
Invasive Composition By Transformation Systems

Thomas Cleenewerck

June 30, 2004

1 Introduction

The most important strategy to deal with complex systems in computer science
is the divide and conquer design paradigm. It works by recursively breaking
down a problem into sub-problems until they become simple enough to be solved
directly. The solutions to the sub-problems are then composed to give a solution
for the whole problem. There are two kinds of composition: non-invasive and
invasive composition. The non-invasive composition mechanisms are applicable
as long as the kind of components to be composed fit in the dominate decom-
position. However it has become clear that there are multiple equally valid and
useful decompositions of the same software. In order words, there are often
components that do fit and violate the dominate decomposition. There are two
ways of dealing with this problem. One approach is to express a software sys-
tem as a set of multi-dimensional concerns like HyperSpace [OT00]. Another
approach is to keep a single dominate decomposition and express the compo-
nents that violate this decomposition in a crosscutting way like AspectJ. In this
later approach such crosscutting components must be invasively composed with
the other components.

Quite a lot of the generative programming techniques have been build with
the second approach in mind and thus offer various invasive composition mech-
anisms. Let us briefly discuss the most significant ones. The founder of invasive
composition is subject-oriented programming [HO93]. In this model object-
oriented code snippets and fragments are composed with one another using
correspondence and combination rules. Gray box component models integrate
[TG97] through a partial exposure of the internals of the system in terms of an
operational model [BW97]. Glass-box composition models use declarative spec-
ifications to compose and reason about the composition of components [Bat03].
More recently, aspect-oriented programming (HyperJ and AspectJ) broadened
the application of a crosscutting concern to a set of crosscutting points scat-
tered over the entire software system where existing code gets composed with
the crosscutting code. In fact, every concern-specific language ranging from
general purpose languages like the ones discussed above to domain-specific lan-
guages enabling the specification of their problem into a more appropriate con-
cern needs invasive composition mechanisms to compose these concerns. Note
that the invasive composition mechanisms must not always be visible to the

1



developer. In the case of concern-specific languages, the more domain specific
the less visible the invasive composition mechanisms will be. In short, invasive
compositions are frequently needed and encountered.

2 Position

Invasive composition mechanisms are unfortunately enough still implemented
with ad-hoc generators. Hereby losing valuable research results of the three
main-stream general purpose transformation paradigms (GPTP): template or
rule-based transformations and attribute grammars. Our position statement is
that the reason for the use of ad-hoc generators lies in the fundamental under-
lying in-place substitution property of those general purpose transformation.

Template, rule-based transformations and attribute grammars are all based
on an in-place substitution mechanism: Templates are parameterized target
language expressions with escaping variables referring to any kind of domain
information necessary. The templates are composed (usually by concatenation)
with one another to form the whole solution. In rule based systems, the target
language expression produced by rules are substituted with their top-level or
pivot nodes. When no more rules apply the complete target language expres-
sion is reached. In attribute grammars attributes are attached to their produc-
tions and are afterwards also composed into a complete solution. Clearly each
transformation module (template, rule or attribute) produces a target language
expression which is composed with the others to form a complete solution.

Merely using in-place substitutions to implement an invasive composition
mechanism is very cumbersome and troublesome. Invasive composition mecha-
nisms need to exert influence on various parts of other components in the system.
Since only in-place substitutions are supported, developers are often tempted
and forced to come up with creative work arounds for two problems (1) escaping
from their local context to the other parts of the system and (2) implementing
their effect in those parts of the system. When these two problems are dealt
with naively the escaping and the implementation of their effect highly depends
on the implementation details of the rest of the system and its components and
thus on the state of the transformation process. Very soon these dependencies
clutter up the system and result in a spaghetti code implementation. To keep
this more or less manageable a staged transformation process is the most com-
monly used solution where the escaping and the implementation of their effect
is performed in two separate stages. However, this does not reduce the number
of dependencies.

Clearly transformation systems are not very suitable to implement invasive
composition mechanisms. In order to remedy this situation, we believe that it is
necessary to extend current transformation systems with a suite of basic invasive
capabilities. These capabilities should not only facilitate the implementation but
render it also more robust to evolutions of the other components of the software
system.

Currently we are experimenting with a suite of basic invasive capabilities

2



based on the model presented by subject-oriented programming (SOP) [OKK+96,
SCT99]. The extensions for the transformation systems we propose are thus
based on SOP. SOP was formulated and founded in terms of object-oriented
programming and introduced two kinds of rules: correspondence rules and com-
bination rules. The correspondence rules declare which parts of the components
must be combined with one another, the combination is performed by the com-
bination rules. The two rules are externally defined to the components. To
apply the SOP ideas in a general setting in transformation systems, a couple
of modifications had to be made: (1) generalization and integration of those
two rules into the transformation paradigm (2) additional context specifications
expressed in declarative source language constructs using paths, (3) automation
of tedious context specifications, (4) selection of the most specific and applicable
rules and (5) increase of the robustness of the combination rules.

The above extensions are build on top of the Linglet Transformation System
(formerly known as Keyword Based Programming [Cle03]). Since our incentive
for this research lies in the need for more domain-specific concern-specific lan-
guages, the invasive composition mechanisms of current experiments are usually
implicit constructs in those languages. Further experiments with other genera-
tive techniques are necessary to refine and validate our approach.

References

[Bat03] Steve Battle. Boxes: black, white, grey and glass box views of
webservices. Technical Report HPL-2003-30, HP, 2003.

[BW97] M. Buchi and W. Weck. A plea for grey-box components, 1997.

[Cle03] Thomas Cleenewerck. Component-based dsl development. In Pro-
ceedings of GPCE03 Conference, Lecture Notes in Computer Science
2830, pages 245–264. Springer-Verlag, 2003.

[HO93] William Harrison and Harold Ossher. Subject-oriented program-
ming: a critique of pure objects. In Proceedings of the eighth annual
conference on Object-oriented programming systems, languages, and
applications, pages 411–428. ACM Press, 1993.

[OKK+96] Harold Ossher, Matthew Kaplan, Alexander Katz, William Harri-
son, and Vincent Kruskal. Specifying subject-oriented composition.
Theor. Pract. Object Syst., 2(3):179–202, 1996.

[OT00] Harold Ossher and Peri Tarr. Multi-dimensional separation of con-
cerns and the hyperspace approach. In Proceedings of the Symposium
on Software Architectures and Component Technology: The State of
the Art in Software Development. Kluwer, 2000.

[SCT99] Harold Ossher Siobhán Clarke, William Harrison and Peri Tarr.
Subject-oriented design: towards improved alignment of require-

3



ments, design, and code. ACM SIGPLAN Notices, 34(10):325–339,
1999.

[TG97] D. Tombros and A. Geppert. Managing heterogeneity in commer-
cially available workflow management systems: A critical evaluation,
1997.

4


