
Actors in an Ad-Hoc Wireless Network
Environment

Jessie Dedecker1? and Dr. Werner Van Belle2

1 jededeck@vub.ac.be

Programming Technology Lab
Department of Informatics
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels

Belgium
2 werner.van.belle@cs.uit.no

Universitetet i Troms/o
Department Computer Science

9021-Norway

Abstract. Today mobile devices can interact with their environment,
because of the introduction of wireless communication. Wireless networks
have two properties that distinguishes itself from the wired networks:
First, wireless communication is less reliable than their wired variants
because they have a limited communication range. Second, wireless com-
munication is more dynamic as communication partners enter and leave
frequently the communication range of the wireless network. These two
distinct properties make the development of mobile software difficult.
The actor model is a programming model that allows development of
concurrent distributed software in open distributed environments. Actor
models fail to handle these two distinct properties of wireless networks
well. In this paper we extend the operational semantics of the actor model
to capture these two properties in the actor model. We do this by adding
a single new concept to the model: the mailbox. This paper provides a
foundation for new implementations of the actor language and frame-
works that are usable in the context of wireless network environments.

1 Introduction

The introduction of wireless communication technology (such as WiFi, Blue-
tooth, 802.15.x and others) is a big step towards pervasive computing. Pervasive
computing means that the computing technology should be gracefully integrated
into our everyday life so that the user is not aware of the technology anymore [1].
To achieve such a goal the software running on mobile devices should adapt to
new physical environments as the user walks around. Each physical environment
potentially contains other computing devices that can provide the mobile device
? Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O.)

2

with useful information about the new physical environment. The mobile devices
can transparently access the information on these computing devices using wire-
less communication. The context of pervasive computing also implies that the
wireless network environment is ad-hoc. This means that there is no assurance
on what services are accessible/present in the physical environment. Hence, in
an ad-hoc network environment we cannot rely on central server infrastructure.

Wireless communication is distinct from wired communication, because wire-
less communication technology has a limited communication range. Therefore,
wireless networks exhibit two properties: First, wireless communication is less
reliable than their wired variants because connections are dropped as the mobile
device is moved out of communication range of the network. Second, wireless
communication is more dynamic, because communication partners frequently
enter and leave the communication range of the wireless network. These two
properties are also present in open distributed network environments, such as
the internet, but they are less prominent, because the incidence rate of un-
available communication partners is much lower and communication partners
are often unavailable for a small amount of time. Most distributed application
frameworks and languages are developed with the assumption of reliable com-
munication, that is to say communication failures are handled as an exception.
Communication failures are no longer the exception in wireless communication
because, as the mobile devices move and the communication range of the wire-
less technology is limited, connections are lost and new connections are created.
This makes wireless communication more volatile than wired communication. A
discrete movement scenario is illustrated in figure 1.

Actors are a programming model for open distributed network environments
and provide a good groundwork for programming the internet. However, the ac-
tor model fails to capture the high incidence rate of the two properties discussed
above. Furthermore, it is difficult to write software in the actor model.

This paper is structured as follows: A brief summary of the actor model
and its limitations with respect to wireless network environments is explained in
section 3. In section 4 we extend the operational semantics of the actor model
and explain the implications of the changes in the context of ad-hoc wireless
network environments. In section 5 we show the usefulness of the extensions in
two examples. Finally, we conclude the paper (section 7) after we have discussed
related work in section 6, but first we explain why asynchronous communication
is the appropriate choice to interact in a wireless network environment.

2 Wireless Applications Use Asynchronous
Communication

With asynchronous (a.k.a. non-blocking) communication there is no correlation
between the time of sending and the time of receiving a message. This decouples
the availability of communication partners in time and makes it appropriate in
wireless network environments.

Submitted to EUC2004 3

2

0

2

0

0
2

0

11

2

1 1

Device Communication Range

I II

III IV

Fig. 1. Discrete Movement Scenario

Distributed applications over wireless communication media often imply a
disconnected operation because there can be a very large delay between sending
a message and receiving an answer. In extreme cases the delay could be several
days or months, for instance when the device is not connected to any network at
the moment of sending a message. Therefore, such applications should commu-
nicate asynchronously. However, asynchronous communication does not solve all
the problems we encounter while developing distributed applications for ad-hoc
wireless network environments.

2.1 Computational Context

Asynchronous communication is not a bed of all roses and skittles – it comes with
a cost and that cost is the complexity of developing applications. The complexity
comes from the fact that computation continues after sending a message. So,
after an asynchronous message is sent the actor receives other messages. When
the reply to the first message is received the developer needs to restore the
computational context in which that message was sent in order to interpret the
result it received.

2.2 Environmental Context

Due to the continuous movement of the user from one physical space to another,
the available communication partners often change. The devices will often have
to postpone tasks it was doing, because a communication has become unreach-
able. When the user moves again in communication range of a communication
partner then it should resume its task, unless of course the task has become
obsolete (i.e. because the device was able to do the task at some other place).
With physical movement the device starts living in another environmental con-
text with different possibilities (other devices become available) and different
limitations (devices disappear).

4

To simplify the development of distributed applications over wireless tech-
nology both contexts should be represented as first-class values [2] by the dis-
tributed application framework or language. Now that we have pointed out these
requirements we will look at the actor programming language, a distributed pro-
gramming language that communicates asynchronously.

3 Actors

The actor programming language [3] was designed for use in open distributed
network environments (i.e. the internet). A distributed application is modelled
with actors that are distributed throughout the network. Each actor has a be-
havior associated with it. The behavior defines how an actor handles incoming
messages. Communication between actors occurs solely with asynchronous mes-
sage passing.

3.1 The Actor Programming Language

The operational semantics of the actor programming language [4] are defined as
an extension of a simple functional language. A function that takes one parame-
ter, a message, and is used to define the behavior of an actor. In the operational
semantics of the actor language the functional language is conceptualized by the
lambda calculus [5]. The lambda calculus is extended with three actor primitives
that support programming in a distributed environment:

– create a new actor using letactor primitive. The letactor primitive takes one
argument. A function that is the initial behavior of that actor.

– send messages to known actors using the send primitive. The send primitive
takes two arguments, the recipient’s actor address and a message. Such a
message can contain the address of other actors.

– modify its own state and behavior using the become primitive. The become
primitive takes one argument, a function that is the new behavior and state
of the actor. There is no shared data between actors.

3.2 Actor Systems

The actor language is supported by an actor system. Conceptually, an actor
system can be modelled as a message set and the behavior of the actors living
in the system. The message set contains two types of messages: 1) messages
sent, but not yet transmitted and 2) messages received, but not yet processed.
A message, whose target address is that of an actor living in the actor system,
is taken from the message set and passed as an argument to the function that
is assigned to the target actor address. When the message set is empty the
actor waits for a new message. An actor only handles one message at a time.
Hence, race conditions can not occur on data-level in the actor language. When
a message is sent then the message is put in the message set. When the target

Submitted to EUC2004 5

actor address of the message is that of an actor living in another actor system
then the message is transferred to the message set of that actor system. The
operational semantics of the actor language do not define any order in which
the messages from the message set are processed, but it assumes fairness so no
starvation can occur.

3.3 Applicability of Actors in Ad-Hoc Wireless Network
Environments

The actor model is designed for open distributed network environments, such
as the internet, where communication partners are sometimes unavailable for a
short period of time. Unavailable communication partners are captured in the
actor model through the message sets: messages sent to actors living in an actor
system that is unavailable are kept in the message set until the actor system
becomes available again for communication. We believe the actor model is also
useful in the context of wireless network environments, because of these message
sets. Each actor system has its own message set that contains the messages sent,
but not yet transmitted to another actor system and the messages received, but
not yet processed. The use of message sets has two key advantages with respect
to ad-hoc wireless network environments:

– Each actor system is equipped with its own message set. An actor system is
therefore self-sufficient and does not rely on a general server infrastructure
from its environment for its communication.

– A message set allows asynchronous communication in intermittently con-
nected environments in a transparent way. A message is transferred from
one message set to another whenever communication is possible.

There are however some conceptual problems with the actor model, these lim-
itations make it either impossible to use the current actor model in an ad-hoc
wireless network environment or difficult to program in the actor language. The
limitations are summarized below:

– the model does not support dynamic communication between different actor
systems. Actor systems are connected through a static connection.

– the actor model does not define how actor addresses are resolved. The actors
needs to know its available communication partners when the user arrives
at a new location. We need an abstract way to reference the set of actors
the application can communicate with. Currently, the actors have no means
to find each other when mobile devices are in communication range of one
another.

– the model does not support disconnected operations. The actor model as-
sumes that messages sent will eventually be received. In an ad-hoc wire-
less network environment this precondition cannot be guaranteed anymore.
There is a need for more explicit control over the delivery of messages.

– there is no support for computational/environmental context – the actor
model lacks support for the loss of context, as explained in the previous
section.

6

4 The Extended Actor Model

In this section we extend the operational semantics and the syntax of the actor
model so that the limitations, pointed out in the previous section, are resolved.
We will refrain from giving all the definitions from the original model, which can
be found in [4]. We will however repeat some definitions if we adapted them to
extend the operational semantics of the actor model or if we believe that they
are essential to understanding the extensions.

The main addition to the actor model is the introduction of explicit mail-
boxes. A mailbox is a store of messages. A number of mailboxes are used within
the model to guarantee communication. These are the “in”-box, which keeps
track of incoming messages, the “out”-box, which keeps track of messages that
should be delivered to other actor systems, the “sent”- and the “rcv”- box which
keep track of, respectively, which messages have been sent and which messages
have been processed by the actor. Aside from these four standard mailboxes,
every actor can create new mailboxes as necessary. Messages can be present
in multiple mailboxes at the same time. E.g, a message can be located in the
“sent”-box of the sending actor and the “in”-box of the receiving actor.

4.1 Messages and Mailbox Associations

Definition 1 (Messages (M)).

M = {pr(a, cv) | a ∈ V, cv ∈ V}

A message is a pair (pr) of:

– a, the actor address of the receiving actor.
– cv, a communicable value, constructed from atoms and actor addresses, but

not containing lambda abstractions as specified by Agha [4].

V is the set of all possible value expressions of the functional language as defined
in [4]. In the spirit of dynamically typing (as in [4]) we do not restrict the target
of the message to the set actor addresses, the correctness is checked in the rules
that define the operational semantics. A message is represented as a pair of value
expressions, this is in contrast with the message representation as defined in [4]
(where a message was denoted with < a⇐cv >). By representing the messages
as a pair of values the message becomes a first class value in the actor language.
This will proof useful to manipulate the mailboxes. To make a clear distinction
in the definitions between messages and “regular” pair values, we will identify a
pair that is used as a message with a⇐cv.

In the extended actor model a message is always associated with at least one
mailbox. To denote these mailbox associations in the actor model we introduce
the following set:

Definition 2 (Mailbox Associations (mB)).

mB = {< ct | mbxa >∈ X → S → V | ct ∈ V, a ∈ X,mbx ∈ S}

Submitted to EUC2004 7

Denotes a content ct associated with mailbox mbxa. S is the set of identifiers for
mailboxes, S ⊂ At, with At the set of atoms in the functional language. X is the
set of actor addresses. The mailbox itself is written as an identifier, subscripted
with the name of the actor the mailbox belongs to. E.g., inb denotes the in-box
of actor b. Typically, messages are associated with a mailbox, but other values
can also be associated with a mailbox.

4.2 Actor Configurations

The operational semantics of the model itself is based on actor-configurations
and reduction rules defined on such a configuration. An actor configuration can
be considered to be an actor system as explained in section 3.2. Essentially, an
actor configuration can be perceived as all actors present on one computational
device, such as an embedded system, a desktop and others. The set of actor
configurations is defined as

Definition 3 (Actor Configurations (K)).〈〈
α | µ

〉〉ρ

χ

where ρ, χ ∈ Pω[X], α ∈ X f→ As, and µ ∈ Mω[mB]

Say Y is a set then Pω[Y] is the set of finite subsets of Y. Mω[Y] is the set of
finite multi-sets with elements in Y. As is the set of actor states as defined in
[4].

An actor configuration contains:

– α, the state of the actors in a configuration is given by an actor map α. An
actor map is a finite map from actor addresses to actor states. Each actor
state is one of
• (?a) uninitialized actor state created by an actor named a
• (b) actor state ready to accept a message where b is its behavior repre-

sented by a lambda abstraction
• [e] actor in a busy state executing expression e. e is either a value expres-

sion or a reduction context R filled with a redex r (written as R[r]). The
reduction context is used to identify the subexpression of an expression
that is to be evaluated next. For the formal elaboration we refer to the
original actor model [4].

Each mapping of an actor state is subscripted by their actor address. E.g.
(?a)c denoted that uninitialized actor c that was created by actor a.

– µ, a multi-set of mailbox associations.
– ρ, receptionists, the actors from this configuration that are remotely acces-

sible from other actor configurations
– χ, external actors, the references to remote actors from other actor configu-

rations that can be accessed from this actor configuration.

It is required that all actor configurations satisfy the following constraints (A=Dom(α)):

8

1. ρ ⊆ A and A ∩ χ = ∅,
2. if α(a) = (?a′), then a′ ∈ A,
3. if a ∈ A, then FV(α(a)) ⊆ A ∪ χ,
4. if < ct | mbxa >∈ µ, then a ∈ A
5. if ct = v0⇐v1 then FV(vi) ⊆ A ∪ χ for i < 2

The fourth point is new compared to the constraints that were defined in [4]
and denotes that each mailbox in an actor configuration should be owned by an
actor from the actor configuration.

4.3 Operational Semantics of Actor Configurations

On such an actor configuration, a number of reduction rules are defined. Each
rule contains a label l that consists of a tag indicating the name of the primitive
instruction and a set of parameters. In all cases, except for the i/o transitions
(with tags in, out, join, disjoin), the first parameter names the focus actor of
the transition. As in, [4] if α′(a) = (b) and is with a omitted from its domain
we write α′ as α, (b)a to focus attention on a. We follow a similar convention for
other states subscripted with addresses (such as mailbox associations).

The rules are in our model are extended with an environmental set τ . The set
τ contains the actor configurations that are available (in communication range)
while the reduction is performed. The introduction of this set is important to
reify the notion of environmental context in our extended model. Below we
explain and discuss the different rules.

Definition 4 (7→
τ
). τ ∈ Mω[K]

< fun : a >

e
λ7→Dom(α)∪{a} e′ ⇒

〈〈
α, [e]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [e′]a | µ

〉〉ρ

χ

< new : a, a′ >〈〈
α, [R[newadr()]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[a′]]a, (?a)a′ | µ

〉〉ρ

χ

< init : a, a′ >〈〈
α, [R[init(a′, v)]]a, (?a)a′ | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a, va′ | µ

〉〉ρ

χ

< bec : a, a′ >〈〈
α, [R[become(v)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a′ , va | µ

〉〉ρ

χ
a′fresh

< send : a, m >〈〈
α, [R[send(v0, v1)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a | µ,M

〉〉ρ

χ

with M = {< v0⇐v1 | outa >} iff v0 /∈ Dom(α)
or M = {< v0⇐v1 | senta >,< v0⇐v1 | inv0 >} iff v0 ∈ Dom(α)

Submitted to EUC2004 9

< out : m >〈〈
α | µ, m

〉〉ρ

χ
7→
τ

〈〈
α | µ,m′〉〉ρ∪(FV (cv)∩Dom(α)

χ

with m =< b⇐cv | outa >
and m′ =< b⇐cv | senta >, b ∈ χ, a ∈ Dom(α)
if ∃κ ∈ τ with κ =

〈〈
α1 | µ1

〉〉ρ1

χ1
and b ∈ Dom(α1)

< in : m >〈〈
α | µ

〉〉ρ

χ
7→
τ

〈〈
α | µ,m

〉〉ρ

χ∪(FV (cv)−Dom(α))

with m =< b⇐cv | inb >, b ∈ ρ and FV (cv) ∩Dom(α) ⊆ ρ

< rcv : a, m >〈〈
α, (v)a | µ,m

〉〉ρ

χ
7→
τ

〈〈
α, [app(v, a⇐cv)]a | µ,m′〉〉ρ

χ

with m =< a⇐cv | ina > and m′ =< a⇐cv | rcva >

< messages : a, mbx >〈〈
α, [R[messages(mbx)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[(ct1, . . . , ctn)]] | µ

〉〉ρ

χ

with cti ∈ {ct | < ct | mbxa >∈ µ}

< add : a, mbx, m >〈〈
α, [R[add(mbx, ct)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a | µ,m

〉〉ρ

χ

with m =< ct | mbxa >

< del : a, mbx, m >〈〈
α, [R[del(mbx, ct)]]a | µ

〉〉ρ

χ
7→
τ

〈〈
α, [R[nil]]a | µ′

〉〉ρ

χ

with µ′ = µ\{< ct | mbxa >}

< join >〈〈
α0 | µ0

〉〉ρ0

χ0
7→
τ

〈〈
α0 | µ0,M

〉〉ρ0

χ0

if ∃κ ∈ τ with κ =
〈〈
α1 | µ1

〉〉ρ1

χ1
and

M = {< a⇐cv | joinedb >,< b⇐join | inb > | < cv | requiredb >∈ µ0∧ <
cv | provideda >∈ µ1}

< disjoin >〈〈
α0 | µ0

〉〉ρ0

χ0
7→
τ

〈〈
α0 | µ0\T,M

〉〉ρ0

χ0

if @κ ∈ τ with κ =
〈〈
α1 | µ1

〉〉ρ1

χ1
and

with M = {< a⇐cv | disjoinedb >,< b⇐disjoin | inb > |
< a⇐cv | joinedb >∈ µ0 ∧ a /∈ Dom(α1)}
T = {< a⇐cv | joinedb > | < a⇐cv | joinedb >∈ µ0 ∧ a /∈ Dom(α1)}

10

Basic Actor Operations The first four reduction rules below are the same as
defined in [4] and did not need to be adapted:

– The < fun > rule above delegates the purely functional expressions used in
the actor program to the functional redexes. The functional redex contains
reduction rules for function calls, cons-cell manipulation, branch-testing,
type-testing and equality. For the exact definition of these reduction rules
we refer the reader to [4].

– The < new > rule is used to create a new actor with address a’. The new
actor is not initialized after the new reduction. The new uninitialized actor
is denoted with (?a)a′ .

– With the < init > rule a new actor is initialized with behavior v. Only the
actor that created the actor a’ can initialize it.

– With the < bec > rule the actor can change its state and its behavior. The
actor address a’ is anonymous and thus unknown to all other actors. We say
that a variable is fresh with respect to a context of use if it does not occur
free or bound in any syntactic entity.

Adapted Rules The remainder of the rules have been adapted to include the
notion of mailboxes:

– The < send > rule differs from the original send rule. Instead of placing
the message immediately in the message set µ, we first differentiate on the
nature of the message. If the message can be delivered locally (within the
same actor configuration), it is immediatelly placed in the target its in-box,
and the sent-box of the sender. Otherwise, the message is placed in the actor
its out-box. From there on, through other reduction rules, this message will
be moved to the target its in-box.

– < out > We write FV(e) for the set of free variables of e. Messages that can-
not be delivered locally, will be placed in the out-box of the sending actor.
The out reduction rule is used, at the sending side, to transmit a message
to another actor configuration. The rule explicitly states, through the envi-
ronmental set τ , that the actor configuration should be in communication
range with another actor configuration that contains the target actor of the
message. Then the outgoing message will be removed from the out-box and
placed in the sent-box. This allows the actor to verify which messages have
actually been sent. Similar to the original model, the set of receptionists
is expanded with the local actor addresses that were communicated in the
message.

– < in > This rule is called when an actor configuration receives a message
from an external actor that lives on another actor configuration that simu-
lataneously will be performing the rule with tag out. In this situation, the
message is placed in the in-box of the target actor.

– < rcv > When a message is available in the in-box of an actor, it can be
received by the actor. Once the message is being processed by the actor,
the message is moved to the rcv mailbox. This means that an actor has a

Submitted to EUC2004 11

history of the messages that it processed. This proves to be a useful session
management utility as is shown in the examples in section 5.

Mailbox Manipulation < messages >, < add >,< del > Aside from these
modified standard rules, some reduction rules have been added to manipu-
late and inspect the mailboxes from within the actor language. With the <
messages > rule one can access the content of a mailbox. The < add > rule
will create a mailbox when it does not exist, if the mailbox exists, the content
will be added to the mailbox. The < del > rule will delete a message from a
mailbox, when the last message of a mailbox has been removed, the mailbox
itself is removed. The above reduction rules allow actors to manage mailboxes
explicitly. It also allows actors to keep track of a history of sent and waiting mes-
sages. It allows actors to see whether a message has actually been sent out. Also
note that there is no rule in which a message automatically disappears from the
system. This means that memory management will have to be handled manually
by the programmer. This is because it depends on the semantics of the program
whether a message has become irrelevant to the program. For example, when a
certain task has completed and is not relevant anymore.

Handling Environmental Contexts Mobile applications used in an ad-hoc
wireless network environment need to “sense” their physical environment. This
“sense” is introduced in the model through the notion of first-class “environ-
mental context”. The first-class “environmental context” is supported with two
reduction rules: < join > and < disjoin >. When two devices come in con-
tact (because they are in the same communication area), they will automati-
cally “join”. They disjoin when they leave each others communication range.
An important issue with the “join” is the abstract specification of actors we
are looking for in the physical environment, since the physical environment is
possibly unknown we do not know the addresses of the actors that are living
on other machines. To this end, we have added four extra mailboxes for every
actor: provided, required, joined and disjoined. The mailboxes provided and re-
quired are used to let an actor specify an abstract description of what kind of
behavior it provides or requires, this abstract description is called a pattern. The
pattern is specified in the model as a communicable value. When a pattern in the
provided and required mailboxes match, then the corresponding actors will be
notified. This notification happens through the use of the joined and disjoined
mailboxes. Thus, the joined and disjoined mailboxes keep track of the relevant
actors, specified through the use of the provided and required mailboxes, that
are in communication range. This mechanism is defined in the model through
the < join > and < disjoin > rules:

– < join > when two actor configuration come in communication range. Every
actor b that requires a certain pattern cv, which has become available in an-
other actor configuration κ that is in communication range, will be informed
of this by receiving a “join” message in its in-box. Also, for every matching

12

pair of required-provided patterns, the corresponding joined mailbox is up-
dated. In the joined mailbox, a special kind of messages is stored, namely
a resolution. A resolution contains a) the kind of pattern (cv) that has
been matched and b) a provider a who provides the service.

– < disjoin > when two actor configurations leave each others communication
range. Every actor that is aware of another joined actor, that has become
unavailable, will be informed of the disjoin. Once an actor is informed the
corresponding resolution is removed from the joined mailbox. Actors that
have removed the matching messages from their joined mailbox will not be
informed.

The join and disjoin operations are not symmetrical. After joining and disjoining
two actor configurations, the state of the involved actor configurations is not
necessarily the same as before the join operation. This is due to the fact that for
every join or disjoin a number of messages are sent, which might influence the
behavior of the involved actors.

5 Examples

Now that we have defined the operational semantics of the extended actor model
we show that it is useful in the context of ad-hoc wireless network environments
by means of two examples. The examples are defined with actor code using
the extended actor model from the previous section. The first example shows
how anonymous communication can be expressed. In the second example we
work out a meeting scheduler application for use in an ad-hoc wireless network
environment.

5.1 Pattern-Based Communication

We often want to send messages to an actor providing some service, but the actor
address is unknown at the time of message sending, because the actor address
depends on the physical environment of the embedded device. The anonymous
actor can be described using type information [6] or more semantic information
about the service (such as a QoS property of the communication partner). In this
example, we show how we can express such anonymous communication using
the mailboxes in the extended actor model. We define a new communication
primitive psend that takes two parameters: a description pattern of the required
actor and the message that needs to be send.

psend = λpattern.λmsg.
seq(add(required, pattern),

add(pending, msg))

We add the description pattern of the required actor to the required mailbox. This
way the actor will be notified when the actor configuration joins with another

Submitted to EUC2004 13

actor configuration providing this pattern. The pending mailbox contains the
messages that have a pattern as destination instead of an actor address.

The handleJoin definition walks over the resolutions in the joined mailbox.
Each time a pattern that corresponds with the target of the messages in pending
mailbox is found, the message is send to the provider of the pattern and removed
from the pending mailbox.

handleJoin = λm.
if(join?(m),

for-each(λresolution.
for-each(λmsg.

if(eq?(target(msg), pattern(resolution)),
seq(send(provider(resolution), msg),

delete(pending, msg))),
messages(pending)),

messages(joined)))

Below is the definition of an actor that wants to print a file from the moment
it comes into communication range of an actor that provides a printing service.

BCustomer = λfile.λm.
seq(psend(’printer@300dpi, mkPrint(file)),

become(handleJoin(m)))

This example shows that the extended actor model contains the basic primi-
tives to build more complex discovery mechanisms tailored to the need of the
application.

5.2 Meeting Scheduler

Suppose a group of people all walk around with a PDA that is equipped with
a wireless transmitter. Each PDA has an agenda application running and the
agenda can be used to schedule a meeting with a group of acquaintances. A
request for a meeting can be made at any point of time (so the acquaintances do
not have to be reachable at the point of requesting a meeting). We assume that
the PDA’s at some point in time will be in communication range. The owner
of the PDA’s does not have to be aware of the communication that goes on
between the PDA’s, so the PDA can become out of range at any point in the
communication. The agenda application schedules a meeting in two steps:

1. try to make a reservation in the agenda from the participants of the meeting
2. confirm the meeting in the agenda from the participant if all were successfully

reserved.

If the reservation fails at some point, then all reservations that were made on
other agenda’s are removed. Our meeting scheduler is modelled by two actors
that are described below.

14

Agenda Actor The agenda is initialized with the e-mail address of the owner
from the agenda. The e-mail address is used together with the type information
of the application to join actor configurations together.

BInitAgenda = λemail.λm.
seq(add(provided, mkProvided(email)),

become(BFreeAgenda())))

We have chosen to represent the agenda as a single slot that is available for
meetings to reduce the length of our example. The slot has three states: free,
reserved and confirmed. The agenda understands three messages:

– free: when this message is received and the slot is reserved then it becomes
available for reservation. This message is used to undo a reservation.

– reserve: when this message is received and the slot is free, then the slot
becomes reserved.

– confirm: when this message is received and the slot is reserved then the slot
becomes confirmed.

The slot contains an id that is used to determine to whom the slot has been
assigned when it is reserved or confirmed. The slot only evolves into the corre-
sponding state if the message contains the right id.

The code below shows the implementation of the agenda. The function rec
in the code calculates the fixed-point of a function [7] so that it can be called
recursively.

BFreeAgenda = rec(λb.λm.
if(free?(m),

become(b()))
if(reserve?(m),

seq(send(sender(m), mkReserveAnswer(session(m), #true)),
become(BReservedAgenda(session(m))))))

BReservedAgenda = rec(λb.λid.λm.
if(and(free?(m), eq?(id, session(m))),

become(BFreeAgenda()))
if(reserve?(m),

seq(send(sender(m), mkReserveAnswer(session(m), #false)),
become(b(id))))

if(and(confirm?(m), eq?(id, session(m))),
become(BConfirmedAgenda(id))))

BConfirmedAgenda = rec(λb.λid.λm.
if(reserve?(m),

seq(send(sender(m), mkReserveAnswer(session(m), #false)),
become(b(id)))))

Submitted to EUC2004 15

Scheduler Actor The scheduler agent is responsible for contacting the agenda
actors to schedule the meeting. In the scheduler actor definitions below we use
three helper functions:

– a filter function that uses a predicate to filter elements in a list3

filter = rec(λb.λpredicate.λlist.
if(empty?(list),

emptyList,
if(predicate(car(list)),

cons(car(list), b(predicate, cdr(list))),
b(predicate, cdr(list)))))

– a map function that returns a transformed list and takes two parameters:
a function that transforms elements and a list that is to be transformed is
defined as in most standard Scheme implementations [8].

– msend that allows to send a message to a list of actor addresses or actors
described with pattern descriptions (such as in the previous example)

msend = λtargets.λm.
for-each(λtarget.

if(actorAddress?(target),
send(target, m),
psend(target, m)),

targets)

– madd that allows to add a list of messages to a mailbox

madd = λmbx.λitem.for-each(λitem.add(mbx,item), items)

The scheduling agent is initialized as BInitScheduleAgent. The scheduler agent
has an id that is used to identify its session.

BInitScheduleAgent = rec(λb.λid.λm.
if(schedule?(m),

seq(madd(required,
map(λemail.mkRequired(email), partipants(m))),

msend(participants(m), mkReserve(id)),
become(BReserveScheduleAgent(id, participants(m), sender(m)))))

The schedule agent can be requested to schedule a meeting by sending it the
message schedule. When such a request is received the agent sends out reserve
messages to the agenda actors of the participants and the scheduler evolves into
the BReserveScheduleAgent state.
3 In the λ calculus a pair is created with the function cons. The function car returns

the first element of the pair, while the cdr function returns the second element. A
list of elements is represented as a nesting of pairs. e.g. (1, 2, 3) is represented as (1,
(2, (3, ’())))

16

BReserveScheduleAgent = rec(λb.λid.λparticipants.λm.λcustomer.
if(and(reserveAnswer?(m), eq?(id, session(m))),

if(success?(m),
if(eq?(map(sender, filter(reserveAnswer?, messages(rcv)))),

participants),
seq(msend(participants,mkConfirm(id)),

become(BConfirmScheduleAgent(id, participants, customer)))),
seq(msend(map(destination, filter(reserve?, messages(sent)))),

mkFree(id)),
mdelete(out,

map(identity, filter(reserve?, messages(out)))),
send(customer, mkFailed()),
become(BInitScheduleAgent(id+1)))))))

When handling a reserveAnswer message we make use of the mailboxes in-
troduced in our system:

– If the reservation was successful we check the box of received messages
(named rcv) to see if we have received an answer from all the participants
their agenda’s. Due to the mailboxes there is no need to manually maintain
the sessions. If all agenda’s are successfully reserved, then the ScheduleAgent
actor sends confirm messages to all Agenda’s.

– If the reservation fails at some point we have to free up the agenda’s of the
reservations that were succesfull. We can use the mailbox of the messages
that were sent (named sent) to track to which agenda actors we already sent
out reservation request. To these actors we send the free message so that
they can undo their reservation. We then delete the reservation messages
that were not sent out from the mailbox out. We also notify the customer
actor that sent the schedule message that the meeting could not be scheduled
by sending it a failed message.

BConfirmScheduleAgent = rec(λb.λparticipants.λm.λcustomer.
if(and(disjoin?(),

eq?(map(sender, filter(confirm?, messages(sent)))),
participants))

seq(send(customer, mkSucceeded()),
become(BInitScheduleAgent(id+1))))

Each time the ScheduleAgent actor disjoins from an agenda actor it checks
to see if all confirm messages were sent out, again using the mailbox sent. If all
confirm messages were sent, then the customer actor that sent the schedule is
notified with a succeeded message.

The second example shows that the mailboxes introduced in the extended
actor model contain useful primitives that allow to structure the different con-
versations the scheduler has with the different agenda applications. It also shows
the usefulness of the mailboxes “sent” and “out” to check and manipulate the
communication status of different messages.

Submitted to EUC2004 17

6 Related Work

6.1 Formalisms

The distributed join calculus [9] gives chemical semantics for logical movement
(migration), failures and failure detection of agents. A disadvantage of the model
is that it presumes that failures can be detected. In the context of ad-hoc wireless
network environments failures are impossible to detect, because it is technically
impossible to know whether a device has failed or the device has moved out of
communication range.

Locality based linda [10] is a formalisation of Linda [11, 12] (discussed below)
but with the explicit notion of locations. Locations are added to the primitives
of Linda, so the primitives work on a specific tuple space. Anonymous commu-
nication becomes impossible, because the location needs to be provided. In our
context this would mean that the addresses of communicating devices need to
be known, which is impossible to determine in ad-hoc wireless network environ-
ments. The model also does not define what happens with communication if the
location is unavailable.

The mobile ambient calculus [13] expresses an abstraction between mobile
computing and mobile computation in administrative domains. Mobile computa-
tion is the physical movement of devices between administrative domains, while
mobile computing is the movement of a logical process (also called migration).
The extended actor model and the ambient calculus are complementary. The
mobile ambient calculus describes movement of processes between different lo-
cations and communication between ambients that are located in an ambient.
The extended actor model describes how actors can structure their asynchronous
communication to manage sessions and how new actors can be found in new
physical environments. The mobile ambient calculus could be used to describe
the physical movement of actor configurations.

6.2 Software Technology

The programming language Janus [14] is based on concurrent constraint logic
programming (CCP). We learned about it shortly after writing this paper. The
model also includes explicit mailboxes and they show that the use of mailboxes is
more expressive than the original actor model. Agents communicate by putting
messages in each others mailboxes. A mailbox is associated with a “teller” and
an “asker”. The teller allows agents to put messages in the mailbox and the asker
allows agents to retrieve messages from the mailbox. Tellers and askers can be
transmitted between agents. An agent can ask for input on one or more mailboxes
at the same time. The Janus programming model can express useful distributed
programming idioms. There are some differences however between our extended
model and theirs. The mailboxes are used as a communication medium in Janus,
while in our extended actor model they are used for three different purposes: 1) a
means to track the communication history 2) the actors that are communication
range and 3) as a structuring tool for session management.

18

JXTA [15] is middleware for peer-to-peer environments and covers problems
such as peer discovery and peer-to-peer communication. JXTA can also be em-
ployed in a wireless context [16]. A disadvantage however is that wireless devices
have to depend on JXTA relays in order to perform basic operations such as
peer discovery. This means that JXTA relays have to be present in each physical
environment before wireless devices are able to interact with one another. This
is in conflict with the idea of transparency in pervasive computing.

Jini [17] enables discovery and lookup of services based on their description.
It is possible to search for objects based on the object’s type information and
attributes. Jini is based on a central server architecture. A Jini server would
have to be present in any place where devices need to find each other.

In [6] a library is introduced to enable multicast and broadcast messages
between objects in Java using wireless communication. Message delivery is based
on the type information instead of addresses. The mechanism of sending messages
based on type information is similar to our dynamic join that uses a pattern
to find compatible devices. However, the lookup mechanism provided by the
dynamic join in our extended actor model allows the use of other useful static
information such as the e-mail address we used in the example of the meeting
scheduler. This can simplify lookup of specific devices without having to know
the exact actor address. Messages are also sent asynchronously in the library,
but there is no notion of an outgoing queue. This means that if a message is sent
and there is no device listening on the other side, then the message is lost. This
means that checking message delivery is put on the shoulders of the developer,
which will make the program inherently more complex.

Linda [11, 12] is a coordination language based on tuple spaces. There are
several primitives that make communication explicit in the code. There is a
primitive for putting values in the tuple space (asynchronous) and primitives
for getting values from the tuple space (blocking). Tuple spaces are interesting,
because they allow communication without the need to specify the communi-
cation address of the receiver, much like in the spirit of our join rule. Linda is
based on a central server architecture, there is one central tuple space where the
structured values are put, which makes it not suitable for ad-hoc wireless net-
work environments. The language does not provide semantics of communication
failures in the language, which is important in our context.

7 Conclusion

In this paper we extended the operational semantics of the actor model in order
to deal with three problems associated with ad-hoc wireless network environ-
ments:

1. How do several devices find each other?
To handle this problem we introduced reduction rules join and disjoin that
define what happens when devices come in communication range of one
another.

Submitted to EUC2004 19

2. How to deal with communication failures and disconnected operation?
This problem is handled with the introduction of the in, rcv, out and sent
mailboxes that allow us to track and intervene in the communication between
different devices.

3. How to keep track of different conversations that occur in different places?
This problem is handled through the custom manipulation of mailboxes.

These three problems are handled with the introduction of a single concept in
the actor language, namely that of a mailbox. The mailbox unifies the first-
class computational and environmental context into a single concept. In the
two examples above we have illustrated that they can be used as a basis for
the implementation of more complex applications. We have implemented our
extended actor model and are looking into new programming constructs based
on the extended actor model that will ease the implementation of distributed
applications for ad-hoc wireless network environments.

Acknowledgements

Thanks to Thomas Cleenewerck for proof-reading this paper and for providing
us with some useful hints to increase the readability of this paper.

References

1. Weiner, M.: The computer for the 21st century. Scientific American 265 (1991)
66–75

2. Keays, R., Rakotonirainy, A.: Context-oriented programming. In: Proceedings of
the 3rd ACM international workshop on Data engineering for wireless and mobile
access, ACM Press (2003) 9–16

3. Agha, G.: Concurrent object-oriented programming. Communications of the ACM
33 (1990) 125–141

4. Agha, G., Mason, I.A., Smith, S.F., Talcott, C.L.: A foundation for actor compu-
tation. Journal of Functional Programming 7 (1997) 1–72

5. Church, A.: The Calculi of Lambda-Conversion. Volume 6 of Annals of Mathe-
matical Studies. Princeton University Press, Princeton (1985)

6. lan Kaminsky, Bischof, H.P.: Many-to-many invocation: A new object oriented
paradigm for ad hoc collaborative systems. 17th Annual ACM Conference on
Object Oriented Programming Systems, Languages, and Applications (OOPSLA
2002) (2002)

7. Mason, I., Talcott, C.: Equivalence in functional languages with effects. Journal
of Functional Programming 1 (1991) 287–328

8. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation. MIT Press,
Cambridge, MA (1985)

9. Fournet, C., Gonthier, G., Levy, J.J., Maranget, L., Remy, D.: A Calculus of
Mobile Agents. In Montanari, U., Sassone, V., eds.: Proceedings of 7th Interna-
tional Conference on Concurrency Theory (CONCUR’96). Volume 1119 of LNCS.
Springer-Verlag, Berlin, Germany (1996) 406–421

20

10. De Nicola, R., Ferrari, G., Pugliese, R.: Locality based Linda: Programming with
explicit localities. Lecture Notes in Computer Science 1214 (1997) 712–??

11. Gelernter, D.: Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems 7 (1985) 80–112

12. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32 (1989) 444–458
13. Cardelli, L., Gordon, A.D.: Mobile ambients. In Gordon, A., Pitts, A., Talcott,

C., eds.: Electronic Notes in Theoretical Computer Science. Volume 10., Elsevier
(2000)

14. Kahn, K., Saraswat, V.A.: Actors as a special case of concurrent constraint (logic)
programming. In: Proceedings of the European conference on object-oriented pro-
gramming on Object-oriented programming systems, languages, and applications,
ACM Press (1990) 57–66

15. Gong, L.: Project jxta: A technology overview. Technical report, SUN Microsys-
tems, http://www.jxta.org/project/www/docs/TechOverview.pdf (2001)

16. Gong, L.: Jxta for j2me extending the reach of wireless
with jxta technology. Technical report, SUN Microsystems,
http://www.jxta.org/project/www/docs/JXTA4J2ME.pdf (2002)

17. Arnold, K., Wollrath, A., O’Sullivan, B., Scheifler, R., Waldo, J.: The Jini speci-
fication. Addison-Wesley, Reading, MA, USA (1999)

