
But What if Things go Wrong?

Johan Fabry∗

Vrije Universiteit Brussel, Pleinlaan 2
1050 Brussel, Belgium

Johan.Fabry@vub.ac.be

April 5, 2004

Abstract

Building large-scale distributed systems these days is facilitated by a
number of distribution frameworks. However, in practice, we see that fail-
ure handling is often treated poorly in these frameworks. An exception is
transactions, which are a well-known approach for handling failure, and
we see that, indeed, these distribution frameworks provide for transac-
tion management. Transactions themselves have a number of drawbacks,
which have been addressed by the creation of a number of advanced trans-
action mechanisms. But, we see that such advanced transaction mecha-
nisms are not used in practice. We think that this is because developing
with these mechanisms are not well supported. Therefore, we state that
an essential part of a communication abstraction for distributed systems
should be a cleanly abstracted way in which to handle advanced transac-
tions, and support for the programmer to use these mechanisms.

Keywords: reliability, advanced transactions, tool support

1 Introduction

Nowadays, building distributed systems is said to be easy: just use one of the
many distribution frameworks out there, such as, for example, an implementa-
tion of J2EE[12] or CORBA[1], and all the hard stuff will be taken care of for
you. Indeed, such frameworks will simplify such things as performing remote
method invocations, enforcing security restrictions on method calls, persisting
data, looking up services, and so on . . .

So, what a programmer needs to learn to be able to implement our Dis-
tributed Airspace System, is how to use one such framework by, for example,
perusing an EJB book[9]. Once versed in how to write these Beans, and to con-
figure the provided services, which, by the way, in itself, is not a trivial task, all
that remains is to write the system in standard OO style. The communication
abstractions provided by the framework will take care of all the hard stuff, and
we will be home free. Or so the promotional literature will lead us to believe.

∗Author funded by the Institute for the Promotion of Innovation by Science and Technology
in Flanders (IWT) in the context of the CoDAMoS project.

1



But, sadly, life is more complicated than this. In real life things go wrong:
the airport network goes down, application servers act up, planes fly out of reach
of standard radio communication, et cetera. If we want our Airspace System
to be useful, we need to be able to handle partial failures. So lets us examine
what the application framework documentation tells us. It turns out that this
usually amounts to very little1, what we find is that we will be notified that
something has gone wrong by a thrown exception. However, example code in
the literature will usually either ignore this exception, or stop the program,
which is clearly inadequate. Also, when browsing through research papers on
distributed systems, we all-too often find the equivalent of “the experiment was
run on a local network”, in other words, the possibility of partial failure was
effectively ruled out.

It’s easy to see why this is the case: handling failures is difficult. How to han-
dle a failure depends on lots of variables and is usually very application-specific.
But, whereas the distributed systems community has progressed considerably,
new tools and architectures that address specific kinds of applications being
released frequently, the handling of partial failures seems to be stuck in the
stone age. In the remainder of this paper we propose one way to evolve one
kind of failure handling into something more contemporary. The kind of failure
handling we wish to evolve is transaction management.

2 Transaction Management

In fact, transaction management has been with us almost since the stone age:
the oldest yet discovered instance of writing is the record of a number of
transactions[6]. The concept of transaction is widely disseminated, and again
if we look at architectures for distributed systems, we see that many include
support for transaction management.

Transactions are a good thing, because they ensure that concurrent processes
do not inadvertently work on each others’ intermediate results, and generally
prevent the underlying data of a system to become inconsistent. This effectively
prevents a whole slew of possible errors to occur, which is why transaction man-
agement has become quite essential in large multi-tiered distributed systems, of
which our Distributed Airspace System would most probably be an instance.

However, transactions are not a silver bullet: while we can prevent incon-
sistencies in the database, we can’t handle the problem of a crashed database
server by enclosing database accesses within a transaction. Furthermore, using
transactions in itself leads to an extra type of possible failures: transactions
may be rolled back by the transaction manager to break deadlocks.

But let us remain focused and simply concentrate on one small aspect of us-
ing transactions: how to handle rollbacks in case of a deadlock. Again, looking
at the literature for the distributed systems frameworks, we see no thorough
treatment of this kind of failure. This could well be because these kinds of fail-
ures have been estimated to occur seldom, but if we want a reliable Distributed
Airspace System we need to handle them.

Consider, for example an aircraft transmitting turbulence data, to be stored
in a database for later retrieval. It makes sense to enclose this in a transaction,

1This is not a criticism on the specific book cited above, this problem recurs in the majority
of the related literature

2



to prevent interference with data from other aircraft in the same area. However,
it might easily be possible that, due to the turbulence, the radio link is lost for a
significant amount of time, and the transaction will take a long time to complete.
This has as a well-known issue in that the likeliness of deadlocks increases as the
transaction time increases [6]. Also, we can envision other, similar, scenarios,
where people use a PDA with a wireless link to book a plane ticket when on the
move, and the PDA suddenly loses the network connection. We should be able
to handle these kinds of failures, and preferably this should not happen ad-hoc,
in a (sub-)application-specific way, but using a more generic model.

3 Advanced Transaction Management

Classical transactions, as described above, have been developed to treat small
units of work, which only access a few data items. As a result, as transaction
time grows, and the number of data items accesses becomes larger, the per-
formance of the system will drop significantly[6]. This is due to a number of
factors, for example the increased chance of deadlocks associated with longer
transactions, and the large discrepancy between complex applications and their
data requirements and the simple functionality of transactions.

To increase application performance, and to address additional requirements
such as cooperation between transactions, a number of advanced transaction
mechanisms (ATMS) have been developed2. However, each ATMS usually fo-
cuses on one single issue, and no overall system has been developed which treats
a large number of the identified drawbacks of classical transactions. An impres-
sive number of alternate ATMS can be found in the literature, and two books
have been published about the subject [2, 7].

Even if focusing on the issues of deadlocks, due to long term transactions,
we can identify different ATMS which handle this issue, for example Sagas[4]
and Altruistic locks[10]. In the remainder of this section we briefly outline both
mechanisms.

Sagas relax the atomicity requirement of long-term transactions by split-
ting them into a sequence of atomic sub-transactions. The sequence of sub-
transactions should either be executed completely or not at all. Splitting the
long-term transactions releases locks earlier, which increases concurrency as
other transactions can execute concurrently, and decreases the probability of
deadlocks, since after each sub-transaction all locks are released, and each sub-
transaction will probably require less resources than the complete Saga.

But what if we want to be able to handle roll-backs of the Saga? In these
cases, compensating actions must be executed to undo the effects of already
committed sub-transactions. To allow this, the transaction programmer defines
a compensating transaction for each sub-transaction. This transaction then per-
forms a semantical compensation action. So to roll back a Saga, the transaction
manager aborts the currently running sub-transaction, and subsequently runs
all required compensating transactions in reverse order.

An alternative to Sagas is the use of altruistic locks, which is an extension
of the two-phase locking protocol that is most commonly used in transaction

2Of these, the most well-known ATMS is nested transactions [6]. Briefly put, nested
transactions allow for hierarchically structured transactions, and includes rules for nesting
the scope of commitment and recovery.

3



management. When using altruistic locking, a long-term transaction that de-
termines it no longer needs access to certain database objects can release the
locks on these objects early, and donate them to other, waiting transactions.
This in contrast to two-phase locking, where the first phase of a transaction
consists of acquiring locks, and the second phase releases those locks; once a
lock has been released, no more locks may be acquired. Using altruistic locking
however, a transaction may donate any of its locks, both in the acquisition and
in the release phase of the transaction. The donation of a lock signifies that
the transaction no longer needs access to that object. This implies that other
transactions may access this object concurrently. There are a number of restric-
tions posed on acquiring donated locks, which must be obeyed at runtime, but
we will not discuss them here, as it is outside the scope of this paper.

So, it appears that by using these advanced transaction mechanisms, we
have a systematic way in which we can tackle transactional problems, and it
appears that we have been talking about a non-issue. But appearances can be
deceiving, and it turns out that we do have an issue here.

4 Advanced Transaction Management in the 21st
Century

The sad state of failure handling in general also applies to these advanced trans-
action mechanisms: while these mechanisms have been developed in the 80s and
90s, we still see no use of them in commercial systems. Indeed, we are even hard-
pressed to find the most well-known model: nested transactions, in a commercial
system.

It would seem that this is the case because implementing a transaction pro-
cessing monitor which enforces these mechanisms is an unsurmountable task,
but this is not the case. Several TP monitors for these ATMS’ have been imple-
mented, both in the 80s and 90s [2, 7] and recently [8]. So the problem should lie
elsewhere, and given the track record of how error-handling is treated in these
kinds of systems, we think we have found the root cause of the absence of the
usage of ATMS.

It is our position that the problem with advanced transaction mechanisms
lies in the difficulty for the application programmer to specify how to use these
mechanisms. Given their nature, an ATMS needs more information about the
transaction than a classical system. For example, in Sagas we need to split
the transaction in atomic steps and specify compensating transactions, and in
Altruistic locking, we need to specify when locks are donated. However, we
think that, since letting the developer specify error-handling code is already an
issue with current systems, having him go the extra mile to use a more generic
ATMS, instead of using an application-specific hack, will be nigh-on impossible.

Therefore, to be able to effectively use these ATMS, we should support
the application programmer when specifying these advanced transactions. We
envision such tool support by, for example, using a plug-in for an Integrated De-
velopment Environment. The plug-in would use some form of reasoning about
the code (i.e. code-mining) to determine interesting transactional properties of
the code being investigated. The programmer is presented with this information
at a higher level of abstraction, and can specify the required transactional prop-

4



erties at this higher abstraction level, for example by using a Domain Specific
Language [13].

We have implemented a first, small, prototype tool[3] for use in Enterprise
JavaBeans[11] as a first step toward this goal. Our tool can detect methods that
should be made transactional, based on the types of beans being accessed and
if getters or setters are called on these beans. Also, again by using code mining,
our tool can suggest possible compensating methods for the current method,
allowing the programmer to pick one from a list. Furthermore, our tool includes
a simple extra that facilitates the handling of deadlocks: the programmer can
specify that in such cases the transaction should simply be restarted, by re-
starting the corresponding method.

We are currently extending our tool, and considering the following avenues
for further work: First we are looking at what more useful information can
be gathered from the source code, which we can bring to a higher abstraction
level and present to the programmer. Second, we are considering what other
generic deadlock- or exception-handling strategies could be worthwhile to offer
the programmer. Third, we are perusing the work on coordination languages[5]
to investigate how transaction sequences can be specified, for use, in for example,
Sagas.

5 Conclusion

In this paper, we have talked about failure management in a large scale dis-
tributed system, such as, for example, a Distributed Airspace System, and how
the tackling of this aspect seems to be somewhat lacking in current day sys-
tems. We have focused on transaction management as a widely-used means of
performing a subset of failure prevention and failure management. We identi-
fied a weak point of transaction management, namely the problem of deadlocks,
especially in long-term transactions.

We have shown that a number of solutions exist for the drawbacks of trans-
action management, in the form of advanced transaction mechanisms. Many
such mechanisms have been developed, and we briefly touched on two of them:
Sagas and Altruistic locks. However, while this research was performed a while
ago, we see that these models have not been put into practice.

Our position statement is that this is because such advanced mechanisms
are too difficult to use by the application programmer without some form of
help: they require too much advanced information to be specified. Therefore,
we have implemented a prototype tool to help the programmer, by allowing
him to reason about such forms of transaction management at a higher level
of abstraction. This is achieved by mining transactional information hidden
within the source code, and allowing specification of properties at this high
level of abstraction through a domain-specific language.

6 Acknowledgments

Thanks to Thomas Cleenewerck for his helpful comments and Theo DHondt for
supporting this research.

5



References

[1] The common object request broker: Architecture and specification. Tech-
nical report, Object Management Group, Inc., 2002.

[2] A. K. Elmagarmid, editor. Database Transaction Models For Advanced
Applications. Morgan Kaufmann, 1992.

[3] J. Fabry. Transaction management in EJBs: Better separation of concerns
with AOP. In The Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software, 2004.

[4] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM SIG-
MOD Annual Conference on Management of data, pages 249 – 259, 1987.

[5] D. Gelernter and N. Carriero. Coordination languages and their signifi-
cance. Commun. ACM, 35(2):97–107, 1992.

[6] J. Gray and A. Reuter. Transaction Processing, Concepts and Techniques.
Morgan Kaufmann, 1993.

[7] S. Jajodia and L. Kershberg, editors. Advanced Transaction Models and
Architectures. Kluwer, 1997.

[8] R. Karlsen. An adaptive transactional system - framework and service
synchronization. In On The Move to Meaningful Internet Systems 2003:
CoopIS, DOA, and ODBASE. Springer Verlag, 2003.

[9] R. Monson-Haefel. Enterprise JavaBeans. O’Reilly, third edition, 2001.

[10] K. Salem and H. Garcia-Molina. Altruistic locking. ACM Transactions on
Database Systems, 19(1):117 – 165, March 1994.

[11] Sun Microsystems. Enterprise JavaBeans 1.0 architecture.
http://java.sun.com/products/ejb/docs.html.

[12] Sun Microsystems. Java 2 platform, enterprise edition.
http://java.sun.com/j2ee/.

[13] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

6


	Introduction
	Transaction Management
	Advanced Transaction Management
	Advanced Transaction Management in the 21st Century
	Conclusion
	Acknowledgments

