
Inductively Generated Pointcuts to Support Refactoring to Aspects

Tom Tourwé
Centrum voor Wiskunde en Informatica

P.O. Box 94079, NL-1090 GB Amsterdam
The Netherlands

Email: tom.tourwe@cwi.nl

Andy Kellens
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

Email: akellens@vub.ac.be

Wim Vanderperren & Frederik Vannieuwenhuyse
System and Software Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

Email: { wvdperre, frvnieuw }@vub.ac.be

Abstract

In this paper, we show that the basic pointcut languages
offered by current aspect-oriented programming languages
impact important software engineering properties, such as
evolvability and comprehensibility, in a negative way. We
discuss this impact by means of detailed examples, and pro-
pose an advanced pointcut managing environment, based
on machine learning techniques, to overcome the problem.

1 Problem Statement

An important part of an aspect’s definition consists of the
specification of its pointcuts, e.g. those places in the source
code where the aspect has to exert its influence. Current-
day aspect-oriented programming languages, such as as As-
pectJ [4], only incorporate a very basic pointcut language,
however, which forces pointcuts to rely heavily on the exist-
ing structure of a software application. Moreover, the way
in which these pointcuts need to be specified is particularly
primitive: all responsibility is left to the developer, who not
only needs to identify the pointcuts, but also has to make
sure they are specified in the correct way. Consequently, it
is notoriously hard to define generic, reusable and compre-
hensible pointcuts that are not tightly coupled to an applica-
tion’s structure.

The success and usefulness of the aspect-oriented soft-
ware development approach raises the important issue of
how an object-oriented application can be refactored into
an aspect-oriented one. The observation presented above is

especially important in that context:

• the basic pointcut language may prohibit us from cap-
turing the application’s structure adequately, and may
thus not allow us to define the pointcuts in the intended
and most generic way possible. To do so, the structure
first needs to be refactored;

• although aspect-specific refactorings are available that
extract aspects from the classes and methods of an
object-oriented application, they rely on the developer
to determine the pointcuts of the extracted aspects and
define them in the right way. As such, it is impossi-
ble to guarantee the correctness of these pointcuts, and
thus the behaviour preservation of the refactoring;

• due to the tight coupling of the pointcuts to the ap-
plication’s structure, the pointcuts of the extracted as-
pects are affected by subsequent refactorings of the ap-
plication. Although this impact has been studied al-
ready [3], proposed solutions to the problem merely
”patch” the affected pointcuts. instead of radically re-
considering and redefining them appropriately. The
pointcuts themselves will thus gradually degenerate af-
ter a small number of refactorings, decreasing their
comprehensibility.

In the next paragraphs, we provide an illustrative exam-
ple of all three problems.

1.1 Pointcut Definition

Consider the following two classes A and B, that are not
related by inheritance, and their respective methods m and
n:

class A {
public void m() {

this.c();
x.a();
y.b();

}}

class B {
public void n() {

x.a();
y.b();
this.d();

}}

We now want to insert some specific code dealing with a
non-functional aspect A around the calls to methods a and
b as follows:

class A {
public void m() {

this.c();
<insert aspect X’s before code here>
x.a();
y.b();
<insert aspect X’s after code here>

}}

class B {
public void n() {

<insert aspect X’s before code here>
x.a();
y.b();
<insert aspect X’s after code here>
this.d();

}}

The basic pointcut language offered by AspectJ does not
allow us to define this aspect in a straightforward way. In-
deed, the language can not express the pointcut we need
here: ”all calls to method a followed by a call to method
b”. We can specify the aspect as follows, using two sepa-
rate pointcuts for each method call and two separate advices
to insert the code before and after the respective pointcut:

aspect X {
pointcut pc1(): call(* *.a());
pointcut pc2(): call(* *.b());
before(): pc1() {

<aspect X’s before code here>
}
after(): pc2() {

<aspect X’s after code here>
}}

This is however not guaranteed to be correct at all times,
since the aspect will also work on code where the order in
which a and b are called is different, or on code where only
a or b is called.

The only option left to define the pointcut in the correct
way is to refactor the classes A and B first, as follows:

class A {
private void ab() {

x.a();
y.b(); }

public void m() {
this.c();
this.ab();

}}

class B {

private void ab() {
x.a();
y.b(); }

public void n() {
this.ab();
this.d();

}}

Note that the code in the ab method can not be factored
out, because classes A and B are not related by inheritance.

This refactoring makes the aspect’s definition more clear
and easier to understand:

aspect X {
pointcut pc(): call(* *.ab());
around(): pc() {

<aspect X’s before code here>
proceed();
<aspect X’s after code here>

}}

The fact that we need to perform a refactoring before
we can define a correct aspect, is quite cumbersome. First
of all, we want the base code to be oblivious from the as-
pects that are applied to it, which is what aspect-oriented
programming is all about. Second, refactorings are tradi-
tionally applied to make the code cleaner from a conceptual
point of view. In this case, the code is refactored to be able
to introduce the aspect, and it is thus not guaranteed that it
becomes cleaner. Third, the solution is not scalable when
multiple aspects should be introduced onto the same code.
Each aspect may require a different refactoring, and differ-
ent refactorings may conflict with one another, because they
try to refactor the same code in different ways.

1.2 Pointcut Extraction

Consider the following code:

class A {
private void c() { ... }
public void m() {

x.a();
this.c();
y.b();

}}
class B {

private void d() { ... }
public void n() {

x.a();
this.d();
y.b();

}}

where the method calls to a and b this time represent a
non-functional concern, such as transaction management,
error handling, etc. This concern can be captured more
cleanly in an aspect, of course. So we apply an Extract
Advice refactoring [3] to get the following code:

class A {
private void c() { ... }
public void m() {

this.c();
}}

class B {
private void d() { ... }
public void n() {

this.d();
}}

aspect X {
pointcut pc() : ...
around() : pc() {

x.a();
proceed();
y.b();

}}

The hardest part of this particular refactoring is deter-
mining the pointcut of the X aspect. Using the restricted
pointcut language of AspectJ, we can choose among the fol-
lowing alternatives:

• The pointcut describes the execution of the methods
m and n in classes A and B: execution(void
A.m()) || execution(void B.n()). If
there are no other classes implementing either m
or n, the pointcut can be made more generic
by using wildcards: execution(* *.m()) ||
execution(* *.n()). This may prove beneficial
if later on, other m or n methods are defined;

• The pointcut describes calls to methodsc and d around
which the aspect has to be executed: call(void
A.c()) || call(void B.d()). If besides m
and n, no other methods in the application call c
or d, the pointcut can once again be made more
generic by using wildcards: call(* *.c()) ||
call(* *.d());

Clearly, whichever option we choose, it will always be
tightly coupled with the application’s structure, since the
pointcuts explicitly include a method’s signature. Conse-
quently, when the application evolves, it is very likely that
the pointcut needs to be changed as well, which is quite
cumbersome. We believe the root cause of this problem to
be the fact that a developer is forced to provide a detailed
definition of a pointcut when defining an aspect, and that
only a method’s signature can be taken into account for this
purpose. Consequently, the developer can only choose be-
tween a limited number of alternatives, and he has no clue
which is the best one, since he does not know how the ap-
plication will evolve.

1.3 Pointcut Refactoring

Consider the following class and method definition and
the aspect that works on them:

class A {
public void m() {

...
}}

aspect X {
pointcut pc1() :

call(void *.m());
...
pointcut pc2() :

call(void *.n());
... }

and suppose we apply a Rename Method refactoring to
rename the method m in class A to n. Clearly, this impacts
the two pointcuts pc1 and pc2, since these deal with m
and n methods respectively. As defined by [3], we have
to change these pointcuts accordingly as follows, to ensure
they remain correct:

class A {
public void n() {

...
}}
aspect X {

pointcut pc1():
call(void *.m()) || call(void A.n());

...
pointcut pc2():

call(void *.n()) && !call(void A.n())
... }

Other refactorings, such as Move Method and Extract
Method may change the pointcuts in other ways, always us-
ing a combination of logic operations as appropriate [3]. It
is easy to see that such an approach will lead to pointcuts
that become quite complex and hard to understand, let alone
that the impact of the refactorings can be assessed in such
an easy way as in this example. Ultimately, these pointcuts
will need to be refactored as well.

Once again, the main problem here is that a developer
has to deal with very detailed and specific pointcuts explic-
itly. The fact that these pointcuts become overly complex
after a few refactorings, and that there is no support for re-
ducing or managing this complexity, makes this a very dif-
ficult and error-prone task.

1.4 Summary

To summarise, the three problems we identify are:

• the pointcut language offered by current-day aspect-
oriented programming languages is too primitive and
not expressive enough;

• pointcuts are very tightly coupled to an application’s
structure;

• developers are forced to deal with pointcuts at too low
a level.

In the remainder of this paper, we propose an ad-
vanced aspect-oriented programming environment that
tackles these problems.

2 Description

As a solution to the three problems mentioned above,
we propose to include the notion of inductively generated
pointcuts in the aspect-oriented programming language.
This includes both an advanced pointcut language and a
supporting environment that manages the pointcuts for the
developer. The idea is that very complex pointcuts can be
expressed in the language, but that the developer is shielded
from this complexity by the environment. In this way, the
developer no longer has to manage the pointcuts in very
close and specific detail, but simply defines a pointcut clas-
sification, that groups the source code entities that should
be contained in a pointcut, and relies on the environment to
define the pointcut automatically in the correct way. To this
extent, the environment uses a machine learning algorithm
that is able to derive an intentional definition of the pointcut.

2.1 Pointcut Language

Internally, the pointcut managing environment uses the
logic language Soul [8] as a pointcut language. Soul is a
dialect of Prolog, that is implemented on top of, and tightly
connected to the Smalltalk programming environment. In
other words, Soul is a Turing-complete programming lan-
guage that can be used to reason about object-oriented ap-
plications in a concise and straightforward way. It has al-
ready been argued several times that such a language is ex-
tremely well-suited to express pointcuts [2], in particular
because it offers full access to the source code, and thus
allows pointcuts to use any kind of information necessary
to adequately and precisely describe their points of inter-
est. An extension to Soul, SoulJava [1], allows us to use the
reasoning capabilities of Soul on Java code.

2.2 Pointcut Managing Environment

The environment that manages the pointcuts consists of
two main parts: a graphical user interface that offers a view
on the source code, and an inductive logic programming al-
gorithm that is responsible for computing the pointcut defi-
nition. The source code browser allows the developer to de-
fine a pointcut classification that groups certain points in the
source code that should be included in a particular pointcut.
These points can be classes, methods, variables or individ-
ual statements. The inductive logic programming algorithm
then uses the elements of these pointcut classifications as
examples to compute the actual pointcut definition. It does
this by considering the various properties that the provided
examples share, such as the messages sent by a method, the
methods that access a particular variable, or the methods in
which a particular statement occurs. The result of the al-
gorithm is a set of logic rules and/or logic facts in the Soul

language, that compute the pointcut elements.

2.2.1 Specifying Pointcuts

Pointcuts are specified by the developer in a specialised
graphical user interface, using a simple drag and drop ap-
proach. The user interface is an extension of the Star-
Browser, and offers the developer a list of existing pointcut
classifications as well as a view on the source code of the ap-
plication. Facilities are provided to change existing pointcut
classifications, by adding elements to or removing elements
from them. A developer can also define a new pointcut clas-
sification, that initially contains no elements. Then, he/she
can just drag and drop source code entities that should form
part of the pointcut into this classification.

2.2.2 Inductive Logic Programming

Inductive logic programming (ILP) [6] is a machine-
learning technique that, given a set of desired example so-
lutions for a logic predicate, automatically induces rules for
that predicate. To derive the rules, an already established
set of predicates, called the background knowledge, is used.
The technique aims to uncover some general pattern in the
examples, so that additional examples with the same pattern
will be covered by the rules as well.

In our environment, inductive logic programming is used
to uncover a pattern between a number of source code enti-
ties that a developer classifies in an aspect. This pattern will
then represent the pointcut of the aspect. The background
knowledge used by the induction algorithm consists of all
predicates that Soul offers to reason about source code.
Among others, this knowledge contains predicates such as
classImplements, superclassOf, subclassOf,
senderOf, . . .

The following example demonstrates this use of ILP:
class A extends C {

private void c() {};
public void m() {

this.c();
}}

class B extends C {
private void d() {};
public void m(){

this.d();
}}

The example consists out of classes A and B which
are subclasses of C. Both classes implement a method m
that performs a call to a private method, respectively the
methods c and d. Suppose we want to induce a pointcut
pointcut1 which covers all exections of the method m.
Table 1 gives an overview of the examples and background
knowledge which are used in our example and shows the
induced Soul rules 1. As examples of the pointcut, the ILP

1The variables in the induced logic rules have automatically generated
names, which we edited for readability.

Examples Background knowledge Induced Logic Rules
pointcut1(method(A,m)) implementsMethod(A,m) pointcut1(method(?class,?method)) if
pointcut1(method(B,m)) implementsMethod(A,c) implementsMethod(?class,m),

subclass(A,C) subclass(?class,?C),
performsPrivateSelfSend(A,m) performsPrivateSelfSend(?class,?method).
implementsMethod(B,m)
implementsMethod(B,d)
. . .

Table 1. Examples, background theory and induced rules for the pointcut1 predicate

algorithm is given the methods m of classes A and B. The
background knowledge is obtained by analyzing the exam-
ples using Soul and gathering the useful information. No-
tice that the induced rules express the examples in function
of the background predicates.

In order to generate these rules, the ILP algorithm uses a
bottom-up technique (although other techniques exist [5])
that generalises a set of specific examples into a more
general rule. For example, given the two logic clauses
subclass(A,C) and subclass(B,C), the technique
automatically deduces the clause subclass(?x,C). Be-
cause each pair of logic clauses in the examples and the
background knowledge is considered in this way, the tech-
nique is able to construct a set of logic rules that matches all
examples. Since this set of rules contains a lot of redundant
parts, a reduction is applied to obtain logic rules as shown
above. A discussion of this entire technique, which is called
relative least general generalisation is beyond the scope of
this paper. We refer the interested reader to [7].

Note that the obtained rule is quite general, but can be
adapted by the environment in the appropriate way as soon
as the developer adds or removes elements from the classifi-
cation of the aspect. In doing so, the developer actually pro-
vides positive and negative examples to the machine learner,
which makes sure the rule that is derived after a number of
iterations has high chances of corresponding exactly to the
intention of the aspect.

2.3 Discussion

The inductive pointcut model discussed above is capable
of relieving the problems we discussed above, as follows:

• since the pointcut language is more expressive, the
need to refactor an application’s structure in order to
be able to capture it in a pointcut disappears;

• the developer does not need to consider various al-
ternatives for defining a pointcut. since the pointcuts
are automatically defined and managed by the envi-
ronment. The environment considers the alternatives
and generates a pointcut that includes the provided ex-
amples and does not include any other part of the pro-
gram;

• the complexity introduced by refactorings that have an
impact on a pointcut is no longer a problem, since the
developer does not deal with the pointcuts explicitly.
When a refactoring is applied, its impact on the ex-
isting pointcuts can be analysed automatically, and the
inductive logic programming algorithm can recompute
a new, appropriate pointcut if necessary. Moreover,
the environment always defines a pointcut as simple
as possible (as opposed to a complex combination of
logic operations), and this makes it easier to assess the
impact of a refactoring;

3 Do Inductively Generated Pointcuts Sup-
port Comprehensibility?

3.1 How do Inductively Generated Pointcuts Sup-
port Comprehensibility?

Inductively generated pointcuts support comprehensibil-
ity simply because the developer deals with the source code
artifacts that make up the pointcut, as opposed to the ab-
stract description of these artifacts. In this way, the pointcut
managing environment offers the developer a comprehen-
sive overview of all artifacts covered by a particular point-
cut.

Moreover, the pointcut description that is generated
by the inductive logic programming algorithm can be in-
spected, if necessary. Because the algorithm recomputes a
pointcut whenever necessary (for example, because a refac-
toring was applied), this pointcut is always as simple as pos-
sible (as opposed to a complex combination of logic opera-
tions).

3.2 How do Inductively Generated Pointcuts Re-
duce Comprehensibility?

Since the inductive logic programming algorithm com-
putes the pointcut definition automatically, the developer
no longer has precise control over this definition. In some
cases, this may be problematic. For example, it is very dif-
ficult to determine the cause of an incorrect pointcut defini-
tion or to debug it. This requires either removing source
code artifacts from the pointcut classification, or adding

other ones, or inspecting the generated logic rule and try-
ing to adapt it manually. On the other hand, one can easily
imagine that debugging an incorrect AspectJ pointcut defi-
nition may be just as difficult.

4 Do Inductively Generated Pointcuts Sup-
port Evolvability?

4.1 How do Inductively Generated Pointcuts Sup-
port Evolvability?

Inductively generated pointcuts support evolvability in a
number of ways.

First of all, since the pointcut language used is very ex-
pressive, the pointcut can be described in a more intentional
way. In other words, the pointcut models the semantics of
the source code artifacts, as opposed to just the structure.
As such, inductively generated pointcuts reduce the tight
coupling between the aspect and the source code, making
the former more reusable, while the latter can evolve more
easily without affecting existing pointcuts.

Second, inductively generated pointcuts help the devel-
oper when refactoring an object-oriented application into
an aspect-oriented one. The environment relieves the de-
veloper from the difficult, error-prone and time-consuming
task of identifying and defining the appropriate pointcuts for
the extracted aspects. The developer only has to specify the
source code artifacts to which a particular aspect should be
applied, and the pointcut describing these artifacts is gener-
ated automatically.

Last, because the environment manages the pointcut de-
scriptions automatically, the developer no longer has to
worry about the impact of a particular refactoring of the
base code on the existing pointcuts. The environment is able
to assess this impact automatically, and adapt the pointcuts
as necessary. In this way, we can be sure that the pointcut’s
definition is always as simple as possible (but still contain
enough complexity to remain correct).

4.2 How do Inductively Generated Pointcuts Re-
duce Evolvability?

When a lot of new classes and methods are added to
the application at the same time, these should all be clas-
sified into the correct pointcut classifications. This may be
a time-consuming activity. A particularly attractive prop-
erty of machine learning algorithms in this context is that
they perform better over time, when more examples become
available. As such, we believe that the pointcuts that are
generated will become quite sophisticated and will come
quite close to an intentional description, which makes them
more robust toward evolution.

We should also point out that the situation is as problem-
atic in AspectJ: when a lot of classes and methods are added
to an application, the impact on existing pointcut definitions
has to be considered as well. A developer may need to in-
spect each and every pointcut, in order to verify whether
it does not include any of the new entities it shouldn’t, or
whether it does include all new entities it should.

5 Summary

In this paper, we show how pointcut definition, extrac-
tion and refactoring turns out to be problematic and im-
pact important software engineering properties in a negative
way. We argue that this was due to the fact that the pointcut
language offered by current-day aspect-oriented program-
ming languages is too primitive , that pointcuts are very
tightly coupled to an application’s structure, and that de-
velopers are forced to deal with pointcuts at too low a level.

To overcome these problems, we propose the notion of
inductively generated pointcuts. These allow a developer
to work with pointcuts at a high-level of abstraction, by
merely moving them into the appropriate pointcut classi-
fication. The pointcut descriptions are automatically gen-
erated from these classifications, by means of an inductive
logic programming algorithm. Moreover, the impact of par-
ticular changes to the base code can be assessed automati-
cally, and the pointcuts will be adapted automatically when
necessary.

References

[1] J. Fabry and T. Mens. Language-independent detection of
object-oriented design patterns. Elsevier Computer Lan-
guages, To Be Published.

[2] K. Gybels and J. Brichau. Arranging language features for
more robust pattern-based crosscuts. In Proceedings of the
Second International Conference of Aspect-Oriented Soft-
ware Development, 2003.

[3] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring
of aspect-oriented software. In Net. ObjectDays 2003, Erfurt,
Germany, 2003.

[4] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Grisworld. An overview of AspectJ.

[5] T. Mitchell. Machine Learning. McGraw-Hill International
Editions, 1997.

[6] S. Muggleton. Inductive logic programming. London: Aca-
demic Press, 1992.

[7] S. Muggleton and C. Feng. Efficient induction of logic pro-
grams. In First Conference on Algorithmic Learning Theory,
1990.

[8] R. Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object Oriented Design and Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, 2001.

