a
first class value: basic values, functions and tables can all be passed around
as arguments, can be returned from functions, can be used as the right hand
side of an assignment and so on. Another important thing to keep in mind is
that Pico functions (in contrast to Scheme for example) always have a name.
This decision was made because of the intended audience: indeed, mathematics
does not feature something such as anonymous functions (in fact, functions are
always named f , g and h in mathematics and many students already consider
names like fac or fib as strange). Having said this, let us now run through the
table:

• We start in the first column. A mutable variable is installed in the cur-
rent dictionary using nam: e where e designates the initial value. e can be
anything because expressions always yield a value. Hence, the expression
v: (n: (t: "hello")) will install three mutable variables which are all ini-
tialized to "hello". Referring to a variable simply happens by naming
it. Finally, variable assignment5 is almost the same as variable definition.
The only difference is that the variable is expected to reside in the dictio-
nary. Immutable variables (i.e., constants) are declared using the double
colon syntax.

• Manipulating tables (i.e., arrays) is the topic of the second column. Table
indexes run from 1 to the size of the table. Let us start with table definition
which is the only expression type for which the semantics is not trivial from
what one would normally expect. In an expression like t[e1]: e2, e1 is

4In this dissertation, we give an informal explanation of the Pico concepts. A for-
mal specification in the form of a meta-circular definition can be downloaded from
http://pico.vub.ac.be.

5We use := for assignment as we wanted to reserve = for equality tests.

100

evaluated to yield an integer acting as the size of the new table being
installed in the dictionary under the name t. The entries of that table
will be filled with the result of evaluating e2. The unexpected behavior
lies in the fact that e2 is evaluated again and again for every entry of
the table. This allows for expressions like t[n]: (i:=i+1) to create a
table with n numbers in ascending order (provided that a variable i exists
somewhere). Referring to a value in a table happens with an expression of
the form nam[e] whose semantics is as expected. Finally, updating a table
position happens with a nam[e1]:= e2 expression, the meaning of which is
predictable as well. Just like ordinary variables can be declared constant
with the double colon syntax, immutable tables can be created using the
same declaration syntax. However, this does not mean that the entries of
the table are immutable. It just means that the name associated with the
table value is an immutable name.

• The final column in Table 5.1 is about function manipulation. Function
scoping is lexical as in Scheme. But in contrast to Scheme, Pico functions
always carry a name. A function with name nam, parameters p1, . . . , pn

and body e is defined by the expression nam(p1, ..., pn): e. The expres-
sion can be anything. Hence, the expression f(x,y): g(t,u): x+y+t+u
will define a function f with two parameters that will return another
function of two parameters. An expression of the form nam(e1, ... ,en)
will lookup nam and check it to be a function. After checking the number
of arguments, the parameters will be bound from left to right to the argu-
ments6. In the first layer of Pico we are describing here, eager evaluation
is used such that all arguments will be evaluated. In the following sections
we will see how to delay arguments from being evaluated. Last, function
assignment happens in the same way as function definition. The name is
looked up and its associated value (whether it is a function or not) will be
garbage collected. The name will be (re)associated with a new function.

Notice that Pico allows operators to be used in infix notation. This is
syntactical sugar, though. An operator application like x+y is replaced
by the parser by a regular function application +(x,y). Operators are
recognized by their name which consists of special symbols such as +, *
and the like. But apart from that they are mere functions in all aspects.

This ends our explanation of the first level of understanding Pico. Notice
that the curly braces used in the QuickSort teaser are not covered by this syntax.
Furthermore, with what we know so far, it is not possible to define or even use
a conditional if expression. Indeed, using an if with our syntax would force
us to write it down as if(condition, then, else) causing all(!) arguments
to be evaluated. In order to mend this, the following sections add some bells
and whistles to this basic framework, which at first might seem rough edges to

6Notice, that in contrast to Scheme, we do specify the order (left to right) in which the
arguments are evaluated and bound.

101

the proposal. However, as we will show, they are the key to turning Pico into a
practical extensible language.

5.5.2 The Apply (@) operator

Much of the power of Scheme is due to the fact that it is list-based. Data struc-
tures basically consist of lists. Furthermore Scheme programs are also stored
and represented as lists. This unification of the basic data structures and ab-
stract grammar is at the basis of much of the power of Scheme. Features such as
meta programming and a nice conceptual vision on functions of variable length
arguments are direct consequences of the list orientation of Scheme. This is
also supported by the implementation technology: the Scheme memory model
is essentially list based, both in its abilities to store programs as in the way it
stores data structures. In Pico this list-orientation was replaced by tables, i.e.,
arrays. This philosophy was then consistently applied to the rest of the lan-
guage: tables are used to store programs, tables are the basic data structures
of the language, variable size argument lists are implemented by table param-
eter passing, the memory model and garbage collector are optimized to handle
variable sized tables and meta programming consist of manipulating tables (i.e.,
the parse trees).

A fact not known by many people is that the arguments of a lambda is
actually also a list. This means that the following two definitions are equivalent
in Scheme:

(lambda (x y) (+ x y))

(lambda r (+ (car r) (cadr r)))

I.e., Scheme formal parameters are actually lists. This enables functions of a
variable number of parameters as shown by the second example. Transposing
these ideas to a table driven language, we introduced a special notation for
functions of a variable number of arguments:

f@arg: size(arg)

This function takes any number of arguments. Upon calling the function f(1,2,3),
the arguments are evaluated from left to right. The resulting values are col-
lected into a table of appropriate size and the table is passed to the function as
arg. In the example given, the result of calling f(1,2,3) will be three because
size(arg) is three because there are three arguments passed to f.

This feature allows us to write our own begin function:

begin@args: args[size(args)]

This begin function can be called with any number of arguments. These will
be bound, as always, from left to right. Of course, this is what one expects when
writing an expression like begin(e1,e2, ... ,en). Inside begin, the values of

102

the expressions will reside in the args table. The body determines its size and
returns its last entry (cf. the value of begin in Scheme). Another application
of this technique is a function for inline table creation:

table@args: args

A call like table(1, 2.0, 3, "hello world") evaluates all arguments, and passes
them on as a table; table simply returns that table.

Syntactic Sugar
Because begin and tab are used so often, the resulting number of parentheses

starts to clutter up programs. Therefore the Pico parser allows some syntactic
sugar:

• First, the parser allows expressions to be grouped between curly braces
and separated by semicolons as in { e1; e2; ... ;en }. It will replace this
expression by begin(e1, e2, ... ,en).

• Second, the inline table creation is supported by enumerating their ele-
ments between brackets and separated by commas. These expressions are
syntactic sugar for the corresponding calls to table. E.g., [[1,2], [3,4]]
is equivalent to tab(tab(1,2), tab(3,4)).

These two shorthands considerably improve the readability of Pico programs
but do not add concepts to the language.

The Apply-operators
An issue related to having functions that accept any number of arguments

is the ability to apply a function to a number of arguments that is not known
in advance. In Scheme, this is accomplished through the apply function that
consumes a function and a list of arguments. In Pico this role is played by the
apply operator @ that takes a function and a table. It applies the function to
the arguments in the table. The following example shows how these features
are combined:

accumulate@args:
for(i:res:0,i:=i+1,i<size(args),

res:=res+args[i+1])
sumto(n):accumulate@(nrs[(i:0)+n]:(i:=i+1))

The first function adds all the numbers passed on to the function accumulate
no matter how many are passed over. The second function applies this, using
the apply operator, to a newly created table (called nrs) filled with numbers
from 1 till n.

5.5.3 Pico’s Parameter Passing Semantics

Besides the apply operators, another addition to the Pico 3x4 syntax system is
the way formal parameters are bound to the actual arguments upon function

103

calling. During this process the lexical environment of the called function is
progressively extended with new bindings yielding an extended environment in
which the body of the function will be evaluated. This lexical scoping rule is
exactly the same as in Scheme.

The gedankenexperiments we carried out when designing Pico led to a gen-
eralized notion of parameter passing. Referring back to the last column of Table
5.1 we notice that the formal parameters e1, ... , en of a function definition
can, in fact, be arbitrary expressions! How a parameter passing semantics should
be defined for each parameter type was an important part of our language de-
sign. Although there are many cases that do not make sense (e.g. it does not
make sense to bind the parameter expression 3 to the argument expression 6),
we found some very interesting nontrivial cases which will be explained in this
section. We start the presentation with the most basic case, namely parameter
binding for parameters that are ordinary name invocations.

Binding for Name Invocations: call-by-value

When a formal parameter of a function is an ordinary name invocation (i.e.,
an identifier), the Pico semantics prescribes that the passed argument will be
evaluated and the dictionary is extended with one new association mapping the
identifier to the evaluated value:

{ f(a, b): ... ; f(1, 2) }

This semantics of binding a value to an identifier, often referred to as call-
by-value, is the most common in programming languages. The important point
is that the actual arguments are evaluated before the binding is established.

Binding for Function Invocations: call-by-expression

Binding is more complex when parameter expressions are functions invocations,
i.e., constructions of the form nam(e1, ... ,en). For a parameter like this,
binding a given argument exp to it is achieved by creating a new function that
corresponds to nam(e1, ... ,en): exp. Hence, binding an expression to
an function invocation parameter consists in constructing a new function with
formal parameters e1, ... ,en and body exp. The closure of this function is
the current evaluation environment, which is “the environment of definition of
the function”, thereby following the lexical scoping rules. Let us exemplify this
using the function definition:

g(f(a,b),x,y): { if(f(x,y) > 0, x, y) }

g has three parameters, f, x and y, the first of which is an function invoca-
tion, the type we are discussing here. The other two parameters are ordinary
name invocations discussed above. Hence for a function call g(a+b, 1, 2), the
bindings f(a,b): a+b, x: 1 and y: 2 are performed, as always from left to right,
and g can use them as needed. The point to highlight here is that the body and

104

scope of f is dynamically associated upon each invocation of g. We call this
type of parameter passing call-by-expression. At first sight this technique seems
very reminiscent to Algol60’s call-by-name parameter passing technique. How-
ever in contrast to call-by-name, call-by-expression follows the standard lexical
scoping rules: at all times variables are looked up in the lexical dictionary; i.e.,
the dictionary that was valid at the time the expression in which those variables
occur was turned into a closure.

Although this might seem like an extremely obscure language feature at first,
the parameter binding semantics explained here turns out to be very natural
for people without prior programming experience (which was our intended audi-
ence). Consider for example the bisection method to find the zero of a numerical
function. Because computer scientists are so much used to work with higher or-
der functions, they will say(!) that a numeric procedure for this method takes
“a function f”, boundaries a and b and an accuracy epsilon. High school stu-
dents, however, will rather say that the bisection method can be used to find
the zero of “a function f of x” between a and b with precision epsilon. The
subtle difference between “f” and “f of x” is often a source of problems when
teaching higher order functions: we as computer scientists rather work with f
because we are used to lexical scoping and local parameters. Students with only
an education in high school mathematics will prefer the second interpretation.
The binding semantics explained in this section allows this to be written down
in a very natural way:

zero(a, b, f(x), epsilon):
{ c: (a+b)/2;
if(abs(f(c)) < epsilon,
c,
if(f(a)*f(c) < 0,
zero(a, c, f(x), epsilon),
zero(c, b, f(x), epsilon))) }

A call of zero such as zero(-3, 3, x*x-6, 0.01) will bind the reference
invocations a, b and epsilon to -3, 3 and 0.01 respectively. The application
invocation f(x) will be bound to x*x-6 which will internally create a function
f(x): x*x-6.

As we will show in section 5.6, it is this feature that allows for Pico ex-
tensions to be written in Pico itself. Thanks to the original parameter passing
mechanism, extending Pico does not require complicated macro facilities (as in
Scheme), nor manually delaying some constituents (as in Smalltalk or Self).

5.5.4 First Class Dictionaries and Qualification

Pico is not an object-oriented programming language. Nevertheless, Pico fea-
tures some basic object-based facilities such as object creation and late-bound
message sending. More advanced object-oriented features like inheritance, classes
or delegation are missing, though. These rudimentary object-based program-
ming is enabled by rendering the Pico dictionary system first class. Getting a

105

Table 5.2: Pico Qualification Syntax
kind of name invocations table invocations function invocations
... see table 5.1
qualification exp.nam exp1nam[e2] exp.nam(e1, ... ,en)

reference to a dictionary is accomplished through a native function capture()
which always returns the “current” dictionary of the evaluator. This dictionary
is conceived and implemented as a linked list of name bindings. Every time a
definition or a declaration is evaluated, a slot is added to the end of that list.
Every time a name is looked for, the search starts at the end of the list and pro-
ceeds upward. This means that a newer definition shadows an older definition
such that a mechanism like overriding is mimicked.

In order to use such environments, the syntax of table 5.1 is extended with
an additional row resulting in the table shown in figure 5.2. Given an envi-
ronment e, then qualification expressions of the form e.inv where inv is any
invocation, can be used to denote reading a variable in an environment (using
e.v), accessing a table that resides in an environment (using e.t[i] and calling
a function that resides in an environment (using e.f(arg)). In every case, the
name of the invocation is used to lookup the value in the environment.

The combination of capture and the way dictionaries are already structured
according to the standard lexical scoping rules (i.e., for every “method” local
variables have to be attached to the lexical scope residing in that method) allow
for a view-method-like inheritance as explained in section 4.3.2. The following
code excerpt illustrates this. The example shows a counter constructor function
that returns a captured dictionary each time it is called. It declares three
publically accessible constants incr, decr and protect. Once a counter c exists,
we can send it a message c.protect(5). As we can read from the code, this
wil again declare two contants incr and decr that, as a consequence, shadow
the existing ones. The result of sending protect(5) is again a dictionary that
is actually an extension of the original environment. The resulting dictionary
configuration is depicted in figure 5.2. Hence, protect can be seen as a mixin-
method (more precisely, a view).

counter(n):
{ incr():: n:= n+1;
decr():: n:=n-1;
super: void;
protect(limit)::
{ incr()::

if(n=limit,error("overflow"),super.incr()) };
decr()::
if(n=-limit,error("underflow"),super.decr()) };

capture() }
super:= capture() }

106

...

limit

protect
super
decr

incr
n
counterc

decr
incr

Figure 5.2: Pico Objects As First Class Dictionaries

A final note on scoping. As explained, Pico’s dictionaries contain both mu-
table and immutable names. We chose to align immutable names with the
accessible ones. Hence, the names accessed using the qualification must be
names installed in the dictionary using ::. Those names (whatever value they
are bound to) can be read with a qualification. It is impossible to change them,
however. Of course, variables that belong to one’s ”own” dictionary can be
assigned, but this is to be done without a qualification. Simply stated, mutable
variables (or functions or tables) are always private to the dictionary in which
they reside. External code can only read immutable fields.

Notice that all the native functions of Pico are declared as constants which
renders them publically available. This means that if e is a dictionary, than
expressions like e.sin(pi) are meaningful. Moreover, dictionaries can ”over-
ride” these primitives by simply redeclaring them. Indeed, if this e would have
declared its own sin then the expression e.sin(pi) would have selected the
latter one because lookup in dictionaries always proceeds from the most recent
declared name, upward. This kind of qualification allows for modular program-
ming.

5.5.5 Closing Pico’s Syntax

Although the syntax defined by tables 5.1 and 5.2 constitutes a complete realistic
programming language, there are some situations in which the syntax yields
verbose and cumbersome programs, namely:

• The syntax has no provisions for multi-dimensional tables. Indeed, al-
though there is nothing that prevents a table t from containing other

107

Table 5.3: Pico Syntax Closure
inv: kind of names table invocations function invocations
simple invocation: nam nam[e1, ...] nam(e1, ...)
definition nam: e nam[e1, ...]: e nam(e1, ...): e
declaration nam:: e nam[e1, ...]:: e nam(e1, ...):: e
assignment nam:= e nam[e1, ...]:= e nam(e1, ...):= e

qualification e.inv e.inv[e1, ...] e.inv(e1, ...)
’closed’ invocation inv inv[e1, ...] inv(e1, ...)

tables, there is no dedicated syntax to access such structures requiring
verbose expressions like t1:t[1];t1[2] to access multi-dimensional ta-
bles. Therefore, the index expressions have been extended to include lists
of expressions, with the expected semantics for expressions like t[1,2].
In the case of table definitions, the expressions for the higher dimensions
are re-evaluated for every slot for the lower dimensions which enables
one liners such as triangle[3+(i:j:0),i:=i+1]:(j:=j+1) to denote
[[1],[2,2],[3,3,3].

• Another disturbing shortcoming of the basic syntax is that names are
always required to denote functions and tables which excludes expressions
like t[1][3], t[1](5), f(3)[3] and f(3)(5).

This made us take the closure along nam of Pico’s basic syntax defined in
tables 5.1 and 5.2. The result is shown in table 5.3.

5.5.6 Meta-programming and Reflection in Pico

Just as in Scheme, the REPL functions read, eval and print have been reified.
Applying read to any text value yields a parse tree which can be evaluated
using eval. The result thereof is a printable Pico value. Hence, the following is
a perfectly valid Pico meta program: print(eval(read(accept()))). It asks
input from the user and prints the evaluated result on the screen.

As explained before, much of Scheme’s power lies in the fact that both data
and programs are represented as lists which means that Scheme’s list processing
capabilities can also be used to dissect programs. In Pico, this focus on lists
has been consistently transposed to tables. This means that parse trees in
Pico are data structures that can be manipulated using the primitive functions
get and set which both consume a number as their first two arguments. set
takes an additional value as the third parameter. Hence, get and set can be
thought of as functions that can read and write the descendants of the parse
tree. Of course, the number and type of these children depends on the type
of the parse tree. This type can be determined by a primitive function tag.
Conversely, make, which takes a tag (i.e., a number) and creates a parse tree of
that type. As an example, evaluating tag(read("x:3")) results in 6, the tag

108

for ”definition expressions”. Expressions like get(read("x:3"),1) return the
first subexpression (i.e., x) and get(read("x:3"),2) the second one (i.e., 3).

eval takes one argument and will evaluate it in the dictionary valid at the
moment of the call. Since eval is a publically declared native, it is visible in
every environment. So when called e.eval(exp), this will evaluate exp in the
environment that is valid during the call, which is precisely e. Of course, this
is a potential breach of encapsulation because one can evaluate expressions like
e.eval(read("x")) to read a private field x of e. But the point is that, an
environment that wants to preclude this can always protect itself by overriding
eval to do something safe.

5.5.7 Continuations

Just like Scheme, Pico features first class continuations. A design error of
Scheme is to try to align these continuations with lambdas. Indeed, in Scheme,
the primitive function call-with-current-continuation allows one to access
the current continuation. Such a continuation can be activated through regular
function application syntax. However, the semantics of activating a continua-
tion is radically different from the semantics of function calling. This results in
totally different behaviour of an expression of the form (f x) depending on the
fact that f is bound to a regular function or to a continuation. In our opion, this
is the source of much of the mystification and confusion around continuations.
Scheme continuations are not functions and should not be used as if they were.
Therefore, Pico uses the primitive functions call(exp(continuation)):...
and continue(c,v):... to manipulate continuations. The idea is that call is
parametrised by an expression that depends on continuation. The expression
is immediately evaluated with continuation bound to the current continua-
tion. Subsequently, this continuation can be passed around like any other first
class value. The continuation can be reactivated using continue by giving it
the continuation and the value that will be used as the result of the jump, i.e.,
the value that the continuation of call will receive. The following code, grabs
a continuation and stores it in a variable c:

{ c:void;
display(4+call({c:cont;5}))

}

The result of this code is that 9 is displayed on the screen and that, on the fly,
the continuation of the call is being stored in c. Activating the continuation
with e.g. continue(c,6) will display 10 on the screen. The following code
illustrates how first class continuations in Pico can be used to devise a Pascal-
like goto system:

{ make_label()::call(cont);
goto(l)::continue(l,l);
testgoto():{
i:0;

109

loop:void;
loop:= make_label();
i:=i+1;
display(i);
if(i<10,goto(loop),display(eoln)) }

}

The label function takes the current execution status as a continuation.
goto just continues this by ”jumping” to the continuation. Note that we have
to use an assignment and not a definition expression loop:make label(), for
otherwise we would be defining a new label loop each time we reactivate the
continuation.

5.6 Extending Pico without Special Forms

As we discussed in section 5.3, easy extensibility was one of the main design goals
of Pico. This section shows — by construction — that we have succeeded in
this. Section 5.6.1 shows how the boolean system and a complete suite of Algol-
like control flow primitives have been implemented in Pico itself. Subsequently,
a Scheme like cond conditional will be presented in section 5.6.2. We will finish
by tailoring Pico with a realistic exception handling system à la Java or C++.

5.6.1 Control Structures

An easy extension is a realistic implementation of the Church-booleans in Pico,
together with the complete suite of control structures it induces. Pico’s boolean
system is actually an adaptation for imperative languages of the Church-booleans,
in which avoiding evaluation is necessary because of side-efffects. The idea is to
define booleans as functions that choose between two options passed on as de-
layed arguments because of the thunkification that results from the arguments
being function invocations (without parameters). Based on these definitions,
one of the core control functions of Pico, the if decision function, can be intro-
duced in the same way it was proposed by λ-calculus:

true(t, f()):: t
false(t(), f):: f
if(cond, t(), f()):: cond(t(), f())

These declarations combine the ideas of the Church-booleans system with
imperative programming. Indeed, the functional parameters t() and f() will
automatically convert actual arguments into functions of zero arguments, usu-
ally called thunks. Indeed, the ()-parameters delay evaluation of the argument
expressions because calling the function will not evaluate the argument but will
instead create a function of zero parameters whose body will be the argument.
This allows us to perform evaluation in a controlled way, by means of function

110

application. Operators like and, or and not are also implemented in Pico this
way.

This boolean system allows for the definition of some “commonly known”
Algol-like control structures such as the while construct which implements a
leading decision loop by means of proper tail recursion. The automatic thunki-
fication of the arguments is essential.

while(cond(), exp()):
{ loop(value, pred): pred(loop(exp(), cond()), value);
loop(void, cond()) }

In all these examples, thunks (i.e., functions of zero arguments) are used to
achieve what Smalltalk does with blocks. However, remember that in Smalltalk,
‘thunkification’ is requested from the user of the control structure yielding pro-
grams that are sometimes hard to read. We believe that we have obtained a
much cleaner syntax and semantics with the same power. Furthermore it is
not necessary to enrich the language with extra concepts such as macros and
quasiquoting as was needed to render Scheme’s special form suite extensible.

5.6.2 A Scheme like cond

.
A Scheme like conditional can be programmed by using a combination of

automatic thunkification and functions that consume a variable number of ar-
guments:

{ cnd() ==> act() : [cnd,act];
else:true;
cond@clauses:{
siz:size(clauses);
idx:0;
end:false;
until(end,

end:=or((idx:=idx+1)>siz,clauses[idx,1]));
if(idx>siz,
void,
clauses[idx,2]) }

}

The following small example shows how the conditional can be used:

fib(n):
cond((n=0) ==> 1,

(n=1) ==> 1,
(n>1) ==> (fib(n-1)+fib(n-2)))

The condition system defines three components: the function cond that con-
sumes a variable number of condition/action pairs. These pairs are constructed

111

using the ==> operator which takes two arguments, thunkifies them automat-
ically and collects the two thunks in a table of size 2. cond runs through the
table and runs the action that belongs to the first condition whose evaluation
(i.e., call the thunk) yields true.

5.6.3 An Exception Handling System

The following code excerpt is a more adult extension of Pico. It combines
the special argument passing style, first class continuations and clever usage of
scoping to implement a true Java or C++ like exception handling mechanism in
Pico. However, whereas Java and C++ (thanks to their static typing) identify
an exception based on its static type (the catch-clause names the type of the
exception it can catch), this is impossible in Pico. That is why a call to trycatch
requires a dynamic filter(exception) expression which it will evaluate every
time an exception is raised. Whenever this expression yields true it will evaluate
the expression that belongs to catch(exception,value) in the context of the
exception (the first argument for raise) and an additional return value (the
second argument for raise). For every call to trycatch, the corresponding
continuation is stored in “its” raise which is turned global, and a local reference
to the “previous” raise is kept aside for restoration upon successfully returning
from the try expression.

{ raise(exc,val):error("UNCAUGHT EXCEPTION");
trycatch(try(), filter(exception),catch(exception,value)):
call({ keep:raise;

raise(id,retval):={
raise:=keep;
if(filter(id),
continue(cont,catch(id,retval)),
raise(id,retval))};

res:try();
raise:=keep;
res}) }

As an example of using this exception handler, consider the following code to
calculate the roots of a quadratic equation where a negative discrimant exception
is cleanly caught. The exception is identified by the text value noRoots and
the second argument of trycatch implements the exception identification filter
appropriately.

{ root(a, b, c)::
{ d:: b^2 - 4*a*c;
if(d = 0,
-b/2/a,
if(d > 0,
[(-b + sqrt(d))/2/a, (-b - sqrt(d))/2/a],
raise("noRoots", d))) };

112

safe_root(a, b, c)::
trycatch(root(a, b, c),

exception = "noRoots",
display("discriminant negative: ",value)) }

5.7 Pico: Evaluation and Epilog

As explained in section 1.2, measuring expressiveness and quality of program-
ming languages is not an exact science. Nevertheless we have the feeling of
having established a consistent language that is easy to learn and implement.
This was confirmed by the results we obtained in the introductory computer
science course we were talking about in section 5.1. While the course of the
Pascal era mainly consisted of explaining Pascal based on simplistic examples
like determining greatest common divisors, the size and simplicity of Pico actu-
ally allowed us to focus on programming. In the 30-hours course, we exposed the
students (after explaining Pico itself) to four experiments designed to stimulate
their appetite for further exploration of computer science in their respective
fields: simulation of population growth (biology), triangularization of matri-
ces (mathematics), simulation of forced oscillations (physics) and querying of a
small database representing the periodic table of elements (chemistry). Again,
all this was done with 18-year olds in 30 hours! But apart from these astound-
ing results, Pico is also interesting from an academic point of view due to the
parameter binding system explained in the previous section. The parameter
binding mechanism for function application invocations allows for an easy ex-
tension of the language in the same way Smalltalk and Scheme can be extended,
but much simpler.

Referring back to the criteria put forward in section 5.3, we can conclude
that Pico is a language that is

• lightweight. This is shown by the fact that 90 percent (appart form func-
tion arguments and the apply construction) of the syntax can be explained
by a regular grid as shown in figure 5.3. It renders the implementation
very simple as shown by the fact that we have a complete meta circular
definition that fits in 1000 lines of Pico code.

• easy to read. Although this is a subjective matter that is highly cultur-
ally determined, we think that most people will find the above examples
easy to decipher, even without prior knowledge of Pico. This is in sharp
contrast to languages like Scheme and Smalltalk which require a good
knowledge of their semantics to understand quite mundane programs.

• as powerful and extensible as Scheme. Pico features everything
Scheme does ranging from higher order functions to first class tables and
continuations. Moreover by cleverly fitting the qualification syntax into
the rest of the language, Pico also supports first class dictionaries which
enables a form of modular programming missing from Scheme.

113

• easily extensible. This has been illustrated in the previous section with
the boolean system, the Algol-like control structures, the Scheme-like con-
ditional and the exception handling system. This is mostly due to the
innovative argument passing technique explained in section 5.5.3. It al-
lows one to write “new special forms” without having to resort to quasi
quoting and macro programming, nor requiring the cumbersome manual
thunkification demanded by Smalltalk and Self.

5.8 Pic%: A Lightweight Agora Scion

Although Pico was originally designed for educational purposes, over the years,
it has also become a small language-lab for experimentation with language fea-
tures. [VD00] e.g. shows how Pico is nearly trivially extended with simplis-
tic language features that enable internet-agent programming. This section
presents Pic%, a prototype-based extension of Pico that incorporates the ideas
of the Agora model explained in chapter 4 but that avoids the pitfalls listed in
section 5.2.

A prelude for a true object-oriented extension of Pico was already given in
section 5.5.4 in which we have shown how a very primitive object-system can be
added to Pico by rendering dictionaries first class. Combined with the syntactic
notion of qualification, Pico might arguably be called an object-oriented lan-
guage because it features encapsulation and message passing. However, this is
quite uninteresting a language because it does not include well-accepted notions
such as late-binding of self, cloning and super sends. The goal of Pic% was to
take the extremely simple notions of Pico and to add constructions to obtain
a lightweight Agora variant. But Pico is not a pure object-oriented program-
ming language in which everything is an object. Apart from objects (i.e., first
class dictionaries) and basic values (like numbers) it also has the notion of first
class functions which is, as we will demonstrate in section 5.8.4, not a simple
feature to reconcile with object-oriented programming because of scoping prob-
lems. From a scientific point of view, this has been a very interesting excercise.
Whereas languages like Self and Smalltalk can be thought of as languages in
which first class dictionaries are omnipresent (i.e., objects), and whereas Scheme
and Pico are languages in which first class functions are the norm, a language
that combines these features apparently does not appear to exist. Pic% does!

5.8.1 Problems with Adding Cloning to Pico

However, moving on from Pico to Pic% was not a trivial exercise that merely
involved the addition of some missing language features. In order to see the
problem, imagine adding a cloning operator to Pico. Conforming to the extreme
encapsulation limitations explained in chapter 4, this has to be a construction
with which objects clone themselves. A straightforward option might be to add
a native function clone() that takes a clone of the “current” dictionary, much
in the spirit of the way capture() returns a reference to the current dictionary

114

as explained in section 5.5.4. This has a number of problems:

• First, since dictionaries are linked lists of associations, there are no easily
definable boundaries to denote how far such a list needs to be cloned. A
complete copy is totally unacceptable because it would exclude any form of
code reuse. This problem has forced us to think about frames as groups of
names that have been defined or declared in a single procedure activation.
This way, our cloning mechanism could be defined to clone the current
frame only, resorting to parent sharing between the current frame and its
clone. However,

• Second, since Pico functions are closures in the Scheme sense, they con-
tain a reference to their enclosing dictionary which also contains a self-
reference, leading to circular structures. We must therefore make sure that
the dictionaries contained in those functions are cloned as well. Not doing
this would result in functions whose scope is not the object in which they
reside. Calling them would thus operate on the original object instead of
the clone! Hence, functions have to be “deep cloned” to yield the correct
scoping leading to an object model in which not a single method is shared,
unless we manually use the traits technique which is practically not us-
able in the absence of multiple inheritance or other advanced inheritance
schemes like the comb-inheritance of NewtonScript (see section 3.3). We
have called this the re-entrancy problem in section 3.3 and we have shown
in section 4.6.4 that Agora does not solve it.

These problems illustrate very well that adding a seemingly trivial feature to
a well-polished language can result in unforeseen interactions with unacceptable
semantics. Adding an operator as mundane as cloning seems to ruin Pico’s entire
notion of simple dictionary-based objects!

5.8.2 The Pic% Object Model

The considerations of section 5.8.1 have made us completely rethink the way
dictionaries and objects are composed, and how objects are created. The first
problem forced us to divide Pic% dictionaries into chains of frames, exactly
like in Scheme. The second problem has made us reconsider the notion of a
function such that it no longer contains a reference to its lexical dictionary
such that we do not need to deep-copy them yet retain reentrant code. But
of course this means that functions (or maybe better, methods, from know on)
will have to be provided with a scope reference every time we use them, be it
as a result of message passing or as a first class return value because one simply
refers to the function just as Pico prescribes. It is the latter that turns Pic%
into an prototype-based programming language with first class methods. These
considerations have led us to the following definition of the Pic% object model:

• Every Pic% object is a linked list of frames resulting from successive object
creations and method invocations (such as in Scheme or Pico).

115

po p'

om1 oi1 pm1

pm2 pi2

pi1 p'm1

p'm1om2 oi2

Figure 5.3: Pic% Object Structure

• Every frame has two parts: a list of declared bindings (immutable) and a
list of defined bindings (mutable).

• Upon cloning a frame, a new frame is constructed with a reference to
the same immutable bindings as the original and a clone of the mutable
bindings.

In order to illustrate Pic%’s object structure, consider a single-frame object
p with two mutable variables pm1 and pm2 and two immutable variables pi1
and pi2. Suppose o is a descendant object (consisting of two frames) that also
has two mutable variables om1, om2 and two immutable ones oi1 and oi2. Now
let p’ be a clone of p then the resulting object structure is the one depicted in
figure 5.3.

5.8.3 Pic% Scoping and Closure Creation

As explained, the fact that Pic% methods no longer explicitly refer to their
lexical scope, requires us to provide these methods with a scope as soon as they
are referenced. Referencing a method can happen in the context of a message
send of the form o.m(a) or by simply referring to o.m or by m in the context
of the object itself. In some way, these references need to create a closure
onto which a new frame binding formals to actuals can be attached, such that
the code inside the method is correctly scoped. This opens up two interesting
options:

• Either we attach the frame that binds formals to actuals to the object
that received the message. This is the semantics outlined in [DD03b]
and it seems to open up some interesting possibilities such as variable
shadowing. We can regard it as controlled dynamic scoping because the
parameter bindings are added to the dynamically determined dictionary
(i.e., the receiver). In this case a newly created closure simply consists of
the method together with the receiver.

116

• Another possibility is to attach the formals-actuals frame to the frame
in which the method itself resides, i.e., the frame that results from the
method lookup. This semantics is defended in [VM04] and corresponds to
classical lexical scoping. However, since the native function this() should
at all times yield a reference to the receiver of the message, this implies
that the closure will consist of three parts: the method, the lexical scope
(i.e., the frame of the method) and the dynamic receiver.

Although the implications of the second option are far less exciting than the ones
induced by the first one (see our analysis in [DD03b] about Pic%) ChitChat
uses the lexical one. In the context of distribution and mobility the static
scoping mechanism seems to prevail, mainly because dynamic scoping does not
seem to be easily alignable with the kind of state access control required by
synchronisation (see section 8.4.1).

5.8.4 First Class Methods in Pic%

Our treatment of scoping above already sheds some light on the way func-
tions are seen as closures emerging from selected methods. To the best of our
knowledge there is no object-oriented programming language that supports this.
Languages like Self and NewtonScript allow methods to be manipulated at run-
time but only through the meta level and reflective capabilities which is quite
cumbersome. The fact of having first class methods is actually less weird than
the fact that (to the best or our knowledge) we are the first ones to come up
with it. There are a indeed a number of good reasons for incorporating them in
an object-oriented programming language:

• In Smalltalk and Self, the absence of first class methods is covered by
blocks. A block is an expression between square brackets that can be sent
a variant of the value: message. At first sight, a block fits well in the
object-oriented paradigm: it is an object with a single method and calling
the function corresponds to sending the corresponding message. However,
blocks are not objects in the classical sense because - see section 2.4.2 -
their pseudo variable self does not refer to the block itself, but to the
object in which the block was created. Hence, a block is an object whose
self is does not refer to itself !

• For exactly the same reasons, the designers of Agora94 [CDDS94] noticed
that ex-nihilo object creation is not sufficient to mimic first class methods
or lambdas. That’s why Agora94 featured special syntax to create so
called “single slot nested objects”’ (SSNO), objects with a single method
that inherits the self from the surrounding object.

• Maybe Java most painfully shows the need for first-class methods. Whereas
Java is implemented using standard stack-based techniques (and not with
heap-allocated closures like Scheme, Self or Smalltalk), it cannot handle
closures. This would render first class methods really useful as painfully

117

illustrated by Java’s anonymous class restrictions. Consider the following
Java code excerpt:

class OuterClass {
private final int v=5;
public Lambda m() {
final int i=7;
return new Lambda() {
public void doit() {
System.out.println(v+i) }

}
}}

This example shows a method that returns an instance of an anonymous
nested object implementing the interface Lambda each time it is called.
Since Java does not have closures, all the variables of the outer scope must
be duplicated into the new instance because the outer scope will no longer
exist after m has finished and doit is invoked. Therefore, the variables
used in the nested scope have to be declared final to preclude them from
being assigned. After all, assigning them in one of the nested objects
would make all the other duplicates obsolete. This could be solved much
more expressively by allowing Java objects to return a first class version of
a local method that transparently encapsulates the receiver in some way.
This is precisely what Pic% does. We will come back to the implications
thereof in chapter 6.

5.8.5 Adding Agora’s Features to Pic%

Remember from section 5.8.1 that problems with cloning caused us to revise
Pico’s dictionary to represent objects. Having done this, let us return to cloning.
In earlier Pic% experiments (such as presented in [DD03b]) cloning took the form
of an external clone operator that had to be applied to an object. Our analysis
of chapter 4 and [DDD03b] rules out this option because of the principle we
called Extreme Encapsulation. This made us redesign this into a native clone()
that takes a copy of the receiver in which that primitive is called, i.e., copy ones
own state. In either case, the cloning model depicted in figure 5.3 is supported,
yielding an object model in which immutable slots are automatically shared
between clones. Recall from section 5.5.1 that these immutable slots coincide
with the publically available slots. Hence, Pic%’s objects roughly consist of a
local part and a public part. The public part can never be changed by means
of assignments and is therefore shared by all the clones ever made. The local
part is only visible and mutable by the object itself and is deep copied on every
clone.

However, some experimentation with native functions like clone()7 have
7We called them view and mixin to try to mimic the Agora constructions outlined in

section 4.3.2

118

led us to the conclusion that it is very hard, if not impossible, to really have the
full power of Agora by merely adding some natives. Indeed, a viewing method
in Agora has to make an extension of its receiver before any expressions in
the viewing method are executed for otherwise the new slots will be added to
the receiver itself. The same holds for cloning methods and mixin methods. We
really need a different type of methods besides the ordinary methods expressed in
Pic% so far. Unfortunately it is not easy to come up with a syntax for such new
kinds of methods without considerable changes to Pico’s syntactic framework.
In [VM04], however, a satisfying syntax extension proposal is made. It is based
on the insight that, in Pico, the left hand side of a definition or a declaration can
be a name, a function invocation or a table invocation, but not a qualification
(e.g. it is not allowed to write x.m or f.m(x) on the left hand side of :: or :).
This made us add the following syntactic sugar8:

f.m(args) : body ≡ m : f(λargs.body)
f.x : exp ≡ x : f(exp)

f.t[i] : exp ≡ t : f(?[i] : exp)

These rules are easier to understand than one might expect. They allow an
invocation to be ”prefixed” by the name of a function f that will be applied to
the entity being defined (or declared) before it is actually defined (or declared).
This way f can “lift” an attribute before it is actually being installed. We have
provided Pic% with three native lifting functions view, cloning and mixin that
will transform their argument into one of Agora’s “special” attributes as was
extensively explained in section 4.4. The following example illustrates this. The
view method Point will deliver a point with two methods: a regular method
print and a cloning method copy whose body is executed in the context of
a copy of the receiver upon invocation. This conforms to the Agora model
explained in section 4.3.2. The view is used by simply calling it as in Point(1,2)
or this().Point(1,2).

view.Point(x,y)::{
cloning.copy(xx,yy)::{
x:=xx;
y:=yy}

print():: display("(x=",x,",y=",y,")") }

The final issue that needs to be resolved to yield a realistic prototype-based
programming language is a notion of super sends. As explained in section 3.4.1,
there is a huge difference between a super object (that has its own “self”) and
a super send (whose self should refer back to the one that performed it). The
former could be achieved by adding some native super(). The latter, however,

8We list the transformations for definitions using :. Obviously they are also valid for
declarations using ::.

119

Table 5.4: Pic% Complete Syntax
inv: kind of names table invocations function invocations
simple invocation: nam nam[e1, ...] nam(e1, ...)
definition nam: e nam[e1, ...]: e nam(e1, ...): e
declaration nam:: e nam[e1, ...]:: e nam(e1, ...):: e
assignment nam:= e nam[e1, ...]:= e nam(e1, ...):= e
super sends .nam .nam[e1, ...] .nam(e1, ...)

qualification e.inv e.inv[e1, ...] e.inv(e1, ...)
’closed’ invocation inv inv[e1, ... ,en] inv(e1, ... ,en)

requires dedicated syntax such as in Java. This is shown in the bottom row
of figure 5.4 which now also summarizes the entire syntax of Pic% in which
syntactic sugar such as the one presented above, the operators and the curly
braces construction are omitted.

Note that some hygiene is required with the semantics of super sends in
views, cloning methods and mixin methods. The rules are quite simple: when
performing a super send in one of these, the resulting object will be selected
to be the parent of the object (i.e., clone or extension) created. This way
programmers can finetune precisely how far an object will be cloned.

5.9 Pic%: Evaluation and Epilog

In this section we take a step back and evaluate Pic% in the context of what
has been said so far. Of course, the issues that will interest us most are the way
Pic% respects the notions of extreme encapsulation and reflection protection
explained in the previous chapter, and how well Pic% succeeds in mending
Agora’s problems outlined in section 5.2.

5.9.1 Agora Problems

Let us first start with reviewing some of Agora’s problems described in section
5.2 that are very successfully solved by Pico and by Pic%:

• First, we have criticised Agora for the fact that it was all but a lightweight
model. Indeed, evaluating Agora requires complicated machinery partly
because of its extensive reflective capabilities. This is not the case for Pico,
nor for Pic%. Proof of this is the fact that both models have been imple-
mented numerous times in several languages varying from Scheme via Java
to Smalltalk. Purely recursive versions of the evaluator exist as well as
sophisticated CPS versions. But maybe the most overwhelming evidence
that the model really is lightweight is the fact that a full implementation
of Pic% for MacOSX, shipped with a programming environment, is an
application of only 212K.

120

• Another problem with Agora is that although it is fully based on message
passing but that, upon closer inspection, there are no less than 12 different
message categories whose evaluation rules are fundamentally different and
interact in extremely subtle ways. In Pico this is partially solved by the
fact that is has much more surface syntax. The table shown in figure
5.4 explains the entire Pic% language in an extremely regular grid which
is - in our opinion - simple to fully grasp. Again, our experience with
undergraduates confirms this.

• Finally, and probably one of the most fundamental critiques we raised
against the Agora model is that, despite of its sophisticated reflection
machinery, it is not really an extensible language. In section 5.2 we have
explained that the very model merely allows for the implementation of ad-
ditional receiverless messages and not ordinary reifiers unless one changes
the evaluator using complex pre-loading Steyaert calls “static reflection”
[Ste94]. From a semantical point of view, the reflection operators in Pico
and Pic% are much simpler than the ones of Agora. Nevertheless, section
5.6 illustrates that Pico does a pretty good job at writing extensions in
itself. But from a certain point of view, Pic%’s reflection model is also
much simpler than the one Agora has. This is the topic of section 5.9.3.

5.9.2 First Class Methods and Extreme Encapsulation

One of the important differences between the Agora model and Pic% are the
first class methods. In the light of extreme encapsulation, a first reflex might
be to treat this feature with a healthy dose of scepticism. After all, we are
tampering with methods, one of the internal details of a an object. The an-
swer of course is that with the object model designed for Pic%, the methods
themselves do not contain any information about the object. They are totally
stateless and it is exactly their invocation or explicit reference that wraps them
in a closure. Moreover, every reference yields a new closure. Hence, first class
methods cannnot breach the extreme encapsulation principle because an object
is extremely encapsulated entity and, conceptually, there is no sharing.

In section 4.6.5 we have presented Agora as a unique model in the context
of the Treaty of Orlando. We showed that it is a model of object-orientation
that does align its object model with its template model (turning it into a
prototype-based language) without aligning the object model to the self repre-
sentation model. This characteristic is preserved in Pic%. Indeed, apart from
message sending, Pic% features functional calling. However, just like in pro-
cedural languages, this is actually nothing but a message send to the current
dictionary and since dictionaries and objects are aligned, this means that func-
tion calls are just self-sends. In this respect, we can refer back to table 4.8
which explains the essence of extreme encapsulation in Agora by the fact that
different types of methods each implement their own do method which causes
different effects to happen depending on the type of method at hand. In Pic%
this is reflected by the fact that (first class) methods are applied to arguments

121

and that each type of method “knows what to do” when it is applied. Apply-
ing an ordinary method causes the same effect as applying a Scheme lambda.
Applying a cloning method will cause the method to create a clone of the en-
capsulated receiver before the body is run. These observations show that Pic%
is completely consistent with Agora’s properties discussed in chapter 4.

5.9.3 Pic%: Reflection Protection

The only Pico feature which seems unreconcilable with what we desire from
a prototype-based programming model that avoids Agora’s disadvantages is
its reflection model. As we explained in section 5.5.6, Pico’s reflection model
basically consists of a set of accessor methods on the table-based memory model.
This way, any parse tree can be manipulated by a Pico program. However, this
also requires us to define get and set on objects and this is extremely undesired
because it is a blunt violation of the reflection protection principle which is sacro-
sanct in the context of open networks and mobility as explained in section 3.6.
This forced us to remove these primitives from Pic%. Does this turn Pic% into a
non-reflective language? In the context of the research conducted by the Agora
principle (see Steyaert’s PhD [Ste94] for details) the answer to this question is a
yes. However, because of the specific Pico features, the full-fledged reflection of
Agora (which was at the same time pretty useless when it comes to extending
Agora, see 5.2) does not seem to be needed that much:

• The special parameter passing technique explained in section 5.5.3 covers
many uses of reflection in other systems. This was shown in section 5.6
where we have extended Pico with several constructions.

• One of the most useful applications of reflection in Agora was to extend
objects from the outside. Indeed, in section 4.6.2 we have shown how the
QUOTE and UNQUOTE reifiers were used to grab code and hand it over to
an object which can subsequently evaluate it in its own context. This
does not violate extreme encapsulation because it is the object itself that
decides to unquote (thus evaluate) that expression in its own context. This
technique is still available in Pic% as shown in the following example.

view.object(x)::{
write(xx)::(x:=xx);
extend(g(anX))::view(g)(x)
}

This code shows how an object o:object(3) can be created that un-
derstands write and extend. extend accepts any expression depending
on anX. It will execute that expression in the context of x after having
transformed the expression into a true view method. This can be used
to make an extension such as o.extend(read()::anX) that adds a read
method to the object. Notice that this Pic% solution is even better than

122

the solution of Agora explained in section 4.6.2 because an object does
not have to expose the name of its internal variables. The extend method
prescribes the names future extensions are allowed to see and use (here x
called anX for external clients). Again, the point of this “extension from
the outside” mechanism is that objects are extremely encapsulated but
can provide extension if they want to.

• We did not explore the entire design space to re-introduce reflection for
Pic% in different ways. For example, one might associate a mirror to every
object one wants to reflect upon such as in Self [M. 03]. This does not
necessarily have to breach encapsulation as long as every object is fully in
charge of independently deciding whether or not to deliver these mirrors.
This is totally feasible given our extreme encapsulation model.

5.9.4 The Re-Entrancy Problem Revisited

At the end of chapter 2 (more precisely in section 2.4.5) we have explained
that prototype-based programming languages suffer from a reentrancy problem
because methods conceptually reside in idiosyncratic objects. Either one chooses
to copy the methods upon cloning the objects (thereby sacrificing code-reuse and
reentrancy), or one has to resort to techniques such as comb-inheritance of traits
(which induces the need for multiple inheritance).

In Pic% we have come up with a nice solution to this problem. By align-
ing public attributes with immutable attributes, these can be shared by all
clones. This is exactly the kind of reentrancy class-based languages know, with-
out adding additional language features! Indeed, upon cloning an object, only
the dictionary holding the mutable slots is cloned. The one holding a reference
to the constants is shared between all clones. Hence, this dictionary acts as a
class-pointer in a class-based programming language. But the implementation
can freely choose to what extent it really reuses this pointer! Because the at-
tributes are totally immutable, they do not induce a conceptual sharing relation
between clones. As explained in section 3.2, this is important in the context of
open networks and mobility as it allows an implementation to copy the constant
dictionary over the network without introducing hidden dependencies between
objects the way classes do.

Let us illustrate all this by means of an example. The code excerpt below
shows a constructor for points and circles. Given that code, a point is created
with the expression p:Point(0,0) and a circle view can be defined on it using
c:p.Circle(1). The nice thing is that this is all very natural. All clones made
of the point and all clones delivered by the circle will share the same prn method
pointers. Just like in a class-based language, this code is completely reentrant
because it will never be copied. Nevertheless we do not have to resort to traits
or comb-inheritance for this.

view.Point(x,y)::{
cloning.new(xx,yy)::{

123

x:=xx;
y:=yy};

prn()::{ display(x,"@",y) };
view.Circle(r)::{
cloning.new(xx,yy,rr)::{
.new(xx,yy);
r:=rr };

prn()::{ display("("); .prn();display(").",r)}}
}

5.9.5 Some Concepts are Inherently Abstract

Another problem that we associated with prototype-based programming in sec-
tion 3.3 and which the Agora model did not solve (see section 4.6.4) is that
some notions are inherently abstract and do not fit in the prototype-based way
of thinking at all. E.g., when one is writing the code for a stack, one is writing
the code for all possible stacks, not just one particular stack. Hence, writing
stack abstractions is an inherently class-based activity. The following code ex-
cerpt show how this is typically solved in Pic%. It shows a view method Stack
that returns a new stack. Such view methods can be seen as the constructors
in a class-based language. They encode a prescribed construction plan that is
executed to make new prototypes. However, no language concept like classes is
need. Moreover the constructor “functions” are mere methods belonging to a
surrounding scope (read:object).

view.Stack(n):
{ T[n]: void;
t: 0;
empty():: t=0;
full():: t=n;
push(x)::

{ T[t:=t+1]:=x;
this() };

pop()::
{ x: T[t];
t:=t-1; x };

cloning.copy(nn)::{
t:=0;
T:=(T[nn]:void) };

view.makeProtected()::
{ push(x)::

if(full(),
error("overflow"),
.push(x) };

pop()::
if(empty(),

124

error("underflow"),
.pop()} }}

5.10 Conclusion

In this chapter we have shown that although the Agora model has some par-
ticularly nice language theoretical properties in the context of the problems
outlined in chapter 3, it has several remaining problems related to its practi-
cal applicability. We have proposed Pic% as a lightweight projection of this
model on top of a small experimental language called Pico. We have argued
that Pic% shares the Agora properties so highly desired in the context of distri-
bution and mobility without incorporating its problems. Pic% is a lightweight
extensible object-oriented programming language. It is classless and adheres to
the extreme encapsulation property.

125

126

Chapter 6

Pic% Idioms and
Techniques

The proof of the pudding is in the eating. This chapter presents a few idioms
that have been distilled over the years by programming in Agora and Pic%.
The idioms presented have been selected because they are well-known but have
a specific solution in Pic%, or, because they are an elegant application of Pic%’s
specific features (to wit overriding of views and first class methods). We consider
the idioms presented in this chapter as a partial validation of Pic%. They
show that a number of high level object-oriented programming techniques are
extremely elegantly formulated in the language and that Pic% is indeed an
expressive medium.

6.1 Introduction

In the previous chapter we have presented the Pic% model as a scion of the
Agora family that respects Agora’s characteristics but which avoids its disad-
vantages. Surely defining a new programming language family is not enough
and experience with its use has to be gathered. This is a difficult process in the
context of academic research as it is hard to come up with a user group that can
evaluate the expressivity of a language to a sufficient extent. This is certainly
the case with the ChitChat model to be presented in chapter 8. However, Pic%
is sufficiently developed in order to have gained some experience with it. It is
mainly our own’s but also that of some undergraduate and graduate students.
Usually the techniques and idioms are manifestations of well-known idioms in
object-orientation. However, there are also some extremely elegant solutions
that are a consequence of the particular Pic% features.

The following sections are ordered arbitrarily and illustrate the techniques
and idioms in a quite encyclopedic way because there is — as far as we know —
no real deeper structural insight to be discovered behind them. The presented
techniques where especially chosen because of their originality or because of their

127

elegance. It remains to be said that, apart from the “Pic% pearls” presented
here, a large part of the evaluation of Pico and Pic% is the existence of complete
meta circular evaluators for both languages1. The fact that we stress this is —
as explained in the introduction — a reflection of our view on programming
languages which was highly inspired by the famous MIT Abelson&Sussman
course [AS85] which puts a lot of emphasis on this theme.

6.2 Pic% at work: Design Patterns

Peter Norvig has shown that many design patterns, especially the creational
ones, become superfluous in a language without static typing [Nor98]. The
reason is that dynamically typed languages actually turn types into first class
entities. This renders creational patterns such as factories and builders trivial:
one simply passes along the type or the function that constructs objects of the
type. This is not different in Pic% because (first class) view methods can be
passed around like any other value. Moreover, declaring view methods privately
allows one to assign them (using a “setter” indirection that is publically de-
clared). This will cause users of the view to be given different kinds of objects
depending on the implementation of the view.

In the same vein, many behavioural patterns are actually object-oriented
designs that cover an absence of a particular combination of first class functions
and higher order functions as featured by functional languages. But as we will
show in the following sections, the fact that Pic%’s first class functions are
actually first class methods with a (hidden) receiver wrapped in their closure
enables some particularly elegant applications.

6.3 Overriding Views and Mixins: Factories

A technique that can be used to render object creation much more flexible than
in other languages is the fact that view methods can be overridden just like any
other method. This is illustrated in the following example:

view.GUIMaker()::{
view.newWindow():: error("GUI is abstract");
view.newButton():: error("GUI is abstract");
view.MacGUIMaker()::{
view.newWindow():: { thisIsA:: "Mac Window" };
view.newButton():: { thisIsA:: "Mac Button" }};

view.WinGUIMaker()::{
view.newWindow():: { thisIsA:: "Win Window" };
view.newButton():: { thisIsA:: "Win Button" }} }

The example shows an abstract factory with two concrete factories. Eval-
uating the expression GUIMaker().MacGUIMaker() constructs an object whose

1See http://pico.vub.ac.be/.

128

view methods will return Macintosh user interface components. The factory
GUIMaker().WinGUIMaker() delivers Windows components on the other hand.
Since object creation in Pic% de facto happens by method calling the above
code is quite mundane Pic% code.

Notice that this factory technique combines very elegantly with the flexibility
offered by the fact that Pic%’s object creation technique is mixin-based [BL92]
(in [LS94] this was called modular inheritance). The idea is that an object
can provide ordinary methods that deliver newly created objects based on the
outcome of the algorithm they implemented. The method internally calls view
methods to compose the desired object structure. This can also be used to
preclude illogical objects from being created (e.g. a person cannot be a male
and a female at the same time). The method might raise an error. The point of
our argument is that all object creation is performed through message sending.
Because of extreme encapsulation, the receiver of that message is entitled to
implement the message in whatever way it wants to.

6.4 Cloning with Cloning Methods

Cloning methods were already included in Agora94 [CDDS94] but their impli-
cations where never really explored.

Cloning methods are actually extremely expressive in contrast to a simple
clone operator that is to be applied to objects and in contrast with constructors
as found in many class-based languages. The reason is that cloning methods
interact nicely with delegation and overriding. Indeed, invocation of a cloning
method will execute the body of that cloning method in a shallow copy of the
receiver as explained in section 4.3.2. In the following code excerpt, we illustrate
this.

view.Point(x,y)::{
cloning.copy(xx,yy)::{
x:=xx; y:=yy}}

The code shows a Point constructor that can be sent copy. This will result
in creating a copy of the receiving point and will cause the method body (i.e., the
assignments) to be evaluated in the context of the clone. This yields correctly
initialized clones.

Cloning methods can, just like any other method, be overriden by more
specialized cloning method or by ordinary methods, thereby preventing some
objects from being cloned. The semantics of a cloning method is that it will
clone all the frames from the original receiving object, upward the delegation
hierarchy including the frame in which the cloning method is found. The result
is an object whose parent is the same as the object from which the clone was
made; i.e., the frame preceding the frame containing the cloning method. A
super-send in a cloning method will yield an object that will be set as the
super of the clone being constructed by the cloning method. This way, cloning

129

methods can precisely specify how much of an object (as a list of frames) is
being cloned and what the parent of the clone will be.

Cloning methods solve an old problem of prototype-based languages. In
many class-based languages, there is often a notion of class-based encapsulation
which means that objects of the same class are allowed to access each others
private variables. The absence of classes requires prototype-based languages to
mimic this using getter and setter methods, thereby also revealing the internal
state to anyone else. Imaging a class ComplexNumber that specifies a method
add to make the sum of the receiver and a single argument. In a class-based
language the code can initialize the result’s instance variables because it has
access to both arguments because they are of the same class. In prototype-based
languages this requires getter and setter methods. In Pic% cloning methods
solve this as follows. Note that no accessors are needed.

view.Complex(re,im)::{
...
cloning.new(rr,ii)::{
re:=re+rr;im:=im+ii};

add(c)::
c.new(re,im)

}

A rough edge to cloning methods is that they offer no provisions at all for
cloning cyclic structures. Surely cloning methods can invoke (cloning) methods
for the objects stored in their slots, these objects might be cloned twice if
programmers do not take the necessary precautions such as passing along a
clone map, a table that associates objects with their clone.

6.5 The Proxy Pattern

It was already been mentioned in the GoF book [GHJV95] that the proxy pat-
tern is actually presented as a pattern simply because of the absence of dynamic
delegation-based object extensions. The GoF proxy pattern wraps an existing
object in an object the methods of which delegate their work to the original
object. In a language with dynamic object extension such a proxy is simply a
descendant object that extends the original object, overrides some of its meth-
ods but which automatically delegates all the other ones to the original object.
This is not new, but we decided to mention the proxy pattern anyway because
of two reasons:

• First, the name delegation is not well-chosen in the GoF book. As ex-
plained in section 2.3, the difference between real delegation and mere
message forwarding as presented in the GoF book is late binding of self.

• Second, the proxy pattern is one of the fundamental techniques currently
used in distributed software. The idea is that objects are represented

130

by a proxy on a different machine and that messages sent to the proxy
are delegated, over the network, to the object the proxy represents. In
ChitChat we extend Pic%’s views and parent sharing to networked views
and networked parent sharing, thereby rendering the proxy pattern for
distribution purposes superfluous too. It is the topic of chapter 8.

In brief, dynamic object extension using views renders the proxy pattern, both
in the GoF sense as well as in the distribution sense superfluous.

6.6 True Singletons: Destructive Constructors

The singleton pattern was presented in the famous GoF book [GHJV95]. The
idea is that some situations require “one of a kind objects” (hence the name
singleton. Classically, this boils down to making sure that a class delivers just
a single instance of itself, even if the application logic tries two make two such
instances. Examples of this are true and false. In Smalltalk, the classes True
and False each have their own idiosyncratic behaviour. In order to be safe,
it has to be guaranteed that they deliver only a single instance of themselves,
for otherwise the consistency of the system could not be guaranteed if e.g.
“two trues” would exist. Other reasons for enforcing singleton objects might
be efficiency (one does not want to have thousands of “a”-objects in a word-
processor) but, more important for our research, security as argumented in
section 3.6.3.

As already briefly touched upon in chapter 2, it is a merit of prototype-based
languages in general that they are good at representing singletons. One “just
makes a singleton object” and that is it. An extra merit of the Pic% model
is that this singleton can really be be guaranteed to be unique by using the
technique of destructive constructors. Destructive constructors are constructor
functions that, upon invocation, overwrite themselves by their single instance.
This is illustrated by the following code excerpt which shows an implementation
of the classic Church booleans as view methods True and False which, when
called, immediately overwrite themselves. As such, the view methods itself is
lost upon first invokation and the names True and False get bound to the only
objects that will ever be generated by that function.

{ view.False():{
ifTrue(th(),el()):: el() ;
ifFalse(th(),el()):: th() ;
and(arg()):: this() ;
or(arg()):: arg() ;
not():: True;
False:=this() };

view.True():{
ifTrue(th(),el()):: th() ;
ifFalse(th(),el()):: el() ;
and(arg()):: arg() ;

131

or(arg()):: this() ;
not():: False;
True:=this() };

True();
False()

}

Notice that this is an idiom that is really unique in Pic%. Other prototype-
based languages also allow one to declare singleton objects but because of their
lack of extreme encapsulation and their lack of reflection protection, they cannot
guarantee that users erroneously or maliciously copy or destructively extend
that singleton. Pic% really allows for the construction of a secure singleton that
cannot be tampered with. As we saw in section 3.6.3 this guarantee is important
in the context of open networks. Consider the i-ticket with which Harry gets his
butter in the scenario given in the introduction. A malicious user could create
several copies of this i-ticket and could use this feature to pay once and collect
butter for free endlessly with copies of the i-ticket. This example demonstrates
the importance of controlling the number of objects of a certain type. But
these problems are not unique to prototype-based languages. Reflection in Java
e.g. allows one to simply bypass the object-construction facilities and create
unwanted instances. Code like iTicket.class.newInstance() shows that it
is easy to bypass the singleton property of objects. In Pic% however, this is
impossible as reflection protection is guaranteed.

6.7 The Iterator Pattern

An extremely popular design pattern is the GoF-book is the iterator (or ob-
server) pattern. The idea is to have an encapsulated data structure that has to
be traversed in order for a certain algorithm to be applied to all the elements it
contains. In a language with first class functions, this pattern is implemented as
a map or foreach function. In a language without lambda closures, this is par-
ticularly cumbersome to implement as witnessed by the pattern. The pattern
makes the data structure create an object (called Iterator) whose sole purpose
it is to access the elements of the object one after the other. This made the
Java designers overload the meaning of the for loop in order to have language
support for this problem. The new “iterator for” was included in version 1.5
of the language. As with many things in Java, the new construct is actually
an ad hoc feature to cover a particular situation where first class lambda’s are
missing.

In Pic% this is typically accomplished by “sending” ones algorithm to the
data structure by an ordinary message. Pic%’s parameter passing semantics
takes care of automatic thunkification. This is shown in the following code
excerpt in which iterate(algorithm(element))::... accepts an algorithm
(depending on element) which it internally applies to all its elements.

132

view.List()::{
elements: ...;
insert(el):: ...;
iterate(algorithm(element))::

... apply algorithm to the elements ...
...}

The iterate method is used as one would expect. The following example
shows how to print all the elements in a list.

l::List()

l.iterate(display(element))

The example shows how the innovative parameter passing technique of Pic%
combines the best of two worlds: we do not need the clumsy iterator construction
proposed by the GoF-pattern nor do we have to thunkify algorithms manually
with block closures, which are, as we explained in section 5.8.4 “weird citizens
in the object-oriented paradigm” because they are objects whose “self” is not
itself. Furthermore, because of the first class methods of Pic% it is even possible
to select the iterate method from the data structure and pass it along as an
iterator in the GoF sense. But since this iterator is a higher order function it
opens the way for the complete arsenal of higher order function composition
techniques, know from functional programming, to be applied.

6.8 The MVC Pattern

A commonly used technique in Pic% is a variant of the famous model-view-
controller pattern. Because of extreme encapsulation, an object can only be
extended or cloned by sending it a message that is required to be implemented
by a view method or a cloning method. The key of the technique discussed here
is to let an object store a reference to all newly created objects it spawns.

The following code excerpts illustrates this. The Model method is used to
create a model which contains one method tick that changes the internal state
of the model and subsequently calls this().changed(). This will traverse the
list us to send notify() to all its elements. These elements are added to the
list every time the view method View is called to create a view on the model.
This method registers the view with the model so that it gets notified everytime
the model changes. Needless to say, the fact that no extension views can be
created on the model without sending a message to the model is crucial here.

view.Model()::{
var:0;
us:void;
changed():{
fst:us;

133

while(not(is_void(fst)),
{ fst[1].notify();
fst:=fst[2] })};

tick()::{ ‘ example method
var:=var+1;
this().changed()};

view.View(viewCode(var))::{
notify()::viewCode(var); ‘ the view’s algorithm
us:=[this(),us]}

We will use this technique in our distribution examples when a server spawns
clients by special distributed view methods. The server can keep references to
its clients this way. We refer to section 8.6 for more details.

6.9 First Class Methods and Connectors

One of the drawbacks of object-oriented programming when it comes to higher
order composition technology — as required by component-oriented program-
ming — is that all communication between objects has to happen by message
sending, and that these messages have a name that is usually hardwired in the
program. This was e.g. the reason why introspection operators where added to
Java pretty early to support the Bean component model and make it less fragile
due to explicit dependencies resulting from hardcoded message names.

Consider the following programming problem: the goal is to write a generic
higher order constructor BroadCaster that accepts any number of components
and that implements a single method broadCast. The method should accept
any number of arguments and should call a certain method in all the components
it groups. Since we want BroadCaster to be a generic higher order construct
that is to be used with different kinds of components that might look totally
different, we do not want the name of the messages to be hardwired.

In Java and Smalltalk, such constructs are only possible because of their
meta programming facilities. And even though they are possible, they easily
result in pretty cumbersome code:

• Since the name of messages is hardwired in Java, we have to select the
methods out of the components using java.lang.reflect and hand over
the components and the methods in two different arrays to the BroadCaster
constructor. The implementation of the broadcast method then runs
pairwise through both arrays and invokes every method on the corre-
sponding receiver.

• In Smalltalk the situation is a little bit cleaner but still requires the double
array solution. One hands over the components and the names of the
messages that will have to be sent.

134

Pic%’s first class methods offer a particularly elegant solution to this com-
ponent wiring problem. It is shown below:

view.BroadCast@components:{
broadCast@args::

results[(i:0)+size(components)]:components[i:=i+1]@args }

The BroadCast object constructor takes any number of components —
represented as first class methods — which it can internally access as a ta-
ble. Upon sending broadCast with any number of arguments (internally called
args), a new table of results is created that collects the results of applying each
component[i] to those args using the apply operator @.

Here is how it can be used. Two totally independent components c1 and
c2 are created. Their methods are selected and handed over to the broadcaster
constructor. The result is an object that can be sent broadCast with the three
arguments that will be distributed over all components. Of course, the broad-
caster also works correctly for methods with any other number of arguments.

view.ComponentType1()::{
do1(x,y,z)::display("One says",x,y,z,eoln)}

view.ComponentType2()::{
do2(x,y,z)::display("Two says",x,y,z,eoln)}

{ c1:ComponentType1();
c2:ComponentType2();
bc:BroadCast(c1.do1 , c2.do2);
bc.broadCast(1,2,3) }

Notice how the first class methods c1.do1 and c2.do2 are handed over to
the connector. Because of the semantics of first class methods, these contain
the receivers c1 and c2 in their closure. This is just a small initial example
of how first class methods could be used to wire up components. Investigating
how far the feature can help us in this is an interesting topic of future research.
Another elegant application of first class methods is their use as listeners, the
topic of the next section.

6.10 Listeners are First Class Methods

A popular use of blocks in Smalltalk is to associate widgets of a user interface
with the action that has to be undertaken upon activation of those widgets.
The typical example is to associate the action that has to be undertaken upon
clicking a button. A block or lambda is an easy solution because it can be
created in the same context that will be needed when invoking it. A lambda
that is attached to a widget this way is called a listener. Since Java does not
feature lambdas one typically has to create a special listener objects and hand

135

it over all the information that it will need upon activation by the widget. To
alleviate this problem, starting from Java version 1.3, it was decided to add
anonymous objects to Java. These are objects that can — like lambdas — be
created ex nihilo in the very context that will be needed when invoking them.
This was already briefly touched upon in section 5.8.4. However, as explained
there, the JVM’s architecture puts severe restrictions on the usability of outer
scope variables from within the inner scope determined by the listener. This
often renders the listener technique cumbersome to use. Again, the anonymous
objects with their restricted scoping rules (they cannot modify variables residing
in their lexical scope) is an ad hoc technique to cover the absence of lambdas.

In Pic% this is elegantly resolved by selecting a first class method (which
might even be private) from its context and hand it over to the listener. Because
of the semantics of first-class methods as explained in section 5.8.4, selecting a
method also encapsulates the receiver itself which automatically makes the first
class method — when invoked — refer to the right object. Hence, first-class
methods as designed in Pic% could be a very elegant solution to cover for Java’s
lack of lambdas, without having to resort to a full-fledged closure system: the
method simply encapsulates the “this”. The following Pic% example illustrates
the technique. Upon creation of the dialog box in makeDialog, the buttons are
created and are handed over the methods uponCancel and uponOK that will be
invoked when one of the buttons is pressed. Whenever this happens, they will
naturally run in the context of the model from which they where selected.

view.Button(listener)::{
push()::listener() }

view.DialogBox(message,b1,b2)::{
show():: display(message);
ok()::b1.push();
cancel()::b2.push()}

view.AModel()::{
uponCancel():{ display("Cancel was pushed") };
uponOK():{ display("OK was pushed") };

makeDialog()::{
ok:Button(uponOK);
ca:Button(uponCancel);
DialogBox("OK or Cancel?",ok,ca)} }

Notice that this technique also elegantly interacts with inheritance. By re-
placing uponOK in the creation of the button by this().uponOK, the first class
method will be searched for in the descendant of AModel in which the dialog
box is created.

136

6.11 Conclusions

This small “interludium chapter” has presented some of the techniques and
idioms that have emerged from using Pic% over the years. Some of these idioms
were “mere” elegant implementations of existing patterns in Pic%. However, we
have also illustrated that two innovative language features, to wit the functional
parameter passing and the first class methods yield particularly powerful higher
order programming techniques without having to resort to lambda closures. We
have shown that the first class methods could even be turned into a satisfactory
(and relatively easy to implement) feature for languages like Java, the designers
of which obviously want to avoid the full-fledged closure system that is needed
to implement lambdas.

In chapter 1 we have argued that the expressiveness of a programming lan-
guage is hard, if not impossible, to measure. One could argue that many of
the design patterns presented in GoF are actually “workarounds” developed by
practitioners to cover for the absence of language features (such as first class
lambdas and dynamic types) they need to express their designs. In this sense,
the more elegant and concise a language allows these patterns to be expressed,
the more expressive it is. From this point of view, this chapter “shows“ that
Pic% can be considered quite expressive.

137

138

Chapter 7

OOP Concurrency and
Distribution for Open
Networks

After having presented our prototype-based programming languages in the pre-
vious chapters, we now turn our attention to distribution and mobility, the main
topic of this dissertation. Chapter 8 integrates a concurrency and distribution
model in Pic%. Therefore this chapter reviews the basic notions of concurrency
and distribution in object-oriented systems and gives a taxonomy of the lan-
guage design options that we have at our disposal in this field. We will review
existing concurrent and distributed languages (notably ABCL, Argus, Emerald
and Obliq) and evaluate them in our context of open networks set in chapter 1.

7.1 Introduction

At this point in the dissertation it is useful to take a step back and recall the
problem statements we formulated in section 1.3 of the introduction. There we
stated that it is not our goal to come up with a full-fledged production language
for open networks but to formulate clearly and offer an initial solution to four
fundamental problems such languages will have to address. Let us review them
with the knowledge about prototype-based languages built up so far:

1. The Ambient Object Paradigm Problem. In chapter 3, we argued
that programming such networks in class-based languages is virtually a
lost battle. On the other hand, a reformulation of the encapsulation prob-
lems of prototype-based languages in the context of security rendered them
non-viable as well. We resolve this apparent stalemate by applying our
Pic% model in the context of open networks. Pic% neither has classes,
nor suffers from the drawbacks of classic prototype-based languages.

139

2. The Distributed Sharing Problem. Although distribution is all about
sharing resources, current languages offer practically no features for shar-
ing. The object is usually considered as the unit of distribution and net-
worked object referencing is the only sharing technique offered. We take
the position that unfortunately objects are the only unit of distribution
and that structural network-based sharing mechanisms such as those of-
fered by prototypes are needed.

3. The Concurrent Parent Sharing Problem. This argument also holds
for concurrency. Whereas sharing is a fundamental part of distribution,
concurrency models obsessively avoid sharing because of the tremendous
problems the combination of sharing and concurrency poses.

4. Move Considered Harmful. Current mobile programming languages
are at the software engineering level that sequential programming lan-
guages were in the early sixties. In chapter 9, we will argue that current
mobile features correspond to the “goto” and inevitably lead to distributed
object-soups that no human reader is able to comprehend by merely look-
ing at the source code.

Chapter 8 iterates over the Pic% proposal of chapter 5 and enriches it with
language constructs for distribution and concurrency. The resulting distributed
programming language, called ChitChat, is unique in that it does not shun
sharing mutable state. On the contrary, state sharing between concurrently
running distributed entities is extolled by the model. Roughly spoken, it exploits
the prototype-based notion of parent sharing to control state sharing between
concurrently running (distributed) entities. We extensively discuss the ChitChat
model in chapter 8.

In order to put our proposal into scientific context and in order to justify
our design choices, this chapter reviews the vast body of literature about con-
currency and distribution, especially in the context of open networks and from
a programming language point of view.

Theoretically, concurrency and distribution are two separate fields because
a distributed system might be entirely sequential in nature. In practice how-
ever, this is not the case as even client server architectures are written such
that servers can handle multiple requests from clients concurrently. Hence, in
practice distribution often “implies” concurrency. This is even more so in our
context where devices are independent computers and the network connecting
them is not predetermined. The resulting configuration is almost naturally con-
current. The converse does not hold because of a different notion of failure that
distributed and “mere” concurrent systems have. Whereas a “mere” concurrent
program succeeds or fails as a whole, a distributed program can fail partially
because one node might crash. This “partial failure” is extremely important
for distribution and is even more important in the context of open networks as
machines can leave the network (making other machines failing partially) and
re-appear a few moments later in order to resume contact. This aspect is not

140

treated by our research at all. We will get back to this in our future work section
of chapter 10.

The chapter is structured along five sections. Section 7.2 explains some gen-
eral issues about concurrent object-oriented programming. Section 7.3 looks at
the options at our disposal in object-oriented concurrent language design. Es-
pecially the ABCL model [YBS86] will receive a lot of attention. Subsequently,
sections 7.4 and 7.5 do the same exercise for distribution. Finally, section 7.6
evaluates the most important languages in the context of open networks.

7.2 Concurrency in Object-Orientation

We start by giving a birds eye view on the major schools that exist in combining
concurrency with object-orientation. But to evaluate the available options, it is
important to understand the kind of concurrency we are after.

7.2.1 Reasons for Concurrency

In our opinion there are at least two reasons for using concurrency in an object-
oriented language:

• A first form of concurrency arises in the context of parallel systems where
networks of processors that are connected to speed up computations. This
view of concurrency gave rise to concurrency models such as CSP [Hoa78]
and actors [Agh86]. This “speed-driven stance”, often associated with
number crunching, is not our focus of research.

• The second manifestation of concurrency is more recent. E.g. in Java
many user interface components actually produce threads that operate on
a shared state because the application itself is sequential. This “uninten-
tional source of concurrency” is driven by software engineering. It is a
consequence of the way we structure applications. In the same vein, our
AmI context requires concurrently running devices to cooperate smoothly.
This requires a lot of resource sharing and the software that runs on them
will have to deal with this. The problems resulting from this concurrency,
albeit different in goal, are thus also a consequence of the way the appli-
cations are structured.

We deliberately stress this distinction because an important reason for shun-
ning state sharing in speed-driven concurrency is to improve their mutual inde-
pendence to gain speed. For our purposes however, concurrency is a consequence
of the way we model the software as (distributed) processes that share state.
This relaxes the efficiency requirements for the targeted language features some-
what. Instead, the concurrency model will be steered by the way sharing and
distributing is conceived.

141

7.2.2 Issues in Concurrency

Concurrent programming is hard. The difference between sequential programs
and concurrent ones is arguably of the same order of magnitude as the difference
between functional programs and imperative ones. Two problems recur:

Race Conditions

The property of functional programs of being easy to reason about completely
vanishes when mutable state is added because the temporal status of that state
partially determines the semantics of the program. Having two programs that
concurrently operate on that state makes the problem twice as large because the
program’s semantics can depend on whichever program performed its changes
first. These race conditions form the problem of concurrent programming and
avoiding them usually renders things extremely complicated.

The most frequently occurring problem is that of a ghost write. Suppose two
travel agencies access the same shared airplane that has one free seat left. Both
agencies concurrently check whether a seat is available. Upon getting a positive
answer, they subsequently both book the seat. One of the two write operations
will have no effect and is thus called a ghost write.

The Inheritance Anomaly

Although it is completely outside the scope of our research, any text that is
about combining objects and concurrency is at least expected to mention the
inheritance anomaly. Obviously, not all methods of a concurrent object can be
invoked at all times. E.g., a consumer of an object cannot consume if the ob-
ject was not previously filled by a producer. Therefore, special synchronization
code in the consumption method has to delay that consumer. The inheritance
anomaly boils down to the fact that this code is generally not reusable. Over-
riding one single method often requires all methods to be overridden. We refer
to [MY93] for an overview of the problem and ways to solve it.

7.2.3 Schools of OO Concurrency

In their excellent overview article [BGL98], the authors identify three object-
oriented concurrency schools: the applicative (or middleware) approach, the
reflective approach and the integrative (or language) approach.

Applicative Approach

An example of the applicative approach is Smalltalk. Although Smalltalk is
not a concurrent programming language, it contains predefined classes that
implement, in Smalltalk, concepts such as processes, and monitors. Smalltalk
composition technology is then used to “wire up” a concurrency program. Block
closures are heavily used to “disguise” sequential code as processes or threads.

142

This approach to concurrency is cumbersome. As [BGL98] put it, “the pro-
grammer faces at least two different major issues: programming with objects
and managing concurrency and distribution of the program, also with objects
but not the same objects!” Unfortunately, this is how most concurrent pro-
grams are written nowadays. We highly doubt that this approach scales up to
distributed and mobile software that has to deal with the complexity of open
networks.

Reflective Approach

The second school in combining object-orientation and concurrency is known as
the reflective approach. The idea here is to “open up” a sequential program-
ming language with reflection operators in order to adapt and enhance it with
concurrency concepts. At the meta level, reified language concepts are rendered
concurrent and absorbed back into the language processor. An example is the
CodA system [McA95] which uses the Smalltalk meta-level to introduce concur-
rency and distribution. At the meta-level, the applicative approach is used to
compose the concurrent behaviour attributed to base level programs.

Integrative Approach

The integrative school of combining objects with concurrency is the one ad-
hered to by our research. The integrative approach is about aligning object-
oriented notions (like objects, classes, inheritance and methods) with concepts
from concurrent programming, resulting in concurrent object-oriented program-
ming languages. Proposals vary from straightforward language unions that add
“threads” to a sequential language, to carefully designed language intersections
(like the Actors [Agh86] model) in which object-oriented concepts like objects
and messages were carefully integrated with the notions of concurrency. In
[BGL98] the languages are classified along three design dimensions:

• The first dimension is the level to which objects and threads are aligned.

• The second is how good messages align with synchronisation boundaries.

• Third, there is the alignment of objects and the units of distribution.

In the following section, we explore the options in this design space.

7.3 Design Issues in Concurrent OOP

The three axes that make up the design space of the integrative approach are
covered by sections 7.3.1, 7.3.2 and 7.3.3 respectively. Section 7.3.4 looks at
the restrictions that open networks put on concurrency. Section 7.3.5 focuses
on ABCL, a language in the space that seems to meet quite a lot of those
restrictions.

143

7.3.1 Axis #1: Threads vs. Active Objects

The first language design dimension is about the extent to which objects and
threads are aligned. The are two extremes to be reviewed.

Some languages, like Java, do not align these notions at all, resulting in
language unions containing both threads and objects. Every thread is an
independent “processor” that sends messages and runs methods. As such, dif-
ferent threads can operate on the same object resulting in race conditions. In
order to prevent this from happening a flag-driven synchronization system is
added to objects which indicates to what extent the object is in use by one or
more threads. Java’s synchronized keyword and method modifier states that
only one thread can operate on the object declared synchronized. Unfortunately,
this is not very high a level of abstraction. It appears to be very simple at first
sight, but is extremely error-prone when used on a large scale because it makes
programmers completely responsible for managing state sharing problems by
handcrafting primitive monitor mechanisms on objects [Lea99].

At the other extreme of the spectrum are languages that fully align objects
with threads such that objects are threads that consume messages. These are
called active objects (as opposed to passive ones). In the “pure actor model”
[Agh86] objects (called actors) are constantly running entities that have a queue
to gather messages. Whenever ready, an actor consumes the next message and
runs its associated method. After processing some instructions, the actor will
typically replace itself using a become instruction. It can henceforth handle
a new message, although the method is still running because an actor has no
mutable state.

There seems to be a continuum between the thread model and the ac-
tive object model, usually adding mutable state to the latter. For example,
in ABCL, messages arrive in a queue but the object basically processes them
one by one thereby avoiding internal race conditions. In others, active objects
handle messages concurrently which requires internal synchronisation code for
mutable state [BGL98].

7.3.2 Axis #2: Synchronization and Message Passing

Apart from the pure actor model, concurrently running entities manipulate
shared state and will thus require synchronization to avoid race conditions. Syn-
chronization requires synchronization points and it is natural to consider method
boundaries for this because sending a message is where “control is handed over
from one logical entity to another”. The level to which synchronization and
message sending are aligned is the second dimension along which concurrent
object-oriented programming languages are classified.

Combining concurrency with message sending engenders three forms of syn-
chronisation. If more than one thread can enter an object, we have to deal with
intra-object synchronisation to protect internal state from being corrupted. One
speaks of inter-object synchronisation if a message spawns concurrency (because
the receiver handles it autonomously) and if the sender and receiver need to

144

intra-object
synchronisation

behavioural
synchronisation

m1

inter-object
synchronisation

m2
m3

obj2obj1

Figure 7.1: Synchronization Schemes Schematically

synchronize afterwards. Finally, the messages an object understands define a
communication protocol, also from a concurrency point of view. E.g. a read
in a buffer is only possible after processing a write. Determining which meth-
ods can be invoked when is called behavioural synchronization or conditional
synchronization. This is schematically depicted in figure 7.1.

As explained above, stateful languages require intra-object synchroniza-
tion between multiple threads or methods to avoid race conditions. A prim-
itive example is Java’s synchronized keyword combined with its wait and
notify natives. Intra-object synchronization appears to be extremely difficult
and error-prone [Lea99]. The only viable solutions seem to be abandoning mu-
table state (like pure actors do) or abandoning intra-object concurrency (which
is what ABCL does - see section 7.3.5).

Depending on the internal state of an object, some operations can temporar-
ily be disabled. There are many mechanisms to achieve such behavioural syn-
chronization. They fall into centralised behavioural synchronization schemes
and decentralised behavioural synchronization schemes. In centralized schemes,
there is a centralized expression in the program text (an AOP-like declara-
tion) that specifies the rules for enabling and disabling methods. Decentralized
behavioural synchronization means that the heading (or even body) of every
method has the provisions necessary to make sure it is disabled whenever nec-
essary. In [BGL98], a good overview is given about behavioural synchronization
mechanisms. Examples are

• Flags combined with synchronization functions like wait and signal.

• Behaviour sets are sets of methods an object enables at a certain moment.
Methods can change the contents of the sets.

• Path expressions describing which interleaving of messages are valid.

• Guards which are boolean expressions that block methods and trigger
them anew when they become true.

• Chords in C# which require multiple messages to arrive at an object before
a “shared” method body is executed.

• Guardians in Argus [Lis88] which put delayed methods into “guardian
actors” and reactivate them back later on.

145

• Scheme-like “current continuations” which are grabbed and stored for later
(when the conditions are met) re-activation.

Finally, figure 7.1 shows how inter-object synchronization is necessary
when messages spawn concurrency which is the case in active object models.
Whereas most thread-based systems (in which concurrency is spawned by thread
creation) use synchronous message sending (i.e., the thread “flows” from the
sender into the receiver back to the sender), the approaches based on active
objects use asynchronous message sending which entails that sending a message
is a source of concurrency. Since the sender continues, sender and receiver will
need synchronization when the reply is ready. In some proposals, there is never
a reply at all. Others work with a callback system. A particularly nice solution
to the problem was developed in ABCL in which asynchronous message passing
immediately returns a promise. This can be the final result, or, a placeholder
that will change itself to the result upon completion of the method. In that
case, the promise is said to be fulfilled by the receiving active object. The
sender of the message will receive the promise and “think” that it is the answer
to the message. It can store the promise, pass it as argument to other message
etc. This maximizes concurrency. Only when the sender actually wants to do
something with the value for which it is a promise, then it will actually block
(and thus synchronize with the receiver). We will return to this in section 7.3.5
that treats ABCL in detail.

7.3.3 Axis #3: Objects as Unit of Distribution

The third dimension along which object-oriented concurrent languages can vary
is determined by the extent to which objects are the units of distribution. Be-
cause distribution takes such an important part in our research we have devoted
entire sections on this. Section 7.4 treats distribution issues in general and sec-
tion 7.5 reviews distributed programming languages. But let us first have a look
at how existing work on concurrency in object-orientation fits in our research
domain. Section 7.3.4 looks at the specific requirements for concurrency in open
networks and section 7.3.5 takes a closer look at one language (to wit ABCL)
from the above design space that has some promising features in this context.

7.3.4 Requirements of Concurrency in Open Networks

As said in section 7.1, the goal is to enhance the Pic% model with a concurrency
model that is applicable to distribute its objects across open networks. In
addition to the more general wish list drafted in [CR93] about the features of
a contemporary concurrency model, we now evaluate the options offered by the
design space explored in the previous sections for open networks.

1. The communicating devices are not divided into predetermined clients
and servers because they are independent computers. This rules out syn-
chronous communication because it inherently follows a client-server strat-

146

egy in which a client explicitly waits for the result. Hence, we will focus
on asynchronous message passing and adopt an actor-based model.

2. Historically, pure actors were a reaction to the tremendous difficulties that
come with threads that share state. From a language theoretical point of
view, it is undoubtedly the best marriage of objects and concurrency.
However, we have two objections against pure actors. First, our very
modeling domain is about smoothly cooperating distributed applications.
This seems to imply that there is a notion of (at least temporal) sharing
between the concurrently operating devices. Examples such as virtual
white boards inherently contain the idea of a state that is shared between
concurrently operating actors. In the same vain, a PAN “knows” the
surname and mood of its user. This is very hard to program in pure actor
systems. The only way cooperating actors can conceive of a “shared” state
is to send messages back and forth all the time, using explicitly encoded
session information1. This would be so much easier if the cooperating
parties could “simply” share some state.

3. Another huge drawback of the actor model is that it puts an unreasonably
high cognitive load on developers because its pure asynchronous message
passing renders the sender and receiver of a message constantly out of
sync. Circumventing this problem is done by passing along, with every
message, a continuation actor that knows how to handle the rest of the
computation [Lie87]. This continuation passing style works fine for small
examples but does not seem to scale up. The problem is even worse in
open networks. When two communicating actors temporarily move out of
earshot they would need “service discovery” each time communication is
required. Although this will always be needed at the system software level,
we surely cannot expect application programmers to deal with “keeping
the connection alive” for every message they want to send and for every
result they want to get back. There needs to be some “rubberband” tying
senders and receivers of messages together. In section 7.3.1 we discuss
ABCL’s promise system as a good candidate to solve this problem.

4. More than two devices might be involved in a communication. If one
device requests a result from a second one which forwards the request (in
a tail position) to a third one, then the second process does not have to be
blocked unnecessarily, merely to pass on the result from the third object
back to the first. Instead, the promise of a promise should immediately be
returned to the first process. This “chaining of promises” will maximise
the availability of devices and the minimise coupling between them which
is important in case the second device (i.e., the middleman) goes out of
range.

5. In developing software for open networks it is impossible for a program-
mer to foresee all possible interactions a networked actor might undergo

1Such as http-cookies.

147

with newly encountered devices. It will therefore be extremely hard to
guarantee internal consistency of mutable state if that networked object
allows intra-object concurrency. Even in applications where the two com-
municating parties were “written for each other”, intra-object concurrency
seems hard to manage. We will thus avoid it.

6. The model should be easily alignable with our distribution requirements
which explicitly extoll the idea that cooperating distributed parties share
information with each other. In chapter 8 we will model such shared
information as shared parents of distributed objects.

7. Finally, the model has to work in a mobile setting where objects hop from
one device to another. Again, the model of explicitly late bound message
passing (enabling rerouting) combined with an implicit “connection” es-
tablished between the receiver and the promise that awaits the result, will
make things much easier.

As we will see in section 7.3.5, apart from the sharing we are after, these
restrictions combined with the insights of previous analyses such as [CR93]
heavily point towards ABCL which is a realistic variant of the actor model
with mutable state. Enhancing Pic% with an ABCL like concurrency model for
distribution, based on shared parents, is the topic of chapter 8.

7.3.5 The Actor Based Concurrent Language (ABCL)

ABCL [YBS86] tries to reconcile actor languages with the notion of mutable
state. We discuss ABCL in detail because it is a prototype-based language that
was the intellectual basis of the ChitChat model explained in chapter 8. ABCL
supports cloning and class-like object constructor functions, but, to the best of
our knowledge, no delegation that involves late binding of self.

Objects in ABCL

In order to explain how ABCL works, consider the following code excerpt which
is a code skeleton for a bounded buffer. ABCL is a language whose concurrency
emerges solely by means of sending messages to active objects (without intra-
object concurrency). These are always in one of the states: dormant, active or
waiting. A dormant object can be activated by sending it a message and becomes
dormant again as soon as it has no more messages in its queue. An active object
can put itself into the waiting state using the (select ...) statement. The
meaning is to become active again only after having processed the message
referred to by that select. This is one of ABCL’s behavioural synchronization
mechanisms. Another one is to attach constraints to the message pattern, a
feature not illustrated by the code [YBS86]. In the code, each => entry shows a
message pattern and its associated method.

148

[object Buffer
(state ...)
(script

(=> [:put obj]
(if full?

then (select (=> [:get] ...)))
... store obj ...)

(=> [:get]
(if empty?

then (select (=> [:put obj] ...))
else
... remove obj ...)))]

Messages Passing Semantics

Sending a message to an object puts the message in the object’s queue. There
are two types of messages. Ordinary messages are added to the end of queue.
Express messages have higher priority and can even temporarily interrupt the
execution of another message. This means that message handling loses its atom-
icity which can introduce race conditions. Crucial messages can be precluded
from being interrupted however.

ABCL features three kinds of messages: past, now and future. “Past” mes-
sages correspond to pure actor-like messages that never block their sender.
“Now” type messages correspond to synchronous message passing causing their
sender to wait until the receiver explicitly returns control. Finally, “future”
type messages allow both sender and receiver to run concurrently but will cause
the sender to wait as soon as it really needs the result but which was not re-
turned by the receiver yet. To ensure this, upon reception of a “future” message,
the receiver immediately returns a so called promise to the sender. In ABCL,
promises are not transparent but represented by a so called “future object”
whose value can be claimed by the sender. If the receiver is not finished yet,
the sender will block until the receiver fulfils the promise by filling the future
object with some value.

In contrast to Multilisp’s futures [Hal85] or Argus’s promises [LS88], ABCL
allows for a future to result in more than one return value. Therefore, a future
object is actually a queue accumulating all values returned by the receiver. This
allows a sender and a receiver to exploit maximal concurrency and to return
values back gradually. Synchronization (i.e., blocking the sender) occurs only
when necessary. The concept is sometimes referred to as wait-by-necessity.

As said above, an important advantage of promises over the continuation
passing style (CPS) advocated by the pure actors model is that they allow
programmers to express their algorithms much more naturally. It does not
force a program to be written in CPS because a promise is an (asynchronous)
connection between the sender and receiver of a message. CPS is experienced by
many people to “turn their algorithms inside out” because code that logically
belongs together has to be put in separate continuations.

149

Summary

ABCL is a prototype-based concurrent language featuring active objects, cloning
and constructor functions. It has no inheritance, nor delegation. Concurrency
is maximized by (a)synchronous message passing with different flavours (now,
future, past) and promises. Intra-object serialization is achieved using a queue
collecting all messages and behavioural synchronization by constraints and the
select delay instruction. Futures regulate the inter-object concurrency.

7.4 Distributed Objects

In section 7.2.1 we have explained to be investigating concurrency not in the
speedup doctrine, but in the light of programming open distribution. Now we
look at distribution itself. This section covers some generalities. Section 7.5
discusses existing languages in our context. We will not try to give a detailed
discussion of what exactly is a distributed program because such discussions
easily degrade into an attempt to determine the gender of the angels. We call a
program distributed if it is executed by geographically dispersed machines (also
called hosts or computational environments) such that the link connecting them
is somehow detectable2 to the running program.

As with concurrency (see section 7.2.3), there are three approaches to com-
bine object-orientation and distribution: the applicative, the integrative and the
reflective approach. Writing a distributed object-oriented application is not an
easy task. The reason is that a combination of the applicative and reflective ap-
proach, called middleware, seems to be the omnipresent, but arguably also the
toughest way to construct distributed applications. It requires the non trivial
interactions between the distribution and “ordinary” object-oriented concepts
to be dealt with manually which usually results in insurmountable problems as
shown in section 7.4.1. That is why this dissertation promotes the integrative
approach, especially for the dynamics induced by open networks.

7.4.1 Problems with the Middleware Approach

Neither practitioners nor academics spontaneously come up with distributed
languages when thinking of distribution. Indeed, the bulk of distributed pro-
gramming is nowadays done in mainstream sequential languages like C++ or
Java using an intermediate middleware that combines libraries and AOP or
other reflection techniques.

An important concept in object-oriented treatments of distribution is a
proxy. A proxy is a local object that represents another remote object. Proxies
are responsible for taking the actions necessary to forward local messages they
receive to the remote object they represent. Issues such as (not) copying argu-
ments of messages across the network and deciding what to do with the result

2In speed, in time, in memory consumption to take care of a message send, etc.

150

(copy it to the sender, move it to the sender, or creating a local proxy for the re-
mote result) have to be taken into account. Middleware solutions typically have
tools for generating proxy code that contains the machinery to forward mes-
sages to the objects they represent. Middleware often consists of a precompiler
that transforms a program annotated with compiler directives indicating which
parts and how the program has to be made “network-aware”. The precompiler
typically generates stubs for proxies and the underlying distribution machin-
ery. This all sounds very nice and therefore many practioners claim that there
is no need for dedicated language support for distribution. They promote the
use of a pointerless programming language like Java combined with middleware
technology such as e.g. Voyager [voy].

However, reality is not so simple. On top of the problems with concur-
rency which practically immediately pop up when distributing an application,
middleware solutions, no matter how solid and complete, have many problems.

Referring to Remote Objects

One of the issues with distribution is the way objects find each other on the
network, i.e., how local code gets references to remote objects. This problem is
sometimes neglected because it seems to be “but a bootstrap problem”: once
a “first” reference to a remote object is obtained, it can be sent messages that
return other references. But still, a protocol has to be designed to get a first ref-
erence. Surely, the poor “solution” consisting of a hardcoded network topology
combined with “simply” referring to remote objects by a hardcoded (IP) ad-
dresses plus a hardcoded object descriptor, is not really scaleable and justifiable
a solution. This is especially true in the context of open networks.

When striving for a solution that is more scaleable and manageable there
are currently a number of alternatives.

a) Centralized Name Servers. The most popular solution, especially in
middleware proposals, is that of a name server known to all the locations of the
distributed application topology. Network references to objects that are regis-
tered with the name server, are acquired by querying the name server locally.
Conceptually the name server is a central authority but robustness and perfor-
mance can require name servers to be replicated on different machines. Name
servers have the advantage of being simple text-based solutions. But this is also
their biggest drawback as it requires objects to bear a unique name across the
network. This is related to the fact that name servers are conceived as central
authorities in charge of getting locations in touch with each other. It makes
name servers practically unusable in the context of open networks.

b) Broadcasting Protocols. Broadcasting protocols are inherently de-
centralised. They assume that devices constantly “beam around” information
that can be picked up by other devices. Examples are JXTA [Sun03] and M2MI
[KB02]. JXTA is a set of protocols developed by Sun Microsystems in the
context of Java, which allow devices in peer-to-peer topologies to communicate
with each other. One of the protocols is the “Peer Discovery Protocol” which
allows nodes to discover each other based on XML descriptions of broadcasted

151

services. Once discovered, other protocols can be used for opening connections.
An approach that is particularly interesting for dynamically defined processor
clouds is the M2MI proposal (Many-to-many-invocation) [KB02], also imple-
mented in Java. M2MI allows objects to send messages to each other by means
of multicasts; messages that will be received by all objects that implement a
certain Java interface. This mechanism - albeit pretty low level - was designed
for exactly the kind of communication we are after.

The number of steps involved in “just getting a reference to an object on
a different machine” in middleware solutions strengthens our opinion that this
should be offered by the programming language. Obliq [Car95] for ex-
ample uses built-in name server primitives in order to name objects across the
network.

Representing Remote Objects: Proxies

Middleware solutions usually implement a remote object reference by means
of a proxy , a placeholder that represents the remote object and that correctly
forwards local messages to that object3. One of the tasks of middleware solutions
usually is to generate proxy code. They offer tools that generate a proxy class
on the basis of the signatures of the input class. The need for distribution
transparency requires local and remote objects to be interchangeable which, in
statically typed languages like Java, requires their types to be compatible. In
Java the interface solution is often adopted: the original class is renamed and
its original name is turned into an interface. Both the original class and the
generated proxy class then implement the same interface. However, the proxy
solution is often a source of problems. Generally spoken, they all boil down to
the fact that the idea of a proxy breaks object identity: from a semantic point
of view, proxies are perfect stand-ins for the objects they represent and the
application logic will consider them the same. However from a technical point
of view (i.e., the actual pointers) they are different objects and are thus not the
same. This resulting problems are not easy to solve (see [PSH04]):

a) Language Operators vs. Proxies. Although at first sight it may seem
an unimportant technical problem, the presence of language operators that are
not subject to late binding polymorphism (such as == and != in Java) can yield
subtle bugs and insurmountable problems because, semantically an object and
its proxy are equal but technically they are represented as two different objects.
This even gets worse if “proxy management” does not guarantee an object to
be represented by the same proxy every time it crosses network boundaries: an
object arriving at a location along two different calling paths will be represented
by two different proxies and will, as a consequence, not be equal. The basic
problem is that many operators offered by languages like Java are not subject
to late binding polymorphism. This is related to the problem of abundant
language operators discussed in section 3.5. It is an extra argument to impose
a strict adherence to message passing. As a matter of fact, some middleware

3This process is called remote method invocation and is treated below.

152

solutions will replace the usage of == by equals messages but this changes the
semantics as illustrated by the following code excerpt:

Object canBeNull = random(true,false) ? null : object1;
if(canBeNull == object2) ... else ...

Bluntly replacing == by an invocation of equals will break the code every time
the random generator returns true. equals is then sent to null which is not
an object.

b) Static Typing vs. Proxies. A problem for which no simple solution
exists is that the middleware proxy solution heavily interferes with static typing
as featured by the bulk of languages used by middleware solutions. Imagine a
library application that can transparently manipulate both local as well as re-
mote books. It can display information about and reserve books irrespective of
whether they are local or remote books. The solution is to have a Book class and
a BookProxy class that represents remote books. The substitutability require-
ment for local and remote books constrains the way the classes are organised in
a statically typed language.

• The BookProxy is a subclass of Book. This has the disadvantage that
every proxy also contains the useless data fields of a Book.

• The class Book is refactored to an empty superclass of which both the
original class as well as the proxy class are subclasses. This works fine as
long as Book is an independent class that is not part of a hierarchy. If
Book has a subclass, say DigiBook, then the substitutability requirements
between books, digital books, proxies for books and proxies for digital
books impose a multiple inheritance hierarchy with a diamond.

• The interface solution (for Java!) explained above avoids multiple inheri-
tance but has other drawbacks. Although [ACFG01] shows that it can be
improved significantly, the worst estimates for an interface invocation is
that it is 50 times as expensive as a regular invocation. More severe dif-
ficulties of the interface solution is that it interferes heavily with features
such as instanceof, new and certainly reflection!

c) Reflection vs. Proxies. The interface solution is only possible if
one has access to the sources, for otherwise instructions like new Book() can-
not be replaced unless dynamic class loaders are deployed. But even if we
do have complete access to the sources, the interface solution easily breaks in
combination with reflection. Indeed, no precompiler will be able to replace
Class.getClass("B"+"ook").newInstance() correctly. This code will break
unless the middleware also changes class loaders which is only possible in Java.
Reflection operators can also be used to circumvent message passing. For exam-
ple, compare book.clone() with book.class.newInstance(). When sent to a
proxy, the first message will (if correctly forwarded) return a copy of the book.
The second one yields a copy of the proxy. Such examples show that proxies do
not interact smoothly with reflection, even reflection as weak as Java’s.

153

d) Late Binding of Self vs. Proxies. One of the key notions of object-
orientation is the notion of recursion through self. However, upon forwarding
a message from a proxy to the object it represents, self will refer to the ob-
ject itself and not to the proxy. This too causes technical problems. Imagine
distributing an application that processes “model” objects referring to “view”
objects in the MVC-sense. Unless all logic is kept strictly centralized on a server,
we might want to store local views locally to avoid unnecessary network trafic.
However, the MVC mechanism will never cause the local views to be notified.
The problem is that, once the proxy delegates a message to the server, the proxy
“loses control”. When the model on the server sends self changed messages,
they will not “come back” to the proxy rendering the local views stored in the
proxy inconsistent.

e) Conclusion. The fundamental problem that is the root of all these tech-
nical incarnations is that a proxy semantically “represents” an object and should
thus be fully interchangeable with that object. Unfortunately, technically, they
are different objects and this seriously interacts with the rest of the language
features. It should be clear that programming language support for a
transparent representation of “objects”, whether local or remote is
indispensable to avoid these technical intricacies.

RMI, Argument Passing and Result Delivery

After having discussed the problems middleware solutions suffer from for get-
ting a “first reference” to an object and associated to representing objects by
proxies, let us now look at message passing in the context of distribution. A
message sent to a remote object is referred to as a Remote Method Invocation
(or RMI for short) which is the equivalent of Remote Procedure Call (or RPC)
for procedural languages. The RMI mechanism is responsible for forwarding a
message across the network upon reception by a proxy. The middleware takes
care of correct message delivery, of correctly handing over arguments and re-
sults, and of propagation of thrown exceptions. Shougaard [Sch03] identifies six
steps in executing a remote method invocation:

1. Get a proxy for the remote object.

2. Invoke the method on the proxy.

3. Take the necessary provisions to handle the arguments of the message.
We will discuss this below.

4. Upon receiving the call and the arguments, the message has to be bound
to the right method on the object being represented by the proxy, and
provisions for sending back the result have to be made.

5. Run the actual method.

6. Return the (reference to the) result to the original caller.

154

Depending on the middleware, several possibilities arise for transferring ar-
guments and results back and forth between the sender and the receiver. One
might decide to copy the arguments over the network, to really move them
back and forth or to simply give the receiver a proxy for the arguments that
remain with the sender. The difference between copying and moving is subtle
though important. An argument copied is not affected in case the receiver in-
flicts changes to the copy (possibly by sending it messages). For arguments truly
moved back and forth, such changes are also perceived by the sender. In any
case, moving or copying objects is not easy. They are actually graphs, which
means that it has to be decided how “deep” every argument has to be moved
or copied. Furthermore, technology is needed to serialize or marshall objects
into a sequential representation that can be sent over the network after which
the receiver can deserialize or unmarshall them, which is a costly operation.
Java RMI spends 25 to 50 percent of its time in marshalling and unmarshalling
arguments [PH99]. Other middleware solutions such as SOAP and XML seem
to worsen this problem a lot [VMD+04]. An alternative for moving or copying
objects is to give the receiver proxies for the arguments which actually remain
with the sender. This will reduce the performance of the system if the receiver
interacts with them a lot, causing a lot of network traffic. These considerations
cause most middleware to offer the choice, rendering them complex to use.

In an RMI, one will typically want exceptions thrown at the remote location
to be propagated back to the sender. In some statically typed languages, like
Java, this raises new typing problems. A method signature is required to declare
the exceptions it possibly throws. If objects and their proxies are to be mutually
substitutable and if the proxies can also throw network related exceptions, then
this causes the exception types for the original method signature to be adjusted.
This is problematic, if not impossible, if the source code is not available.

Last, but not least, sending messages over the network entails the concur-
rency issues described in section 7.3 because both parties are independent ma-
chines and thus continue execution. The position of many middleware solutions
is that a concurrency model cannot be fixed upfront and therefore they offer
different message passing frameworks. The flip side of this flexibility is com-
plexity.

Conclusion

We conclude that building decent middleware is not an easy thing to do. Many
design issues cannot be decided by the middleware because there is not a single
solution that neatly fits in with the programming language at hand. Therefore,
many middleware solutions will offer frameworks of solutions in which program-
mers can compose their solutions on a per-use basis. Needless to say, this raises
the complexity of middleware. We therefore promote the integrative school of
distribution in which programming languages can offer well-integrated distribu-
tion features that are cleanly integrated with the rest of the language.

155

7.4.2 Advanced Distribution Issues

The issues raised in the previous section are a strict minimum when considering
distribution. This section sheds some light on more advanced issues which are
beyond the scope of our work or which are deferred to later chapters.

Mobility

A topic often addressed in one breath with distribution is mobility. This is not
surprising when referring back to the discussion on parameter passing. When
sending a message to a remote object, the fact that parameters might need to
be sent back and forth immediately raises the notion of mobility. Since mobility
plays a central role in our work, we have devoted an entire chapter to it.

Replication

Another notion frequently recurring in the context of distribution is replication.
The idea is to make copies of objects across a network in order to speed up object
accessor to support failure recovery. Keeping replicas consistent upon state
changes is not easy to accomplish when the replica management is not supported
by the programming language. State changes (i.e., assignment instructions) have
to be manually reported to the replica manager in order to get them propagated
over the network. Another possibility is to align one’s design to restrictions
imposed by a middleware solution4. Replica management is beyond the scope
of this dissertation, but we do have some ideas about this matter for future
research. We will briefly touch upon them in section 10.3.2.

Partial Failure

A big difference between concurrent systems and distributed systems is the
notion of partial failure. That is because a concurrent system will succeed
or fail in its task as a whole, whereas a distributed system might partially fail
while parts of it are still working correctly: although one device might crash, the
rest of the system might still perform meaningful computations. Dealing with
partial failure is therefore also one of the most important problems in distributed
systems. It is also an extremely difficult problem as even its detection is not
easy because the difference between a failure and a very long network delay is
not clearly defined. In spite of its importance, partial failure was beyond the
scope of our research in the context of this dissertation. In order to render the
ChitChat model presented in chapters 8 and 9 practically applicable in a world
of open networks from which devices can disappear without warning, partial
failure will have to be taken in account. We have therefore categorized it as top
priority in our future work section.

4A common technique is to require every class that can be subject to replication to be a
subclass of a predestined “replication class”.

156

7.5 Object-Oriented Distributed Languages

The previous section presented a general overview of distribution related prob-
lems and the way middleware solutions (do not) solve them. Just as with con-
currency, the basic problem is that a middleware solution introduces a number
of objects and/or concepts that solve the distribution aspects but which have
little to do with the objects that structure the application semantically. This
discrepancy poses many interaction problems which render middleware solutions
very hard to use and extremely error prone. As with concurrency, our solution
will therefore be to come up with a language dedicated to solve them. Of course
we are not the first one to do this. We therefore give an overview of the most
important existing languages in order to situate our work presented in chapter
8.

7.5.1 Emerald

Emerald [HRB+91] is a distributed programming language designed and imple-
mented in the late eighties. Emerald is important in the context of our research
because some of its goals such as the facilitation of distribution, were very close
to ours. However, instead of being targeted at open networks with a dynam-
ically defined topology, Emerald was mainly designed to support applications
that have to run on a fixed and well-defined network topology. But even though
Emerald’s final target is different from ours, the philosophy behind Emerald is
very close to the one we advocate, to wit that of a simple distributed and mobile
programming language in which software developers can write “network aware”
software without having to deal too much with the technical burden of things
conceptually as simple as sending a message to an object that happens to be
located on another machine. Of course this is not a tutorial on Emerald, so we
merely focus on some important points of the language. In this section we focus
on the distribution and concurrency aspects. Mobility in Emerald is treated in
section 9.5.3.

Though Emerald does not feature any of the advanced features discussed in
chapter 2, it is a prototype-based language in the sense that it does not feature
classes and structures programs using objects only. Emerald is statically typed
and its types are also first class objects. The combination of prototypes and
static typing is possible because of the absence of dynamic features like delega-
tion. The following code excerpt shows a small teaser taken from [RTL+91] that
can be used to synchronize a software clock with a hardware timer interrupt.

const System <-
object S
monitor
const timing <- Condition.Create
% Tick is invoked by a hardware clock
operation Tick
signal timing

157

end Tick

operation Tock
wait timing

end Tock
end monitor

end S

Emerald has no class concept. Objects are created by evaluating so-called
object constructors, expressions that evaluate to an object. Nesting such an
expression inside a loop will generate objects that are similar. Although an
Emerald implementation is allowed to optimise the structure of those “copies”,
there is no such thing as class-based sharing of code or state that can be detected
from within the language. Emerald objects are completely self-contained. Their
internal state can only be affected by message passing. However, as we will see
in chapter 9, Emerald does not adhere to the extreme encapsulation principle
because of the mobility operators defined on objects. Emerald does not feature
inheritance. Its polymorphism is, amongst others, a consequence of the fact
that radically different objects can conform to the same type. Classes can be
mimicked in Emerald by nesting an object constructor inside an operation of
another object constructor. Each time the operation is called, the inner object
constructor is evaluated yielding an object. Variables “inherited” from the outer
scope are treated as immutable constants, reminiscent to the way Java’s final
keyword avoids shared mutable memory between nested anonymous objects.

Emerald’s concurrency model is based on a combination of active objects and
threads. An optional process block can be added to an object. This is a chunk
of code executing autonomously. By declaring an object as a monitor (as in the
example), mutual exclusion of its operations is assured. Explicit synchronization
is achieved by wait and signal which are similar to Java’s concurrency control
primitives wait and notify. Emerald threads are not limited to one object
because it features synchronous message passing: the thread of control “flows”
from the sender into and back out of the receiver. As such, Emerald features
both inter-object concurrency as well as intra-object concurrency.

Emerald has features to deal with partial failures. One such feature is the
checkpoint statement which saves the state of an object to stable storage to
facilitate recovery after a potential crash. Another way to handle failures are
failure handlers, comparable to the catch clause of the try-catch construction
in Java or C++. However failure handlers are not associated with a particular
method call or instruction group as in Java. Failures can be caused by network
problems, division by zero, nil reference etc. Upon encountering such a fail-
ure, the appropriate failure handler is called. A special kind of handler is the
“unavailable handler” which is used whenever an object is needed that can no
longer be found on the network

Apart from the language, a good deal of effort was spent on the underlying
implementation [BHJL86, JLHB88] which is responsible for ensuring Emerald’s
location transparent message passing. It is the responsibility of the kernel to

158

locate the receiver and to handle the message properly after reception. One
of Emerald’s important characteristics facilitating this is the fact that Emerald
objects carry a name that must be unique within the network. Referring to an
object is done by mentioning its name. Apart from distribution transparency,
Emerald also features object mobility. As we will explain in chapter 9 objects in
Emerald can move around on the network both on the initiative of the Emerald
program as well as on the initiative of the kernel. Although location is kept
transparent, one can query an object for its location using the locate instruc-
tion. One reason for this is performance in the sense of reducing network traffic
between two heavily cooperating objects. Another one is availability, an impor-
tant concept in the proximity of partial failure. As we shall see in chapter 9,
these locations are used in combination with Emerald’s mobility instructions.

In order to finish the overview of Emeralds distribution model it remains to
be said that mobility is used to improve argument passing semantics in Emerald
as well. The sender of a message can decide to send the actual arguments by
reference, “by move” or “by visit” via an appropriate annotation.

7.5.2 Argus

Argus [Lis88] is a distributed programming language that was explicitly de-
signed to support programs that are supposed to maintain online data for long
periods of time and for which reliability is a major concern. Examples are file
systems, mail systems and inventory control systems. The following code ex-
cerpt taken from [Lis88] is meant as a teaser for Argus. It shows a procedure
that transfers money from one account to another one. The accounts reside
on different branches of the bank, which possibly reside on different nodes in
the network. As can be seen from the code, Argus is statically typed and it
features exception handling. Upon invoking withdraw, an exception might be
thrown. The signature of the transfer operation and the code specify that the
exception is simply propagated to whoever called transfer.

transfer = proc(from, to: account_nr, amnt: int)
signals (insufficient_funds)

f: branch := get_branch(from)
t: branch := get_branch(to)
f.withdraw(from, amnt)

except when insufficient_funds:
signal insufficient_funds

end
t.deposit(to, amnt)

end transfer

Argus is not object-oriented all the way down in the sense that it features
primitive types, classes but no inheritance. One of Argus’ main concerns is to
deal with partial failures. To this end, two important concepts were added to
the language, to wit guardians and actions.

159

Guardians are a special kind of objects that reside at one node at a time (but
which may be moved). A guardian is in charge of encapsulating a set of resources
which can be manipulated through special procedures called handlers. Handlers
are to be thought of as procedures that can be called by other guardians over
the network. Guardians can create other guardians over a network. The creator
of a guardian decides its location which allows for dynamic updating of systems.
Upon calling a handler, a new process is created that handles the call. Calling
handlers is location independent: knowing the location of a guardian is not
needed to call its handlers. Guardians manipulate several data objects which
cannot be published on the network unless they are also guardians.

Argus is focused towards systems which have to be available for extremely
long periods of times. To enable this, it features two kinds of variables, stable
ones and volatile ones. The stable ones are replicated onto stable storage. Upon
a crash, the volatile ones are lost but a recovery procedure that is spawned will
restore the stable ones and recompute the volatile ones.

Communication between guardians happens in a message-based RPC way.
Guardians are multithreaded which means that there has to be a synchroniza-
tion mechanism to keep their internal state consistent. Communication between
a caller and a called guardian proceeds via promises [LS88] which are not trans-
parent but have to be explicitly fulfilled by the called guardian and be claimed
by the caller. Nevertheless, they allow for maximal concurrency because the
caller and the called guardian can continue their task as long as the calling
one does not need the results of the called one to proceed correctly. This is
very much the same as in ABCL, the concurrent object-oriented language we
discussed in section 7.3.5.

As said, calling a handler of a guardian causes a new process to be forked.
This means that there is quite a strong intra-object concurrency as well as
inter-object concurrency. Argus does not feature any automatic synchroniza-
tion mechanism. The programmer is completely in charge of keeping guardians
consistent. To this extent, Argus offers the ability of using atomic transac-
tions, also known as actions. These are chunks of code that are guaranteed to
run total (i.e., all or nothing) and which are guaranteed to be serialized. The
synchronization mechanism is implemented via locks.

7.5.3 Obliq

Obliq [Car95] is a distributed language developed with the purpose of writing
computations that can roam networks. Obliq objects are records of named slots
of the form { x => ..., m => ..., ...} where each slot is either a value,
a method or an alias to a slot of another object. Obliq is dynamically typed
prototype-based in the sense that it does not feature classes. However it does
not feature delegation or object-based inheritance either! Instead it has many
of Kevo’s characteristics (see section 2.4). Such languages in which new ob-
jects are created by adding attributes to copies of existing objects are called
concatenation-based languages. In Obliq this takes the form of quite a power-
ful cloning operator which clones an object and possibly adds new slots to the

160

clone. The following Obliq teaser defines two objects, the second one of which
is based on the first one by concatenation.

let unidirectional =
{ x => 3,
inc => meth(self,y) self.x := self.x+y; self end,
next => meth(self) self.inc(1).x end };

let bidirectional =
clone(unidirectional,
{ dec => meth(self, y) self.x := self.x-y; self end,
prev => meth(self) self.dec(1).x end });

Obliq heavily revolves around lexical scoping. A unique feature is that lexical
scope is preserved when an object is copied across network nodes such that its
free variables keep on referring to the same resources as the ones they referred
to in the scope in which the object was created. A common critique of Obliq is
that this entails a lot of network overhead when computations refer to variables
that belong to their lexical scope residing on a different machine.

Besides cloning, Obliq has selection/invocation, assignment and aliasing op-
erators to manipulate objects. The selection/invocation operator selects the
value from an object’s slot and invokes it in the case of a method. Notice that
methods always have at least one parameter which is the name of the receiver
itself, allowing programmers to use a different identifier than this or self. The
assignment operator overwrites a slot of an object with a new value. This al-
lows for a very limited form of inheritance that excludes common things such
as super sends and late binding of self. The aliasing operator takes the form
x => alias y of b to specify that the slot x shall henceforth be an alias of
slot y in object b. This redirection can be defined recursively which allows for
automatic message forwarding. However, it is important to notice in the light
of the discussions of chapter 2 that this forwarding mechanism does not take
late binding of self into account. Hence, Obliq features no real delegation.

Obliq is important in the context of our research in the sense that is fully
confirms our amendement to the Treaty of Orlando presented in section 4.6.5.
Remember that a self-representation model was added to the Treaty of Orlando
to correctly classify languages. Obliq endorses this by defining self-inflictedness
and self serialization, two dynamically verified concepts conceived on the basis of
the self representation of objects. The idea is to call any of the four operations
defined above self-inflicted if it is applied to an object which is the same as
the “self” of the currently executing method. The reason for defining this is
that objects can declare themselves as protected {protected,...}, serialized
{serialized,... } or both {protected, serialized,... }. The idea of a
protected object is that, apart from selection/invocation, it will only allow self-
inflicted operations. This means that by declaring itself protected, an object
can preclude other external users from cloning it, from updating it and from
aliasing it. Only message passing is possible! This is precisely what was called

161

extreme encapsulation in section 3.4.4. Hence, Obliq endorses this principle.
However, it does this in the absence of delegation with late binding of self.

Based on the notion of self-inflictedness is the notion of self serialization
which is an important concept in Obliq’s thread-based concurrency model. It
uses the operations fork and join to spawn new threads and to make a thread
waiting for another one to end. As we have explained in section 7.3, a thread-
based model results in race conditions when multiple threads concurrently “en-
ter” the same object. In order to render such operations mutually exclusive,
the object can use the serialized modifier as explained above. In order to
avoid deadlock upon recursive method calls, serialization is defined as self seri-
alization based on the notion of self-inflictedness. The idea is that self-inflicted
operations will not try to acquire a lock and will hence not cause deadlock.

Obliq’s behavioural synchronisation (see section 7.3.2) is based on so-called
condition variables c and allows programmers to attach guards to them using
the watch c until guard end statement which will cause the current thread
to block as long as the guard is false. signal(c) causes the guards to be
reconsidered which may result in a continuation of their thread.

In contrast to Emerald and Argus, Obliq’s distribution model is applicable
for networks the topology of which is not known upfront. Obliq locates ob-
jects using a central name server. Threads can register objects with the name
server under a certain name using net export("objectName",DNS,object)
and threads located elsewhere can query the name server to see whether it
knows about objects that have been registered under a certain name, using the
operation net import("aCertainName",DNS) whose result is an object. Based
on these primitives [Car95] explains the notion of execution engines which are
objects that accepts a lexically scoped procedure and that will call the procedure
with local resources such as a local database or file system. Since this is the only
way Obliq computations can access remote resources, security is guaranteed.

Obliq is not a mobile language in that it does not have built-in mobility
primitives and that arguments of a remote message are passed by reference upon.
However, the combination of cloning and aliasing allows protected serialized
objects to make a remote copy of themselves and redirect all operations to that
copy by means of one single atomically executed method which is entitled to do
this because of self-inflictedness. We will get back to this in chapter 9.

7.6 Evaluation And Epilog: Open Networks

Now that we have presented the most important distributed object-oriented pro-
gramming languages we can evaluate them in the context of the open networks
we envisioned in chapter 1.

7.6.1 Emerald

As we saw in section 7.5.1, Emerald is an object-based language that features
distribution transparency and object mobility. In section 3.2 explained that

162

Emerald’s absence of class-based implicit sharing relationships between objects
is indeed an absolute must in our research context. But there are also a few
language features of Emerald that render it hard to use in the context of open
networks without a predefined topology. Although it may be possible, we cur-
rently believe that devising a type system to statically type applications with the
dynamics described in section 1.1.1 will be extremely hard. The idea of AmI is
that devices cooperate with other devices the interface of which was not known
in advance. But a more fundamental problem with Emerald in our context is
that its concurrency model is essentially based on synchronous message passing.
This will be very hard to defend in dynamic networks because it is very hard to
detect the difference between devices that are answering late and devices that
have moved out of earshot. An asynchronous communication mechanism will
clearly outperform this because the independence of devices does not extoll one
device to wait for another one if this is not strictly necessary.

7.6.2 ABCL

The ABCL model described in section 7.3.5 is extremely well-suited for our
purposes, and as we will see in chapter 8, much of its features have found their
way in our ChitChat model. Its most important features that we have incor-
porated as well is its clean concurrency model based on asynchronous message
passing and futures, although these futures are not transparent to the program-
mer. On the downside, ABCL is a concurrent programming language and not
a distributed one. The interaction of its features with the explicit notion of
dispersed computation with shared resources has never been investigated. This
is one of the contributions of this dissertation.

7.6.3 Argus

Just like Emerald, Argus is a statically typed language which is arguably prob-
lematic in the context of open networks. Apart from the concurrency primitives
that allow programmers to use ABCL-like promises, the concurrency features
in Argus are pretty cumbersome to use. Argus gives the feeling of being much
more focused towards systems that have to deal with huge amounts of data
kept on external storage media, instead of dynamically defined network nodes.
Nevertheless, Argus does allow guardians on one node to specify the spawning
of guardians on other nodes which enables Argus to be used in dynamically
configurable environments. An innovative feature in Argus is the all-or-nothing
transactions it offers to a programmer to guarantee the atomic execution of some
given code fragment in the context of data shared between different concurrency
handlers of a guardian. In section 8.4.3 we will incorporate this feature in our
own ChitChat model to regulate atomicity of code transactions from descen-
dants in a shared parent.

163

7.6.4 Obliq

Obliq is very interesting in the context of our research. Just like the ChitChat
model proposed in chapter 8, Obliq is a prototype-based language. However,
instead of featuring advanced sharing mechanisms based on delegation or object-
based inheritance, it features stand-alone objects that can only share resources
through message passing. Moreover, the notion of self-inflictedness aligns really
well with our own observations about the relevance of the self representation
model in our improvement of the Treaty of Orlando presented in section 4.6.5.
The basic idea is the same: protected objects are only subject to message passing
and field selection but can still apply a multitude of operations to themselves.
On the downside, Obliq will not be applicable for dynamically defined networks
because of its centralized name server approach used for initial object referenc-
ing and, more importantly, because of its thread-based concurrency mechanism
with synchronous message passing between remote objects. If it comes to the
concurrency model, it shares the problems of Emerald.

7.7 Conclusion

The purpose of this chapter was to give an overview of the enormous domain of
concurrency and distribution in object-oriented programming languages. After
having given an overview of the general difficulties introduced by concurrency,
we have presented the three fundamentally different ways of reconciling con-
currency with object-oriented programming, to wit the applicative (i.e., mid-
dleware), the reflective and the integrative (i.e., languages). The middleware
approach seems to be extremely popular among practitioners these days which
is quite painful a situation as it is arguably also the toughest way one can imag-
ine writing stable concurrent and distributed applications. Especially in the
field of distribution, the applicative approach performs poorly as explained in
this chapter. That is why we have argued in favour of the integrative approach.
For both concurrency and distribution, an overview of the most important lan-
guages was presented. It seems that, with the exception of Argus5, many such
languages are prototype-based. Neither ABCL, nor Emerald and Obliq have
classes.

However, chapter 2 has shown that prototype-based languages have a lot
more to offer than mere objects and message passing, notably that idiosyncratic
objects can share data and behaviour through shared parents in a delegation
relation. None of the languages discussed here promote this. Maybe this is not
accidental: in chapter 4 we showed that conventional prototype-based languages
suffer from inherent encapsulation problems, which renders them unusable in
dangerous environments which the open personal area networks described in
chapter 1 will be. To counter this, chapter 4 formulated the extreme encapsu-
lation principle and chapters 4 and 5 have shown that, even with this principle
in mind, a wide range of delegation-like techniques are possible. The chapters

5Argus has no inheritance.

164

to come will exploit this in the context of distribution and mobility. Chapter
8 presents a highly expressive secure distributed version for Pic% that features
techniques such as networked inheritance and networked parent sharing to en-
hance sharing of resources between distributed parties.

165

166

Chapter 8

ChitChat:
Delegation-Based
Concurrency & Distribution

In chapter 7, we have evaluated existing concurrent and distributed object-
oriented programming languages in the context of the open networks as envi-
sioned in chapter 1. The majority of these languages is classless, but as sum-
marized in section 7.7 none of them exploits the full power of the prototype-
based languages reviewed in chapter 2. This chapter introduces ChitChat, a
distributed version of Pic% that explicitly extols prototype-based parent shar-
ing in the context of concurrency and distribution. ChitChat is a powerful
prototype-based language that fullfils the extreme encapsulation requirement
put forward in chapter 3 and that renders the techniques distilled in chapters
4, 5 and 6 beneficial to concurrent and distributed programming.

8.1 Introduction

In section 1.4 of the introduction, we have formulated four fundamental issues
with regard to concurrency, distribution and mobility in the context of open
networks. Surely, solving these issues is not enough to serve as a production
language for AmI programming but we claimed they will have to be solved.

One of the most fundamental problems was the Ambient Object Paradigm
Problem, presented in chapter 3. It basically boils down to the fact that class-
based programming languages have fundamental paradigmatic problems for mo-
bility and open networks, and that prototype-based languages have encapsula-
tion problems that lead to unacceptable security breaches. In chapter 4 we have
resolved this stalemate by distilling a full-fledged programming language that
adheres to our extreme encapsulation principle but which still features the full
power of prototype-based languages described in chapter 2. In chapter 5 we

167

have evaluated Pic% as a lightweight contemporary incarnation of this model
which is — in many respects — even more powerful than the original Agora
model.

In this chapter we take up the thread of the narrative started in section
3.2 where we have recommended prototype-based languages in the context of
open networks and mobility. We do so by taking the Pic% model and augment
it with distribution in this chapter and mobility in chapter 9. However, as
explained in chapter 7 distributing an object model across open networks is
nearly impossible without a decent concurrency model to support it. So we
both need a concurrency and a distribution model for Pic%.

In the spirit of our vision on language design outlined in section 1.2, we
did not boldly build a notion of threads together with some synchronization
constructs on top of Pic%. Instead we have redesigned Pic% to align its pecu-
liarities with the notions of concurrency and distribution. The outcome of this
research is a unique distributed programming model, called ChitChat, that has
the following properties:

• ChitChat is a concurrent and distributed extension of Pic%. It stays faith-
ful to Pic% in the sense that is is a classless object-oriented programming
language with the full power of prototype-based languages explained in
chapter 2, but that respects the extreme encapsulation principle.

• The concurrency and distribution features are an intersection of the de-
sirable properties of the “champions” Emerald, ABCL, Argus and Obliq
we identified in chapter 7. It supports asynchronous concurrency and
distribution transparency in the sense of section 7.4.1.

• The model is the first proposal that reconciles concurrency and distri-
bution with delegation in prototype-based object-oriented programming
language, a marriage that was considered impossible until now [BY87].

• Our model shows that objects themselves can be shared over different
nodes of a network. This intra-object distribution, combined with the
concurrency model, will be shown to have some very powerful properties
with respect to sharing resources over a network.

• In chapter 9, it will be shown that mobility fits very well with the model
of concurrency and distribution presented here.

We have fragmented the description of ChitChat along logically delimited
sections. In section 8.3 we explain how concurrency was introduced in ChitChat
by adding ABCL’s active objects to Pic%’s passive object model. Section 8.5
describes the (sometimes subtle) interactions between active and passive objects
both in the light of message passing as well as in how they interact in the pres-
ence of inheritance hierarchies that can be distributed over different machines.
The distribution model that naturally follows from this concurrency model is
the topic of section 8.6. Section 8.7 evaluates the proposal. However, before
we delve into the technicalities, we offer the reader an understanding of the big
picture of ChitChat in the section 8.2.

168

8.2 ChitChat in a Nutshell

The distribution and mobility related problems of class-based and classic prototype-
based languages in the context of open networks outlined in sections 3.2 and 3.6
made us look for distributed prototype-based languages that strictly adhere to
the extreme encapsulation principle. As shown in chapter 7, Obliq is such a lan-
guage. However, Obliq uses centralized name servers, works with synchronous
message passing and has very poor sharing mechanisms in the sense of chapter
2. As explained above, ChitChat is a highly integrated distributed and mobile
programming language that has no classes, adheres to the extreme encapsulation
model but still features the powerful mechanisms outlined in chapter 2.

The ChitChat concurrency model was strongly inspired by the one from
ABCL. It features active objects that process queued messages one after the
other, excluding intra-object concurrency. Message passing is asynchronous,
but just as in ABCL, concurrency is maximised by immediately returning a
promise to the sender of a message. In contrast with ABCL, promises are
transparent. Neither sender, nor receiver has to claim and/or fulfill promises
explicitly. The sender simply blocks whenever it tries to use the promise’s value
before it is known. ChitChat’s behavioural synchronization is taken care of by
an innovative mechanism called call-with-current-promise, much in the spirit
of Scheme’s continuations. Active objects are capable of grabbing the promise
they are about to fullfil, store it and fullfil the promise manually, at a later
moment, possibly after some conditions have been met.

In contrast to ABCL, ChitChat combines active objects with a delegation-
based inheritance scheme. Moreover, as in the prototype-based languages of
chapter 2, an active parent can be shared by many active descendants. The
philosophy is to let the shared parent be the representative of the state they
share. The delegating active objects can access their shared state in their parent.
But in order to avoid race conditions that might occur if two or more active
descendants change the shared state, Pic%’s scoping was slightly restricted to
prevent descendants from accessing the parent state in uncontrolled ways. To
compensate for this visibility restriction, a “serialized super send” construct
allows expressions to be executed atomically in the context of the shared parent.

This model of concurrency in which active objects hold state shared by
active descendants very naturally fits distribution as well. The idea is to allow
the active descendants to reside on machines that are different from the one
the parent resides on. Hence, the ChitChat model of distribution allows parts
of objects to reside in different locations. Message sending to a distributed
object can give rise to a delegation process that proceeds across the network. In
what comes we describe this model in detail and give extensive motivation for
it. For the sceptic reader (”You don’t want to generate method lookup over a
network!”) we already mention that classic proxies as promoted by middleware
solutions are objects that always delegate every message over the network. They
are the poor man’s version of the scheme we propose.

The ChitChat distribution model can be thought of being centred around
Connected Applets where a server can be remotely asked for an applet by send-

169

ing it a message. If this message is implemented as a view, this gives rise to
an object being created (the “applet”) that resides on the client and that del-
egates all its non-implemented messages to the server. At all times, the client
object is an active object that is completely independent from the other active
objects (i.e., connected applets) that were spawned by that server. All applets
are running concurrently and have controlled access to the state they share (on
the server). We claim that this model of connected applets is extremely useful
considering the percentage of Java applets that, upon arrival, immediately es-
tablish a connection with their server in order to transfer data in one or two
directions. A real life example is the currently extremely popular Volano-chat
[vol] applet which immediately connects to its spawning server upon arrival. In
section 8.6.5 we will show how ChitChat allows this chat to be implemented as
a local view on a shared chat server object.

8.3 Active Objects & Synchronization

As was already mentioned several times, the ChitChat model was strongly in-
spired by ABCL [YBS86]. A ChitChat active object is conceived as the com-
bination of a “passive object”, a waiting queue in which its received messages
are scheduled and an eternally running thread that consumes the messages in
the queue one after the other. This means that ChitChat does not know intra-
object concurrency: inside an active object, only one method can be running at
a time. Figure 8.1 shows how we depict such an active object in the remainder
of the dissertation. The thread is depicted by a spool. For the sake of the
argument, the role of delegation is postponed. The passive object defining the
behaviour of the active object can be thought of as a regular Pic% object as
discussed in chapter 5. The following code excerpt shows a ChitChat program
that calculates fibonacci numbers concurrently.

aview.fib(n)::{
do()::if(n<2,

1,
athis().fib(n-1).do()+athis().fib(n-2).do())}

The code shows an “active view method” called fib (in analogy with view
as discussed in chapter 5). Invoking it yields an active object which contains
a single method do. In analogy to the self reference this() used to cause re-
cursion in passive objects, active objects send themselves an (asynchronous)
message by referring to athis(). Hence in the above code excerpt, every invo-
cation of do will cause two new active objects to be created which immediately
receive do in turn. Every such invocation of do returns a promise to its caller.
Synchronization is entirely accomplished by the + operator in this example. It
will block until the promises making up its arguments are both fulfilled.

Hence, as in the actor model, messages are sent asynchronously and the
sender does not wait for the result of the message. But in contrast with the
bare actor model, a connection between the sender and the receiver is established

170

v2

v1 c1

c2

a

Figure 8.1: ChitChat Active Object

by means of a promise that is immediately returned by the receiver. This can be
thought of as a placeholder that represents the return value. In case the method
delivering the promise has finished, the promise is the return value. Otherwise,
anyone trying to manipulate the promise directly is blocked until the promise
is fulfilled. In other words, promises are completely transparent in ChitChat.

Because of the combination of asynchronicity and actual arguments evalu-
ation semantics, the queue does not really contain the names of the message
but method activations instead. At the time of the message sending, the mes-
sage is immediately searched for in the object. The corresponding method is
selected and enqueued together with the binding of actuals to the formals. Sub-
sequently a promise is returned to the sender. Another issue in the context of
asynchronicity is that message ordering becomes relevant. To ensure “logical”
message ordering we have adopted Yonezawa’s Assumption of Preservation of
Transmission Ordering [YBS86] which basically states that messages ordering
between two objects is preserved.

8.3.1 Behavioural Synchronization in ChitChat

Referring back to figure 7.1, after having explained ChitChat’s intra-object syn-
chronization (i.e., full serialization) and its inter-object synchronization (i.e.,
synchronization upon promise consumption) we still have to focus on its be-
havioural synchronization mechanism. Behavioural synchronization is what
makes objects temporarily enable or disable some of their methods depending
on their internal state. In ChitChat, this is handled via an innovative technique
called call with current promise, developed by Van Cutsem and Mostinckx in
their graduation thesis [VM04]. The idea is very similar to Scheme’s “call with
current continuation” and is based on the fact that the interpreter always has
a “current promise” at hand, to wit the promise of the last sent asynchronous
message. In passive objects, this is the promise of the “last” active object whose
method gave rise to sending a message to that passive object. We postpone a

171

full description of the interaction between active and passive objects to section
8.5. For now it suffices to say the message sending semantics of Pic% does not
change. A message sent to a passive object is always synchronous and does not
affect the “current promise”.

In analogy with call and continue needed to grab and restore “current con-
tinuations” as discussed in section 5.5.7, ChitChat features the primitives delay
and fulfill. The formal function heading of delay is delay(exp(promise)):...
so that it is to be called with an expression in which the variable promise is dy-
namically bound to the current promise. delay never returns and the promise
of the method in which it occurs is thus not fulfilled. Hence the object waiting
for that promise to be fulfilled can be (temporarily) waiting. The philosophy
is that the expression used in the call to delay stores the promise somewhere
for later usage when the conditions to continue the execution are met. At that
time, a method can “pick up” the promise and fulfill it manually by calling
fulfill(p,v) where p is the stored promise and v is the value the promise will
be fulfilled with.

Van Cutsem and Mostinckx [VM04] show how this mechanism can be used
to implement semaphores, CSP-like [Hoa78] rendez-vous primitives and how
ParLog’s [Cla88] or-parallellism can be implemented. In the following example
we show how Pic%’s language extension mechanisms explained in section 5.6
is used to implement an Obliq-like guard-based behavioural synchronisation
mechanism using current promises.

view.guard()::{
prom:void;
t:void;
e:void;
waitIf(test(),effect())::
if(!test(),
effect(),
{ e:=effect; t:=test;
delay(prom:=promise) });

signal()::
if(is_void(prom),
void,
if(!t(), { tmp:prom;

prom:=void;
fulfill(tmp,e())}))}

aview.buffer(g)::{
elms:void;
produce(el)::{
elms:=[el,elms];
g.signal()};

consume()::
g.waitIf(is_void(elms),

172

{ tmp:elms[1];
elms:=elms[2];
tmp})};

A (regular) view method guard is shown whose invocation will yield a (pas-
sive) object in the sense of chapter 5. A guard g is passed along upon con-
structing a buffer with the active view method buffer. Every time some object
tries to consume from an empty buffer, the promise is captured in the guard.
Upon producing a value by another object, that promise is fulfilled so that the
consumer can proceed. Although this example is pretty simplistic, the guard
could be made much more complicated (e.g. keep a list of promises). We have
shown it because it effectively shows how ChitChat’s language extension mech-
anisms (i.e., Pico’s parameter passing semantics) is combined with the very
general promise capturing mechanism to build behavioural synchronisation ab-
stractions such as Obliq’s waitIf and signal illustrated above (see section 7.5.3
for a description).

8.3.2 Active Closures and First Class Methods

In section 5.8.3 we have thoroughly discussed that the combination of late bind-
ing polymorphism, lexical scoping and first-class methods gives rise to an ob-
ject model in which the methods reside “contextless” in objects. Upon method
lookup, a method (i.e., the body code together with formal arguments) is turned
into a closure consisting of the lexical object frame in which that method re-
sides, the method itself and the “receiver” from which the method was selected
(which will be the value of this() upon invocation). In short, Pic% functions
are actually closures emerging from first-class method selection.

This model is naturally transposed to the concurrent setup discussed here.
The only difference is that, as we will discuss in section 8.5, the delegation
hierarchy consists of chains of active objects. The result of selecting a first-
class method from such an active object is called an active closure. It consists
of the method itself, the active object into which the method was found and
a reference to the active object that was the actual “receiver” of the method
selection expression of the form active.m. Upon calling the function formed by
this active closure, the actual arguments are bound to the formal ones following
the regular Pic% semantics. The resulting activation is enqueued in the queue
of the active object that contains the method in the first place. Hence, this is a
direct generalisation of Pic% semantics to the active object model.

8.4 Pic% Object Model and Scoping Revisited

Although ChitChat’s scope rules are quite natural and usually behave as one
would expect from looking at the source, they are actually quite subtle.

173

8.4.1 Return to Lexical Scope

In section 5.8.3 we have discussed two scoping options that fit well in the Pic%
object model because of the alignment of dictionaries (i.e., lists of frames con-
taining name bindings) with objects. We saw that, when calling a method on
an object, the frame binding formals to actuals can be either attached to the
receiver (yielding some form of dynamic scoping because the receiver is dynam-
ically determined), or to the frame in which the method was found. In the
”original” Pic% proposal published in [DD03b] the first option was defended.
However, the model is not reconcilable with the concurrency model based on
parent sharing we are about to propose. Indeed, imagine two active objects that
share a parent with mutable state. In order to prevent race conditions caused
by those two descendants, we have to restrict the visibility of mutable state in
the parent from within methods running in the descendants. The rule that a
method residing in a descendant can always “automatically see” any variable
along the delegation chain is simply too flexible to enable concurrency control.
Now suppose that we adopt the dynamic scoping scheme in which a method that
resides in the parent is executed in the context of an arguments binding frame
that is attached to the dynamic receiver. Because of the scoping restrictions
in between descendant and parent frames this would imply that the method
(found in the parent) is no longer entitled to see “its own scope” because this
scope is accessed by following the chain of frames consisting of the arguments
binding frame, the descendant frame (i.e., the receiver) and the parent frame.
We have therefore decided to re-adopt a variant of the classic lexical scop-
ing scheme in which the scope of a method is the frame in which the method
was found during method lookup and not, as in the original Pic%, the frame
corresponding to the receiver. Of course, the meaning of athis() refers to the
dynamic receiver as expected.

8.4.2 Internal Object Scope: Frames 6= Objects

Apart from dynamic scoping, another track we had to leave due to concur-
rency control is the complete alignment of dictionary frames with objects. As
explained above, potential race conditions cause us to restrict the visibility of
variables between active parent objects and active descendants. For constants
(i.e., names declared with a ::) scoping can be completely free because these
can only be read and can therefore never give rise to race conditions. Hence, all
possible frames in a list of frames can safely delegate all requests to lookup
constants. For variables the situation is more complicated. Note that in the
Pic% model, the existence of a frame can actually be traced back to the result
of an object creation1 or to the result of parameter bindings. Since the scope
of a method is a combination of both, care has to be taken because a method
has to be able to “see” its slots. Hence, variables have to be delegated by
the actuals-formals frame. However, they may not be delegated by the de-
scendant objects towards the parent for otherwise race conditions could arise.

1In Pic% this is done by calling capture()

174

a

{ ... asuper(a') ... }

{ ... athis(a) ... }a'

Figure 8.2: ChitChat Active Scope Functions

This means that there is a conceptual difference between frames and objects:
frames delegate both the lookup for variables and constants to their parent
while objects never delegate the lookup for variables. Hence, in Java termi-
nology, ChitChat variables are “private” and not “protected” as in Pic%. The
reason is race condition prevention.

8.4.3 Scope Functions and Parent Sharing

In the course of the dissertation, we already promised repeatedly that it was
our explicit goal to exploit parent sharing to manage data needed by two con-
currently running descendant processes, and, to physically share conceptually
shared data between distributed entities. To make this possible, ChitChat fea-
tures native functions asuper(...) (resp. athis(...)). In contrast to the
native functions asuper() and athis() which simply return an object, these
functions expect an expression that is evaluated in the context of the parent
object (resp. in the context of the receiver) in an atomic way. Because of the
scope rules defined above, descendants (resp. parents) cannot cause race condi-
tions on variables residing in a shared parent (resp. descendant), simply because
they have no access to them. But they can send code “upwards” (resp. “down-
wards”) that will be run by the parent (resp. descendant) atomically. This is
schematically depicted in figure 8.2. For example, suppose that a shared parent
contains a variable x. A descendant can use the expression asuper(x:=x+1)
to make sure the parent variable gets incremented. It will be scheduled in the
queue of the parent and will be run in its turn, without interruption from any
other message or any other such super call.

175

8.4.4 An Experiment: The Dining Philosophers

The model is illustrated by the following experiment. It is an implementation of
the famous dining philosophers example in ChitChat. The code uses the guard
implementation of section 8.3.1 to make active objects wait and continue the
execution of a method based on condition variables.

aview.Table(n)::{
forksDown[n]:true;
guards[n]:this().guard();
aview.Seat(i)::{
sitDown()::
asuper(guards[athis(i)]).waitIf(

asuper(if(forksDown[athis(i)]&
forksDown[athis(i\\n+1)],
{ forksDown[athis(i)]:=false;
forksDown[athis(i\\n+1)]:=false;
true})),

void);
getUp()::
asuper({forksDown[i]:=true;

forksDown[i\\n+1]:=true;
guards[i].signal()})} }

aview.Philo(i,t)::{
s:t.Seat(i);
work()::{
display(i," is thinking");s.sitDown();
display(i," is eating");s.getUp();
athis().work()} };

table:athis().Table(n) ‘create table

philos[(i:0)+n]:athis().Philo(i:=i+1,table) ‘create philos
for(i:1,i<n+1,i:=i+1,philos[i].work()) ‘make philos work

The Table active object constructor is called to create a table of n seats.
Every seat is a view on the table that implements two methods sitDown and
getUp. The table contains an array of forks which are just booleans, and a Pico
table of guards that keep philosophers from sitting down if both forks are not
available. A philosopher is an active object that has a reference to its seat. Its
work consists of thinking and eating till eternity.

The interesting part of the code is the body of sitDown. The seat takes a
reference to “its” guard and evaluates the test for that guard. If the test yields
true, the method blocks. The test is the atomic execution of the code consisting
of the availability tests of both forks, and, if positive, the code to pick them
up. Since this code is delimited by asuper(...), it is atomically executed in

176

the context of the table. In the course of its execution no other process can
run inside the table. Notice that, in the opposite direction, athis(...) has to
be used to access variables residing in the seat (such as i and n) while running
code in the parent.

This example illustrates the ChitChat concurrency model very clearly. The
idea is that the shared state of a system is placed in the parent object of the
constituents of the system. In our case, the seats are objects which are a philoso-
pher’s view on the table parent. Every seat works independently but accesses
the shared state in the parent using the scope functions asuper(...) and, the
other way around athis(...) if necessary.

8.4.5 Deadlock and Parent Sharing

One of the rough edges to the proposal is that combinations of asuper(...)
and athis(...) can easily lead to deadlocks. The situation occurs when using
asuper in a method that actually needs the result of the returned promise,
and if the call to athis also needs the result to be able to fulfill the promise
associated with the super call. Hence, the problem is likely to occur if both the
call to asuper and the call to athis do not occur in tail position in the code.
If both calls occur in a tail position it is guaranteed to be no problem because
the actual result is not needed in either case then.

8.5 Active vs. Passive Objects

ChitChat has both active and passive objects. Chapter 7 has extensively mo-
tivated active objects in the context of open networks. A concurrency model
based on passive objects and thread synchronization is not a viable option. It
would impose client-server schemes in which device independency would have
to be encoded manually by forking special communication-specific threads as is
implemented by Java RMI. However, turning every object into an active one
requires too heavyweight a machinery because of the representational and com-
putational cost induced by active objects [BGL98]. That is why we have opted
for both active and passive objects. This section described how their semantics
interact.

8.5.1 General Object Structure

The philosophy of the ChitChat distribution and concurrency paradigm is that
passive objects should2 only be used within the boundaries of an active one,
pretty much in the spirit Argus distinguishes between “ordinary” data objects
and guardians. Since we decided not to provide all passive objects with internal

2Note that this is not forced by the language. We explain this as the philosophy of the
language. Some problems in ChitChat require heavy hand-coded solutions but are easily
avoided by sticking to this philosophy. It is just like Smalltalk classes are also objects but no
one would use them actually as “real objects” used to model a domain.

177

pm1

pm2 pi2

pi1 p'm1

p'm1

a a'

Figure 8.3: ChitChat Active Object Structure

serialization machinery, making a passive object accessible from within two dif-
ferent active ones is asking for race conditions. To prevent this, passive objects
can be turned into a monitor by sending them the serialize() message which
associates them with a reentrant mutex. The result is a serialized object, very
much in the spirit of Obliq’s self-serialization with the {serialize,...} con-
struct as explained in section 7.5.3. In conclusion, ChitChat active objects are
always serialized (i.e., no intra-object concurrency) and passive ones are never
serialized unless they are explicitly sent the serialize() message. The latter
can be done by sending this().serialize() inside the view method that cre-
ates the passive object. This is exactly the self-serialization as promoted by
Obliq.

A passive object is a Pic% object: it is a list of frames consisting of a
public immutable part and a private part in which the mutable state resides.
The frames emerge from successive method invocations and view constructs,
as in Pic%. We refer back to figure 5.3 that gives a schematic overview of a
typical passive object. As explained in section 8.3, an active object can be
understood as a passive object together with a queue and a computational
thread. Furthermore, cloning semantics is the same as in Pic%. This is depicted
in figure 8.33.

8.5.2 Distribution Driven Hierarchy Restrictions

One of the fundamental assumptions made by our research is that ChitChat
never introduces networked links that refer to passive objects. That
is because passive objects do not have thread machinery such that any message
sent to them would be sent synchronously, an option we have ruled out in
section 7.3.4 for our context of open networks. Therefore, all network trafic

3Some proofreaders were tempted to think that an active object somehow “wraps” a passive
one. This is not the case. An active object contains a passive part but one type of object can
never be converted to another one. Active objects are active and passive ones are passive.

178

that causes passive objects to cross network boundaries will always (deep!) copy
those passive objects. This will be the case for parameter passing, return value
delivery, as well as for the strong mobility provisions we will introduce in chapter
9. Our model does not allow references to passive objects over a network. This
is very fundamental an assumption that has shaped the entire object model
of ChitChat. Investigating the consequences of removing this assumption has
not been thoroughly undertaken. It would probable change the object model
as radically as Euclidean Geometry changes to Saddle Geometry by removing
the assumption that two parallel lines have no point of intersection. It is an
interesting topic for future research.

The fact that network references never refer to passive objects has important
implications for the way delegation hierarchies can be structured by ChitChat’s
language features. Remember that it is our explicit goal to have multiple active
objects on different machins to share the same parent. This means that active
objects should not have passive parents. We might have the reaction to relax
this restriction somewhat and allow active objects to have passive parents as
long as they reside on the same machine. But this would not lead to a clean
semantics when combined with mobility in chapter 9. Indeed, moving the active
object would either have to copy the passive parent, or, to create a network link
that points to a passive parent. We therefore postulate that

active objects should never have passive parents

8.5.3 Delegation Driven Hierarchy Restrictions

Another restrictive force in the design of ChitChat’s object model is the dele-
gation semantics caused by method lookup. Suppose we have an object o and
we send it a message o.m(). Now let us consider what would happen if the
delegation chain of o would consist of several parts (resulting from successive
object extensions) such that the parts are arbitrary combinations of active and
passive objects. For the sake of the analysis, say o has a parent p and suppose
that m sent to o is found in p. Let us look at the three remaining combinations
that can occur:

• Both o and p are passive. This is the standard Pic% semantics and does
not give any problems.

• o is active and p is active. Again, this is not a problem. The message
is looked for along the delegation chain and the activation is put in p’s
queue. One of the reasons for choosing p’s queue is that o and p might
reside on different machines.

• o is passive and p is active. Now we have to wonder whether this (as a
whole) represents an active or a passive object. I.e., do we want m to run
immediately (because it was actually sent to o, a passive object), or do
we have to schedule it in p’s queue (because it was found in p!). Neither
is satisfactory semantics. Surely, we cannot run the method immediately

179

Suppose m was
sent here

Suppose m was
found here

athis()
asuper()

this()
super()

Figure 8.4: ChitChat Object Hierarchies

as this would break the scheduling semantics of active objects. Active
objects would no longer be serialized as two methods might be running at
the same time which might cause race conditions. But the second option
also yields some unexpected results. The problem is that, upon sending a
message to a passive object, the sender of m expects to be dealing with a
passive object and thus to cause synchronized message passing. However,
instead the thread of the sender will end up in the queue of the active o.

This analysis forces us to postulate that

passive objects should never have active parents

8.5.4 Method Lookup and Method Execution Context

The typical structure of a ChitChat object is depicted in figure 8.4. The active
parts are descendants from each other (possible across the network). Passive
objects can also form a hierarchy but never across network boundaries.

Figure 8.4 also shows what happens when sending a message to an active
object (indicated by the solid black object). The message is searched for along
the inheritance hierarchy (possibly across the network). In every active object,

180

kind of receiver: A.m() (A is active) P.m() (P is passive)
A = a1

f1
...aN

fN
P = [f1f1...]

m found in: passive frame fi in ai passive frame fi

m runs: after scheduling in Queuei immediately (maybe serialized!)
m returns: a promise yielding a value a value
this() fi fi

super() root fi+1

athis() ai does not change
asuper() ai+1 does not change

Table 8.1: Message Passing and the Meaning of Context Functions

the corresponding passive object is searched for. This happens “in one shot”,
i.e., the lookup process itself does not generate any work in the queues. However,
when found, the activation that corresponds to the message is enqueued in the
right queue. In the figure, the method is found in the passive part of the second
active object (note the solid black frame). The figure also shows the meaning
of the runtime context functions athis(), asuper(), this() and super().
The first one refers to the active object that actually received the message.
asuper() returns the active object that is the parent object of the object in
which the code is running. this() is the passive object in which the method
was found. super() is the passive object that is the parent object of this().
The philosophy behind this scheme is that this() always refers to the machine
on which the code is running while athis() is the machine on which the receiver
resides. super() is the parent object of the this() object that also resides on
the local machine. asuper() has to be thought of as “the parent machine” of
the machine on which the currently running method resides.

As explained, the philosophy of the model is that active objects should be
used as the unit of distribution. Internally, active objects can manage very com-
plex passive object hierarchies which are discouraged from being “published”
outside the active object that “owns” them. The major reason is that passive
objects are always copied when they cross network borders, and, that passive
objects are not serialized by default which means that they can give rise to race
conditions unless one explicitly serializes them. When executing synchronous
messages sent to “local” passive objects, the meaning of athis() and asuper()
do not change. Hence even though one can have several local messages being
sent, athis() always refers to “the receiving machine” and asuper() to the par-
ent machine of the machine on which the current code is running. The meaning
for athis() and asuper() is summarized in table 8.1.

8.5.5 Wrap Up: ChitChat’s Semantic Rules

Let us now summarize ChitChat’s (active and passive) object structure, its
message passing semantics and its synchronization rules. For deeper detail, we

181

refer to appendix B.

The ChitChat Object Structure in a Nutshell

The internal structure of objects obeys the following laws:

1. There are two kinds of objects: active objects and passive objects. Active
objects consist of a passive part, a message queue and a thread that runs
infinitely.

2. Both active and passive objects can be constituents of an inheritance hier-
archy. But the parent object of a passive object is always a passive object
and the parent object of an active object is always an active object. Mixed
hierarchies cannot exist.

3. References to passive objects never cross network boundaries. If a passive
object has to cross a network boundary, a deep copy is passed on.

4. Parent references can cross network boundaries which will give rise to a
network-based delegation. But by rule 3, only active objects can inherit
from each other over a network.

5. Upon creation, the passive part of an active object is immediately se-
rialized such that other references to that passive part can never entail
intra-object concurrency if they would be running inside the object at the
same time a message to the active one arrives.

Internal Object Scoping, Continued

Now we can finalize the internal object scoping rules started in section 8.4.2.
As explained, there is a subtle difference between objects and frames. Only
constants are looked up along the passive delegation chain as these can never
be mutated and hence cannot give rise to race conditions. All the other names
are solely looked up in the frame in which the currently running method resides.
Because, as thoroughly explained in chapter 5, constants are public and mutable
slots are local to an object, this means that there is a big difference between
this().m(), athis().m(), m() and .m(). The messages sent to this() and
athis() are late-bound sent to the public parts indicated by the pointers in
figure 8.4. m() is only looked for in the frame in which the currently running
method was found and .m() is looked for in the passive object that is the parent
of the frame containing the currently running method.

Intra-Object Synchronization

Finally, synchronisation is summarized as follows:

1. Messages sent to passive objects are always sent synchronously. Passive
objects can be manually serialized which will cause other senders to wait.

182

2. Messages sent to active objects are always sent asynchronously. Asyn-
chronous objects process one message at a time, which renders them de
facto serialized.

3. Asynchronous messages always immediately return with a promise. The
promise will be fulfilled by the receiver.

4. Delegation along a chain of passive objects always proceeds synchronously.

5. Delegation along a chain of active objects proceeds asynchronously. The
method is searched for “in one shot” but the activation is scheduled in the
queue of object that beholds the method.

6. super(...) and this(...) are handled synchronously.

7. asuper(...) and athis(...) are handled asynchronously and return a
promise.

8.6 Distribution

Having presented ChitChat’s concurrency model, let us now turn our atten-
tion to distribution. Remember from section 7.2.1 that the ChitChat concur-
rency model was explicitly designed to map well onto its distribution semantics.
Hence, it should not be much of a surprise that explaining the distribution se-
mantics is pretty straightforward after having analyzed its concurrency model.

8.6.1 ’First’ Object Referencing: Channels

In section 7.4.1 we explained that any distributed programming language has to
offer a way for objects to get an “initial” network reference to an object residing
on a different machine. We have reviewed the two basic options, namely the
centralized name server approach and the broadcasting approach. The hardware
configurations we targeted in chapter 1 rule out centralized name servers. We
have therefore provided ChitChat with a very simple service discovery mecha-
nism that would fit a broadcasting implementation much better. The idea is
that active objects can register themselves to a named channel by a call of the
form register("any Name"). This will register the current active object to
that channel which is meant to be broadcasted continuously. Any interested
party can ask for the active objects that are currently registered on that chan-
nel by invoking members("any Name"). At any time this call yields a ChitChat
table containing a network reference to the active objects that are currently
registered on that channel. Objects can unregister from a channel by calling
unregister("any Name"). Of course this will not change any references already
established to that object from within other machines.

As Miller puts it in his work on the E programming language [MMF01],
“connectivity begets connectivity”. This is also the case in ChitChat. Once one
has an initial reference to an object, one can send it messages and pass along

183

other (active) objects that will henceforth be known by the receiver as well.
The results returned by executing the associated method will be a newly known
acquaintance to the sender.

8.6.2 The Power of Attributes, Revisited

In section 8.5 (and notably section 8.4.4) we have been explaining and using
active and passive objects depending on our needs (of course obeying the rules
outlined in section 8.5.5). Remember from section 5.8.5 that Pic%’s objects
were created by successive applications of views, mixins and cloning methods
which are installed by “prefixing” their name by “modifiers” such as view,
cloning and mixin. In section 8.5 we already hinted at the existence of similar
modifiers aview and amixin to create active objects. Since we know from section
8.5.5 that mixed object hierarchies are impossible, some hygiene is required
in combining these different kinds of modifiers. For cloning methods, nothing
changes with respect to Pic%. We have been as liberal as possible in the possible
combinations of view’s, mixin’s, aview’s and amixin’s excluding only those
cases that would violate the object structuring rules outlined in section 8.5.5.
The most problematic case we had to exclude is the invocation of a “passive
view method” on an active object. Although the other combinations was given a
meaningful semantics, the resulting object structures sometimes yield intricate
semantics. An important technical detail when actually working with views,
mixins, active views and active mixins is the meaning of the scope functions
this(), athis(), super() and asuper() while these (active) views and (active)
mixins are running. We refer to appendix B for the details.

8.6.3 Distributed Object Creation

We already mentioned several times that ChitChat’s concurrency model was
deliberately designed with distribution in mind. For example, as explained in
section 8.5.2 we have derived restrictions on the way object hierarchies can
be built under the assumption that different active descendants of an active
object can reside on different machines. This is accomplished by creating active
objects. We postulate:

Active view methods are executed on the machine of the sender of
the message that triggered the active view method

This is ChitChat’s unique way to introduce distribution. Using the channel
technique outlined above, a first (remote) object reference has to be obtained.
From that point onward, messages can be sent to that remote object. If these
messages are implemented by “ordinary” methods we get back references to
objects that reside on the machine of the implementor4. But if that message
happens to be implemented by an active view method, then an active object

4An exception to this rule occurs when the method returns passive objects. These are
always copied across the network as explained in section 8.6.4.

184

is spawned on the machine of the sender which has the receiver of the method
as active parent. From that point onwards, a new active object exists on the
machine of the sender that has the receiver of the message as a remote active
parent.

At this point it is instructive to refer back to the notion of first class methods
and active closures explained in section 8.3.2. As was explained, an active
closure emerged from selecting a first class method in an object without invoking
it. It consists of the method code, the receiver in which it was searched for and
the active object in which it was actually found. This active closure represents
a function but because of the different types of methods ChitChat features,
invoking the function can have different semantics. If the function emerged
from selecting an ordinary method, invoking it will schedule the corresponding
activation in the queue of the object that implements the function. If the
function emerged from selecting an active view method, its invocation will result
in a distributed object being created on the machine of invocation.

8.6.4 Arguments and Return Values

In ChitChat, the way arguments and return values are sent back and forth is
practically completely the consequence of rules on distributing active and passive
objects outlined in section 8.5.2. The semantics is summarized as follows:

1. Passive objects used as argument or return value are passed by copy. This
is consistent with the philosophy of the model given in section 8.5.1: active
objects should be the main source for distribution and passive objects
should remain encapsulated inside active ones. The copy is a transitive
closure of all passive objects for otherwise, the rule would be broken.
Active objects residing in these passive ones will be used by reference.

2. Active objects are always passed by reference and are never copied. In
chapter 9 we show that active objects can be moved around by ChitChat’s
mobility features. This enables remote methods to temporarily draw the
arguments to the other side of the network.

Although deep copying passive objects on every network crossing might seem
queer with respect to, we are not the first ones to come up with this semantics.
Eiffel// [EAC98], albeit not distributedly, also uses this semantics when passing
on passive objects between concurrent processes. Experiments with ChitChat
have shown that the fact that we do allow passive objects to be shared by more
than one active one was actually a design mistake because race conditions sneak
in too easily. Adopting the Eiffel// is part of our short term future work.

8.6.5 An Experiment: The Chat

Let us now turn our attention to an experiment we conducted to illustrate
ChitChat’s distribution facilities. The idea is that of a centralized chat server
that can dynamically spawn chat clients. The chat server is to be thought of

185

as a distributed white board that is shared between the chatters that write on
it. In contrast to conventional object-oriented implementations, our ChitChat
implementation really reflects this sharing. In the code below we distinguish
an active object constructor chatServer that, when called, creates a new chat
server on the machine that launched that call. Notice in the very last line of
the constructor that, upon being created, the chat immediately registers itself
on a provided channel so that listeners can “import” a reference to the chat
server by listening to the broadcast. Once the chat server is up and running,
remote clients can send it the message registerClient. This is an active
view method that will, when being sent from a remote client, spawn a remote
active object that automatically delegates all messages to the server. There is
only one such message implemented in the server. It is the sendMsg. When
a user interface sends this message to a chat client, it gets delegated — over
the network – and will get scheduled in the server’s queue. Once the server is
ready to process its next message, it distributes the message received to all its
clients asynchronously. Notice that this is possible because the view method
that spawns clients registers them in a table by immediately putting athis()
into a centralized table which its accesses by a asuper(...) send. This table
is consistent at any time because of extreme encapsulation: no one is able to
spawn descendants except for the chat itself.

{ aview.chatServer(channel, maxClients) :: {
clients[maxClients] : void;
occupancy: 0;
aview.registerClient(nam) :: {

receiveMsg(from,msg) :: display(from,": ",msg,eoln);
asuper(
if(occupancy=maxClients,

error("Sorry, channel is full"),
clients[occupancy := occupancy+1] := athis())) };

sendMsg(msg) :: {
from: athis(nam);
for(i:1, i <= occupancy, i:=i+1,

clients[i].receiveMsg(from, msg));
"sent" };

register(channel) };

progServer: chatServer("prog", 10);
aChatter: progServer.registerClient("Working on My PhD");
aChatter.sendMsg("Hello prog") }

At the site of a client, the following code is used. The required channel is
read and it is sent the message registerClient which will create a chat client
on the sender site. It can be sent a message sendMsg which will give rise to the
message dissemination machinery described above.

{ progServer: members("prog")[1];

186

aChatter: progServer.registerClient("Sleepless in Seattle");
aChatter.sendMsg("Hello world") }

8.6.6 Another Example: Remote Remote Controls

One of the applications of this technique is what we call Remote Remote Con-
trols. The idea is that of a PDA that sends an initial message to, e.g., a house-
hold device. The result of the message is a local object on the PDA that
implements the complete control software for the device. For example, upon
entering a meeting room, one might ask a video projector that is attached to
the ceiling for a remote remote control such that it can be controlled from the
PDA. Of course, when two such remote remote controls exist, they share the
actual state of the device (e.g. the video projector can not be on and off at the
same time, and it can only have one brightness level). The shared state sits
with the active object on the video projector that is the remote parent of the
remote controls that runs on the PDA.

8.7 ChitChat: Evaluation and Epilog

Based on the ChitChat design and the experiments presented in this chapter
we can make a number of considerations about ChitChat and further situate it
in the realm of distributed programming languages.

8.7.1 Networked Method Lookup Foolish?

A common reaction of most people that are first confronted with the ChitChat
distribution model is “But, surely, you don’t want method lookup to proceed
over a network!?!”. This is true for “ordinary” hierarchies such as graphical
shapes or collection hierarchies. Therefore, these classic code reuse cases can
still be conceived with “classical” passive local hierarchies.

Referring back to middleware solutions in which objects are remotely repre-
sented by proxies, these proxies are typically “empty” objects that have no logic
in them but actually delegate every message over the network. Java RMI e.g.
creates a special thread for every RMI-call just to set up the right machinery
to get the message sent over the network. In this regard, our model is much
more powerful. ChitChat’s transparent network references are like proxies: they
delegate all messages over the network. But it is possible to make a local ver-
sion of methods by putting code in active views. Since these views remotely
override methods, the ChitChat is more powerful in the sense that it can han-
dle smart proxies that can reduce the network trafic by implementing some
messages locally. Hence we conclude that the networked views on objects are
simply a generalisation of proxies. A very nice side effect of this technique is
that several “smart proxies” can refer to a “real object” and make sure the real
object contains the one and only state of the object. Serialization of executing
the proxy code inside the real object is guaranteed by the fact that calls to

187

asuper(...) are serialized. Furthermore, when the real object performs self
sends to athis(), they are intercepted by the proxy because of late binding of
self in a prototype-based language.

Another argument to defend the mechanism is that, maybe, the time is
ripe for this kind of machinery to enter programming languages. Only very
recently, a distributed version of Self, dSelf [TK02] was proposed in which the
authors defend delegation of method lookup to distributed parents. However,
ChitChat is far more developed and much better understood than dSelf. The
early publications on dSelf merely mention an extension of the Self method
lookup over networks. They do not mention synchronisation, race conditions,
deadlocks or any other phenomenon that manifests itself in the context of objects
and distribution.

8.7.2 Distributed Scoping

We are not the first to come up with a rather exotic network-oriented language.
The Obliq language, reviewed in section 7.5.3 features the notion of distributed
lexical scope. No matter where objects reside on the network, their lexical
scope is always guaranteed to be preserved even if it means that lexically scoped
variables have to be looked up across network boundaries.

We argue that the ChitChat model is more powerful in two senses. On the
one hand, the networked delegation scheme allows for network-oriented scope
to be exploited, precisely as in Obliq. However, our model is more refined. By
clever combinations of active views, it can be fine tuned which parts of the
objects reside at what machines. On the second hand, as will be explained in
chapter 9, our model allows active objects in an active object hierarchy to be
moved across a network. This means that load balancing techniques can be
used by children to drag their parent to the same machine that they reside on.
This way the number of network references from a descendant to the parent can
be reduced. This is impossible to achieve in Obliq because there is no way an
object can get a reference to its lexical scope with the goal to drag it towards
its own host.

8.7.3 Briot’s Analysis

In one of the “classic concurrency papers”, Briot and Yonezawa [BY87] ar-
gue that the delegation model of object-oriented programming is unreconcilable
with concurrency. The basis of the argument is that, in the classic delegation-
based scheme initially proposed by Liebermann [Lie86], reading and writing of
(instance) variables happens by message sending. Based hereupon, the paper
shows that expressions as simple as x:=x+1 are a source of race conditions in the
delegation paradigm. Our model shows that inheritance between objects and
concurrency is a perfectly good marriage as long as the connection between an
object and its parent is a more privileged one than the relation between an object
and its “regular” acquaintances. In our model, objects are fully encapsulated
entities in the inheritance chain. Scope function calls like asuper(x:=x+1) allow

188

expressions occurring in descendants to be executed atomically in the context
of the parent.

8.7.4 Situating the Model

Let us look at how ChitChat fits in with the landscape of existing models of
distribution.

• As explained in chapter 3 we consider sharing to be an essential ingredient
of distribution. The problem with existing approaches is that state sharing
has to be manually implemented by “plumbing together” object references.
Furthermore, keeping shared state consistent requires a lot of machinery
to be implemented manually. In ChitChat this kind of structural sharing
can be expressed very naturally by putting shared data in shared par-
ents. Furthermore, the unwanted sharing relation imposed by classes as
explained in chapter 3 does not manifest itself. Whereas ChitChat’s (just
as Pic%’s) immutable state and methods are conceptually shared by ob-
jects in order to improve reentrancy, this kind of sharing can never be
detected by running code because it is immutable. So it is safe to dupli-
cate it across a network. An exception to this is when immutable object
slots refer to mutable structures (such as a ChitChat table or passive ob-
ject). We consider this as a rough edge to ChitChat and plan to eliminate
it by precluding passive structures to be shared between active ones. Race
conditions simply sneak in too easily.

• Although the ChitChat model still has some rough edges and needs more
polishing, it integrates many of the features of the languages discussed in
section 7.5 without resorting to a straightforward language union:

– ChitChat’s concurrency model was explicitly based on ABCL. It
adopts its promises system and its stateful active objects that for-
bid intra-object concurrency. ChitChat does not adopt ABCL’s ex-
press messages because they breach the latter. Neither does it adopt
the plethora of inter-object synchronization (past, future, now): ev-
ery message sent asynchronously yields a promise. In contrast with
ABCL, ChitChat promises are transparent placeholders for their value
(yet to be computed). As such they are single values whereas ABCL
promises actually represent queues that can be filled up by the re-
ceiver of a message and be claimed multiple times by the sender of
that message. In contrast to ABCL, ChitChat features delegation
with late binding of self between active objects. The resulting parent
sharing structures are explicitly extolled to implement state sharing
between concurrently running processes.

– As explained in section 7.6 ChitChat and Obliq share the same vi-
sion on encapsulation. Both are prototype-based languages that, in
the context of the amended Treaty of Orlando we proposed in sec-
tion 4.6.5, align their templates model and their object model, but

189

keep their object model strictly separated from their self represen-
tation model. Obliq objects can be declared protected such that
they allow some operators to be applied to themselves and no longer
by external message sending clients. But in Obliq this also excludes
delegation-based object sharing. Agora’s view method and mixin
method technique allows us to build (distributed) delegation-based
inheritance structures in ChitChat without giving in on encapsula-
tion.

– The Argus model consistes of guardians that are published on the
network wich manage a non-published local state “behind the scenes”.
Several handlers of a guardian play the role of entry points for exter-
nal clients. In their implementation, handlers can use transactions
to make sure they do not cause race conditions on the state. In the
ChitChat model this way of “resource management” is accomplished
by putting the shared resource in a parent object and by defining the
handlers in a semantically coherent way in descendant objects. All
the objects can run concurrently and race condition free access to the
shared state is accomplished with the scope functions. However, this
atomic access is not a full-fledged transaction system as ChitChat’s
super sends cannot be rolled back. The exact relationship between
the two models remains a topic for further investigation.

– As we will see in chapter 9 the major heritage from Emerald is the
mobility features. But apart from that, Emerald’s distribution model
of classless objects to which messages can be sent transparently (even
in the context of mobility) was one of the major sources of inspiration
for our work.

8.7.5 (Mutual) Extreme Encapsulation & Security

Although it has been stated several times already, we do want to draw the
reader’s attention one more time to the fact that the ChitChat model allows for
flexible object structures to be built over a network without having to compro-
mise on security issues. Objects react to messages and can generate offsprings or
clones if they were programmed to do so. Because of Pic%’s extreme encapsu-
lation and reflection protection there really is no way to overrule this restriction.

Apart from precluding objects to tamper with other objects using encapsula-
tion breaching operations such as inheritance, cloning and reflection (see section
3.6.3), ChitChat fully endorses Miller’s view on security in programming lan-
guages [MMF01] discussed in section 3.6.2. Miller’s view on security basically
boils down to the slogan “connectivity begets connectivity”, i.e., objects should
only be able to access references to objects that were explicitly given to them.
Miller allows only three ways by which an objects can get references to other
objects:

• Connectivity by Introduction: Either some object introduces an object to
a new object as the parameter of a message.

190

• Connectivity by Parenthood: Every object has a reference to the objects
it creates.

• Connectivity by Construction: Every created object has references that
were passed along to the construction code.

Miller argues that these three ways are sufficient to exclude various security
problems that usually pop up when using “text-based resource referencing”.
For example, instead of letting a downloaded applet access a local database
by allowing it to refer the database through some system call of the form
System.getDB("myDB"), it is the task of the receiving machine to explicitly
hand over that database to the applet when the applet arrives at the host, or,
by sending a message to the applet. Resources that the applet has not gotten a
reference to in this way should be hidden for the applet. ChitChat fully endorses
this vision. The only way a freshly spawned active object can get a reference to
another object is by parameter passing or by accessing state it shares with its
parent and other descendants.

A related issue is what we might call mutual extreme encapsulation which
is quite common a situation in (distributed) object-oriented programming. The
problem is that two cooperating parties need each other’s internal state in order
to function correctly, without wanting to publish this state to the rest of the
system. Unless one resorts to a C++-like friends mechanism, the only way to
do this is by providing getters and setters as in the Java beans model. But
this has the drawback that everyone can access this state. In ChitChat this is
easily resolved by providing those two parties with a shared parent object that
encapsulates the shared state. By using the scope functions correctly the two
objects can read and write each others state without having to provide accessors
that can be invoked by anyone else on the network. Again, the fact that only
predefined (active) view methods can generate extensions in a controlled way
(due to extreme encapsulation) is essential.

8.7.6 Rough Edges

Apart from the fact that our model lacks some essential features for writing
realistic distributed applications in the context of open networks (e.g. there are
no provisions for machinery that goes out of earshot, there are no provisions
for partial failure and even a decent exception handling mechanism is lacking)
the ChitChat model also has some shortcomings that need more work in future
iterations over the language:

• As explained in section 8.4.5, the interleaving of super and self references
can easily lead to deadlocks when these do not reside in tail call positions.
This is definitely a topic that needs more work.

• Consistently copying passive objects across network boundaries might lead
to subtle errors. Indeed, for a call like eProduct.putInBasket(myBasket)
the myBasket object will be copied if it is a passive object. Additions to the

191

basket at the location of the eProduct will not affect the original basket.
Solutions could vary from generating warnings every time a passive object
crosses a network boundary, to automatically wrapping the object as an
active object that is then passed by reference.

• Finally, ChitChat’s object model that is essentially based on parallel active
and passive hierarchies as depicted in figure 8.4 is not always easy to
understand. We hope to simplify this model in future iterations over the
language.

• Related to the two previous items is the fact that race conditions can oc-
cur easily whenever a passive structure such as a table or a non-serialized
passive object is shared between two or more active ones. We plan to in-
vestigate in the very near future the effect of disallowing passive structures
to enter or leave active object boundaries altogether. This will probably
yield clearer concurrency semantics and aligns perfectly with ChitChat’s
distribution semantics. As we have already indicated this is already part
of ChitChat’s philosophy anyway: every active object is encouraged to
posses and manage “its” passive data.

8.7.7 Implementation

In section 1.2.2 of the introduction we have explicitly taken the stance that
language design and language implementation are to be kept separate as long
as possible. But we also stated that a minimum of realism is needed in order
not to step into the trap of inherently inefficient features. The ChitChat model
was therefore given a prototype implementation in the context of Van Cutsem
and Mostinckx’s master’s thesis [VM04]. The experiments shown in this chapter
were conducted using this implementation.

8.8 Conclusion

This chapter introduced the ChitChat prototype-based model of concurrency
and distribution. ChitChat features both active and passive objects. The ac-
tive objects are to be seen as the units of distribution and are never physically
moved upon using them for referencing and parameter passing. They implement
ABCL style guardians that handle asynchronous messages one by one. They
can be part of a hierarchy of active objects of which different parts can reside on
different machines. The method lookup of messages sent to these objects pro-
ceeds along the networked inheritance hierarchy and the corresponding method
activation is scheduled in the queue belong to the active object where the mes-
sage was found. Active objects are to be thought of as managers of other active
objects and also passive objects. Message passing to passive objects proceeds
synchronously. Passive objects never give rise to network references and are al-
ways deep copied when they cross network boundaries. Passive objects are also
part of hierarchies but these hierarchies reside on a single node in the network.

192

We have illustrated how active object hierarchies give rise to the notion of
shared active parents of active descendants. These parents can reside on the
same machines as one of the descendants or reside on a separate machine. The
shared parent can contain state that is conceptually shared between the different
active descendants. Cleverly designed scope functions allow chunks of code to
be evaluated in the context of a parent or a child in serialized ways guaranteeing
the absence of race conditions caused by the concurrently running parents. One
of the most important changes with respect to Pic% is to restrict the scope of
variables to the object frame in which they reside. A “manual” usage of the
scoping functions guarantees atomicity.

We have illustrated this model of concurrency and distribution by describing
the experiments we conducted to show its applicability for standard problems
such as the dining philosophers and concurrently calculated fibonacci numbers.
The chat experiment has shown how ChitChat enables the construction of dis-
tributed applications in which the sharing relationships between the distributed
components are effectively visible from the way the program is structured. The
resulting distribution structures have the hierarchical structure of a client-server
topology but the power of peer to peer configurations. The latter will become
apparent in chapter 9 will show how ChitChat’s mobility features allow the
distributed active objects to change host.

193

194

Chapter 9

Mobility in ChitChat:
“Move” Considered
Harmful

This chapter extends the ChitChat model of chapter 8 with features for strong
mobility. The chapter reviews different kinds and causes of mobility and gives
an overview of existing language proposals for code mobility. Subsequently, a
suite of desired properties for mobile programming languages is distilled by con-
ducting a number of gedankenexperiments and by considering the restrictions of
the open networks we target. This allows us to formulate one of the main theses
defended by this dissertation: a “move” instruction in mobile languages is a
harmful feature. Based on this thesis, the design of ChitChat’s strong mobility
is presented and a collection of mobile programming patterns is presented.

9.1 Introduction

As was noticed by Cardelli [Car95] and many others, the context outlined in
chapter 1 in which users move around with respect to each other will very likely
cause the software that runs on their PAN to move as well. The futuristic
scenario presented in section 1.1.1 has given many examples of mobile software.

In chapter 8 we have presented a proposal for “structured distribution” in
the context of open networks in which the object is no longer uniquely defined to
be the unit of distribution. Thanks to distributed delegation, structural sharing
patterns in distributed systems can be expressed very naturally by putting the
structurally shared state of the system in a shared parent. An example of this
was the chat application presented in section 8.6.5 in which the chat clients
are local views on a shared parent object that represents the shared state of
the distributed system. So far, this merely seems like a sophisticated way to
program flexible client-server applications. However, in this chapter we show

195

that the model is much more powerful if we extend the language further with
mobility mechanisms.

As we will see, programming language design for mobility is pretty much
unexplored. Existing language proposals usually boil down to the addition of a
“move” operator to a distributed language. Such an operator takes an object
and a node designation and simply moves the object to this new location. One
of the basic arguments we will start out from is that this “move” operator
that relocates an object, as found in existing languages, is a harmful feature.
We argue this in section 9.6.4 by illustrating how it leads to incomprehensible
object soups and how it is a source of security problems. Based on this analysis,
mobility in ChitChat will be presented by means of a special kind of attributes
(like view methods or cloning methods) that engenders mobility of the objects
that implement it. These move methods (as opposed to move operators) are the
heart of the mobility model.

In order for the discussion to be scientifically rooted, we start by briefly
reviewing the state of the art in mobile systems. After introducing some ba-
sic notions of mobility in sections 9.2, 9.3 and 9.4 and after having a look at
currently existing programming languages for mobile computing in section 9.5
we present the ChitChat mobility model based on move methods. Section 9.7
explains them and analyses how they interact with other language features.
Section 9.8 presents some programming patterns supported by move methods.
Section 9.9 evaluates the proposal.

9.2 Mobility: Definitions and Taxonomy

Before delving into the technicalities of middleware and languages that support
mobility, we first describe what we mean by mobility and shed some light on
the different kinds of mobility.

9.2.1 The Computational Context

In order to distinguish between the different kinds of mobility it is useful to
consider the computational context of a running program. The computational
context is a temporal snapshot of the knowledge a language processor has about
the program it is executing. It typically consists of environments, a working
memory, a runtime stack and so on. We will divide this computational context
into a data context, a control context and a resources context. This distinction
will help us to classify the different kinds of mobility in the following section.

The data context of a running program at a certain point in time consists
of the variable bindings that are accesible by and allocated for the program at
that moment in time. It is also called the state of a program.

The control context of the running program consists of the status of the
computation. This usually takes the form of a reference to a point in the code
(like a program counter or a “current expression”) together with a description
of those past states of the computation that are still relevant to determine the

196

√
strong mobility

data
context

weak mobility

control
context

full mobility

resources
context

semi strong mobility
∅

∅
∅∅

√
√

√

∅
√

√
∅

Figure 9.1: Types of Mobility

future states of the computation. The latter typically takes the form of a runtime
stack or a continuation.

The resources context of a program consist of those bindings of a program
in memory that are not allocated for the program alone. This consist both of
bindings in internal memory such as operating system resources (e.g. a window
manager) as well as bindings that refer to external resources such as databases.

Using this terminology we can define the different types of mobility.

9.2.2 Kinds of Mobility

Depending on the source, terminology differs when it comes to characterizing
the different flavors of mobility [FPV98, BN02, Tho97, CGPV96]. In this dis-
sertation we distinguish between four types of mobility. We have summarized
them in figure 9.1.

• Weak Mobility means that the ability is offered to allow “dead code” to
travel over the network without any context information whatsoever. This
can take several forms. A sending machine can send code to a receiving
device (called “remote evaluation”) or a receiving device might undertake
the initiative and ask code to be downloaded from a sending device (called
“code on demand”). In both cases, the mobility shares the characteristic
that code is transmitted without any context information whatsoever. The
code arrives at the destination machine and then starts running as if it
never ran before.

• Semi-Strong Mobility is the form of mobility implemented by most
middleware solutions. Semi-strong mobility allows a running process to
move from one device to another one but requires the process itself to
make the necessary provisions for halting and resuming the computation
right before and right after the move. This means that the mobility does
take the data context into account but does not consider the control con-
text. Hence programs written using semi-strong mobility technology have
to “manually copy” their control context into a data context and, upon

197

arrival at the new site, make sure they restore the control context based
on the transmitted data context.

• Strong Mobility occurs when a computational system has the ability
to move from one device to another one taking into account both the
data context and the control context. Strong mobility allows a running
process to hop from one machine to another without manually halting the
computation it is performing.

• Full Mobility arises when a strongly mobile program moves along with
the complete closure of its data context including all resources that it will
ever need during its execution. This means that not only the data context
and the control context are taken into account, but the resources context
as well.

Most people are aware of weak mobility because of its tremendous popularity
in the incarnation of Java applets. With Java technology, a web browser can
download a chunk of stateless code (i.e., an applet) and run it on the client
that initiated the download. Apart from some static bindings like constants,
the applet does not contain any state from previous runs. Full mobility and
semi-strong mobility are not very well-known and in sections 9.2.3 and 9.2.4,
we will make a case against them, especially in our research context. Strong
mobility is not very well-known as a technology but most people associate it
with autonomous agents that roam networks to accomplish a certain task on
behalf of their owner. However, in section 9.3 we explain that strong mobility
does not necessarily have to be associated with autonomous agents and that
much more mundane applications of the technique are more likely to set in.

9.2.3 A Case Against Semi-Strong Mobility

Although semi-strong mobility has the advantage of being technically simple to
implement, its practical applicability is problematic. Since semi-strong mobility
is capable of moving programs with data context but without control context,
programs have to halt their execution manually before they can be moved. This
usually happens by notifying the runtime system that a move is required and
consequently hand it over control of execution. The mobility machinery then
serializes the “dead object” together with its code and moves it to another
machine. The receiving device reconstructs the object and notifies it that the
arrival has completed. It is the responsibility of the mobile program to restore
the state and the computation it was performing before the move happened.

Proponents of semi-strong mobility usually revere the simplicity of the paradigm.
The catch however is that the designer of the mobile software has to completely
change the way he structures his code. Indeed, semi-strong mobility requires
the algorithm to encode its control context explicitly into its data context such
that it “remembers” what it was doing after being reactivated. This means that
algorithms have to be explicitly divided along the mobility lines: they have to
encode explicitly what “their future” will be after a move. This is known as

198

continuation passing style programming (CPS) and it is generally accepted to
be very hard to master fully by programmers. This argument is exactly the
same as the one we held in section 7.3.5 when we discussed the actor model of
concurrent programming. Both cases have a lot in common: at first sight they
have the advantage of being simple. However, practicability is limited because
they require CPS. CPS is usually considered hard as it requires one to turn
one’s algorithms “inside out”.

9.2.4 A Case Against Full Mobility

As explained, full mobility means that a mobile process moves to another ma-
chine along with all the resources it needs. This means that no resources are ever
rebound. The different forms of resource rebinding are thoroughly discussed in
[FPV98]. They vary from actually moving them, making a copy, or just create
a reference to them from within the new machine. Depending on the type of
resource this has different repercussions. For example, for an integer number
the network reference solution is unacceptable while moving or copying entire
databases will be out of the question as well.

Full mobility was originally “invented” in the context of process migration
for load balancing purposes. The idea is that a runtime system can — based
on some parameters — decide to move a running process to another machine
because that is beneficial to the overall computational performance or to the
amount of network traffic generated.

Note that full mobility with no rebinding at all is probably not very useful in
our context of open networks. It would mean that a device forces a computation
to move over to another device to proceed in its new location without any
interaction with computations or resources on the new host. Indeed, any form
of interaction would require the computation to get an “initial reference” on the
new host, which at least requires some rebinding. It appears that full mobility is
only useful to allow “parasite computations” to consume computational power
on another device than the one it started. In all other cases, some resource
rebinding is necessary.

9.2.5 Conclusion

We conclude this section by repeating that there are four types of mobility:
weak mobility, semi-strong mobility, strong mobility and full mobility and that
we only deem the first and the third interesting and opportune. Semi-strong
mobility is extremely hard to use by programmers because it induces CPS and
full mobility is probably uninteresting in our research context because it (by
definition) has no interactions with its environment.

199

9.3 Why Strong Mobility

Having “ruled out” semi-strong mobility and full mobility in the previous sec-
tion, this leaves us with weak mobility and strong mobility.

The ChitChat model as explained in chapter 8 already has a built-in con-
ception of weak mobility. By sending a message from one device to another
device, code might be downloaded to construct an active view on an object
residing on the sending device. This was illustrated in section 8.6.5 where chat
clients where downloaded to the client machines by sending a message to the
chat server. As we have explained in chapter 8, this model of distribution can
be referred to as the connected applets model because it envisions the same kind
of weak mobility as promoted by Java’s applet technology. Note that the Java
and JavaScript technology movements have made weak mobility completely ac-
cepted: many websites have applets or JavaScript programs embedded in them
and even more sites contain embedded JavaScript code. We therefore consider
it no longer necessary to scientifically motivate the need for weak mobility and
the need for programming models and languages that technically enhance the
ease with which weak mobile systems are constructed.

Strong mobility is a bit more controversial however and many computer
scientists are still not convinced that it is a feature that one wants in a pro-
gramming language. This is probably partially caused by the hype around e-
commerce that has burnt terms like “agent” and “mobility” in the late nineties.
This is why we will further motivate the need for strong mobility in this section.
We identify three sources for strong mobility.

9.3.1 Intentional Strong Mobility

The first source of mobility is probably the best known one. But is is also
the most controversial source of mobility and the one that gave rise to strong
mobility not being generally accepted as “really needed”. By “intentional”
mobility, we mean that the mobility is a consequence of the fact that the program
explicitly states that an object has to move around for some reason. In other
words, intentional mobility means that the mobility aspect is part of the goals
of the designer of the code. This kind of mobility can have several sources:

• resource optimization. This is the classic case for strong mobility. The
point is that at some situation in the execution of a program, two or
more cooperating objects are generating too much network traffic and the
total traffic could be reduced by moving one or more of them. This is
the classical load balancing argument for strong mobility. Notice that this
does not necessarily have to lead to full mobility as explained above. It
is perfectly possible and even likely that a strongly mobile object rebinds
some of its resources upon arrival at its new destination.

• software engineering. Although it is harder to characterise, another
source for strong mobility might be caused by design considerations. De-
signers of mobile applications might consider some objects “to logically

200

belong together” even though there are no quantitatively measurable rea-
sons for allocating them to a certain machine. This might mean that
these objects have to “move along” with another object even if they are
currently “active” because they are on a runtime stack e.g.

• Identity Preservation In section 7.4 we already made a distinction be-
tween sending arguments of a remote method invocation by copy or by
visit. The reason for making a difference between both transfer modes is
all about preservation of identity. Whenever we have an object and we
send it to another machine without making a copy, it means that we really
want that object to move in such a way that all references to the object at
the sending machine shall henceforth also refer to the moved object. At
all times only one object is “the real” one. An immediate application of
this is the iTicket in the scenario outlined in section 1.1.1. Other examples
are Miller’s purses containing digital money [MMF01].

Apart from these “contestable” reasons for strong mobility there are two
more mundane sources for strong mobility. We discuss them in the following
sections.

9.3.2 Distribution-Caused Mobility

A second cause of strong mobility is much more mundane and therefore much
less controversal. As explained in chapter 7, concurrency models based on ac-
tive objects are much more suitable to program open distributed systems than
thread-based concurrency. We also saw in chapter 8 that one of the conse-
quences thereof is that one naturally ends up in the situation that active objects
are passed as actual arguments of a remote method invocation. In the case that
one decides to actually pass the active object, we have a case of strong mobility
because we are passing around a running object whose queue might be filled
with requests. This clearly shows that, in a language supporting both remote
method invocation and active objects, it is conceptually very easy to end up
with the need for mobility. To the best of our knowledge, this was one of the
main reasons for supporting mobility in Emerald [HRB+91]. As we will see in
section 9.5.3 its mobility operators are most naturally used when sending along
active objects as arguments to remote method invocations.

In section 9.2.1 we made a distinction between a control context, a data
context and a resources context. This allows us to detect a hidden form of
strong mobility that is not often discerned in the less technical literature. We
have depicted it in figure 9.2. Suppose we have an object that processes a
message by running a certain method m. Suppose that the object itself sends
a message and passes itself as an argument. The method m′ that receives the
message receives an object that appears to be “dead”. Suppose that m′ decides
to move this object to another machine. Upon returning from the move, m′

gets control back. Now m′ returns control back to the object by falling back
into m. However, the object has changed location. This means that m has to

201

m'(arg) :: {
 ...
 move(arg,newloc)
 ...
}

m() :: {
 ...
 a.m'(athis())
 ...
}

Figure 9.2: Unexpected Sources of Strong Mobility

continue the execution (i.e., the grey code in figure 9.2) at the new location
which requires us to move the control state of an object that appeared to be
“dead” because it was not “running” at the actual moment of the move. Again,
this is a form of strong mobility that easily pops up in contexts that are not
necessarily associated with agents that autonomously roam networks. It is a
very mundane consequence of sophisticated distribution facilities.

9.3.3 Mobility from Mobile Computing

A third source of strong mobility is particularly relevant in our research context.
It was already coined by Cardelli [Car95] and Fuggetta [FPV98] who make a
distinction between mobile computations and mobile computing. The former is
about software entities that roam networks. The latter is about people that
carry along (miniaturised) computers and themselves move around. This is
another way to designate the research context set out in chapter 1. Mobile
computing easily generates the need for mobile computations because of two
requirements Fuggetta calls autonomy and disconnected operation. Consider for
example an integrated PDA/mobile-phone that is being used during a meeting
as a text processor by one of the participants to take notes. As his phone rings
he wants to leave the meeting temporarily to pick up the phone outside. He
therefore wants to beam the text document together with the running notepad
to one of his colleagues so that the meeting can continue while he is on the
phone outside. The is an example to illustrate the fact that hardware mobility
has a high probability of generating software mobility in the near future.

9.4 The Applicative Approach

In chapter 7 we saw that there are three approaches to add concurrency and
distribution to object-orientation: the applicative approach (i.e., middleware),
the reflective approach and the integrative approach (i.e., languages). In the
same vein, these three approaches have emerged in the field of mobile code,
and it is the applicative approach (very often in combination with the reflective

202

approach) that seems to be the most popular again. Just as is the case with con-
currency and distribution, there seems to be a tension between the applicative
approach and the reflective approach. On the applicative “extreme”, one starts
from a regular object-oriented programming language and one constructs li-
braries to support mobility. Application development is then completely steered
by the correct usage of these libraries because the application logic has to be
moulded in order to make it fit the logic and constraints of the libraries. On the
other end of the spectrum we find a pure reflective approach where one has the
utopic situation of a sequential application that is changed into a mobile one by
making the appropriate changes — at the meta level — to the way the object-
oriented language internally works. Just as for concurrency and distribution,
most middleware is situated somewhere in between these two extremes.

Especially with the advent of Java, middleware for mobility is attracting a
lot of attention. It seems that Java’s “compile once, run everywhere” slogan
has launched the idea that code can travel over a network for good, especially
because it has been combined successfully with the notion of dynamic class
loading.

Unfortunately, Java is not very well suited for mobility as can be noticed from
the tremendous complexity one has to deal with to accomplish a notion that
is actually conceptually extremely simple — that of moving a running object
from one machine to another one. In all the Java approaches we describe below,
either the underlying middleware is extremely complex, or the middleware is
kept simple but then the complexity is put on the shoulders of its users. That
is probably why most mobile code today merely consists of simple Java-based
applets. For all other forms of mobility, middleware researchers have been (and
are) struggling with Java-based technology. All these attempts can actually be
summarized as finding clever ways to circumvent the fact that Java’s reification
of running programs, i.e., the class java.lang.Thread, is not Serializable
and can thus not be reified to send it over a connection.

The best example of these attempts is IBM’s Aglets agent system [LO98].
This is a set of libraries with which users can develop mobile Java software
entities, called “aglets”. Aglets is an example of purely applicative middleware
in the sense that it does not apply reflective technology to render an existing
program mobile. Programmers are required to step into the Aglets logic and
structure their applications as such. Part of this logic is that every aglet must
be declared as a subclass of a class Aglet that is predefined by the middleware.
Hence, most of the problems with middleware in the context of distribution also
apply here. For example, the way two aglets have to communicate with each
other consists of making instances of the class Message, manually providing it
with the arguments (using a method setArg) and then explicitly sending the
message from one aglet to another one. One of the most important drawbacks of
technology such as Aglets is that it is a case of semi-strong mobility as discussed
in section 9.2.2 which means that the Aglets library is structured in an event-
driven way. For example, aglets have to implement the method onArrival
which is invoked by the middleware after an aglet has moved. As explained in
section 9.2.3, this requires one to write mobile algorithms in CPS because one

203

manually has to encode and decode the control context into and out of the data
context right before and right after moving an aglet.

Other middleware approaches based on Java are less extreme in their ap-
plication of libraries and allow for a more transparent mobility which requires
less effort from the application programmer. These approaches struggle much
more explicitly with the fact that objects of the class java.lang.Thread are
not serializable and can thus not easily be transmitted over a wire. There are
two “solutions” to this problem which both seem to “reject” each other:

• The first solution consists of changing the Java Virtual Machine such that
it implements the provisions necessary to implement a go native method
on the Thread class. An example of this approach is JavaThreads [BHP03],
D’Agents [GCK+02], Sumatra [ARS97], Merpati [Sue00] and Ara [PS97].
The approach of adapting the JVM is criticized by the other camp because
of compatibility reasons. The strong mobile code that relies on the extra
provisions will not run on “standard” JVM’s as dictated by Sun. One
of the difficulties in this approach appears to be the fact that the extra
serialization machinery seems to be the reason for extra inefficiencies and
that non-mobile threads have to pay for this as well.

• The second approach can be classified as the transformational camp which
consists of transforming (byte) code such that methods contain the ap-
propriate instructions to copy their computational context into the data
context. Examples of the transformational approach are WASP [FM99],
JavaGo [SMY99] and Correlate [TRV+00b]. The biggest drawback of the
transformational approach appears to be the fact that it is not easy to
guarantee the preservation of the semantics of programs by the transfor-
mation. Just as was the case with distribution (see section 7.4.1) code
transformation is hard to combine with language features such as compu-
tational reflection.

In summary we can state that the middleware approach to mobility is —
today — completely monopolized by Java-based solutions. Since contempo-
rary Java implementations do not provide the underlying machinery needed to
implement strong mobility, the class java.lang.Thread is not Serializable.
Solutions vary from avoiding this class altogether (as in Aglets) to the develop-
ment of sophisticated technical tricks to bypass the problem thereby trying to
stick to Sun’s definition of Java and JVM as much as possible.

9.5 OOP Languages for Strong Mobility

After having shed some light on the current status of middleware technology in
the field of mobility, let us now (in parallel with the way we have reviewed con-
currency and distribution in chapter 7) have a look at the integrative approach,
i.e., how strong mobility is incorporated in todays’ object-oriented programming

204

languages. In contrast to the huge amounts of research effort spent on middle-
ware approaches, the status of this field is pretty deplorable with a few notable
exceptions such as TeleScript, Emerald, Obliq and Borg.

9.5.1 TeleScript

TeleScript is a proprietary language of General Magic which renders it quite
inaccessible. To the best of our knowledge, there are no freely available imple-
mentations and the only paper describing the language is [Whi96]. The current
status of the language is unclear.

TeleScript is a class-based language in which classes can be declared abstract
or sealed, TeleScript’s terminology for what Java calls “final”. TeleScript fea-
tures mixins in the style described by Bracha [BC90]. Mixins are named ab-
stract subclasses that can be applied to several classes in row. This is used by
TeleScript to implement some of its security: TeleScript features four built-in
mixins which can be applied to classes to “modify” them: unmoved renders
objects of the modified class unmovable, uncopied turns a class into a class
whose instances cannot be copied (which might be necessary to implement dig-
ital money e.g.), copyright turns a class into one that can only be instantiated
by “copyright enforcer” objects and protected turns a class into one whose
instances cannot be modified. Apart from these class-based security techniques,
TeleScript is in fact a pretty standard class-based language.

TeleScript’s provisions for strong mobility are completely covered by a pre-
defined class hierarchy that consists of three classes: an abstract superclass
Process with two useful concrete classes called Place and Agent. The idea is
that places can host agents. An agent is a process that can be moved from one
place to another. To this end, the class Agent implements a method go that
takes an object of type Ticket as a parameter. A ticket is basically a set of ref-
erences to places. The ticket determines the trip of the object upon invocation
of go. A variant of go is send which can be used to move copies of the agent
to different locations. This is reminiscent to the master-slave pattern discussed
in section 9.8.2.

TeleScript has a capability-based security model. Every object of type Agent
contains a permit field. Its content is an object containing the capabilities of
the agent. Apart from some bookkeeping issues (such as its age), an agent’s
permit defines a set of predefined booleans such as canCreate, canGo, canGrant
and canDeny that speficy whether the agent can create new processes, can move
around, can raise and lower the permission level of other processes. The effective
capabilities of a process are the computed intersection of its own permits, the
local permits and extra permits which the currently running process might define
with additional restrict instructions.

From our analysis in section 3.2, the fact that TeleScript is class-based im-
plies that it is only practicable in networks with predetermined topologies.

205

9.5.2 Obliq

Obliq is arguably a mobile programming language. Although Obliq was explic-
itly written for ”... computations that roam networks...” [Car95], Obliq has no
explicit mobility operators.

In section 7.5.3 we have reviewed the four Obliq language operators that can
be applied to objects: selection/invocation, cloning, aliasing and assignment.
In Obliq mobility is actually accomplished by combining its cloning operator
with its aliasing operator. At the heart of this technique is the property of
the cloning operator which makes sure that clones made of remote objects are
actually created locally. So it is more correct to speak about remote cloning than
just cloning in Obliq. Combining this feature with aliasing enables mobility in
Obliq as follows. A self-synchronized Obliq object that wants to move:

1. sends a first class procedure with itself in the scope to an execution engine
residing on the receiving host. The first class procedure should return a
clone of the object in its scope (i.e., the “self”). But since the first class
procedure is sent across the network, the object is turned into a reference.

2. by taking a clone of that reference on the destination machine, the Obliq
cloning operator makes sure the clone is constructed locally.

3. upon returning from executing that first class procedure remotely, the
object that spawned the procedure has to redirect — with one atomic
instruction that is syntactic sugar for several aliasing instructions — all
its fields to refer to the remote clone.

Part of the trick here is that Obliq’s objects are required to move themselves
because no thread should be able to tinker with the object during the execution
of these steps. It therefore all has to happen atomically. Obliq enables this
by declaring the object as self-synchronized so that the method that causes the
copying and redirecting cannot be interrupted.

9.5.3 Emerald

We already explained Emerald in section 7.5.1 in the context of distribution.
On top of what was explained there, Emerald has a number of explicit lan-
guage constructions that support object mobility. They can be divided into
expressions, statements and annotations.

• The expression locate exp evaluates the expression and returns an object
of type node which is the location of the object denoted by that expression.

• The concept of a node is used in the following mobility statements:

– move e1 to e2 is an instruction that causes the object denoted by e1
to be moved to the node denoted by e2. If e2 is not a node, the node
of its value is taken. Notice that in Emerald, mobility as specified
by programmers is always a mere hint to the implementation. The
kernel might discard it anyway.

206

– fix e1 at e2 is an expression that will cause the object denoted by
e1 to be fixed at the location denoted by e2. After the fix, the object
can no longer be moved.

– unfix e1 is a statement that is exactly the opposite of fix.

– refix e1 at e2 refixes a fixed object at a new node.

• Invocations of Emerald methods allow their actual arguments to be anno-
tated with the keywords move or visit. In this way, the actual argument
will be moved to the location of the object that receives the message.
Upon returning from the method call, arguments annotated by move will
stay at the node of the receiver. Those annotated by visit will come
back to the node of the sender of the message.

Apart from these explicit mobility mechanisms, Emerald allows objects to be
attached to other objects which will cause them to move together. To this end,
Emerald features a “modifier” attached that can be used to annotate variable
declarations in the same spirit that Java allows variable declarations to be an-
notated by static. The attachment relationship induced by such declarations
is transitive but not symmetric.

9.5.4 Borg

Borg [VF01] is an early extension of the original Pico language explained in
chapter 5 with mobile agents in the form of autonomous objects that can roam
networks. In Borg, a lot of effort was spent on implementation technology,
to wit efficient object serialization operators and efficient re-routing of object
references and messages sent to moved objects. To this end, Borg included a
sophisticated distribution layer with hierarchically organized routing of messages
between virtual machines [VF01].

Borg features the creation of autonomous agents encapsulating a Pico dic-
tionary and a runtime stack that could be subject to serialization in order to be
sent across a network. Borg makes a complete transitive closure of the dictio-
nary making up an agent, except for the root dictionary of the system. Upon
arrival, the dictionary of the agent is restored and attached to the root of the
new host, and the runtime stack is installed such that the agent continues to
run as if nothing had happend in the first place.

From a programming language point of view, Borg’s innovative features were
mainly focused on data communication between agents. It features pretty so-
phisticated handshaking mechanisms that allow for “bidirectional messages” to
be sent between distributed agents. Both sides can specify several actual and
formal parameters at the same time. A unification system is responsible for uni-
fying the formals with the actuals on both sides and for making the necessary
bindings.

From a mobility point of view, Borgs features are pretty low level as we
will argue in section 9.6.4. Borg features an operator agentmove that takes two
arguments: a location (which is a reference to a machine) and an agent. The

207

effect is that the specified agent is moved to the designated location. Every
pattern of mobility that is slightly more complicated than this has to be man-
ually encoded by Pico code that explicitly manages locations and agents and
that decides “manually” which agents should move whereto at what time.

9.5.5 Other Mobile Languages

We have only discussed four mobile programming languages in detail. The
reasons for selecting them is the fact that they are object-oriented and that
they support strong mobility.

Other languages such as Java, JavaScript, Limbo and O’Caml are object-
oriented languages but merely feature weak mobility in the form of applets.
Facile is neither object-oriented, nor strongly mobile and Safe Tcl does not
support object-oriented data abstraction. For more details on them, we refer to
[Tho97]

9.6 Issues in Mobile Language Design

Let us now consider the language design alternatives we can consider to design
a mobility model for ChitChat. After considering some general alternatives in
sections 9.6.1, 9.6.2 and 9.6.3, we finally present one of the main theses defended
in this dissertation: section 9.6.4 argues that a “move” operator that bluntly
moves objects from one location to another one is a harmful feature in a mobile
programming language.

9.6.1 Push, Pull and Agent Technology

Most survey literature on mobility (such as [FPV98]) distinguishes between
three fundamentally different approaches of making code mobile:

• The first option is sometimes called “code on demand”, or “fetch tech-
nology”, or pull technology. The basic idea is that a chunk of code is
downloaded from one machine to another one in order to be executed on
the latter. The initiator is the (code running on the) machine to which
the mobile code will move. The classic example of pull technology is Java
applets.

• The second way to enable code mobility is called “ship technology”, or
“remote evaluation”, or push technology. In a push architecture, the
initiator sends a chunk of code to a machine. The receiving machine will
run the code and possibly send results back to the initiator. Intelligent
query languages are often named as examples of push technology. The
TeleScript language discussed above with its go and send methods is also
an example of push technology. Emerald’s actual argument annotations
are examples of push technology as well.

208

• Finally, the third possibility for code to move from one machine to another
one is autonomicity or agent technology. Examples of agent technology
are the Borg system described above and also Obliq. In agent technology,
a running process decides autonomously to move from one machine to
another without initiation from the sender or the receiver.

A remarkable fact is that pull technology is usually associated with weak
mobility because it is a running process that pulls a “dead object” to another
machine. Furthermore, strong code mobility is very often associated with agent
technology, i.e., the idea of autonomously running objects that hop from one
machine to another.

9.6.2 Classes vs. Prototypes

Although the relationship between classes, prototypes, open networks an mobil-
ity was extensively discussed in chapter 3 we want to draw the reader’s attention
back to the fact that — with the exception of TeleScript — all object-oriented
languages discussed in section 9.5 are actually prototype-based. In chapter 3 we
extensively discussed the non-viability of class-based systems in the context of
open networks. Needless to say, the problems merely get worse when strong mo-
bility is involved [DD02]. Objects might move around and end up on machines
where their class already exists with different versions for the methods and with
different values for the static variables. Emerald as a prototype-based language
is not totally free of problems in our context of open defined networks either.
The fact that objects need a unique name within the network can easily lead to
problems when unforeseen devices enter the network that contain objects with
a name that already exists. Furthermore, the fact that every object in Emerald
has a type yields the same problems if objects with the same type name but
different signatures enter the network. Maybe the typing issues could be solved
by associating the identity of the “source machine” to every type behind the
scenes. The naming problem seems inherent to Emerald though. As explained
in chapter 7 another argument “against” Emerald in the context of mobility for
open networks is the fact that it only supports synchronous message passing in
a thread-based concurrency model.

9.6.3 Security Issues: Resource Rebinding

As was already explained in section 3.6, security is a very important topic in
open networks and mobility. We have followed Thorn’s analysis in that security
is needed at different levels of mobile code execution. We have concentrated on
programming language level security and have argued that the prototype-based
languages discussed in chapter 2 suffer from serious problems when it comes
to security. A language that allows programmers to write secure programs is
a language that allows one to bundle resources according to capabilities and
pass these capabilities on to other parts of the program. Those parts can only
access the resources for which they have received the capabilities and there is

209

no way this can be circumvented. Abstractly spoken, a capability is nothing
but a designator for an entity together with a description of what can be done
with that entity. In an object-oriented programming language, a capability is
typically modeled by a reference to an object or by a method that resides in an
object.

Security in mobile systems on the level of programming languages is all
about resource rebinding. Indeed, in the case of full mobility as described in
section 9.2.2, there are no security problems possible because all the resources
the mobile program might ever need are transported along with the program. It
is when a mobile program gets access to local file systems, windowing systems,
and so on, that security problems pop up. In order to avoid them, no global
runtime authority should exist to which extra capabilities can be “asked” on
the basis of a name — a meaningless string. It is of utmost importance that
every operation that an object-oriented application might perform on a resource
is conveyed by a capability, i.e., a reference to an object or a method. In our
vision of connectivity begetting connectivity this means that the Granovetter
operator as discussed in section 3.6.2 is the only way capabilities can be ob-
tained. The painfully slow convergence of the Java sandbox model towards a
secure environment has demonstrated the world how difficult it is to achieve
true security without sticking to an exclusive use of the Gravovetter operator.
In an architecture that does stick to it, sandboxing a mobile program “simply”
means that one does not hand it over any capabilities upon arrival of its mobile
code. Furthermore, using the Granovetter operator, gradations of sandboxing
are possible by providing mobile code with a limited set of capabilities. Remem-
ber that his operator can technically take many forms varying from parameters
being passed during a method invocation, via references being obtained at ob-
ject creation time, to variables being shared and mutually accessed by different
objects. The point is to use the scope rules of a programming language to obtain
a reference to a resource.

9.6.4 “Move” Considered Harmful

When considering strongly mobile programming languages in general and the
particular cases discussed in section 9.5 we notice that — with the exception
of Emerald — these are actually ordinary programming languages, often with
sophisticated distribution facilities, to which a move or go operator was orthog-
onally added. This operator bypasses the language’s interaction mechanisms
(such as message passing, function calling and process spawning) and bluntly
moves a running process or object to a specified destination machine. It is one
of the explicit theses defended by our research that adding such an operator is
not sufficient to master the complexity of mobile systems, and that more higher
order mobility features are required in order for mobility technology to be lifted
from a purely academic trinket to engineering levels. In section 9.7 we present
ChitChat’s mobility model as a first proposal for such a feature.

In order to motivate ChitChat’s mobility model thoroughly, we first present
an analysis that rules out — by elimination — a number of language design

210

options using logical argumentation as well as by conducting a number of
gedankenexperiments. As we will see, all these arguments describe symptoms
of the same fundamental problem: move considered harmful.

A Software Engineering Argument against “Move”

In many articles on mobility it is explicitly stated that mobile code paradigms
are programming paradigms in which the concept of location is explicitly incor-
porated. These locations are often modeled as an additional data type or as
instances of some special class such as Place in TeleScript [GM95]. The pro-
gramming language then features a move or go operator which consumes two
arguments — an object and a location — and which moves the object to the new
location while taking care of automatic rebinding of local to remote references,
automatically managing the runtime stack and so on. Although this is quite a
technical achievement, it is too basic an operation to be useful for true mobile
software engineering.

In order to motivate this further, consider a distributed program that consists
of several objects running on different machines in a network. Suppose all of
them run idiosyncratic code and suppose they somehow refer to each other and
communicate by sending around messages. Now imagine the complexity that
would arrise if all our current modern object-oriented programming techniques
such as regular control flow instructions (“while”, “for”, ...), late bound message
passing, double dispatch, meta programming and exception handling would be
further complicated by a move instruction that explicitly moves objects to first
class locations. We claim that with only a few lines of code that use one or
more of these features, networked object-soups can be created the structure of
which cannot be predicted or understood by human readers of the code. It is
one of our explicit research assumptions that we need abstraction mechanisms
that enable human readers to “predict” the locus of objects.

We would like to draw a parallel with the goto statement from early im-
perative programming languages. Surely, by moving from goto-programming
towards structured programming, the power of imperative programming did not
decrease. In the same way, we claim there is a need for structured mobility,
i.e., language mechanisms that can help human readers of code determine the
loci of objects by reading the code. Although structured programming does not
allow one to express less powerful programs than goto-programming, it has ren-
dered many programs that would have been unreadable with goto-technology
easily readable. In order to further fortify our argument, consider the table
in figure 9.3. It compares the current state of affairs in mobile programming
languages with the evolution of goto. The table shows how current mobile
programming languages in which move instructions use a label to denote the
destination where objects have to go, correspond to imperative languages that
allow labels in their goto instructions. Surely the latter was an improvement
with respect to goto instructions that hardcode line numbers. However, most
computer scientists will consider them as equally low level. The top left entry of
the table shows the corresponding language feature for mobility. With a little

211

move goto

move(obj,134.184.43.120) goto 140
move(doc,RndSelect(t , p)) goto 140*x

move(doc, Printer) goto computeSalaries

Figure 9.3: Move Considered Harmful

generalisation we can thus state that today’s mobility abstractions are hardly
above the IP-level.

Relative Locations

Most literature on mobility literally states that mobile programming is all about
programming with explicit locations in mind [FPV98, Tho97]. We only partially
agree with that. Surely, mobile programs are written with the explicit assump-
tion in mind that parts of the program will reside on and move between different
locations. However, this does not imply that mobile programming languages
should explicitly model the concept of “a location”. Apart from the fact that
such locations easily give rise to the need to design a “move” operator — which
brings us in the situation described in the previous section — we consider it
a matter of bad language engineering to model locations as absolute locations
in a logical or hardware network topology. As witnessed by Emerald’s attach
declaration, designers of mobile software are actually much more interested in
relative locations. One wants objects to reside at or move to locations that
host other objects. Notice that one has to interpret the words “object” in the
previous sentence in a broad sense: a runtime system is an object, a database
is an object, hardware is represented as objects and so on. In this sense, mobile
software is not about moving objects to certain hardcoded locations. It is all
about moving objects to locations of other objects. Another witness of this is
the way Emerald programmers specify that parameters of message expressions
have to be passed by reference, by move or by visit. Again, this is a manifesta-
tion of the fact that a programmer wishes to express that some objects belong
together in some situations. Hence, mobile programming languages should focus
much more on relative locations instead of absolute locations.

Respecting Granovetter vs. Mobility

An explicit “move” instruction in a prototype-based language is actually an
operator that gets defined on the object model, in the sense of section 3.5.
We have seen in section 3.6.3 that each and every one of those operators is
actually a way to bypass the Granovetter operator which we declared to be
our main yardstick to measure the “connectivity begets connectivity” principle.
Especially in the context of open networks, this is really important. Since

212

moving an object will be combined with at least some resource rebinding (we
ruled out full mobility in section 9.2.4), an explicit “move” instruction means
that one can bluntly move an object to a certain device without any approval of
the device which can imply the device’s resources being unauthorizedly bound
to the object. Indeed, applying the Granovetter operator would mean that we
introduce the moved object to the new device by means of a message. Clearly
such a message passing way for engendering mobility (which we will discuss
below) is not what the “move” operators discussed until know implement. Hence
we consider a “move” operator as a breach of encapsulation because it is a way
to cause connectivity without an application of a Granovetter operator. This
can be dangerous for both the receiving host (one might move a hostile object)
as well as for the object that is being moved (one might move an object to a
hostile device).

Object Swarms

Another drawback of an explicit “move” instruction is that it renders the im-
plementation of what we will call object swarms difficult. Object swarms are
groups of object that have to move together for some reason. In the case of a
“move” operator, one bluntly moves an object without the active cooperation
of the object. If the object is required to “stick together” with other objects, it
will manually have to ascertain the fact that they have drifted apart and take
the necessary actions to move those objects as well.

A solution to this might be to enrich the programming language with pred-
icates or attribute modifiers like Emerald’s attach feature. This might do the
job but can get pretty cumbersome to use when the swarms are not known
upfront and are determined dynamically because such “togetherness proclama-
tions” have to be established at the time of writing the code or at least before
any “move” instruction is executed. Although not impossible to use, this is
probably cumbersome and error-prone.

We conclude that an explicit “move” instruction that bluntly moves objects
to a new device hampers programmers in expressing the fact that objects are
to be grouped together on the same machine.

Vigna’s and Thorn’s Analyses

A particular variant of “move” is encountered in languages (such as Obliq) that
adhere to the autonomous agent vision (as discussed in section 9.2.2) in which
a running agent decides to move itself to another device. In [Vig04], Vigna
presents a devastating analysis by listing no less than ten reasons why agent
technology is bound to fail. Some of these reasons are organizational (“Agents
are difficult to design” or “Agents lack a ubiquitous infrastructure”), managerial
(“Mobile agents lack a shared ontology”), technological (“Mobile agents do not
perform well”) or cultural (“Mobile agents are difficult to test and debug”) in
nature and can thus be circumvented in the future by a change in culture and
education, by the invention of abstract design methodologies and by technology

213

getting mature. However, other reasons are quite technical and will probably
indeed hamper agents — as we know them today – from being used in everyday
programming. One of the most fundamental criticisms Vigna describes is that
“Mobile agents are suspiciously similar to worms”. His analysis is based on the
fact that agents can autonomously move and trigger the transfer to a remote
host where they resume execution. This is strongly related to our analysis of
respecting Granovetter presented above. It can be brought back to the presence
of a “move” operator in the mobile language that bluntly moves an agent (in
casu itself) to a new location.

Thorn [Tho97] makes the same analysis when discussing the mobility features
of TeleScript. He states that “Telescript agents have their own initiative to
travel and are thus more powerful than Java applets, but in a sense, also more
dangerous: they can be hard or impossible to control once launched.”. From
our discussion on TeleScript presented in section 9.5.1 we know that Thorn is
talking about the go instruction here.

Vigna concludes that “We advocate that other (simpler) forms of mobility,
like remote evaluation or code on demand, can provide support for the user’s
requirement in terms of service.... without raising many of the issues that have to
be addressed when using mobile agents”. In section 9.3 our analysis has pointed
out that this is not correct: even “plain” distribution with active objects being
passed around as parameters rapidly requires strong mobility. The point of
Vigna’s analysis is the autonomicity of agents due to the “move” instruction
that bluntly move themselves to a new location.

Conclusion

We conclude by repeating that we have found no less than five good reasons to
abandon an explicit “move” instruction from a mobile programming language.
They all boil down to the fact that it is low level, does not allow programmers to
structure the mobility aspect of their code and is a potential danger for security.

Formulated in the terminology of section 9.6.1 our rejection of “move” seems
to rule out both the push model as well as the agent model of mobility. Indeed,
the push model is a straightforward application of a “move” operator. Using
the “move” operator, one pushes code to another machine without the active
participation of the receiver. In the same way, agent technology — in which
a running object declares to move itself to another device — can be regarded
as a variant of a “move” operator in which the object being moved is “self”.
Although this eliminates some of the problems discussed above (i.e., at least the
moved object itself is involved), most of them remain.

9.7 ChitChat Mobility

Based on the language design restrictions presented in the previous section,
we can now present ChitChat’s mobility model in the right context. Before
presenting the model itself, let us first shed some light on the parameters in

214

language design that we have at our disposal.

9.7.1 Design Space Parameters

In moving an object from one location to another there are actually three parties
involved:

• The sender. This is the device or program that actually sends the object
to another location. Although the initiative of the move might lie with
another party it is the sender that performs the actual move. It can also
“decide” how much to move of the object graph.

• The receiver. This is the device or process that receives the moved object.
Following the philosophy of the Granovetter operator, the receiver will
have to provide the moved object with a number of references such that
the moved object can benefit from resource rebinding.

• The moved object itself. This not only involves a designated object.
In cooperation with the sender, it implicitly also comprises “how much”
that has to be moved, i.e., “how deep” the object graph has to be moved
along. Furthermore, in cooperation with the receiver, the moved object
will have to make sure some of its resources are rebound upon arrival at
the location of the receiver.

Using this terminology, our analysis presented in the previous section forces us
to postulate that

the receiver should play an active role in the move process

because otherwise the security problems concerning resource rebinding discussed
in section 9.6.4 pop up. Likewise

the moved object should play an active role in the move process

because if this is not the case we are dealing with sheer push-technology as
advocated by languages with a “move” instruction.

Needless to say, aside from these restrictions, we want our mobility features
to endorse our extreme encapsulation principle presented in chapter 3. The
following two sections present an initial suite of mobility language features that
satisfy all these restrictions.

9.7.2 Move Methods

The idea of move methods is that they are — just like mixin methods, view
methods, cloning methods, active view methods and active mixin methods — a
new type of method that can be offered by the public interface of ChitChat active
objects. Using the syntactic system explained in section 5.8.5, these methods

215

Suppose m was
sent from here

Suppose m was
found here

a1

M1

a2

M2

a3

M3

a4

a1

a2

a3

a4

M3

(a b)

M0

M0

Figure 9.4: Move Methods in Action

are recognised by the fact that their name is prefixed by move1. Apart from the
prefix move, programmers are free to choose the name of a move method. They
can provide different move methods in an object each with their own function-
ality, they can freely decide which and how many parameters a move method
requires and they can freely specify the body that implements the functional-
ity of move methods in order to yield the effect they have in mind. Because
ChitChat allows only active objects to be referenced over the network, move
methods only make sense for active objects.

Invocation Semantics

The semantics of a move method is depicted in figure 9.4. Remember that
the ChitChat distribution model is conceived around chains of active objects
which can possibly reside on different machines and which are tied together by
parent-of links. The chain is the result of successive applications of active view
methods. Every active object can have internal references to both active and
passive objects. The figure shows such a configuration on the left hand side
where four machines M0, M1, M2 and M3 are involved. On these machines a
distributed active object a1 is created. a1 is an object whose parent object a2

resides on M2. The parent of a2 resides on M2 as well. The parent of a3 is a4

1Remember that this is actually but the name of a higher order function called move, which
the Pic% interpreter will use to “lift” the method to its new type before it is actually installed.

216

which resides on M3. Now suppose a (move) message m is sent to a1 from within
machine M0. Networked method lookup finds the method in object a3 which
resides on another machine than the machine of the sender. The semantics of a
move method dictates that all active objects along the delegation chain, starting
from the receiver of the message (in our case a1 residing on M1) up until the
active object that contains the method (which is a3 residing on M3 in our case)
will be moved to the machine of the sender of the message M0. In case all these
objects already reside on that machine, nothing is moved. The semantics further
dictates that the body of the move method is run on the destination machine
(i.e., after the move) but only if there actually was a move. Hence, the body of a
move method will not be executed in case the sender of the message, the receiver
and all active objects on the method lookup path until the implementor, reside
on the same machine. Hence, the body of the move method is the action to be
taken by the active object after it has moved to a new location. Of course, given
our vision on distribution transparency as reflected by the constructs presented
in chapter 8, moving objects is transparent from a technical point of view: the
active object is moved and all other active objects that are registered to refer
to the one that is moved are notified to change their references.

Marshalling Semantics

Referring back to the internal structure of objects as explained in chapter 8 we
have to define what exactly is moved and what is not. The semantics of moving
an active object consists of moving the active object (as an entity) itself, the
passive part that internally defines the active object and the queue of the active
object. The dictionaries that make up the passive part as explained in chapter
5 can contain “passive values” (such as Pico tables, passive objects and basic
values such as methods, numbers and texts) as well as (references to) active
objects. The semantics is that the passive values are moved along with the
active object that is moving. Active objects are not moved along. Upon arrival
at the new destination, they are replaced by network references to the original
active objects. Hence the question of “what is moved along and what is not”
is answered with the same semantics as the one that was used with argument
passing and return value returning explained in chapter 8. Remember that
this semantics was mainly driven by the fact that we did not want to create
“passive network references”, i.e., references to objects that would give rise to
synchronized remote method invocations.

Just like ordinary methods, an activation of a move method is scheduled in
the queue of the receiver of that move method. Invocation of a move method
is an atomic action, so there can be no methods running between the start and
the finish of the move. This guarantees atomicity.

The fact that moving is “shallow” results in references to active objects being
changed into remote references. However, this is where the body of the move
method comes into play. Upon arrival, after all the pointer plumbing has been
managed by the interpreter, the body of the move method is executed on the
new machine. By invoking move methods in its turn, the body of the move

217

method can make sure that acquaintances are moved as well. And in the same
way, by performing super sends (using the dot notation) the moving semantics
can be propagated to the parent because — just as with cloning methods —
the parent of an object in which a move method or cloning method is executing
will be replaced by the result of a super send performed in that method. Notice
that no manual pointer assignments are necessary. Simply sending a message
will replace the network reference by the moved object both in the case of
acquaintances as well as for the parent.

The remainder of the chapter further explains move methods by means of
examples. For the precise technical details, we refer to appendix B.

Moving DAGs and Cycles

The fact that move methods are only executed if something actually moved
is of vital importance when moving directed acyclic graphs (DAGs) and cyclic
structures. The following code excerpt illustrates this:

aview.join(name)::{
move.mv()::{
display("join ", name," has arrived",eoln) }}

aview.pipe(name,o)::{
move.mv()::{
display("pipe ", name," has arrived",eoln);
o.mv() } }

aview.fork(name,o1,o2)::{
move.mv()::{
display(name," has arrived",eoln);
o1.mv();
o2.mv()}}

e:join("ending")
p1:pipe("p1",e)
p2:pipe("p2",e)
f:fork("begin",p1,p2)

The code shows three types of objects that allow us to construct a small
sewerage system: a join, a pipe and a fork. A DAG is constructed by forking
two references to the join, via two different pipes. By sending the message
f.mv() from within a different machine, the move mechanism gets in action.
First the fork is moved to the site of the sender and then the body of the move
method is executed on that site because there was actually a move. This causes
the message o1.mv() to be sent which will cause the first pipe to move and
launch the body of its move method as well. Likewise, o2.mv() is sent which
has the same effect on the second pipe. Because both pipes were actually moved,
their move method runs as well. This will cause the message to be forward to

218

the join which will move the join in the same way. However, only one of these
messages will actually give rise to a move (depending on the relative speed of
the pipes). If the second one is processed the join will already reside on the new
location which will cause the message to be discarded. In this way the move
method in the join will run exactly once.

The fact that a move method is only executed after an actual move has
happened is also crucial for moving cyclic object graphs. Indeed, suppose a
cyclic graph of four objects is sent a message that is implemented by a move
method. And suppose the move method propagates the message through the
graph by invoking move methods as well. By the time the message is propagated
to an object that has already been visited, the next to last node forming a loop
will have moved. Therefore the corresponding move method will be run on the
new location. If the body of that method sends a move method in its turn to
the node in the chain that was already visited, this message will have no effect
because the node was already moved to the new location when visiting it for
the first time.

Parameter Passing

As explained in section 8.7, ChitChat endorses the view on security that refer-
ences to objects should only be obtained through applications of the Granovetter
operator. This also holds for mobile objects that arrive at a new location. We
explicitly reject forms of dynamic scoping where objects can refer to context
parameters at the new location that are not obtained through some form of pa-
rameter passing, or string-based mechanisms in which a reference to an object
is obtained by “asking” a central authority (such as an operating system) for
the reference on the basis of the name of the required object.

This is exactly what parameters in move methods are good for. By calling
a move method with references to local resources, a move method can drag an
object to the site of the sender and install references to the local resources at
the right spots in the moved object. Since move method typically call other
move methods, the parameters can be passed down the call chain easily.

As an example, suppose a lecturer enters a meeting room that has a video
projector hanging from the ceiling. Upon request, the controller for the projector
gets moved to the lecturer’s PDA. Because different PDA’s have different screen
resolutions, dimensions, and color pallets, this information has to be handed over
to the controller object upon arrival at the PDA. It can be compared to Apple’s
Gestalt-manager, a part of the operating system that allows applications to
“query” for the gestalt of the system on which they are running. Here is how
this could be achieved with a move method.

aview.Controller():: {
...
move.toPDA(aScreenGestalt)::{

...
}}

219

Using this configuration, it is completely up to the gestalt manager of the
local PDA to decide which resources it provides to the controller it receives by
sending it toPDA. There is no other way for the controller to access the local
resources of the PDA on which it is running. This is in sharp contrast with
the resource binding technique used in Java for example: upon arrival of an
applet, the arguments are textually handed over to the applet straight from
the HTML source. All security issues in mapping these strings onto meaningful
object references is to be handled by an interaction between the virtual machine
(implementing a sandbox model) and the applet logic itself.

As a final remark, the parameters of a move method can also be used to
determine the semantics of the move algorithm. For example, flags could be
passed around to steer the move algorithm in how deep the object graph has
to be moved. This is a generalisation of the way objects are attached to each
other in Emerald.

9.7.3 Design Space Parameters, a Second Time Around

On the basis of the analysis of section 9.6.4, in section 9.7.1 we deduced a
number of restrictions on the design of mobility features. Now that we have
presented the ChitChat mobility model, let us run through them again2.

• We stated that the sender of the moved object should play an active role.
In the move method mechanism this sender is the receiver of the message
that corresponds to the move method. Basically, the sender of the object
has three parameters at its disposal to determine whether something will
be moved and if so, how much shall be moved. First, it can decide whether
to implement such a request by a move method at all. In any other
case there simply is no move. Second, the receiving object determines
how much of that receiver that will be moved by implementing the move
method in the appropriate active object in the delegation hierarchy. Third,
using super sends in move methods, move methods can further implement
fine tuned moving algorithms.

• We stated that the receiver of the moved object should play an active
role. In our scheme this is the code that triggered the move method by
sending it a message in the first place. In the object-oriented paradigm,
one cannot get any closer to playing an active role than being the sender
of messages.

• We stated that, at all times the capability-based object referencing should
be preserved by only handing over object references through successive
applications of the Granovetter operator. This is clearly the case. The

2Notice that in this discussion the terms “sender” and “receiver” are overloaded. On one
level there are the sender and the receiver of mobile objects and code (i.e., machines). On
another level there are the sender and receiver of messages between objects. It should be clear
from the context which meaning is meant.

220

receiveMsg

receiveMsg

receiveMsgcome

come
come

Figure 9.5: The Mobile Chat Server

only way an object can have access to local resources is by handing over
a reference to those resources as arguments of the invoked move method.

• We stated that the object that is subject to moving should play an
active role as well in order for it to determine how much of its graph
should be moved and how its resource references will have to be bound at
the new location. In our case, this active role is fulfilled by the algorithm
implemented by the move method.

.
This analysis clearly shows that move methods are indeed a language feature

that respects the requirements outlined in section 9.7.1. Move methods form
a powerful general purpose mobility mechanism that does not suffer from the
problems presented in section 9.6.4. Section 9.8 will further illustrate their use
by deriving a number of higher order abstractions (“patterns”) that use move
methods, and appendix B gives a semi-formal semantics. Let us now turn our
attention to an experiment that exemplifies the use of move methods.

9.7.4 Experiment: The Mobile Chat Server

This section reports on an experiment that we conducted in our prototype im-
plementation of ChitChat. The experiment is actually a second version of the
chat application presented in section 8.6.5. Remember that this experiment
presented a distributed chat server on which chat clients represent local views.
A chat client is spawned by sending a message to the chat server. Since the
message is implemented by an active view method, the chat client is created on
the machine of the sender of the message. Chat clients and the chat server have
controlled access to each other’s private variables by means of the asuper and
athis scope functions which evaluate their argument expression atomically in
the context of the parent object or the descendant object. The configuration is
shown in figure 9.5.

The experiment presented below is a version of the distributed chat server
that uses a move method come that can be invoked to pull the chat server to an-

221

other machine. This move method is used by the chat clients to drag the chat
server to their location from the moment they detect that they have become
the biggest network traffic generator. The algorithm to determine this is quite
simplistic: the chat server remembers at all times the number of messages sent
by the biggest prater and every client remembers the number of messages it has
generated. Once a message is sent to the chat server, the server updates this
number by calling athis(count:=count+1). Furthermore, the chat server con-
tains max, the number of messages generated by the biggest prater. If sendMsg
detects that this number is smaller than the number of messages generated by
athis, then athis has to be dragged towards the machine of the client. This
is accomplished by evaluating asuper().come() in the context of athis.

aview.chatServer(channel, maxClients) :: {
clients[maxClients] : void;
occupancy: 0;
max: 0;

move.come()::
display("arrived", eoln);

sendMsg(msg) :: {
from: athis(nam);
lcount: athis(count:=count+1);
if (lcount > max, {
athis(asuper().come()); max:=lcount });

for(i:1, i <= occupancy, i:=i+1,
clients[i].receiveMsg(from, msg));

"message sent" };

aview.registerClient(nam) :: {
count: 0;

receiveMsg(from,msg) ::
display(from,": ",msg,eoln);

asuper(if(occupancy=maxClients,
error("Sorry, channel is full"),
clients[occupancy:=occupancy+1]:=athis())) };

register(channel) }

This code shows quite a number of pretty complicated interactions in only
twenty two lines of code. We believe it somehow “shows” the expressivity of the
ChitChat paradigm. Notice that this code is also totally secure. The only inter-
action it has with the machine on which it runs is an invocation of the display
function. This could be avoided as well by handing over a “user interface” to
the chat client as a parameter of the active view method that creates it.

222

9.7.5 A Variant: Visit Methods

In the introduction of the dissertation we heralded our analysis of “move” be-
ing considered harmful and we explained to give a first technical proposal to
overcome the problems “move” poses. In order to stress the fact that move
methods are but one possible solution, ChitChat also features a second mobility
language feature called visit methods. Visit methods are methods which, when
they are processed from an object’s message queue, will move the receiver (more
precisely all the active objects along the delegation chain from the receiver up
to and including the object in which the visit method resides) to the location
of the sender, run the method on that location and will subsequently move the
object back to the location where it resided at the moment the visit method was
invoked. Apart from the fact that all objects that were replaced return to their
original location after executing the visit method, the semantics of move meth-
ods and visit methods is the same. In the following section we will illustrate a
possible use of visit methods.

9.8 Mobile Programming Patterns

In the same spirit of the presentation of chapter 6 this section presents some
programming patterns and idioms to illustrate the expressivity of the ChitChat
model. Although the patterns presented in this section have been shown to run
in our prototype-implementation of ChitChat, from an engineering point of view
they might be less stable than the ones outlined in chapter 6 simply because
ChitChat is more recent than Pic%. More “real life” experimentation with some
patterns is needed to see how they behave in practice. Again, we discuss the
implementation of a number of existing patterns occurring in the literature be-
cause they are particularly elegantly solved using ChitChat’s features, as well
as a number of techniques that are specific to (a combination of) ChitChat’s
features. Some patterns in the literature are explicitly rejected because of their
inherent adherence to push technology or agent technology. An example is Ari-
dor’s forwarding pattern [AL98] that receives an agent and “manually” forwards
it to a new destination machine.

9.8.1 Itinerary

An important mobility pattern frequently occurring in the literature [TOH99,
AL98] is called the itinerary pattern. The idea of the itinerary pattern is that a
mobile object is given an object that contains a list of destinations and routing
among those destinations. By subsequent applications of “move” the object
finishes the trip prescribed by the itinerary. An example of the itinerary pat-
tern is an active document that has to be piloted through an administration.
Different authorities have to put their “stamp” on the document before it can
be forwarded to the next booth. The document might be encoded as a mobile
object and the path of authorities it has to follow is encoded in the itinerary
object.

223

anEnvoy

anEnvoy

anEnvoy
come
weOffer

come
weOffer

come
weOffer

asuper(...)

asuper(...)

asuper(...)

Figure 9.6: The Master-Slave Pattern

As we argued in section 9.7, ChitChat is a pull model and because the
itinerary pattern seems inherently agent-oriented the only way to implement
the pattern in ChitChat is by means of an abstraction that is closely related to
the application of double dispatch in the famous visitor pattern. The idea is
that an “agent” keeps a list of remote references. One by one, it sends accept
to the references handing over a reference to athis() as an actual parameter.
The remote reference then calls a move method on its argument which will pull
the agent to the destination.

Following the arguments of section 9.7.1 we think it is not difficult to defend
our implementation of the itinerary pattern in ChitChat. Both the moving
agent as well as the destination objects have to “agree” (by implementing the
right machinery) to implement the pattern. We feel this is an improvement
for stability and security in the context of open networks because no agent is
ever able to enter a device unless it is explicitly invited to. Nevertheless, our
solution shows that — even in a pull architecture — the famous itinerary pattern
is relatively easy to implement.

9.8.2 Master-Slave

Another pattern frequently referred to in the literature is the master-slave pat-
tern [AL98]. The idea of the master-slave pattern is that there is an object
that is charged with a certain task. The pattern prescribes that this object (the
“master”) can spawn a number of mobile envoys which can — in parallel —
accomplish the task partially at another location.

The example we present here was also the one used in [DD03a] and [DCD03].
The idea of the example is the conception of a negotiation “agent” that is
to roam a collection of remote hotels in order to find the best price. It is
structurally depicted in figure 9.6. For the sake of the example, hotels are
active objects that are registered on the WestBestern channel. Every hotel has

224

a name and a price. It implements a visit method3 that accepts a negotiation
agent. It pulls the agent towards the hotel and starts a negotiation. This
implementation looks as follows:

{ aview.Hotel(name,price)::{
visit(agent)::{
agent.come();
agent.weOffer(name,price) };

register("WestBestern")};

h1:Hotel("Sleep E",50);
h2:Hotel("Sleepless In Seat-L",60) }

The following code shows how hotels are sent an agent. A hotel search agent
is a centralized active object that has a bestHotel and a bestPrice state. Ev-
ery slave is an envoy which is a view on the master. The slave implements a
move method come such that all hotels can pull the slave towards their ma-
chine. Nevertheless, the slaves are all connected implicitly by means of the
shared parent. Once the hotel starts a negotiation with the slave, the slave
will (atomically) change the parent state it shares with the other states in case
this hotel is cheaper. The code below shows this. All hotels of the channel
WestBestern are referred to and sent an envoy one by one.

aview.hotelSearchAgent():: {
bestHotel:void;
bestPrice:10000;
result()::display("Best Offer at",bestHotel,bestPrice);
aview.anEnvoy()::{
move.come()::void;
weOffer(name,price)::{
asuper(if(bestPrice>athis(price),

{ bestHotel:= athis(name);
bestPrice:= athis(price)}))} }}

{ hotelSearcher:hotelSearchAgent();
hotels:members("WestBestern");
for(i:1,i<=size(hotels),i:=i+1,
hotels[i].visit(hotelSearcher.anEnvoy())) }

The classical implementation of the pattern is quite clumsy [AL98]. For ex-
ample, the master has to create the agent, manually dispatch it to a destination,
wait until all agents have accomplished their mission and then call a method
getResult on every slave. Merging the results has to be done while or after
collecting the results from the slaves this way.

3Not to be confused with visit-methods as a language feature.

225

9.8.3 Fixing Objects (a.k.a. “Stationary”)

Most mobile programming languages discussed in section 9.5 have a way to fix
an object at a certain host such that it can no longer be moved. In TeleScript
this has to be declared statically by applying the unmoved mixin to the class
of the object. In Obliq it is accomplished by simply not implementing moving
machinery that remotely copies an object. Emerald probably has the most pow-
erful scheme because of its fix...at..., unfix and refix operators that can
be applied to objects. In ChitChat objects can be fixed by applying a “destruc-
tive” mixin to them after they have been moved. The mixin overrides the move
methods with ordinary methods that do nothing at all. This implementation of
the stationary pattern is shown in the following code excerpt.

aview.moveable()::{
move.comeHere()::{true};
amixin.fixIt()::{
comeHere()::{false} } }

The object constructor moveable contains a move method comeHere that
can be used to move the object around. However, sending fixIt to the object
“inserts” an ordinary method that will override the move method. Because this
is a mixin and not a view, all references to the object will have changed such
that it can never be moved again. Since ChitChat currently does not allow
objects to get rid of some of its constituents, this operation cannot be undone.

9.8.4 Local Algorithm Execution

Having presented an implementation of existing patterns in ChitChat, let us now
turn our attention to a number of programming techniques that are enabled
because of specific combinations of ChitChat’s features. The first technique
combines visit methods with Pico’s special parameter passing semantics. It
allows one to temporarily pull an object to a machine to execute an algorithm
locally.

Imagine an administrative system of a governmental ministry that manages
files that are stored in a centralized database which represents the archive of the
ministry. Now and then a department of the ministry needs a file to process it.
After the department has used the file, it is sent back to the central database
so that other departments can use it. Suppose that files have a single identity
and that only one department can work with a file at a time.

Using our abstractions, the database could be represented as a collection
of active objects that each represent a file. A file has a name and a table of
references representing the pages of the file. The mobility logic described above
can be easily encoded as a visit method that is combined with Pico’s call-by-
expression:

aview.DBFile(fileName,fileEntries)::{
visit.runIt(algorithm(name,entries))::

226

runIt

runIt

runIt

Figure 9.7: Star-Shaped Pattern

algorithm(fileName, fileEntries)
}

The above expression shows how a file f can be sent f.runIt(...) hand-
ing it an algorithm depending on name and entries. The file object will be
transfered to the machine of the sender of runIt and then the message will be
processed locally (thereby invoking the algorithm), after which the file object
goes back to wherever it came from (i.e., the database in our case). Whether the
entries referred to by the file will move along with the file depends on whether
they are active or passive objects. As explained in section 9.7.2, passive ob-
jects always move along with the object that contains them. Active objects are
replaced by remote references.

Notice that because ChitChat does not feature intra-object concurrency, the
file will only be at one machine at a time and only one call to runIt at the time
will be processed. The pattern discussed here resembles the star-shaped pattern
in [TOH99] which is depicted in figure 9.7. The difference is that ChitChat’s
approach is much more flexible: because of parameter passing, the algorithm
that will be processed locally does not have to be implemented as part of the
agent, but can instead be dynamically “injected” into the agent by the local
host using Pico’s special parameter passing technique discussed in section 5.5.3.
Because of ChitChat’s extreme encapsulation, the agent is in full control about
how and when it will execute the algorithm passed as a parameter and which
local state variables it will pass on to it.

9.8.5 Swarms

In this section we show the power of ChitChat’s features by giving examples of
how to conceive object swarms. We call a swarm a group of objects that move
together. As explained in section 9.7.2, “hardcoded” swarms are extremely nat-
urally programmed with move methods: it suffices that the body of a move
method sends “move messages” to its acquaintances in order for the acquain-
tances to follow wherever the object executing the move method is moving to.

227

There are nevertheless two interesting patterns that implement swarms by
using ChitChat’s language features in non-trivial ways. One of them is based
on aggregation. Another one is based on delegation.

An Aggregated Swarm

In section 6.9 we explained how first class methods can be used as a technique
to support the construction of higher order connectors. The fact that methods
are first class allows one to pass them on to a third party that can henceforth
call them without knowing their name upfront. This allows us to write higher
order composition technology that invokes certain methods on objects without
having to hard code the names of the messages in the composing entity, and
without having to resort to meta programming.

This technique can also be used to group objects together in a higher order
construction called “swarm”. The goal of the swarm is to make sure that objects
— that are unrelated in the sense that they neither refer to each other nor
delegate to each other — move systematically across the network.

The following code excerpt shows how the swarm is implemented. Swarm
takes a table of first class methods. Calling it creates a new active object that
understands doMove with any number of arguments. All that it does is, upon
arriving at a new location, to call all the first class methods. If these methods
are move methods, this causes the objects they encapsulate to follow the swarm
automatically. In analogy with what we said in section 6.9, this is actually a
higher order mobility construct. It can be used with any number of — totally
unrelated — objects that contain move methods with any number of arguments.

aview.Swarm@methods::{
move.doMove@args :: {
i:0;
while(i<size(methods),
methods[i:=i+1]@args) } }

The following code excerpt illustrates how the swarm higher order construc-
tion can be used. It shows the creation of three types of objects, bees, birds and
fish. All three of them implement a one argument move method that is called
swarm, fly and swim respectively.

aview.Bee(country)::{
display("Bee created in ",country);
move.swarm(c)::{
display("Bee arrives in ",country:=c)}}

aview.Bird(country)::{
display("Bird is born in ",country);
move.fly(c)::{
display("Bird just flew to ",country:=c)}}

228

aview.Fish(country)::{
display("A fish sees the territorial waters of ",country);
move.swim(c)::{
display("Fish reaches the coast of ",country:=c)}}

We can illustrate how the code works by evaluating

{ b1:Bee("Belgium"); b2:Bird("Belgium"); f:Fish("Belgium") ;
s:Swarm(b1.swarm,b2.fly,f.swim);
s.register("aZoo") }

on one machine and then calling members("aZoo")[1].doMove("Holland")
from another machine. As a result the entire swarm will be moved to the
new machine. Upon arrival the move method’s body is executed which will
invoke the move methods on all the component objects. The only thing that
constraints this technique is that the first class methods grouped by the swarm
have to accept an identical number of arguments. Apart from this, the objects
in the swarm can be totally unrelated.

A Delegating Swarm

Another example of a swarm can be programmed by connecting objects along
a parent-of link. The basic idea consists of a move method that will move
an object in such a way that the machinery of the move method will “drag
along” all the descendants of that object as well. In order to illustrate the basic
mechanism, consider the following code excerpt.

aview.parent()::{
move.comeHere()::{void};
retract()::athis(). follow();
aview.descendant()::{
move. follow()::{void}} }

The code shows views that create a parent object and a descendant that
inherits from that parent. With the move method follow in the descendant,
the descendant can be moved to another machine than the one on which the
parent is residing. However by sending retract to the descendant, method
lookup will cause the parent to send follow to its descendant. The result
is that the descendant will be returned to the parent location. On its own,
we might call this technique a retraction pattern because it allows a parent to
retract remote descendants to its own location.

The retraction pattern can be used to implement a swarm if it is combined
with the MVC-technique presented in section 6.8 in which the view methods
are used to make a parent keep a reference to all the descendants it generates.
In section 6.8 we have called the collection of all such references us.

As an example of such a swarm implementation that uses delegation, con-
sider a timetable system for the Brussels public transportation system which

229

can be conceived as a graph of nodes some of which are underground stations,
busstops, regional express net train stations and tramway stops. Many junction
nodes are two or more of these at the same time. Suppose we want to design
a system that allows every node to contain its time table such that users can
enter the station with their PDA, connect to the object that is registered on
the channel4 "MIVB Schedule" send it the message schedule().show(). The
result is a digital schedule of that node on their PDA.

Every node can be one or more types. Moreover, the types of node share
information such as the name of the node, a map, a collection of amenities (e.g.
is there an elevator for disabled people?) and so on. Every schedule is in a view
on the object being the identity of the node. The structure of the code looks as
follows5.

aview.Node(name, amenities, map)::{
us:void;

aview.AsBusStop(schedule,line,isNightBus)::{
... functionality of a busstop ...
asuper(us:=[athis(),us]) };

aview.AsTramWayStop(schedule,line)::{
... functionality of a tramway ...
asuper(us:=[athis(),us]) };

aview.AsMetroStation(frequency,trunk)::{
... functionality of an underground station ...
asuper(us:=[athis(),us]) };

aview.AsGENTrain(railwayCompanyRef)::{
... functionality of a commutor train station ...
asuper(us:=[athis(),us]) };

show()::{
... UI code to set up the schedule ... }

clone.copy()::
... copy for individualized behaviour ...

move.down()::{
fst:us;
while(not(is_void(fst)),
{ fst[1].down();
fst:=fst[2] })};

4MIVB (Maatschappij voor Intercommunaal Vervoer Brussel) is the name of the public
exploitation company of the public transportation system.

5GEN means “Regional Express Net” in Dutch; local commuter trains.

230

aview.schedule()::{
s:asuper().copy().down();
show()::s.show() };

}

By sending schedule to an object reference corresponding to a Node, a local
view is created that contains a local copy of the node schedule. This is accom-
plished by referring to the remote schedule by asuper(), sending copy() to
this remote reference and subsequently pulling the copy to the local machine
by sending it down(). The copy mechanism is used to make the example more
realistic: one cannot just pull the schedule of the node to one’s PDA because
that would preclude other passengers from using the same schedule. There-
fore a copy of the object is “downloaded”. The down move method shows the
implementation of the delegation-based swarm. Because of ChitChat’s object
extension mechanisms, every active view that was created on a node, is regis-
tered with the node by adding it to the us list. The down move method traverses
this list and calls a move method on the views as well. This makes sure that
all the views travel along with their parent node. This is what we mean by a
delegation-based swarm.

9.9 Evaluation and Epilog

Having explained the design of ChitChat’s mobility mechanism and having pre-
sented some patterns and techniques to try to validate its expressiveness some-
how, let us now take a step back and contemplate the proposal.

9.9.1 Rough Edges

Although we believe that the ChitChat model is more than an initial step in the
direction towards “structured mobility”, there are some rough edges left that
need more work:

• One of the problems is related to the network-reference semantics ex-
plained in the previous chapter. We stated that every time passive ob-
jects cross network boundaries (i.e., when using them as arguments or as
results of methods) they get copied. As explained in this chapter, this
semantics is also used for defining mobility. This means that, when two
active objects share a passive object (e.g. they refer to the same table on
one machine) and one of them is pulled towards another machine, then
the passive object gets copied. In the previous chapter we explained that
it is therefore not a good idea to share passive structures between active
objects. The philosophy of the model is to think in terms of active objects
that own private passive data structures. Still, this is not enforced by the
language and it allows for subtle race condition bugs to sneak in easily.

231

• As explained in chapter 8, an ordinary view that resides inside an active
object will generate (passive) objects that have the behaviour of the active
object as a parent. Therefore, when this behaviour is moved, all possible
(passive) extensions of this behaviour have to be moved along. This can
be problematic if these extensions have left “their” active object and are
referred to from within other active objects. The current move semantics
has to make sure an error is generated when trying to move an active
object that has local passive extensions that might be referred to from
within other active objects. As already explained at the end of chapter 8
we plan to change the semantics such that passive objects can never leave
“their” active object as in Eiffel. This way such local extensions cannot
leave the active object and will therefore alwasy be consistently moved
along when moving the active object.

• A related problem is that mobility can break sharing of constants between
clones. Remember from chapter 5 that cloning semantics prescribes that
only the mutable part of an object is cloned. The immutable dictionaries
are shared between the object and the clones that it generates. This means
that immutable slots can contain mutable data that is shared between an
object and its clones (e.g. a table or another object). However, upon
moving one of the clones, the immutable data will be copied across the
network if it concerns passive data such as a table or a passive object. This
breaks the sharing relation between the object and its clone. A possible
answer is that ChitChat immutable slots are public slots and that the
philosophy of the model is to align public data with active objects which
are never copied but passed by reference. As such, a public slot that
contains an active object causes no harm as the active slot is moved by
reference such that is stays shared between the object and its moved clone.
But we do not consider this as a satisfactory answer.

• ChitChat move methods are executed after the receiving objects are re-
located from the device on which they reside to the device on which the
sender of the “move message” resides. However, while experimenting with
our prototype-implementation we have often felt the need to do something
before the move is actually accomplished. A natural reaction might be to
implement an ordinary method that runs whatever has to be done before
the move, and then invoking the move method by a self-send. However,
this does not work because, at the time of the self send, the sender of
the “move message” and the receiver are on the same machine. Hence,
nothing will move and the move method will not be executed. A trick to
bypass this shortcoming is to make a local view that contains a method
to do whatever is needed before the move and then call the move method
with a super send. This technique was used in the public transportation
example. The local schedule view is used to first copy the super and then
send it the “move message”. Although it works, we have to admit that is
is pretty cumbersome.

232

• Move methods are methods that change the location of an object. This
location can be considered as part of the state of the object and therefore,
move methods easily give rise to race conditions on that state. This is
a complex way to say that two parties might be “fighting” for the same
object by both sending a “move message” to the same object. Depending
on the relative speed of the connections, the first or the second object will
win the race. This object will have lost the fight because the last executed
move method will cause the object to be pulled towards the sender of that
message.

At the time of writing, we have no simple solution for this problem. One
answer might be to say that ChitChat is not designed for programming
mobile agents that end up in “hostile” situations where objects are “fight-
ing” for the agent to be at their location. Hence, it is the task of the
programmer to make sure objects in a system never have to answer two
“move messages” like this in row. However, even in our limited exper-
iments we already ended up in situations where the final location of an
object depends on whichever move method lost the race and was executed
last. A solution probably consist of designing higher order abstractions
that allow a “batch” of messages to be sent between two objects while
they reside on the same machine. This could be accomplished by pairing
a move method with a “trampoline method” that sends the object back
to where it came from due to the initial move method. Other move meth-
ods are never executed before the trampoline method of the last executed
move method is executed as well. We consider this as future work. Notice
that this is a form of behavioural synchronisation. Just like a buffer’s job
consist of putting “get” messages on hold if the buffer is empty, an object
has to put certain move methods on hold until the state of the object is
ready to process the next move.

9.9.2 Security and Extreme Encapsulation

Now that we have presented the entire ChitChat model, it is instructive to recon-
sider our analysis of chapter 3 where we concluded that the powerful prototype-
based programming languages presented in chapter 2 have inherent security
problems because of their object model being too rich with respect to the oper-
ators defined on it. We showed this being problematic for distribution in open
networks, but especially in the context of mobility.

In this and the previous chapters, we have shown that it is possible to design
a full-fledged prototype-based programming language that features cloning, ob-
ject extension and even prototype-based distribution and strong mobility with-
out sacrificing the fundamental encapsulation guarantee offered by a late-bound
message-passing operator. In ChitChat every object operation is subject to
late binding polymorphism and it is completely up to the receiving object to
define what to do with a message that is sent to it. Depending on the type of
attribute operations as different as method invocation, cloning, moving or con-

233

nected applet creation are accomplished. Furthermore, because of the absence of
encapsulation breaching operations, only applications of the Granovetter opera-
tor allow objects to obtain references to other objects. Although these language
characteristics do not imply that all software written in ChitChat is by definition
secure, we can conclude that the language at least allows for secure software
to be written. Once well-encapsulated mobile and/or distributed objects are
designed, implemented, tested and released on a network, there really is no way
— at the language level at least — to bypass their encapsulation.

9.9.3 Us

A remarkable observation made by the programming experience gained so far
in ChitChat is that many designs require the notion of us; i.e., a collection
containing all descendants of an object. The patterns of section 9.8 have also
given a number of examples that heavily depend on this idiom. Thanks to
extreme encapsulation, it is easy for an object to keep a reference to all the
descendants it has spawned. We think it would therefore be useful to build this
into the language. us could even be a generalization of “this”, a value that
constantly refers to all descendants of an object. Notice that until now we have
no mechanism to remove a descendant from the us list and this is also very hard
to implement because that list is conceived using regular object references such
that a garbage collector can never collect a descendant if it is no longer referred
from within other objects. And conversely, the garbage collector can therefore
not notify the us list that one of the objects it contains has become obsolete.
Building the concept into the language would alleviate this problem.

9.9.4 Mobility Models

In section 9.6.1 we have distinguished between pull technology, push technology
and agent technology. ChitChat is pretty unique in this respect because it is
— as far as we know — the first language that combines strong mobility with
pull technology. All other language proposals reviewed in section 9.5 either use
push technology (e.g. Emerald and TeleScript) or agent technolgy (e.g. Borg
and Obliq). Until now, the pull model was restricted to applet systems that
only use weak forms of mobility. In section 9.7.1, we explained that ChitChat’s
pull model is a direct consequence of the argument against a “move” operator
because both the object being moved as well as the receiving location need to
play an active role in the move process. ChitChat demonstrates that Vigna’s
critique on mobile agents and his conclusion that code on demand is a better
scheme (see [Vig04]) does not necessarily exclude strong mobility.

Moreover, we have shown in our conception of the itinerary pattern and the
master-slave pattern that it is quite easy to implement agent-like and push-
like interactions using a combination of move methods and the general object-
oriented double dispatch technique: one simply demands a host to pull itself
towards it.

234

9.9.5 Implementation

The ChitChat model was given a prototype implementation in Java. We have
used a simulation architecture in which several “distributed interpreters” with
completely disjoint runtime structures run in different windows. Internally the
interpreters are implemented as if they are really running on different machinery.
The only complexity we bypassed was the underlying network technology. Our
interpreters marshall their data contexts and runtime context using standard
Java serialization. The communication between two interpreters is achieved by
handing over a binary stream from one interpreter to another. The receiving
interpreter unmarshalls the stream back into an object graph.

Efficiency was not our primary concern during the implementation because
we basically had no idea what to implement. During our research, the implemen-
tation was mainly used as an experimentarium to distill the language features
presented in the dissertation. But now that we have an initial understanding
of these features we plan to implement an actually distributed version in the
context of the PhD research of new students.

In order to correctly implement the serialisation of both the data context
as well as the runtime context, it was impossible to implement the interpreter
in a standard recursive way. The reason is that Java does not feature “current
continuations” such that it is impossible for an interpreter to grab the runtime
context and transmit it in order to continue the execution on the other site. We
therefore implemented the entire interpreter in explicit continuation style. Con-
tinuations are “frames” that contain slots for actual parameters and a backward
link to propagate results back to their calling continuations. Roughly spoken, at
any moment in time during the execution of a ChitChat interpreter, a linked list
of continuations defines the runtime context of the interpreter. Strong mobility
is then implemented by marshalling and transmitting this list of continuations.

Remote references were implemented by giving every interpreter a bidirec-
tional table that maps remote references to actual objects (for incoming ref-
erences) and to machines (for outgoing references). This implementation of
networked pointers is overly simplistic especially in the context of open net-
works in which hardware can unexpectedly disappear. We plan to replace this
implementation by a conception of “ruberband pointers” that “keep on refer-
ring to other devices even though they are temporarily out of earshot”. This
research is currently being conducted [DV04].

In brief, the ChitChat model presented in this dissertation was given a
prototype-implementation in which the technical network component was ig-
nored. The logical network layer was taken into account however.

9.10 Conclusion

In this chapter we presented ChitChat’s mobility model. We have given a basic
overview of mobility models, we presented several technical reasons for motivat-
ing strong mobility — even without resorting to visionary scenarios of agents

235

that autonomously hop between machines — and we have looked at the basic
techniques currently in use to implement mobile software. We have argued that
these techniques are practically all based on Java technology and that Java tech-
nology currently is highly unsuited for the purpose of writing strongly mobile
software.

We have subsequently looked at other programming languages (to wit Emer-
ald, Borg, Obliq and TeleScript) that have built-in features for strong mobility
Although the technical conception of mobility in these languages clearly out-
ranks the cumbersome Java-based architectures, we have argued that they still
fall short on high level mobility constructions. With the exception of Emerald’s
attach declaration and Obliq’s remote cloning, all mobility is entirely based on
an explicit move instruction that bluntly moves an object from one machine to
another. We have presented an extensive argument against this conception of
mobility. Based on an analysis of the mobility process from a software engineer-
ing point of view and from a security point of view, we have distilled a number
of restrictions for a mobility mechanism that was the basis for ChitChat’s move
methods and visit methods.

We have tried to validate the model by conducting a number of experiments
in ChitChat that demonstrate its expressivity. This comprises an adaptation
of chat server of chapter 8 with mobility, the elegant expression of a number of
existing mobility patterns (to wit itinerary, master-slave and stationary), and
the distilling of a number of programming techniques that elegantly combine
ChitChat’s specific features (to wit move methods, visit methods, Pico’s func-
tional parameter passing and first class methods) into powerful higher order
mobility abstractions such as local algorithm execution and swarms.

236

Chapter 10

Conclusions, Related and
Future Work

The final chapter of the dissertation takes a step back and contemplates the
results. We summarize the work presented in the dissertation thereby referring
back to the “promises” made in the introduction. We give some pointers to
related work that is currently in progress and we speculate on how the research
can be continued by listing topics for future work, some of which is already
underway.

10.1 Summary and Contributions

The contributions presented in the course of this dissertation can be described
from two different points of view. The technical contributions are summarized
in section 10.1.2.

10.1.1 Contributions to the OO Field

From a more research field-driven point of view, we have conducted an exercise
in language design that unifies knowledge from three fairly independent schools
of object-oriented language design. Indeed, ChitChat can be seen as a cross-
fertilization of the following three language design schools.

1. ChitChat’s concurrency model was heavily influenced by the one from
ABCL, as far as we know the most powerful attempt in combining the
flexibility of the actor paradigm with the stateful ideas behind object-
orientation. The result is a stateful object-oriented language that features
both synchronous and asynchronous message passing. In the case of asyn-
chronous message passing a system with transparent futures takes care of
synchronization between the sender and the receiver of the message when-
ever this is necessary. Therefore, to the best of our knowledge, we have
adopted the state of the art in object-oriented concurrency.

237

2. We have adopted numerous ideas of delegation-based prototype-based lan-
guages. Whereas previous languages were also often prototype-based (like
Obliq) or at least object-based (e.g. Emerald), to the best of our knowl-
edge, no language combines concurrency with delegation. Prototype-based
languages that have been combined with concurrency and distribution fea-
ture no delegation with parent sharing. We have shown that by cleverly
designing the scope rules between parents and descendants, parent sharing
can serve as a powerful paradigm to handle shared state between concur-
rent and distributed objects. By incorporating features like views, mixins
and first class methods in the context of extreme encapsulation, we have
therefore also made progress in the state of the art in prototype-
based language design.

3. Finally, we have adopted features of existing distributed and mobile lan-
guages, and in particular distribution transparency in the sense that no
explicit machinery has to be provided by programmers to send messages
to objects residing on other machines. Furthermore, we have argued how a
low level “move” instruction is a source of problems in structuring mobile
software, both from a software engineering point of view as well as from a
security point of view. The model we proposed is based on move methods
and visit methods and seems to impose much more structure on a mobile
application. We consider it as a first proposal towards languages that
feature structured mobility in analogy with structured programming that
succeeded goto-programming. We therefore claim to have made progress
in the state of the art in mobile programming language design.

It is the combination of these feature that renders ChitChat a unique exercise
in language design. Although the model still has some rough edges left, we think
these are not fundamental to the combination of features we incorporated. It is
our firm belief they are merely technical in nature and can be solved by short-
term research and polishing. Solving them is a matter of transpiration and not
of inspiration. We will get back to this in section 10.3.

10.1.2 Technical Contributions

Aside from these research field-oriented contemplations, the technical contribu-
tions ChitChat makes are:

An intersection between classes and prototypes. We have shown
in chapter 3 that classical prototype-based programming languages suffer from
a number of inherent security problems because of the way their manifold of
operators requires their object model to be much more complex than the simple
record-based message passing centred object model of class-based languages. We
have shown in chapters 4 and 5 how these problems can be avoided — thereby
sticking to our extreme encapsulation principle — without ending up with
a class-based language or without ending up with a prototype-based language
that excludes powerful features such as dynamic object extension and parent

238

sharing. The insight is to allow an object to contain different kinds of methods
which — upon invoking — have different effects depending on their type. The
technique originates in Agora. It was refined in Pic%.

Extension from the outside. Although the formal semantics of this
paradigm and its theoretical situation in the design space of object-oriented
programming languages is original research, the language itself is not. It was
already presented in the PhD thesis of Steyaert [Ste94]. Nevertheless we have
contributed a lot to the understanding of the paradigm. One of the critiques
one often gets when presenting this paradigm is that it is counter intuitive to
object-oriented programming because it requires all potential extensions of ob-
jects to reside in those objects. In section 4.6.2 and 5.9.3 we have shown how
this can be circumvented by reflection techniques or by clever language design
resulting in extension from the outside. At the heart of the solution however
stays message passing. An object that should not be extensible simply does not
implement those messages and will never be subject to extension.

An intersection of lambda-based languages and object-based lan-
guages. In the chapter on Pic% we have seen how the notions of first class
methods and functions can be aligned. By storing methods statelessly in a
dictionary (as opposed to closures) we get the efficiency of object-oriented reen-
trancy. The key however to first class methods consists of creating a closure
upon referencing the method in any way. At that point the frame in which the
method resides is taken as its lexical scope. The original receiver from which the
method was selected is also wrapped in the closure such that later references to
athis() in the code of the method are indeed redirected to the original receiver.
In chapter 6 we have shown how this allows for a very elegant implementation
of object-oriented patterns where other languages require block constructs or
clumsy constructions such as Java’s anonymous classes.

A concurrency model that reconciles active objects with delega-
tion. Whereas this was considered impossible up until now, in chapter 8 we
have shown how to unify these two language characteristics. The key to the
unification was to preclude “internal delegation” in active objects: whereas ex-
ternal messages are normally looked for along the delegation chain, methods
can only “see” the context of the object in which the method resides. This way
active objects can be linked to form delegation chains without causing race con-
ditions. However, two special scope functions asuper(...) and athis(...)
allow parent objects and descendants to access each other’s state in a controlled
way. Especially asuper(...) is useful: it allows for an atomic execution of
code of the descendant in the context of the parent. This way, parents of active
objects can store shared state. asuper(...) is used by descendants to modify
this state in an atomic way such that no race conditions occur.

A distribution model that aligns proxies with delegation-based de-
scendants. By generalizing the proxy concept used by distribution models
towards full-fledged descendants in the delegation-based sense, we actually gen-
eralized the notion of a proxy. In our model, a proxy is nothing but a delegation-
based descendant that appears to reside on another machine than the original
object. Because of the fact that two objects can share the same parent, we can

239

handle multiple proxies for the same object in such a way that the state of the
object stays consistent for all proxies. The distribution model is a generalisation
of the concurrency model: the active objects that share the same active parent
are allowed to reside on different machines. The result is a distributed object
model in which shared parents are used to store structurally shared state of the
distributed system.

Move in mobile language was argued to be a harmful language
feature. This was analysed both from a software engineering perspective of
which the basic argument was that a “move” operator results in incomprehen-
sible object soups, as well as from a security point of view where the argument
was that agents bluntly put on another machine are harmful for security unless
one resorts to full-mobility. We have presented an initial proposal for struc-
tured mobile programming — move methods and visit methods — in which all
parties — the sender, the receiver and the object being moved — are taken
into consideration in a move, and which respects the Granovetter principle that
connectivity begets connectivity, also in the context of mobility. The model
was given a prototype-implementation and was experimented with. This has
yielded some initial, though powerful programming idioms such as higher order
mobility.

Higher order mobility patterns such as the implementation of object
swarms in section 9.8.5 were introduced. Just as is the case with component
wiring in chapter 5, first class functions seem to combine very well with move
methods and visit methods. Because of the fact that they can be treated as any
other value, they are subject to composition.

10.1.3 The Fundamental Problems, Continued

The above considerations can also be reformulated in the terminology used in
chapter 1. There we stated that it was not our goal to solve all problems related
to language design for AmI but that we did want to make a contribution by
attempting to solve four fundamental problems. Let us reconsider them one by
one:

The Ambient Object Paradigm Problem.
The first problem consists of the fact that neither existing class-based, nor

existing prototype-based programming languages are a viable option to design
AmI applications in a reliable and consistent fashion. Class-based languages
have some inherent paradigmatic problems in open networks and (interesting)
prototype-based languages suffer from tremendous security problems. Rather
than sticking to prototype-based languages that exclude the powerful features
of prototype-based programming (as many distributed and mobile languages
currently do), we have shown that this apparent stalemate can be resolved quite
elegantly. We formulated the extreme encapsulation principle as a yardstick and
have shown that languages in which objects can offer special kinds of attributes
open up vast possibilities for object extension, cloning, complex inter-object
scoping mechanism, distribution, concurrency and mobility in several flavours.
The point is that objects only respond to messages that can be implemented by

240

special kinds of methods that act in special ways upon invocation. The result is
a fully empowered prototype-based language that offers all the security needed
for open networks.

The Concurrent Parent Sharing Problem.
A second problem was the tension between prototype-based object-oriented

state sharing on the one hand, and the avoidance of shared state for concur-
rency reasons on the other hand. We have designed an object-oriented language
that seems to turn this reasoning upside down: ChitChat’s concurrency model
encourages state sharing between different objects in the form of a parent ob-
ject that is shared between child objects. Since objects are (thanks to extreme
encapsulation) fully in charge over the descendants they generate, this allows
for a very controlled way of sharing state between two active objects. Moreover,
some cleverly designed scoping mechanisms allowing the atomic execution of de-
scendant code in the context of the shared parent seems a promising abstraction
to avoid race conditions between two active objects.

The Distributed Sharing Problem.
We have argued in the introduction that writing distributed systems is all

about writing code that shares structures on geographically dispersed machin-
ery. We have also argued that current day distributed programming languages
only allow dispersed code to share (object) references. This is because these
languages take the object to be the unit of distribution. ChitChat’s distribu-
tion model is an experiment that sets aside this premise and explicitly allows
distributed objects to share their common structures in a shared parent object.
The shared parent thus forms a structural sharing mechanism while standard
networked pointers are a mere referential sharing mechanism. The special scop-
ing functions discussed above allow code from one node to execute in the context
of the shared parent which contains the structures shared by all the components
of the distributed system.

Move Considered Harmful.
We have argued that a programming language that has the dynamic features

to write programs comfortably that are resilient enough to survive in open
networks, is bound to be a programming language with strong mobility features.
We have argued that contemporary mobility proposals in our context will lead
to insecure software that consists of unmanageable distributed object soups. We
have argued that the culprit of this is the “flat” move instruction that forms
the basis for every strongly mobile programming language and that in future
languages a form of structured mobility will be needed. We have conducted an
analysis in which we have unraveled the different parties involved in moving a
running object and have formulated an initial proposal — move methods and
visit methods — that tries to structure mobility somehow.

10.2 Related Work

Although some of the language features presented in the dissertation might seem
quite unorthodox and exotic, it is our impression that the time is probably ripe

241

for such kind of features to start influencing our languages. Proof of this is the
exotic networked lexical scoping scheme already featured by Obliq in 1995, but
also a number of more recent attempts to reconcile the dynamics of classless
object-oriented programming and distribution in the context of open networks.

10.2.1 dSelf

Not so long ago, a distributed version of Self was presented by Robert Tolksdorf
and Kai Knubben [TK02]. Unfortunately, the authors only present the idea of
different Self interpreters communicating with each other. Distributed method
lookup is presented as well. However, as far as can be deduced from the paper,
all communication is purely synchronized as no concurrency model is mentioned.
Furthermore the authors do not investigate the implications of distributed in-
heritance at all. They do mention the fact that a (old) Self feature, namely
local methods, can be used to “shadow” a remote method locally. This roughly
corresponds to ChitChat’s method overriding in proxies. dSelf does not mention
any implications this scheme has on the meaning of the self pseudo variable, an
essential ingredient of delegation. Furthermore dSelf does not feature mobility.
We consider dSelf more important as a language that helps motivating our work
than as a serious attempt in distributed programming language design.

10.2.2 IO

IO is an open source project led by Steve Dekorte [Dek04]. Although, to the
best of our knowledge, nothing has been officially published about the lan-
guage, the project seems to progress. IO is a prototype-based language with
a syntax very much like Pic%’s. It features a comb-line inheritance scheme
that is directly based on NewtonScript. IO features an ABCL-like concurrency
model as well. Using special annotations, messages to objects can be sent syn-
chronously, “purely” asynchronously or asynchronously with transparant futures
as in ChitChat. Like Pico and Pic%, IO features a reflection model based on
modifiable trees instead of bytecodes.

Although IO needs much more work, the website lists a number of speculative
features the designers want to see added in the near future. They list such things
as “multi-state (multiple independent VMs can run in the same application)”.
Although it is not further specified what this means precisely, we believe it
endorses ChitChat’s vision of structural sharing of objects between different
machines.

10.2.3 E

A language that only recently came to our attention but deserves some more
consideration is the E language designed by Mark Miller [MMF01]. The simi-
larities, particularly in vision, between E and ChitChat are striking. However,
while ChitChat is the result of object-oriented language designers applying their

242

ideas in the context of (insecure) open networks, E is the result of security spe-
cialists trying to get the best out of the object-oriented paradigm.

Both E and Pico (and thus also Pic% and ChitChat) have readability and
palatability for people acquainted with C-like syntax as explicit goals. Therefore
a lot of effort was spent on the design of a conventional syntax in E as well.

Both languages endorse the extreme encapsulation principle. In E this prin-
ciple is covered by the motto “do not add security — remove insecurity”. The
result is a language in which objects are considered as fully encapsulated dictio-
naries mapping names to attributes. Inheritance is — like in Pic% — accom-
plished by a combination of lexical scoping, methods and reified environments.
Shared parents in E are used to communicate secret data between objects. An
illustrative example of this in E is the creation of purse objects that carry around
digital money. In order for money to have a value all purses should share the
same value system (otherwise purse objects can be created or copied without a
central authority, rendering it worthless) called a mint. In E the purses have
the mint as a shared parent.

For concurrency and distribution, E features an asynchronous message pass-
ing operator (known as the “eventually” operator in E) that returns promises,
just like in ABCL or ChitChat. However, E’s promises are not transparant
and a “when promise do action” construct is needed to specify what will hap-
pen upon fulfilling a promise. This can actually be considered a bit closer to
the original actor paradigm than ChitChat’s transparant promises because the
“when do” construct resembles a continuation very much. However, E allows
one to wrap this construct in an object that intercepts all messages until the
promise is fulfilled.

Another resemblance between ChitChat and E that is very fundamental is
that both languages are experiments which leave the “standard” track that
objects are to be the unit of distribution. Although their mechanisms to do so
differ strongly, the goals are the same: to make distributed objects share part
of their internal structure with other objects. This is in sharp contrast to other
proposals where distributed entities only contain references to a shared party in
a way such that they both have to communicate through message passing with
that party. In ChitChat this structural sharing over a network is accomplished
by promoting objects to be shared parents of distributed objects. In E, shared
objects can form an “Unum” so that they share a single replicated state that is
kept consistent over the network.

10.3 Shortcomings and Future Work

Research is never finished and neither is the one presented in this dissertation.
In the very last section of the dissertation, we list a number of topics for further
investigation and for perfectioning the ChitChat model. Section 10.3.2 presents
some pretty open-ended topics that will require considerable redesigning of the
model. Before doing so, we first enumerate a number of shortcomings and design
mistakes in the model as presented in this dissertation.

243

10.3.1 Shortcomings and Design Mistakes

A number of language features that are considered indispensible for
any modern programming language still have to be added to the model, and
their interaction with the existing features will need some investigation. E.g.
in the model presented so far, no attention was given to features such as in-
trospection, elementary meta-programming and standard C++-like exception
handling. Their interactions have to be investigated with the rest of the model.

As explained in section 8.4.5, the interleaving of super and self references
using the asuper(...) and athis(...) scope functions pretty easily leads
to deadlock especially for calls to the scope functions that are not in a tail
position. This definitely needs further attention in order to make the model
practically applicable.

It was explained both in chapter 8 and in chapter 9 that copying passive
object structures every time they cross network boundaries is problematic.
The problem manifests itself when passive object structures are used as argu-
ments or results in combination with remote method invocations. This was also
deemed problematic in chapter 9 in the case that two active objects sharing a
passive one and that one of those active objects is moved across the network. In
that case, the passive structures are duplicated because of the copy semantics.
A possible solution to this problem is to preclude passive data from leaving
the active object in which it was created, neither as an argument of a mes-
sage sent nor as the result of answering a message sent. This way, all active
objects would contain “their” passive data structures and sharing passive data
structures between active objects always yields an error.

As explained at the end of chapter 8, ChitChat object structures arising
from combining active and passive hierarchies as depicted in figure 8.4 are not
always easy to understand. Proof of this is the complexity of the runtime
context functions as defined in table 8.1. We hope to simplify this model in
future iterations over the language. The route to a solution will probably consist
of completely uncoupling the creation of active objects and passive objects and
consider them as two totally different objects that should not be confused in
successive view and active view applications. The current complexity actually
stems from the fact that we originally started our research with the goal of
mixing active and passive objects freely, both in containment relationships as
well as in delegation relationships.

Finally, something that we experience as a shortcoming is the lack of expe-
rience in deeply exploring the program design space that is delimited by
the interaction of ChitChat’s features. Although we already found some elegant
applications of the presented features and some nice patterns arising from com-
bining first class methods and move (or visit) methods (e.g. the swarm pattern
and the component wiring pattern) and combining ChitChat’s exotic parame-
ter passing mechanism with visit methods (e.g. the local algorithm execution
pattern), we feel that there is more potential to the model and that was not
systematically studied. Questions that fully explore the design space such as
“what can be accomplished by invoking a cloning method by a self-send from

244

within a visit method” have been left unanswered. We definitely feel the need
to write bigger programs in ChitChat in order for more patterns and useful
combinations to arise.

10.3.2 Future Work

The previous sections have presented some shortcomings of the model presented
in this dissertation as well as some “local” extensions needed by the model, that
will probably not interfere too much with the existing features. This section
presents some more challenging issues in order to yield a production language
for AmI.

As was already mentioned several times, partial failure — the idea that
part of a system goes down while the rest keeps on performing useful com-
putations — is one of the issues that distinguishes distributed systems from
“ordinary” concurrent ones. Although the mobility model of ChitChat offers
some help for anticipated partial failures, the real crux is unanticipated partial
failure. This is already highly problematic in “ordinary distributed systems”
but gets especially daunting in our research context of open distribution. The
notion of partial failure is related to the notion of disconnected operation,
i.e., the ability of a part of a distributed system to continue functioning even
though the connections it needs (and more importantly, the parties on the other
side of those connections) are temporarily broken. In open networks this will
be the rule rather than the exception as devices can enter and leave the pro-
cessor cloud at unforeseen times. We currently envision two possible research
tracks to tackle these problems. The first one is currently being investigated
by other members of our lab [DV04] [DDV03]. It basically consists of imple-
menting “rubberband” pointers over a network using connectionless actors
at lower levels. The actors are equipped with ingoing and outgoing mailboxes
and (re)joining a network gives rise to messages being sent to those mailboxes
which allows the system to (re)establish connections. This “connectionless sys-
tem level technology” will be used to support the connection-oriented features
presented in this dissertation. Another track that we plan to look at is the
field of reversible computations. Examples of the latter currently exist in
monadic form in functional programming, a track we already explored shortly
in [De 97].

If we consider prototype-based programming as combining objects by means
of “has-a” links (i.e., objects containing other objects) and “is-a” links (i.e.,
objects delegating to other objects) then ChitChat is an experiment that tries
to learn from the consequences of distributing the is-a link over different nodes
in a network. An interesting research track that is orthogonal to the research
presented here is to distribute the “has-a” link as well. This way different
objects could share the same instance variables, much in the spirit of class
(a.k.a. static) variables, but made explicit instead of being hidden by language
machinery. This could give rise to distributed cloning families; objects
that are idiosyncratic entities but which share static variables over a network.
Replication machinery is responsible for keeping those static variables consistent

245

and meta programming could be adopted to adjust the replication machinery
to the needs of particular applications.

The idea of a processor cloud can also be adopted to the level of the pro-
gramming language in the incarnation of what we have called multivalues in
[DDD03a]. Multivalues are many values and performing operations on a multi-
value asynchronously performs the operation on every value in the multivalue.
The result of performing an operation on a multivalue is a multivalue of re-
sults. Multivalues are close to the array programming features recently added
to Smalltalk [MD03]. Adding such an algebra to a programming language could
prove extremely useful to model sensors whose values constantly change due
to mobile hardware. First class methods could be used to be attached to a
“smell variable” whose multivalue changes constantly. The first class method is
invoked on every value produced by that variable.

Finally, the move and visit methods proposal is just the tip of the iceberg.
We have clearly formulated our vision that bluntly moving objects is harmful but
we have also clearly stated that move methods and visit methods are but a first
technical proposal in the direction of structured mobility. On the one hand
we need much more experience to understand fully the implications of this kind
of mechanisms. On the other hand, the mechanism itself needs more work. For
example, at the end of chapter 9 we explained that race conditions might occur
when two move methods execute simultaneously leaving some objects of the
delegation chain on one machine and others on another. This might indicate
that structured mobility will require more inter-machine constructions in the
spirit of ChitChat’s shared parent techniques. We therefore have the impression
of having only scratched the surface of an exciting new field of research.

246

Appendix A

Pic% Semantics

This is not a formal definition of Pic%, but rather a highly structured informal
definition. For reasons of readability we assume a meta formalism with mutable
state instead of passing on explicit state parameters with every function as
would be the case in a full-fledged denotational description. Many equations
are written with superscript C. This is a context parameter that refers to scope
pointers at all times. We decided not to pass this as an explicit argument
purely for esthetic reasons. It would — in our opinion — have cluttered up the
equations and made them less readable.

Concerning Pic%, we limit ourselves to the core language and do not give
semantics for:

• super sends.

• multidimensional tables.

• quoting and meta provisions.

• operator definitions and usage.

• multiple and variable argument functions and the apply operator.

• first-class continuations

• apart from this() and super(), no natives are treated

Super sends are easily added by passing along an extra argument in the
context. This is not an essential feature but merely makes the denotations
harder to read, especially the DOC equations given below. The semantics of
first-class continuations is far beyond the goal of our dissertation. It makes
the denotations needlessly unreadable and can be found back in nearly every
introductory text on denotational semantics.

247

A.1 Values and Abstract Grammar

The following shows tagged elements of the abstract grammar and tagged val-
ues. We use subscript notation for selecting subexpressions. For example, the
components of a frm ∈ FRM are selected as frmcst, frmvar and frmnxt.
The names of the “fields” that we use in the subscript can be derived from the
second column.

Name Tagged Value Set
Basic Values SLF
Number nbr(n), n ∈ N NBR
Fraction frc(f), f ∈ R FRC
Text txt(s), s ∈ String TXT
Table tab(a), a ∈ Array TAB
Void voi VOI
Expressions EXP
Reference ref(nam) REF ≈ ref(NAM)
Tabulation tbl(exp, idx) TBL ≈ tbl(EXP,EXP)
Application apl(exp, arg) APL ≈ apl(EXP,EXP)
Message msg(exp, inv) MSG ≈ msg(EXP, INV)
Definition def(inv, exp) DEF ≈ def(INV,EXP)
Declaration dcl(inv, exp) DCL ≈ dcl(INV,EXP)
Assignment ass(inv, exp) ASS ≈ ass(INV,EXP)
Attributes ATT
Function fun(nam, arg, bdy) FUN ≈ fun(NAM,EXP,EXP)
View viw(nam, arg, bdy) VIW ≈ viw(NAM,EXP,EXP)
Cloning cln(nam, arg, bdy) CLN ≈ cln(NAM,EXP,EXP)
Native nat(idx) NAT
Objects
Closure clo(att, cur, ths) CLO ≈ clo(ATT,FRM,FRM)
Binding bnd(nam, val, nxt) BND ≈ bnd(NAM,VAL,BND)
Frame frm(cst, var, nxt) FRM ≈ frm(BND,BND,FRM)
Context ctx(cur, ths) CTX ≈ ctx(FRM,FRM)
INV ≡ REF ∪TBL ∪APL (invocations)
EXP ≡ INV ∪MSG ∪DEF ∪DCL ∪ASS (expression)
ATT ≡ FUN ∪VIW ∪CLN ∪NAT (attributes)

SLF ≡ NBR ∪ FRC ∪TXT ∪VOI ∪TAB (self evaluating)
VAL ≡ SLF ∪CLO ∪ FRM (values)

AGR ≡ SLF ∪EXP ∪ATT ∪VAL (abstract grammar)

248

A.2 Dictionary Structures

newFrm : FRM → FRM
newFrm(frm) ≡ frm(voi, voi, frm)

addV ar : FRM×NAM×VAL → VAL
addV ar(frm, nam, val)

≡
{

error if getAny(frm, nam) 6= voi
{frmvar := bnd(nam, val, frmvar); val} otherwise

addCst : FRM×NAM×VAL → VAL
addCst(frm, nam, val)

≡
{

error if getAny(frm, nam) 6= voi
{frmcst := bnd(nam, val, frmcst); val} otherwise

setBnd : BND×NAM×VAL → VAL

setBnd(bnd, nam, val) ≡

 error if bnd = voi
{bndval := val; val} if bndnam = nam

setBnd(bndnxt, nam, val) otherwise

setV ar : FRM×NAM×VAL → VAL
setV ar(voi, nam, val) ≡ error
setV ar(frm, nam, val) ≡ let v = setBnd(frmvar, nam, val) in{

setV ar(frmnxt, nam) if v = error
v otherwise

getBnd : BND×NAM → VAL
getBnd(voi, nam) ≡ voi

getBnd(bnd, nam) ≡
{

bndval if bndnam = nam
getBnd(bndnxt, nam) otherwise

getCst : FRM×NAM× FRM → VAL
getCst(voi, nam, slf) ≡ voi
getCst(frm, nam, slf) ≡ let v = getBnd(frmcst, nam) in{

close(v, frm, slf) if v 6= voi
getCst(frmnxt, nam, slf) if bndnam = nam

getAny : FRM×NAM → VAL
getAny(voi, nam) ≡ voi
getAny(frm, nam) ≡ let v = getBnd(frmcst, nam) in

v if v 6= voi
let v = getBnd(frmvar, nam) in{

v if v 6= voi
getAny(frmnxt, nam) otherwise

}
otherwise

249

A.2.1 Tables

makTabC(nbr, exp) ≡ tab([EV ALC(exp1), . . . , EV ALC(expnbr)])
getTab(tab, nbr) ≡ tab[nbr]

setTab(tab, nbr, val) ≡ {tab[nbr] := val; tab}

A.2.2 Closure Creation

close : AGR× FRM× FRM → AGR

close(v, cur, slf) ≡
{

clo(v, cur, slf) if v ∈ FUN ∪VIW ∪CLN ∪NAT
v otherwise

A.2.3 Argument Binding

bindC : FRM× INV ×EXP → VAL
bindC(frm, nam, exp)
≡ addV ar(newFrm(frm), nam, EV ALC(exp))

bindC(frm, nam(nam′), exp)
≡ addV ar(newFrm(frm), nam, close(fun(nam, nam′, exp), Ccur, Cths))

A.2.4 Cloning

The cloning operator clones a list of frames from from to to, to not included.
The idea is that the original and the clone share the same parent.

clone : FRM× FRM → FRM
clone(from, from) ≡ from
clone(from, to) ≡ frm(fromcst, copy(fromvar), clone(fromnxt, to))

copy : BND → BND
copy(voi) ≡ voi
copy(bnd(nam, val, bnd)) ≡ bnd(nam, val, copy(bnd))

A.3 Evaluation Rules

EV ALC : EXP → V AL
EV ALC(slf) ≡ slf

EV ALC(def(ref(nam), exp)) ≡ addV ar(Ccur, nam, EV ALC(exp))

250

EV ALC(def(tbl(nam, idx), exp)) ≡ addV ar(Ccur, nam, makTabC(EV ALC(idx), exp))
EV ALC(def(apl(nam, arg), exp)) ≡ close(addV ar(Ccur, nam, fun(nam, arg, exp)), Cths)

EV ALC(dcl(ref(nam), exp)) ≡ addCst(Ccur, nam, EV ALC(exp))
EV ALC(dcl(tbl(nam, idx), exp)) ≡ addCst(Ccur, nam, makTabC(EV ALC(idx), exp))
EV ALC(dcl(apl(nam, arg), exp)) ≡ close(addCst(Ccur, nam, fun(nam, arg, exp)), Cths)

EV ALC(set(ref(nam), exp)) ≡ setV ar(Ccur, nam, EV ALC(exp))
EV ALC(set(tbl(nam, idx), exp)) ≡ setTab(getAny(Ccur, nam), EV ALC(idx), EV ALC(exp))
EV ALC(set(apl(nam, arg), exp)) ≡ close(setV ar(Ccur, nam, fun(nam, arg, exp)), Cths)

EV ALC(ref(nam)) ≡ close(getAny(Ccur, nam), Ccur, Cths)
EV ALC(apl(exp, arg)) ≡ DOC(EV ALC(exp), arg)
EV ALC(tbl(exp, idx)) ≡ getTab(EV ALC(exp), EV ALC(idx))

EV ALC(msg(exp, inv)) ≡ SENDC(EV ALC(exp), inv)

A.4 Do (= apply) and Send

Application takes a closure and an argument expression. Depending on the type
of closure (ordinary method, view method,...) the appropriate action is taken.

DOC : CLO×EXP → VAL

DOC(clo(fun(nam, arg, bdy), cur, ths), exp) ≡ EV ALC′
(bdy) where{

C ′
cur ≡ bindC(cur, arg, exp)

C ′
ths ≡ ths

DOC(clo(viw(nam, arg, bdy), cur, ths), exp) ≡ EV ALC′
(bdy) where{

C ′
cur ≡ bindC(cur, arg, exp)

C ′
ths ≡ newFrm(ths)

DOC(clo(cln(nam, arg, bdy), cur, ths), exp) ≡ EV ALC′
(bdy) where

let

 lst = clone(ths, curnxt)
cur′ = last(lst)
ths′ = first(lst)

in

{
C ′

cur ≡ bindC(cur′, arg, exp)
C ′

ths ≡ ths′

DOC(clo(nat(super, ε), cur, ths), exp) ≡ curnxt

DOC(clo(nat(this, ε), cur, ths), exp) ≡ ths

Here is the message passing operator. getCst is the delegation operator. It
looks in the receiver and takes a third parameter which is “the current self” (in
the first call of getCst this is the receiver itself of course).

251

SENDC : FRM× INV → VAL

SENDC(obj, ref(nam)) ≡ getCst(obj, nam, obj)
SENDC(obj, fun(nam, arg)) ≡ DOC(getCst(obj, nam, obj), arg)
SENDC(obj, tbl(nam, exp)) ≡ getTab(getCst(obj, nam, obj), EV ALC(exp))

252

Appendix B

ChitChat Semantics

This appendix presents the semantics of ChitChat. This is not a formal descrip-
tion but rather a highly structured semi-formal treatment that can be used as
a guide to implement the language. The meta language we use assumes many
constructions that are not accepted by “real” denotational semantics. For ex-
ample, the concurrency part is covered by a construction ∞(exp) which creates
a new thread that executes exp eternally. Synchronization between such “meta
threads” is denoted by � exp �. Whenever such an expression occurs on the
right hand side of a semantic equation it means that that equation acquires
a lock on exp and therefore has to wait if another semantic equation is deal-
ing with the value of exp at that time. Moreover, just as in the semantics of
appendix A, we assume the existence of a meta language with assignment.

The semantics of ChitChat is based on the semantics of Pic%. One of the
big differences is the distinction between active and passive objects OBJ ≡
ACT∪PAS and the distribution giving rise to local active objects and remote
active objects ACT ≡ LAO ∪RAO.

In the semantics we use Greek letters to indicate locations on the network
and we subscript data values and functions to indicate clearly at which node the
data resides and and which node the function is executing. So laoπ(..., ..., ..., ...)
is a local active object on node π. Futhermore, getCstπ(..., ..., ...) is the imple-
mentation of getCst on machine π that will be running.

For the sake of simplicity we have chosen to model move methods but leave
out visit methods. Furthermore, the same restrictions for ChitChat hold as
those for the semantics of appendix A: we model no mixins, no first class con-
tinuations, etc. Also call with current promise, the basis of all behavioural
synchronization is not treated. Giving a credible semantics to these language
features would require us to look at the denotational semantics of concurrent
programming languages. This is a hard topic that cannot be relegated to an ap-
pendix. Combined with the mobility features, it is probably worth a dissertation
by itself.

253

B.1 Abstract Grammar and Values

Name Tagged Value Set
Basic Values SLF
...
Promise proπ PRO
Expressions EXP
Reference refπ(nam) REF ≈ ref(NAM)
Tabulation tblπ(exp, idx) TBL ≈ tbl(EXP,EXP)
Application aplπ(exp, arg) APL ≈ apl(EXP,EXP)
Message msgπ(exp, inv) MSG ≈ msg(EXP, INV)
Definition defπ(inv, exp) DEF ≈ def(INV,EXP)
Declaration dclπ(inv, exp) DCL ≈ dcl(INV,EXP)
Assignment assπ(inv, exp) ASS ≈ ass(INV,EXP)
Attributes ATT
Function funπ(nam, arg, bdy) FUN ≈ fun(NAM,EXP,EXP)
View viwπ(nam, arg, bdy) VIW ≈ viw(NAM,EXP,EXP)
Cloning clnπ(nam, arg, bdy) CLN ≈ cln(NAM,EXP,EXP)
Active View avwπ(nam, arg, bdy) AVW ≈ avw(NAM,EXP,EXP)
Move Method movπ(nam, arg, bdy) MOV ≈ mov(NAM,EXP,EXP)
Native natπ(idx) NAT
Objects
Pas. Closure pclπ(att, cur, ths) PCL ≈ pcl(ATT,FRM,PAS)
Act.. Closure aclπ(att, cur, ths) ACL ≈ acl(ATT,ACT,ACT)
Binding bndπ(nam, val, nxt) BND ≈ bnd(NAM,VAL,BND)
Frame frmπ(cst, var, nxt) FRM ≈ frm(BND,BND,NXT)
Pas. Obj. pasπ(cst, var, nxt) PAS ≈ pas(BND,BND,NXT)
Local Act. Obj. laoπ(pas, que, thr, nxt) LAO ≈ lao(PAS,que, thr,ACT)
Rem. Act. Obj. raoπ(idtπ

′
) RAO

Remote actual objects are represented as a “wrapper” around an identity
that refers to an object on another machine: rao(idtπ

′
).

CTX ≡ ctx(FRM,PAS,ACT,ACT) (contexts)
INV ≡ REF ∪TBL ∪APL (invocations)
EXP ≡ INV ∪MSG ∪DEF ∪DCL ∪ASS (expression)
ATT ≡ FUN ∪VIW ∪CLN ∪AVW ∪MOV ∪NAT (attributes)

ACT ≡ LAO ∪RAO (active object)
OBJ ≡ ACT ∪PAS (objects)
NXT ≡ FRM ∪PAS
CLO ≡ ACL ∪PCL (closures)
SLF ≡ NBR ∪ FRC ∪TXT ∪VOI ∪PRO ∪TAB (self evaluating)
VAL ≡ SLF ∪CLO ∪OBJ (values)

AGR ≡ VAL ∪ INV ∪EXP ∪TAB∪
ATT ∪DCT ∪BND ∪CTX (abs. gram.)

254

B.2 Local and Remote Active Objects

An active object at location π has its own passive object pas, a queue que, an
infinite thread thr and a next pointer nxt. The queue contains 6-tuples consist-
ing of the active current in which the message was found acu, the active this
to which the message was sent ats, the sender of the message sdr, the frame
holding formals and actuals frm, the attribute (i.e., method) that was found
att and the promise that has to be fulfilled when the attribute is evaluated pro.
The thread thr infinitely serves requests from the queue and fulfills the associ-
ated promises by running the attribute appropriately. During evaluation of the
method, the passive part is locked so that there is no intra-object concurrency
in case another party refers to that part (maybe a local extension).

laoπ(pas, que = (acu, ats, sdr, frm, att, pro)⊕ que′, thr), nxt) where

thr = ∞

1. C = ctx(frm,� pas �, acu, ats)
2. val = RUNC

π (att, sdr)
3. fulfill(pro, val)
4. que := que′

We assume that newActπ(pas, nxt) creates a new active object with an empty
queue and thread. Optionally an existing queue can be passed (notably af-
ter moving an existing object) such that newActπ(pas, que, nxt) creates a new
active object with an existing queue.

If laoπ is a local active object on machine π, then

idtπ = getIdtπ(laoπ)

is the identity for the object. On different occasions and different times, always
the same identity for the object is returned, even though the object might have
travelled across network boundaries.

resolveπ(idtπ) = laoπ

resolveπ(idtπ
′
) = raoπ(idtπ

′
)

The location of an object is absolute:

loc(laoπ) = π

loc(roaπ(idtδ) = δ

ENQC
π puts a request in the queue of a designated local or remote active

object. The first parameter is the object. An active this pointer ats is provided,

255

a sender sdr, a frame frm containing the formals-actuals bindings and the
attribute (i.e., a method) att to be evaluated. The frame already contains the
evaluated bindings (in the case of normal parameters, and otherwise a reference
to the correct dictionary). This is because the queue proceeds asynchronously
and the parameters might get used when the dictionary valid at message sending
time might already have changed. If the queue is on a remote machine then a
network referencing of all the constituents is made to that machine using ∼δ

π.
The subscript of this operator is the destination machine. (i.e., from δ to π
in the case of ∼δ

π). This ∼δ
π copies passive parts but uses references for active

parts.

ENQπ : ACTπ ×ACTπ ×ACTπ × FRMπ ×ATTπ → PROπ

ENQπ(laoπ(pas, que, thr, nxt), ats, sdr, frm, att)

≡

 1. pro = newPromise()
2. que := que⊕ (laoπ, ats, sdr, frm, att, pro)
3. pro

ENQπ(raoπ(idtπ

′
), ats, sdr, frm, att)

≡∼π′

π (ENQπ′(resolveπ′(idtπ
′
),∼π

π′ (ats),∼π
π′ (sdr),∼π

π′ (frm),∼π
π′ (bdy)))

We assume a meta language in which an operator BECOME on active
objects exists. Unfortunately this function is not mathematically specifiable
without drastically changing the model to manually pass around states. Become
replaces all references to one object by another object.

BECOMEπ : ACTπ ×ACTπ → ACTπ

B.3 Tables

makTabC
π (nbr, exp) ≡ tabπ[EV ALC

π (exp1), . . . , EV ALC
π (expnbr)]

getTabπ(tab, nbr) ≡ tab[nbr]
setTabπ(tab, nbr, val) ≡ {tab[nbr] := val; tab}

B.4 Cloning and Remote Cloning

Just as for Pic%, cloneπ makes a clone of its first argument which is a list of
objects. The second argument is the end of that list. This will not be cloned
such that the original list and the clone share the same parent.

copyπ : BNDπ → BNDπ

copyπ(voi) ≡ voi
copyπ(bndπ(nam, val, nxt)) ≡ bndπ(nam, val, copyπ(nxt))

256

cloneπ : FRMπ × FRMπ → FRMπ

cloneπ(from, from) ≡ from
cloneπ(from, to) ≡ frmπ(fromcst, copyπ(� fromvar �), cloneπ(fromnxt, to))
cloneπ : ACTπ ×ACTδ → ACTδ

cloneπ(from, from) ≡ from
cloneπ(laoπ(pas, que, thr, nxt), to) ≡ newActπ(cloneπ(pas), cloneπ(nxt, to))
cloneπ(raoπ(idtπ

′
)) ≡ resolveπ(getIdxπ′(cloneπ′(resolveπ′(idtπ

′
))))

copyπ(voi) ≡ voi

B.5 Network Referring

This is what happens when values from node π are by reference passed through
a wire to node δ. It basically means that active objects are transfered as a
remote reference. All the rest is copied. It is assumed that this copy-process is
sensitive to cycles in the sense that it correctly copies cyclic graphs.

∼π
δ : AGRπ → AGRδ

∼π
δ (slfπ) ≡ slfδ

∼π
δ (refπ(nam)) ≡ refδ(nam)

∼π
δ (tblπ(exp, idx)) ≡ tblδ(∼π

δ (exp),∼π
δ (idx))

∼π
δ (aplπ(exp, arg)) ≡ aplδ(∼π

δ (exp),∼π
δ (arg))

∼π
δ (msgπ(exp, inv)) ≡ msgπ

δ (∼δ (exp),∼π
δ (inv))

∼π
δ (defπ(inv, exp)) ≡ defδ(∼π

δ (inv),∼π
δ (exp))

∼π
δ (dclπ(inv, exp)) ≡ dclδ(∼π

δ (inv),∼π
δ (exp))

∼π
δ (assπ(inv, exp)) ≡ assδ(∼π

δ (inv),∼π
δ (exp))

∼π
δ (funπ(nam, arg, arg)) ≡ funδ(nam,∼π

δ (arg), ∼π
δ (arg))

∼π
δ (viwπ(nam, arg, arg)) ≡ viwδ(nam,∼π

δ (arg), ∼π
δ (arg))

∼π
δ (clnπ(nam, arg, arg)) ≡ clnδ(nam,∼π

δ (arg), ∼π
δ (arg))

∼π
δ (avwπ(nam, arg, arg)) ≡ avwδ(nam,∼π

δ (arg), ∼π
δ (arg))

∼π
δ (movπ(nam, arg, arg)) ≡ movδ(nam,∼π

δ (arg), ∼π
δ (arg))

∼π
δ (natπ(idx)) ≡ natδ(idx)

∼π
δ (pclπ(att, frm, pas)) ≡ pclδ(∼π

δ (att),∼π
δ (frm), ∼π

δ (pas))
∼π

δ (aclπ(att, aob1, aob2)) ≡ aclδ(∼π
δ (att), ∼π

δ (aob1),∼π
δ (aob2))

∼π
δ (bndπ(nam, val, nxt)) ≡ bndδ(∼π

δ (nam), ∼π
δ (val),∼π

δ (nxt))
∼π

δ (frmπ(bnd, bnd, frm)) ≡ frmδ(∼π
δ (bnd),∼π

δ (bnd),∼π
δ (frm))

∼π
δ ((acu, ats, sdr, frm, att, pro)⊕ que) ≡ (∼π

δ (acu),∼π
δ (ats),

∼π
δ (sdr),∼π

δ (frm),∼π
δ (att),∼π

δ (pro))
⊕ ∼π

δ (que)
∼π

δ (pasπ(bnd, bnd, frm)) ≡� pas �δ (∼π
δ (bnd), ∼π

δ (bnd),∼π
δ (frm))

∼π
δ (laoπ(pas, que, thr, aob)) ≡ resolveδ(getIdxπ(laoπ(pas, que, thr, aob)))

∼π
δ (raoπ(idtγ)) ≡ resolveδ(idtγ)

257

B.6 Move Semantics

Here is how an object chain starting at machine π and terminating at machine
π′ is moved to machine δ, the last object not included (this is the super of a
move method typically).

≈π
δ : AOBπ ×AOBπ′ → AOBδ

≈π
π (from, from)
≡ from

≈π
π (laoπ(pas, que, thr, nxt), to)
≡ laoπ(pas, que, thr,≈π

π (nxt, to))
≈π

δ (raoπ(idtγ)
≡≈γ

δ (resolveγ(idtγ))
≈π

δ (laoπ(pas, que, thr, nxt), to)

≡

1. objδ ≡ newActδ(∼π

δ (pas),∼π
δ (que),≈π

δ (nxt, to))
2. idtπ = getIdtπ(laoπ(pas, que, thr, nxt)))
3. idtδ = getIdtδ(objδ)
4. ∀ρ | idtπ ∈ resolveρ :

resolveρ(idtπ).BECOMEρ(raoρ(idtδ))
5. laoπ(pas, que, thr, nxt).BECOMEπ(raoπ(idtδ))

B.7 Dictionary Structures

newFrmπ : FRMπ → FRMπ

newFrmπ(frm) ≡ frmπ(voi, voi, frm)

addV arπ : FRMπ ×NAM×VALπ → VALπ

addV arπ(frm, nam, val)

≡
{

error if getAnyπ(frm, nam) 6= voi
{frmvar := bndπ(nam, val, frmvar); val} otherwise

addCstπ : FRMπ ×NAM×VALπ → VALπ

addCstπ(frm, nam, val)

≡
{

error if getAnyπ(frm, nam) 6= voi
{frmcst := bndπ(nam, val, frmcst); val} otherwise

setBndπ : BNDπ ×NAM×VALπ → VALπ

setBndπ(bnd, nam, val) ≡

 error if bnd = voi
{bndval := val; val} if bndvar = nam

setBndπ(bndnxt, nam, val) otherwise

258

setV arπ : FRMπ ×NAM×VALπ → VALπ

setV arπ(voi, nam, val) ≡ error
setV arπ(frm, nam, val) ≡ let v = setBndπ(frmvar, nam, val) in{

setV arπ(frmnxt, nam) if v = error
v otherwise

There is a difference between frames and objects in ChitChat. Frames can
be attached to objects because of the scope rules. Therefore frames delegate the
lookup of both constants and variables. Objects never delegate variable access
to their super-objects automatically. Hence, objects don’t delegate variables.

getBndπ : BNDπ ×NAM → VALπ

getBndπ(voi, nam) ≡ voi

getBndπ(bnd, nam) ≡
{

bndval if bndvar = nam
getBndπ(bndnxt, nam) otherwise

getAnyπ : FRMπ ×NAM → VALπ

getAnyπ(voi, nam) ≡ voi
getAnyπ(frm, nam) ≡ let v = getBndπ(frmcst, nam) in

v if v 6= voi
let v = getBndπ(frmvar, nam) in{

v if v 6= voi
getAnyπ(frmnxt, nam) otherwise

}
otherwise

getAnyπ : PASπ ×NAM → VALπ

getAnyπ(voi, nam) ≡ voi
getAnyπ(frm, nam) ≡ let v = getBndπ(frmcst, nam) in{

v if v 6= voi
getBndπ(frmvar, nam) otherwise

getCstπ : (FRMπ ∪PASπ)×NAM×PASπ → VALπ

getCstπ(voi, nam, slf)
≡ voi

getCstπ(frm, nam, slf)
≡ let v = getBndπ(frmcst, nam) in{

closePπ(v, frm, slf) if v 6= voi
getCstπ(frmnxt, nam, slf) if bndvar = nam

getCstπ : ACTπ ×NAM×ACTπ → VALπ

getCstπ(voi, nam, slf)
≡ error

getCstπ(laoπ(pob, que, thr, nxt), nam, slf)
≡ let (v, cur, ths) = getCstπ(pob, nam, pob) in{
closeAπ(v, laoπ(pob, que, thr, nxt), slf) if v 6= voi
getCstπ(nxt, nam, slf) otherwise

getCstπ(raoπ(idtπ
′
), nam, slf)

259

≡∼π′

π (getCstπ′(resolveπ′(idtπ
′
)), nam,∼π

π′ (slf)))

B.8 Evaluation Rules

EV ALC
π : EXPπ → VALπ

EV ALC
π (slf)

≡ slf

EV ALC
π (def(ref(nam), exp))

≡ addV arπ(Ccur, nam, EV ALC
π (exp))

EV ALC
π (def(tbl(nam, idx), exp))

≡ addV arπ(Ccur(nam,makTabC
π (EV ALC

π (idx), exp)))
EV ALC

π (def(apl(nam, arg), exp))
≡ closePπ(addV arπ(Ccur, nam, fun(nam, arg, exp)), Ccur, Cths)

EV ALC
π (dcl(ref(nam), exp))

≡ addCstπ(Ccur, nam, EV ALC
π (exp))

EV ALC
π (dcl(tbl(nam, idx), exp))

≡ addCstπ(Ccur(nam,makTabC
π (EV ALC

π (idx), exp)))
EV ALC

π (dcl(apl(nam, arg), exp))
≡ closePπ(addCstπ(Ccur, nam, fun(nam, arg, exp))Ccur, Cths)

EV ALC
π (set(ref(nam), exp))

≡ setV arπ(Ccur, nam, EV ALC
π (exp))

EV ALC
π (set(tbl(nam, idx), exp))

≡ setTabπ(getAnyπ(Ccur, nam), EV ALC
π (idx), EV ALC

π (exp))
EV ALC

π (set(apl(nam, arg), exp))
≡ closePπ(setV arπ(Ccur, nam, fun(nam, arg, exp))Ccur, Cths)

EV ALC
π (ref(nam)

≡ closePπ(getAnyπ(Ccur, nam), Ccur, Cths)
EV ALC

π (apl(exp, arg))
≡ DOC

π (EV ALC
π (exp), arg)

EV ALC
π (tbl(exp, idx))

≡ getTabπ(EV ALC
π (exp), EV ALC

π (idx))

EV ALC
π (msg(exp, inv))

≡ SENDC
π (EV ALC

π (exp), inv)

260

B.9 Closures and Bindings

bindC
π : FRMπ × INVπ ×EXPπ → VALπ

bindC
π (frm, nam, exp)

≡ addV arπ(newFrmπ(frm), nam, EV ALC
π (exp))

bindC
π (frm, nam(nam′), exp)

≡ addV arπ(newFrmπ(frm), nam, pclπ(fun(nam, nam′, exp), Ccur, Cths))

There are two types of closures: active closures and passive closures.

closePπ : AGRπ × FRMπ ×PASπ → AGRπ

closePπ(v, cur, slf) ≡
{

pclπ(v, cur, slf) if v ∈ ATTπ

v otherwise

closeAπ : AGRπ ×ACTπ ×ACTπ → AGRπ

closeAπ(v, cur, slf) ≡
{

aclπ(v, cur, slf) if v ∈ ATTπ

v otherwise

B.10 Apply and Send

B.10.1 Message Sending

SENDC
π : OBJπ × INVπ → VALπ

SENDC
π (obj, ref(nam)) ≡ getCstCπ (obj, nam, obj)

SENDC
π (obj, fun(nam, arg)) ≡ DOC

π (getCstCπ (obj, nam, obj), arg)
SENDC

π (obj, tbl(nam, exp)) ≡ getTabπ(getCstCπ (obj, nam), EV ALC
π (exp))

B.10.2 Passive Closure Invocation

DOC
π : CLO×EXP → VAL

DOC
π (pclπ(funπ(nam, arg, bdy), cur, ths), exp)

≡ EV ALC′

π (bdy) where

C ′

cur = bindC
π (� cur �, arg, exp)

C ′
ths = ths

C ′
acu = Cacu

C ′
ats = Cats

DOC
π (pclπ(viwπ(nam, arg, bdy), cur, ths), exp)

≡
(

1 EV ALC′

π (bdy)
2 C ′

cur

)
where

C ′

cur = bindC
π (� cur �, arg, exp)

C ′
ths = ths

C ′
acu = Cacu

C ′
ats = Cats

261

DOC
π (pclπ(clnπ(nam, arg, bdy), cur, ths), exp)

≡ EV ALC′

π (bdy) where let

 lst = cloneπ(ths, curnxt)
cur′ = last(lst)
ths′ = first(lst)

in

C ′

cur = bindC
π (� cur′ �, arg, exp)

C ′
ths = ths′

C ′
acu = Cacu

C ′
ats = Cats

DOC
π (pclπ(avwπ(nam, arg, bdy), cur, ths), exp)

≡ EV ALC′

π (bdy) where

C ′

cur = bindC
π (� cur �, arg, exp)

C ′
ths = C ′

cur

C ′
acu = newActπ(C ′

ths, Cats)
C ′

ats = C ′
acu

DOC
π (pclπ(movπ(nam, arg, bdy), cur, ths), exp)
≡ error

B.10.3 Active Closure Invocation (Pre-Queue)

DOC
π : CLO×EXP → VAL

DOC
π (aclπ(funπ(nam, arg, bdy), acu, ats), exp)

≡ pro where
{

frm = bindC
π (ε, arg, exp)

pro = ENQπ(acu, ats, Cacu, frm, funπ(nam, arg, bdy))

DOC
π (aclπ(clnπ(nam, arg, bdy), acu, ats), exp)

≡ pro where
{

frm = bindC
π (ε, arg, exp)

pro = ENQπ(acu, ats, Cacu, frm, clnπ(nam, arg, bdy))

DOC
π (aclπ(viwπ(nam, arg, bdy), acu, ats), exp)
≡ error

DOC
π (aclπ(avwπ(nam, arg, bdy), acu, ats), exp)

≡ EV ALC′

π (bdy) where

C ′

cur = bindC
π (ε, arg, exp)

C ′
ths = C ′

cur

C ′
acu = newActπ(C ′

ths, Cats)
C ′

ats = C ′
acu

DOC
π (aclπ(movπ(nam, arg, bdy), acu, ats), exp)

≡ pro

{
frm = bindC

π (ε, arg, exp)
pro = ENQπ(acu, ats, Cacu, frm,movπ(nam, arg, bdy))

262

B.10.4 Active Method Running (Post-Queue-Processing)

For some attributes such as active views, the interesting part happens before or
without scheduling a request in the queue of the corresponding active receiver.
However, for ordinary methods, cloning methods and move methods, the logic
of the method is executed after serving the method from the queue. This will
invoke RUNC

π .

RUNC
π : ATT×ACT → VAL

RUNC
π (funπ(nam, arg, bdy), sdr)

≡
(

1. Ccurnxt
:= Cacupas

2. EV ALC
π (bdy)

)
RUNC

π (clnπ(nam, arg, bdy), sdr)

≡

1. lst = copyloc(Cats)(Cats, Cacunxt)
2. C ′

acu = last(lst)
3. C ′

ats = first(lst)
4. Ccurnxt

:= C ′
acupas

5. C ′
cur = cloneπ(Ccur, voi)

6. C ′
ths = cloneπ(Cths, voi)

7. EV ALC′

π (bdy)

RUNC

π (movπ(nam, arg, bdy), sdr)

≡

1. ∆ = allLocationsFromTo(Cats, Cacu)
2. δ = loc(sdr)

3

voi if ∆ = {δ}

1. lst =≈loc(Cats)
loc(sdr) (� (Cats, Cacunxt

) �)
2. C ′

acu = last(lst)
3. C ′

ats = first(lst)
4. Ccurnxt

:= C ′
acupas

5. C ′
cur = Ccur

6. C ′
ths = Cths

7. EV ALC′

δ (bdy)

otherwise

RUNC

π (natπ(asuper, arg), sdr)
≡ EV ALC

π (arg)
RUNC

π (natπ(aths, arg), sdr)
≡ EV ALC

π (arg)

B.10.5 natives Invocation

DOC
π : CLO×EXP → VAL

DOC
π (aclπ(natπ(asuper, ε), acu, ats), exp)
≡ acunxt

263

DOC
π (aclπ(natπ(asuper, arg), acu, ats), exp)
≡ ENQπ(acunxt, ats, ats, acunxtpas , natπ(asuper, exp)

DOC
π (aclπ(natπ(super, ε), acu, ats), exp)
≡ acupasnextobj

DOC
π (aclπ(natπ(this, ε), acu, ats), exp)
≡ acupas

DOC
π (aclπ(natπ(athis, ε), acu, ats), exp)
≡ ats

DOC
π (aclπ(natπ(athis, arg), acu, ats), exp)
≡ ENQπ(ats, ats, acu, natπ(asuper, exp)

264

Index

ABCL, 148, 163
active objects, 144, 170, 177
actors, 143, 144
agent, 198, 203, 205, 207, 209, 213
Aglets, 203
Agora, 70, 76, 94
Algol, 8
Ambient Intelligence, 3, 4
applet, 200
apply, 102
Argus, 159, 163
Aristotle, 18
aspect-oriented programming, 150

block, 25
Borg, 207
broadcasting, 151, 183

call with current promise, 171
call-by-expression, 104
capabilities, 60
Church booleans, 26, 110
class loader, 43
class variables, 43, 44
cloning, 61, 206
cloning family, 33, 35, 38
cloning method, 36
cloning methods, 74, 81, 119, 129
comb inheritance, 30, 37, 50
computational context, 196
concatenation, 33, 35, 160
connectivity, 60, 183, 190, 212
continuation passing style, 149, 199
continuations, 109
cyclic graphs, 218

DAG, 218

delegation, 20, 21, 26, 48, 61, 130,
187

design patterns, 128, 223
dictionaries, 99, 105, 115

Emerald, 157, 162, 206
empathy, 38
encapsulation, 55, 56
ex-nihilo, 24
extension from the outside, 87, 122
extreme encapsulation, 56, 66, 233

first class methods, 117, 134, 135
full mobility, 198

generator, 52, 54, 67, 79
Granovetter, 60, 210, 212

inheritance anomaly, 142
invocation, 99

Java, 5, 8, 53, 117, 134, 152, 203
JavaScript, 23

Kevo, 23, 33, 38, 40

late binding of self, 21, 26, 53
Lieberman, 20

maps, 27
middleware, 150
mixin, 52
mixin methods, 67, 73, 74, 81, 119
mobility, 196, 198, 202
move, 205–207, 210
move methods, 215

name servers, 151

265

NewtonScript, 23, 28, 37, 40

Obliq, 152, 160, 164, 206
Omega, 23

parent, 24
parent sharing, 47, 74
partial failure, 156, 191
PDA, 202
Personal Area Network, 2, 4, 195
Pico, 96, 99
Plato, 18
promise, 146, 149, 160, 170
prototype, 19, 20, 38, 46, 114, 209
prototype-based, 54
proxy, 130, 152, 153, 187
pull technology, 208
push technology, 208

qualification, 105

race conditions, 142, 188, 190
receiverful messages, 95
receiverless messages, 71
reflection, 62, 82, 108, 143, 150, 153
reflection protection, 50, 56, 57, 62,

88
reifier messages, 71
remote method invocation, 154
remote objects, 151
replication, 156

safety, 58
Scheme, 7, 8, 76, 102
scope functions, 175
security, 43, 58, 209
Self, 22, 23, 37, 39, 117
semi-strong mobility, 197
slot, 30
slots, 24
Smalltalk, 7, 8, 53, 117, 142
swarms, 213, 227
synchronization, 144

tables, 100, 102
TeleScript, 205
template, 18, 38

threads, 144
traits, 27, 37, 48
Treaty of Orlando, 38, 90, 161

view methods, 73, 81, 119
visit methods, 223

weak mobility, 197
Wittgenstein, 18, 19, 33, 38

266

Bibliography

[ACFG01] B. Alpern, A. Cocchi, S. Fink, and D. Grove. Efficient implementa-
tion of Java interfaces: Invokeinterface considered harmless. In Pro-
ceedings of the 16th ACM SIGPLAN conference on Object oriented
programming, systems, languages, and applications, pages 108–124.
ACM Press, 2001.

[Agh86] G. Agha. Actors: a model of concurrent computation in distributed
systems. MIT Press, 1986.

[AL98] Y. Aridor and D. B. Lange. Agent design patterns: Elements of
agent application design. In Proceedings of the Second International
Conference on Autonomous Agents (Agents’98) in Minneapolis/St.
Paul, 1998.

[ARS97] A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A Language
for Resource-aware Mobile Programs. In J. Vitek and C. Tschudin,
editors, Mobile Object Systems: Towards the Programmable Inter-
net, volume 1222, pages 111–130. Springer-Verlag: Heidelberg, Ger-
many, 1997.

[AS85] H. Abelson and G. J. Sussman. Structure and Interpretation of
Computer Programs. MIT Press, Cambridge, MA, 1985.

[BC90] G. Bracha and W. Cook. Mixin-based inheritance. In Norman Mey-
rowitz, editor, Proceedings of the Conference on Object-Oriented
Programming: Systems, Languages, and Applications / Proceed-
ings of the European Conference on Object-Oriented Programming,
pages 303–311, Ottawa, Canada, 1990. ACM Press.

[BGL98] JP. Briot, R. Guerraoui, and KP. Lohr. Concurrency and distri-
bution in object-oriented programming. ACM Computing Surveys,
30(3):291–329, 1998.

[BHJL86] A. Black, N. Hutchinson, Eric Jul, and Henry Levy. Object struc-
ture in the emerald system. In Conference proceedings on Object-
oriented programming systems, languages and applications, pages
78–86. ACM Press, 1986.

267

[BHP03] S. Bouchenak, D. Hagimont, and N. De Palma. Efficient Java thread
serialization. In Proceedings of the 2nd international conference
on Principles and practice of programming in Java, pages 35–39.
Computer Science Press, Inc., 2003.

[BL92] G. Bracha and G. Lindstrom. Modularity meets inheritance. In
Proceedings of IEEE Computer Society International Conference
on Computer languages, 1992.

[Bla85] A.P. Black. The Eden programming language. Technical Report
85-09-01, Dept. of Computer Science, University of Washington,
1985.

[Bla94] G. Blashek. Object-Oriented Programming with Prototypes.
Springer-Verlag, 1994.

[Bla04] A. P. Black. Post-Javaism. IEEE Internet Computing, pages 93–96,
2004.

[BN02] L. Bettini and R. De Nicola. Translating strong mobility into weak
mobility. In Proceedings of the 5th International Conference on
Mobile Agents, pages 182–197. Springer-Verlag, 2002.

[BY87] J.P. Briot and A. Yonezawa. Inheritance and Synchronization in
Concurrent OOP. In J. Bézivin, J-M. Hullot, P. Cointe, and
H. Lieberman, editors, Proceedings of the ECOOP ’87 European
Conference on Object-oriented Programming, pages 32–40, Paris,
France, 1987. Springer Verlag.

[Car95] L. Cardelli. Obliq: A language with distributed scope. In Proc. of
the 22nd Annual ACM Symposium on Principles of Programming
Languages, pages 286–297, 1995.

[CDDS94] W. Codenie, K. De Hondt, T. D’Hondt, and P. Steyaert. Agora:
Message passing as a foundation for exploring OO language con-
cepts. SIGPLAN Notices, 29(12):48–57, 1994.

[CGPV96] G. Cugola, C. Ghezzi, G.P. Picco, and G. Vigna. A Character-
ization of Mobility and State Distribution in Mobile Code Lan-
guages. In M. Mühlaüser, editor, Proceedings of the First Workshop
on Mobile Object Systems, Special Issues in Object-Oriented Pro-
gramming: Workshop Reader of the 10th European Conference on
Object-Oriented Programming (ECOOP ’96), pages 309–318, Linz,
Austria, July 1996. dpunkt.

[Cla88] K. L. Clark. PARLOG and its applications. IEEE Trans. Softw.
Eng., 14(12):1792–1804, 1988.

[Coo89] W. Cook. A Denotational Semantics of Inheritance. PhD thesis,
Brown University, 1989.

268

[CP89] W. Cook and J. Palsberg. A denotational semantics of inheritance
and its correctness. In Conference proceedings on Object-oriented
programming systems, languages and applications, pages 433–443.
ACM Press, 1989.

[CR93] D. Caromel and M. Rebuffel. Object based concurrency: Ten
language features to achieve reuse. In R. Ege, M. Singh, and
B. Meyer, editors, Proceedings of TOOLS-USA’93, Santa Barbara,
(CA), USA, pages 205–214. Prentice-Hall, Englewood Cliffs (NJ),
USA, 1993.

[CU89] C. Chambers and D. Ungar. Customization: optimizing compiler
technology for self, a dynamically-typed object-oriented program-
ming language. In Proceedings of the ACM SIGPLAN 1989 Confer-
ence on Programming language design and implementation, pages
146–160. ACM Press, 1989.

[DCD03] J. Dedecker, T. Cleenewerck, and W. De Meuter. Distributed
object inheritance to structure distributed applications. In ACM
SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications, OOPSLA 2003, October 26-30, 2003,
Anaheim, CA, USA, 2003.

[DD02] J. Dedecker and W. De Meuter. Using the prototype-based pro-
gramming paradigm for structuring mobile applications. OOP-
SLA02 Workshop on Agent-based Methodologies, 2002.

[DD03a] J. Dedecker and W. De Meuter. Communication abstractions
through new language concepts. In Workshop on Communication
Abstractions for Distributed Systems, Ecoop 2003, 2003.

[DD03b] T. D’Hondt and W. De Meuter. On first-class methods and dynamic
scope. Proceedings of LMO, pages 137–149, 2003.

[DDD03a] W. De Meuter, J. Dedecker, and T. D’Hondt. Wild abstraction
ideas for highly dynamic software. In Workshop on Object-oriented
Language Engineering for the Post-Java Era, Ecoop 2003, 2003.

[DDD03b] W. De Meuter, T. D’Hondt, and J. Dedecker. Intersecting classes
and prototypes. In Proceedings of PSI-Conference, Novosibirsk,
Russia. Springer-Verlag, 2003.

[DDD04] W. De Meuter, T. D’Hondt, and J. Dedecker. Pico: Scheme for
mere mortals. Proceedings of the first international Lisp Workshop,
2004.

[DDGD01] W. De Meuter, M. D’Hondt, S. Goderis, and T. D’Hondt. Reason-
ing with design knowledge for interactively supporting framework
reuse. In Proceedings of the SCASE’01 (Soft Computing applied to
Software Engineering), 2001.

269

[DDV03] J. Dedecker, W. De Meuter, and W. Van Belle. Actors for pervasive
computing. In OOPSLA Workshop on Reference Architectures and
Patterns for Pervasive Computing, 2003.

[DDW99] M. D’Hondt, W. De Meuter, and R. Wuyts. Using reflective pro-
gramming to describe domain knowledge as an aspect. In Proceed-
ings of GCSE ’99, 1999.

[De 97] W. De Meuter. Monads as a theoretical foundation for AOP. Pro-
ceedings of the International Workshop on Aspect-Oriented Pro-
gramming at ECOOP, 1997. 25, 1997.

[De 98a] W. De Meuter. Agora: The story of the simplest mop in the
world – or – the Scheme of object orientation. In A. Taivalsaari
J. Noble, I. Moore, editor, Prototype-based Programming. Springer-
Verlag, 1998.

[De 98b] W. De Meuter. Agora98 language manual.
http://prog.vub.ac.be/research/agora/, 1998.

[Dek04] S. Dekorte. Io, a small programming language.
http://www.iolanguage.com/, 2004.

[DMC92] C. Dony, J. Malenfant, and P. Cointe. Prototype-based languages:
from a new taxonomy to constructive proposals and their validation.
In Conference proceedings on Object-oriented programming systems,
languages, and applications, pages 201–217. ACM Press, 1992.

[DMS96] W. De Meuter, T. Mens, and P. Steyaert. Agora: reintroduc-
ing safety in prototype-based languages. ECOOP96 Workshop on
Prototype-Based Languages, 1996.

[DV04] J. Dedecker and W. Van Belle. Actors for mobile ad-hoc networks.
In L.T. Yang, M. Guo, G.R. Gao, and N.K. Jha, editors, Embedded
and Ubiquitous Computing, volume 3207 of Lecture Notes in Com-
puter Science. Springer, 2004. Embedded and Ubiquitous Comput-
ing, International Conference EUC 2004, Aizu-Wakamatsu City,
Japan, August 25-27, 2004.

[EAC98] S.O. Ehmety, I. Attali, and D. Caromel. About the automatic con-
tinuations in the Eiffel// model. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and
Applications, pages 219–225, 1998.

[FM99] S. Fünfrocken and F. Mattern. Mobile agents as an architec-
tural concept for internet-based distributed applications - the wasp
project approach. In Steinmetz, editor, Proc. KiVS’99, pages 32–43,
Springer-Verlag, 1999.

270

[Fow97] M. Fowler. Dealing with roles. In Proceedings of the 4th Annual
Conference on the Pattern Languages of Programs, pages 65–71,
1997.

[FPV98] A. Fuggetta, GP. Picco, and G. Vigna. Understanding Code Mo-
bility. IEEE Transactions on Software Engineering, 24(5):342–361,
1998.

[FSB+99] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon,
João Garcia, Sytse Kloosterman, Nicolas Richer, Marcus
Roberts, Fadi Sandakly, George Coulouris, Jean Dollimore, Paulo
Guedes, Daniel Hagimont, and Sacha Krakowiak. Perdis: Design,
implementation, and use of a persistent distributed store. In Ad-
vances in Distributed Systems, Advanced Distributed Computing:
From Algorithms to Systems, pages 427–452. Springer-Verlag, 1999.

[Gab] R. P. Gabriel. Worse is better paper series.
http://www.dreamsongs.com/WorseIsBetter.html.

[Gab94] R. P. Gabriel. Lisp: Good News, Bad News, How to Win
Big. http://www.ai.mit.edu/articles/good-news/good-news.html,
January 1994.

[GBD02] S. Goderis, J. Brichau, and W. De Meuter. A case in multiparadigm
programming: User interfaces by means of declarative meta pro-
gramming. ECOOP2002 Workshop on Multiparadigm Program-
ming with Object-Oriented Languages, 2002.

[GBO+98] T. R.G. Green, A. Borning, T. O’Shea, M. Minoughan, and R. B.
Smith. The stripetalk papers: Understandability as a language
design issue in object-oriented programming systems. In A. Taival-
saari J. Noble, I. Moore, editor, Prototype-based Programming.
Springer-Verlag, 1998.

[GCK+02] R. S. Gray, G. Cybenko, D. Kotz, R. A. Peterson, and D. Rus.
D’Agents: Applications and performance of a mobile-agent system.
Software— Practice and Experience, 32(6):543–573, May 2002.

[GD02] S. Goderis and W. De Meuter. Generating user interfaces by means
of declarative meta-programming. ECOOP02 Workshop on Gener-
ative Programming, 2002.

[GF99] R. Guerraoui and M. E. Fayad. OO distributed programming is
Not distributed OO programming. Communications of the ACM,
42(4):101–104, 1999.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

271

[GM95] Inc. General Magic. Telescript language reference, 1995.

[GR89] A. Goldberg and D. Robson. Smalltalk-80: The Language. Addison-
Wesley Longman Publishing Co., Inc., 1989.

[GR01] M. J. Guzdial and K. M. Rose. Squeak: Open Personal Computing
and Multimedia. Prentice Hall PTR, 2001.

[Hal85] R. H. Halstead, Jr. MULTILISP: a language for concurrent sym-
bolic computation. ACM Trans. Program. Lang. Syst., 7(4):501–
538, 1985.

[Hen91] A. V. Hense. Wrapper semantics of an object-oriented programming
language with state. In T. Ito and A. R. Meyer, editors, Theoreti-
cal Aspects of Computer Software, volume 526 of Lecture Notes in
Computer Science, page 548568. Springer, 1991.

[Hoa73] C. A. R. Hoare. Hints on programming language design. Technical
Report STAN-CS-73-403, Stanford University, 1973.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communi-
cations of the ACM, 21(8):666–677, 1978.

[HRB+91] N. C. Hutchinson, R. K. Raj, A. P. Black, H. M. Levy, and
E. Jul. The Emerald programming language. Technical report,
Dept. of Computer Science, University of British Columbia, Van-
couver, Canada, october 1991.

[IST03] ISTAG. Ambient intelligence: from vision to reality.
http://www.cordis.lu/ist/istag.htm, September 2003. Draft con-
solidated report.

[JLHB88] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility
in the Emerald system. ACM Transactions on Computer Systems,
6(1):109–133, February 1988.

[Kam88] S. Kamin. Inheritance in smalltalk-80: a denotational definition.
In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 80–87. ACM Press,
1988.

[KB02] A. Kaminsky and H-P. Bischof. Many-to-many invocation: a new
object-oriented paradigm for ad hoc collaborative systems. In Pro-
ceedings of the OOPSLA2002 Onward! Track, july 2002.

[KCE98] R. Kelsey, W. Clinger, and J. Rees (Editors). Revised5 report on the
algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–
76, 1998.

272

[Lea99] D. Lea. Concurrent Programming in Java: Design Principles and
Patterns. Addison-Wesley, second edition, November 1999. Online
Supplement at http://gee.cs.oswego.edu/dl/cpj.

[Lie86] H. Lieberman. Using prototypical objects to implement shared be-
havior in object-oriented systems. In Conference proceedings on
Object-oriented programming systems, languages and applications,
pages 214–223. ACM Press, 1986.

[Lie87] H. Lieberman. Concurrent object-oriented programming in Act 1.
In A. Yonezawa and M. Tokoro, editors, Object-Oriented Concur-
rent Programming. MIT Press, 1987.

[Lis88] B. Liskov. Distributed programming in argus. Communications Of
The ACM, 31(3):300–312, 1988.

[LO98] D. B. Lange and M. Oshima. Programming and Deploying Java
Mobile Agents with Aglets. Addison Wesley, 1998.

[LS88] B. Liskov and L. Shrira. Promises: linguistic support for efficient
asynchronous procedure calls in distributed systems. In Proceedings
of the ACM SIGPLAN 1988 conference on Programming Language
design and Implementation, pages 260–267. ACM Press, 1988.

[LS94] C. Lucas and P. Steyaert. Modular inheritance of objects through
mixin-methods. In Proceedings of the 1994 Joint Modular Lan-
guages Conference, pages 273–282, 1994.

[LSU87] H. Lieberman, L. Stein, and D. Ungar. Treaty of orlando. In Ad-
dendum to the proceedings on Object-oriented programming systems,
languages and applications (Addendum), pages 43–44. ACM Press,
1987.

[M. 03] M. Wolczko and R. B. Smith. Prototype-based application con-
struction using Self 4.0, 2003.

[Mac87] B. J. MacLennan. Principles of Programming Languages: Design,
Evaluation, and Implementation. Holt, Rinehart and Winston, sec-
ond edition, 1987.

[McA95] J. McAffer. Meta-level programming with CodA. In Proceedings
of the 9th European Conference on Object-Oriented Programming,
pages 190–214. Springer-Verlag, 1995.

[MD03] P. Mougin and S. Ducasse. Oopal: integrating array programming
in object-oriented programming. SIGPLAN Not., 38(11):65–77,
2003.

[MMF01] M. S. Miller, C. Morningstar, and B. Frantz. Capability-based fi-
nancial instruments. Lecture Notes in Computer Science, 1962:349–
??, 2001.

273

[MY93] S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly
in object-oriented concurrent programming languages. In Research
directions in concurrent object-oriented programming, pages 107–
150. MIT Press, 1993.

[Nor98] P. Norvig. Design patterns in dynamic programming.
http://norvig.com/design-patterns/, 1998.

[NTM98] J. Noble, A. Taivalsaari, and I. Moore. Prototype-Based Program-
ming: Concepts, Languages and Applications. Springer, 1998.

[PH99] M. Philippsen and B. Haumacher. More efficient object serializa-
tion. In IPPS/SPDP Workshops, pages 718–732, 1999.

[PS97] H. Peine and T. Stolpmann. The architecture of the Ara platform
for mobile agents. In Radu Popescu-Zeletin and Kurt Rothermel,
editors, First International Workshop on Mobile Agents MA’97,
volume 1219 of Lecture Notes in Computer Science, pages 50–61,
Berlin, Germany, April 1997. Springer Verlag.

[PSH04] P. Pratikakis, J. Spacco, and M. Hicks. Transparent proxies for Java
futures. In Proceedings of the ACM Conference on Object-Oriented
Programming Languages and Systems (OOPSLA), October 2004.
To appear.

[RTL+91] R. K. Raj, E. D. Tempero, H. M. Levy, A. P. Black, N. C. Hutchin-
son, and E. Jul. Emerald: A general-purpose programming lan-
guage. Software - Practice and Experience, 21(1):91–118, 1991.

[SCD+93] P. Steyaert, W. Codenie, T. D’hondt, K. De Hondt, C. Lucas, and
M. Van Limberghen. Nested mixin-methods in Agora. Lecture Notes
in Computer Science, 707:197–??, 1993.

[Sch86] David A Schmidt. Denotational Semantics A Methodology for Lan-
guage Development. Wm. C. Brown, Dubuque, Iowa, USA, 1986.

[Sch03] K. Schougaard. Language support for distributed computation,
2003.

[SD95] P. Steyaert and W. De Meuter. A marriage of class- and object-
based inheritance without unwanted children. In Proceedings of
ECOOP ’95, volume 952 of Lecture Notes in Computer Science,
pages 127–144. Springer, August 1995.

[SLMD96] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts:
Managing the evolution of reusable assets. In OOPSLA ’96 Con-
ference on Object-Oriented Programming Systems, Languagges and
Applications, pages 268–285. ACM Press, October 1996.

274

[Smi98] W. R. Smith. Newtonscript: Prototypes on the palm. In A. Taival-
saari J. Noble, I. Moore, editor, Prototype-based Programming.
Springer-Verlag, 1998.

[SMY99] T. Sekiguchi, H. Masuhara, and A. Yonezawa. A simple exten-
sion of Java language for controllable transparent migration and its
portable implementation. In Coordination Models and Languages,
pages 211–226, 1999.

[Sny86] A. Snyder. Encapsulation and inheritance in object-oriented pro-
gramming languages. In Conference proceedings on Object-oriented
programming systems, languages and applications, pages 38–45.
ACM Press, 1986.

[Ste87] L. Stein. Delegation is inheritance. In Conference proceedings on
Object-oriented programming systems, languages and applications,
pages 138–146. ACM Press, 1987.

[Ste94] P. Steyaert. Open Design of Object-Oriented Languages, A Founda-
tion for Specialisable Reflective Language Frameworks. PhD thesis,
Vrije Universiteit Brussel, 1994.

[SU98] R. B. Smith and D. Ungar. Programming as an experience: The
inspiration for Self. In A. Taivalsaari J. Noble, I. Moore, editor,
Prototype-based Programming. Springer-Verlag, 1998.

[Sue00] T. Suezawa. Persistent execution state of a Java virtual machine.
In ACM Java Grande 2000 Conference, 2000.

[Sun03] Sun Microsystems Inc. Project JXTA, 2003. http://www.jxta.org/.

[SV97] Springer-Verlag, editor. Security and Communication in Mobile
Object Systems, number 1222 in LNCS, 1997.

[Tai93] A. Taivalsaari. A Critical View of Inheritance and Reusability in
Object-oriented Programming. PhD thesis, University of Jyvaskyla,
1993.

[Tai98] A. Taivalsaari. Classes vs. prototypes - some philosophical and
historical observations. In A. Taivalsaari J. Noble, I. Moore, editor,
Prototype-based Programming. Springer-Verlag, 1998.

[Tho97] T. Thorn. Programming languages for mobile code. ACM Comput-
ing Surveys, 29(3):213–239, 1997.

[TK02] R. Tolksdorf and K. Knubben. Programming distributed systems
with the delegation-based object-oriented language dself. In Pro-
ceedings of the 2002 ACM symposium on Applied computing, pages
927–931. ACM Press, 2002.

275

[TOH99] Y. Tahara, A. Ohsuga, and S. Honiden. Agent system development
method based on agent patterns. In Proceedings of the 21st inter-
national conference on Software engineering, pages 356–367. IEEE
Computer Society Press, 1999.

[TRV+00a] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and
P. Verbaeten. Portable support for transparent thread migration
in Java. In Proceedings of the Second International Symposium on
Agent Systems and Applications and Fourth International Sympo-
sium on Mobile Agents, pages 29–43. Springer-Verlag, 2000.

[TRV+00b] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and
P. Verbaeten. Portable support for transparent thread migration
in Java. In Proceedings of the Second International Symposium on
Agent Systems and Applications and Fourth International Sympo-
sium on Mobile Agents, pages 29–43. Springer-Verlag, 2000.

[UCCH91] D. Ungar, C. Chambers, B. Chang, and U. Hölzle. Organizing
programs without classes. Lisp Symb. Comput., 4(3):223–242, 1991.

[US87] D. Ungar and R. B. Smith. Self: The power of simplicity. In
Conference proceedings on Object-oriented programming systems,
languages and applications, pages 227–242. ACM Press, 1987.

[VD00] W. Van Belle and Theo D’Hondt. Agent mobility and reification of
computational state, an experiment in migration. In Infrastruc-
ture for Agents, Multi-Agent Systems, and Scalable Multi-Agent
Systems, number 1887 in Lecture Notes in Artifical Intelligence.
Springer Verlag, June 2000.

[VDD94] E. Van Paesschen, W. De Meuter, and T. D’Hondt. Domain mod-
eling in Self yields warped hierarchies. In Proceedings of the 3rd
International Workshop on Mechanisms for Specialization, Gener-
alization and Inheritance, pages 65–71, 1994.

[VF01] W. Van Belle and J. Fabry. Experiences in mobile computing: The
CBorg mobile multi agent system. In Proceedings of Tools Eu-
rope2001, March 2001.

[Vig04] G. Vigna. Mobile Agents: Ten Reasons For Failure. In Proceedings
of the IEEE International Conference on Mobile Data Management
(MDM ’04), pages 298–299, Berkeley, CA, January 2004. Position
Paper.

[VM04] T. Van Cutsem and S. Mostinckx. A prototype-based approach to
distributed applications. Master’s thesis, Vrije Universiteit Brussel,
2004.

276

[VMD+04] T. Van Cutsem, S. Mostinckx, W. De Meuter, J. Dedecker, and
T. D’Hondt. On the performance of SOAP in a non-trivial peer-to-
peer experiment. In Proceedings of the 2nd International Working
Conference on Component Deployment, Lecture Notes In Computer
Science. Springer Verlag, May 2004.

[vol] Volano chat. http://www.volano.com/.

[voy] Voyager. http://www.recursionsw.com/.

[Wal] Waldemar. Javascript 2.0. http://www.mozilla.org/js/language/js20/.

[WF88] M. Wand and D. P. Friedman. The mystery of the tower revealed:
A non-reflective description of the reflective tower. In P. Maes and
D. Nardi, editors, Meta-Level Architectures and Reflection, pages
111–134. Elsevier Sci. Publishers B.V. (North Holland), 1988. Also
to appear in Lisp and Symbolic Computation.

[Whi96] J.E. White. Telescript technology: Mobile agents. In J. Bradshaw,
editor, Software Agents. AAAI Press/MIT Press, 1996.

[Wik04] Wikipedia. Personal Area Network.
http://en.wikipedia.org/wiki/Personal area network, 2004.

[Wol88] M. I. Wolczko. Semantics of Object-Oriented Languages. PhD the-
sis, University of Manchester, 1988.

[YBS86] A. Yonezawa, J.P. Briot, and E. Shibayama. Object-oriented con-
current programming in ABCL/1. In Conference proceedings on
Object-oriented programming systems, languages and applications,
pages 258–268. ACM Press, 1986.

277

