
ECOOP 2004 Workshop Report:
Evolution and Reuse of Language Specifications

for DSLs (ERLS)

Organized By
Thomas Cleenewerck1

Krzysztof Czarnecki2

Jörg Striegnitz3

Markus Völter

Edited By
Thomas Cleenewerck1

1 PROG, Vrije Universiteit Brussel, Belgium
2 University of Waterloo, Canada

3 Research Centre Juelich, Germany

Abstract. This report summarizes the results of the workshop on evo-
lution and reuse for language specifications for DSLs. The focus of the
workshop was twofold: exploration of the current research activities con-
cerning reuse and evolution of language specifications and discussion
of the identification, extraction, and composition of reusable parts of
DSL specifications. The workshop combined presentations with focused
discussions on these emergent topics: reusable assets, role of object-
orientation, conflicts among reused assets, and the quest for a DSL test-
case example to facilitate and guide future discussions.

1 Introduction

With the advent of rewrite rule systems, template transformation languages and
attribute grammars, the development of compilers for domain-specific languages
has been greatly facilitated. Despite these technologies compiler development is
usually started from scratch, i.e. the grammar and the semantic specifications
are completely written starting from nothing. Unfortunately the cost of adapting
an existing DSL implementation or the implementation of another similar DSL
often boils down to the same amount of work. Naturally, given the already
existing implementation of a DSL, this cost is too high.

The aim of this workshop was to bring researchers together and provide a fo-
rum to discuss the issues in DSL development and evolution with the particular
focus on identifying, extracting, and composing reusable parts of DSL specifi-
cations. We specially concentrated on, but not limited the workshop to the use
of object oriented techniques and concepts like encapsulation and inheritance to
make DSLs more reusable.



Since this was the first workshop of its kind, the focus of the workshop
included a wide range of topics concerning evolution and reusability to explore
current research activities. The topics of interest include but were not limited
to:

– Implementation technologies and paradigms: transformation systems, meta-
programming, interpreters

– Reusable assets ranging from individual transformations to patterns
– Reusability techniques: customization, configuration, adaptation, encapsula-

tion, compositions and inheritance

Of course not all of the above suggested topics could be discussed. The fol-
lowing discussion topics are the topics that emerged during the workshop in the
afternoon: reusable assets, role of object-orientation, conflicts among reused as-
sets, and the quest for a DSL test-case example to facilitate and guide future
discussions.

The workshop report consists of summaries of the contributions in section 2
and reports of the discussions and the results of the topics 3. Table 1 lists all
the participants and their affiliation. The position papers are available at the
workshop website (http://prog.vub.ac.be/∼thomas/ERLS/).

2 Contributions

The contributions are ordered as follows: two cases, a formalization and two im-
plementations. We start off with two contributions where a domain is presented
and for DSLs where there is a great potential for reuse and evolution and the
conflicts that may arise during reuse. The two domains are respectively user
interfaces and middleware patterns. The implementation of the former is based
on logic rules and the implementation of the latter by a transformation sys-
tem with various extensions. The next contribution investigates and attempts
to formalize object oriented approaches using descriptive logics for capturing
transformational knowledge. The following two contributions each incorporated
reuse in their transformation system, respectively ReRags and TLG.

2.1 The Write Once, Deploy N MDA Case Study
Combining Performance Tuning with Vendor Independence
(Pieter Van Gorp)

Summary In this paper, we presented a complex middleware pattern as a real-
istic case study for model-driven development. From this case study we derived
concepts of a transformation language that would allow us to generate such
patterns towards different application servers. The language supports the spe-
cialization of common transformations, the separation of concerns, and evolution
conflict resolution. For the latter feature we applied the familiar concept of de-
sign by contract. Following this principle, code generation can be integrated with



architectural consistency rule checking: consistency constraints can be consid-
ered as the postconditions of transformation rules. Failed postconditions trigger
a reconciliation unit that can be considered as the body of a transformation
rule. Reconciliation units can often be generated from declarative OCL postcon-
ditions. For new components, reconciliation will result in code generation. Evo-
lution conflicts in existing software require reconciliation units that correct the
inconsistencies without regenerating other items. For this purpose, such units
can analyze source and target models by navigating traceability models that
maintain a persistent link between these two. Since conflict resolution logic can-
not always be generated by the transformation engine, transformation specifiers
need language support to implement it manually. By carefully inheriting from
common superclasses in the design of metamodels for PIMs and PSMs, one can
specify consistency constraints across abstraction layers in a very concise man-
ner. At a low level of abstraction, imperative code templates can be integrated
with the model (to model) refinement process.

2.2 A Declarative DSL Approach to UI Specification -
Making UI’s Programming Language Independent (S. Goderis,
D. Deridder)

Summary A large number of researchers are trying to find innovative ways to
tackle the problem of separation of concerns. In our research we focus on the
concern of User Interfaces and application interactions because these are seldom
separated from each other. A clean separation would nevertheless facilitate UI
development and evolution. Figure 1 depicts this idea of separating the UI from
its underlying application. One should keep in mind that both interact externally
with each other and internally with themselves. When separating concerns it
will therefore be important to focus on factoring out these interactions since
they are the main cause for the code entanglement. In our work we focus on the
interactions between the UI and the application (figure 1 number 3), and within
the UI itself (figure 1 number 2), as well on the different layers of abstraction
within the GUI box (figure 1 number 1).

Fig. 1. Separating GUI and Application Interactions



Once the separation between UI and application is achieved, different exam-
ples can be thought of where separation is beneficial. For instance, deploying the
UI to another platform without having to rebuild completely, or adapting the
interface to different kinds of users.

In order to solve this problem we will express high level UI components
(i.e. the GUI components in figure 1 (1 and 2)) by means of declarative meta-
programming. This denotes that a user interface is described declaratively by
means of rules and facts and later on is composed through a problem solver.
Different concerns, as well as different UI abstraction layers, will lead to different
sets of rules. The problem solver will combine all of these in order to get to the
user interface that is wished for. Consequently we provide a declarative user
interface framework as a domain specific language to program user interface
concerns and their interactions with the application code.

As shown in figure 1 we can consider the declarative specifications for the
User Interface and the interactions as being a DSL, namely for the domain of
User Interfaces.

Relation to the workshop We have encountered several issues related with
DSL’s for which the workshop could provide us with new insights.

Inheritance Reusing existing rule-bases can be done by parameterizing one rule-
base by another one. We need to investigate how to ensure inheritance between
different UI sets, or how to make them dependent on each other. This is also
related to evolution issues.

Customization and Configuration We want to generate the UI based on the
declarative rules and facts. Nevertheless we should not restrict ourselves to static
User Interfaces since a lot of the UI power is currently left unattended because of
this staticness. It should be possible to customize a User Interface dynamically.
For instance, when someone resizes a window, another layout strategy might
have to be applied. These layout strategies should be applied to the user interface
dynamically, without need for recompiling the static UI.

Another issue related to this topic is putting constraints between the different
UI building blocks [EL88,FB89]. For instance, how to specify that a certain
component should be placed above another one (and what to do if conflicts
arise)?

Evolving and Adapting It is not clear which abstractions will be needed. It is not
possible to anticipate all possible abstract UI components, as this will depend on
the developers’ point of view as well. Furthermore a certain abstraction might
play a role in different UI framework parts, and it is not always clear where
to draw the line. We acknowledge that it will never be possible to completely
separate the UI from the application (since they have to interact at some point
in time). But also on the level of the application interactivity layer it is not clear
where to stop making abstractions.



Once the basic entities are defined, they are composed into more complex
and abstract entities. A user will want to use these higher level entities without
having to care about lower level entity descriptions. This implies that users will
consider the high level entities as black boxes without knowing what the low
level entities actually look like. Therefore two high level entities may contradict
each other without the user knowing it.

2.3 Knowledge Representation in Domain Specific Languages (D.
Hutchins)

Summary Most domain-specific languages are layered on top of an existing
general-purpose language, such as C or Java. As a result, it is convenient to think
of individual DSLs (or DSL fragments) as program transformation systems; they
translate domain-specific constructs into a base language.

Transformation systems can be difficult to use because they operate on ab-
stract syntax trees, and do not have any real understanding of the meaning of
the code they modify. Two different transformations may conflict if they alter
the code base in incompatible ways. I argue that capturing the semantic meaning
of domain-specific concepts is the real challenge of developing reusable DSLs.

A domain-specific language encodes knowledge about the problem domain.
Instead of encoding knowledge by translating domain-specific concepts into C or
Java, I propose to define such concepts directly, using a dedicated knowledge-
representation language. Under this model, a DSL or DSL fragment is repre-
sented as an ontology of concepts and relations between concepts. Combining
two different DSLs together is a matter of merging the two ontologies.

Description logics (DLs) are a knowledge representation system that is cur-
rently used by the artificial intelligence community. DLs as they are ordinarily
defined are essentially a type system – they can describe the interface of objects,
but they cannot be used to implement the behavior of objects. This limitation
prevents them from being used to implement DSLs.

In this paper, I introduce the Sym calculus, which is a formal object calculus
that extends descriptions logics into a full-fledged programming language. This
language not only supports standard functions, classes, and generics, but it can
be used to implement virtual types, mixins, features, components, and aspects.
Sym achieves this flexibility because it is based on a knowledge representation
system, and can thus handle the semantics of terms at a much more abstract
level than mainstream OO languages.

Relation to the workshop The focus of this workshop was using object-
oriented techniques to make DSLs more reusable. Most proposals discussed ways
of using OO constructs to implement program transformation systems.

It is well known that one way to implement a grammar is to define each
non-terminal as a class. If a non-terminal has more than one definition then
it can be defined as an abstract base class, with each variation as a concrete
subclass. The grammar thus becomes a class hierarchy. This is a particularly



attractive mechanism for implementing more advanced systems, such as attribute
grammars, because the class hierarchy can be used to annotate the abstract
syntax tree with additional information beyond that what’s present in the raw
syntax.

The advantage of using classes to represent non-terminals is that each node
in the abstract syntax tree has a type and a well-defined interface. This means
that the AST can be queried and manipulated via method calls, just like any
other OO data structure.

This is essentially the philosophy that I have taken with the Sym calculus. My
approach is to ignore the question of syntax altogether, and focus on developing
more flexible ways of defining and manipulating complex object structures.

Concepts in Sym are defined much like OO classes, but they may be related
to other classes via type equations. Type equations are evaluated at compile-
time. This means that Sym can be used as an “extensible compiler” architecture
for implementing DSLs. If an abstract syntax tree is constructed at compile
time (via an external parser), then information will propagate through the tree
at compile-time. Unlike the OO method-call mechanism, there is no run-time
penalty to using domain-specific constructs.

2.4 Reusable Language Specification Modules in JastAdd II (T.
Ekman, G. Hedin)

Summary This paper discusses how to build domain specific languages (DSL)
on top of a general purpose language (GPL) using our language implementa-
tion tool JastAdd II. The specification formalism in JastAdd II is based on
Rewritable Reference Attributed Grammars (ReRAGs) [EH04], that combines
object-oriented abstract grammars, static aspect-oriented programming, refer-
ence attributed grammars, and conditional rewriting.

The technique is illustrated by evolving a matrix framework into new lan-
guage constructs that are added on top of Java. The GPL, in this case Java, is
extended at both the syntactic level and the semantic level. The semantic exten-
sions affect name analysis as well as type analysis. The code generation finally
transforms the extensions into the base language by using a matrix computa-
tions framework. The extension is done in a modular way and re-uses large part
of the static semantic analysis from the base grammar.

Relation to the workshop The DSL approach used in the paper is based on
the JastAdd II tool, a combined attribute grammar and transformation system.
The paper focuses on how to express DSL extensions and GPLs in a modular
fashion and how to compose new languages from these individual parts. The
same technique can be used to customize an exisiting language.

The specification formalism in JastAdd II allows modular specification and
provides several synergistic mechanisms for separation of concerns, e.g. inheri-
tance for model modularisation, static AOP for cross-cutting concerns, rewrites
that allow computations to be expressed on the most suitable model, and declar-
ative formalism to allow transparent composition of attributes and rewrites. This



enables the DSL and GPL specifications to be expressed separately in modular
fashion and combined in a transparent way.

2.5 Object-Oriented Language Specifications: Current Status and
Future Trends (M. Mernik, X. Wu, B. R. Bryant)

Summary The challenge in domain-specific language definition is to support
modularity and abstraction in a manner that supports reusability and extensi-
bility [MM03]. The language designer wants to include new language features
incrementally as the programming language evolves. Ideally, a language designer
would like to build a language simply by reusing different language definition
modules (language components), such as modules for expressions, declarations,
etc. These reusable components should be straightforwardly extendible to reflect
language design changes.

Our position statement is that the use of object-oriented techniques and con-
cepts, like encapsulation and inheritance, improves language specification lan-
guages to a much greater extent towards their modularity, reusability and ex-
tensibility than any other technique. In this paper two of our latest approaches
are briefly described. In the LISA approach the attribute grammar as a whole is
subject to inheritance employing ”Attribute grammar = Class” paradigm. We
call this multiple attribute grammar inheritance. With our approach, the lan-
guage designer is able to add new features (syntax constructs and/or semantics)
to the language in a simple manner by extending lexical, syntax and seman-
tic specifications. In the second approach, we combine Object-Oriented Two-
Level Grammar [BL02] specifications with Java to implement domain-specific
languages. We specify the lexical, syntax and abstract (domain-independent)
semantics rules by TLG specification and implement the concrete semantics by
user-supplied Java classes. We also apply several object-oriented design patterns
(interpreter pattern, composite pattern, chain of responsibility pattern) to help
improve the modularity and abstraction level of TLG specification to enhance
the reusability of formal specifications in language implementation.

Relation to the workshop Object orientation plays an important role in the
design of language specifications for DSLs. This paper is a position paper that
describes the evolution of object-oriented language specifications. It explores the
current status of applying modular formal specification in language definitions
and introduces several modern language specification approaches, such as object-
oriented attribute grammar [Paa95], intentional programming [dM01], two-level
grammar [van74], action semantics [DM03], JTS[BLS98], JJForester [KV01], etc.
Current shortcomings and future trends of language specification language are
also introduced at the end of this paper.

We conclude in the paper that the use of object-oriented techniques and
concepts, like encapsulation and inheritance, improves language specification
languages to a much greater extent towards their modularity, reusability and
extensibility than any other technique. To illustrate this, our two latest object-
oriented approaches are introduced in the paper. The attribute grammars we



used in LISA system have been modeled as objects, which is similar to Jast-
Add II introduced by Ekman and Hedin. Likewise the two level grammars in
our second approach are also modeled and designed after objects. We go even
further and state that many object oriented design patterns are in fact useful
for the implementation of a TLG-based compiler generation system. Our two
approaches have been proven successful in developing various domain-specific
languages (e.g. SODL, COOL, AspectCOOL, PLM, PAM, Matrix language).
Our experience with these non-trivial examples shows that object-oriented spec-
ification languages are very useful in managing the complexity, reusability and
extensibility of language definitions. Specifications become much easier to read,
maintain and to modify.

3 Discussions

3.1 Reuse

Reuse of DSL specifications is hard, because of their domain dependent nature.
Lifting part of these specifications to general language constructs and generally
applicable semantics is therefore not easy. We compiled a non-exhaustive list of
general constructs and semantics that are most likely to be found in many DSL
implementations:

Value construction The computation of new values and new AST nodes.
Value propagation and distribution The propagation of new values through-

out the tree and the distribution of the values to the AST nodes that require
these values. Various propagation schemes like tree traversals, xpaths, at-
tribute inheritance and synthesis, etc., already exist.

Name resolution and binding In the grammar names are merely a syntactic
entity represented by some kind of an identifier or hierarchical identifier.
Because the actual semantic meaning of names is often context dependent,
a name resolution or analysis process must resolve their semantic meaning.

Type analysis Statically typing (whether it is explicit or implicit in the DSL
language) is a cornerstone to insure the correctness of a program written in
a DSL. In order to infer type correctness type analysis is required which (1)
connects the use sites to the declaration sites and (2) checks the operations
in the use sites against the operation supported by the type.

Construction of typed nodes according to a pattern The type of an AST
node plays in many transformation systems a crucial role because it is one
of the quantifiers to select certain transformations and computations on the
tree. However, the exact type can often only be determined after some anal-
ysis of the tree. Therefore during transformation, the obtained information
is used to construct new AST nodes of a more appropriate type.

Resolving non-local results of one-to-many transformations One-to-many
transformations exert an influence in the form of non-local AST nodes on
various parts of the parse tree. Appropriate mechanisms are needed to deal
with such non-local nodes.



Null-value elimination Structural mismatches between the source and tar-
get language break the fundamental in-place substitution principle of many
transformation systems because certain source AST nodes cannot be substi-
tuted by the produced new AST nodes after their transformation. When this
is the case, null-values or empty subtrees must be removed from the tree.

The items in this list are closely related to implementation, compiler and lan-
guage infrastructure. How broad or narrow the notion of infrastructural mecha-
nism can be interpreted was a point of discussion. Some argued that DSL editors,
etc., were also part of this infrastructure, while others rather narrowed this no-
tion to implementation mechanisms. An item that is particularly difficult to
categorize are semantic validators. If the semantics of a language is described
via a transformation to another language, then semantic validators would not
be considered as infrastructure. When the semantics of a DSL is expressed with
some kind of formalism, validators based on that formalism would be considered
as infrastructure. Currently the reuse of language modules is largely investi-
gated in context of evolving a DSL to another version. Out of the discussions
we strongly believe that there is a lot reuse potential for language modules be-
longing the same domain. More research and field expertise is needed to further
broaden and increase reuse for the development of DSLs. The exploration of
reuse among researchers that are often not familiar with the domain proved to
be very difficult. Concrete cases of reuse could help us understand the required
mechanisms and the current difficulties better. Since reuse is rather at its early
stages, these cases are currently not available.

3.2 Role of object orientation

Object orientation plays an important role in the design of todays transformation
systems. The introduction of OO techniques and concepts in transformation
systems facilitates the development of new languages, increases the modularity
of the components and allows more reuse. Let us discuss each of the techniques
and concepts borrowed and used of OO in the design of a transformation system.

The notion of an object as an encapsulated entity with state and behavior
gets applied to language modules (either BNF rules, rewrite rules, linglets, tem-
plates or attributes depending on the kind of transformation system). Language
modules become configurable entities containing data and behavior. In Delesley,
language entities are concepts modeled after objects with fields and functions.
The attribute grammars discussed by Ekman and Bryant have been modeled
as objects where productions correspond to classes and attributes to methods.
Likewise the two level grammars discussed in Bryant are also modeled and de-
signed after objects. Finally VanGorp points out that template transformation
languages like xDoclets -used to implement his model to code transformations-
are encapsulated entities containing datamembers and functions. Inheritance is
the mechanism object orientation offers for code reuse and code specialization.
In class based languages subclasses can override and inherit behavior and data,
respectively specialize and reuse existing code. Inheritance has been successfully



adopted towards language modules of DSLs. In the JastAdd II transformation
system described in the paper of Ekman, name analysis and typing for a ma-
trix extension to Java is introduced with a minimal amount of effort hereby
reusing existing name analysis and specializing typing rules. VanGorp argues
that there is a lot of potential for an inheritance mechanism to reduce the code
base containing the model to model and model to code transformations of MDA
for distributed enterprise Java applications. Bryant goes even further and shows
that many object oriented design patterns are in fact useful for the implemen-
tation of a TLG-based transformation system.

Besides inheritance as a reuse mechanism there are other mechanisms as well.
Goderis is exploring how to achieve reuse in the context of logic programming
by specializing certain rules or providing extra alternatives. This way existing
rules are reused and new behavior is accented for.

Because of this encapsulation, DSL designers can now pay more attention to
modularity, in terms of the relationship of the language components with the
rest of the compiler. Modularity is important because it is one of the corner
stones for reusability. In other words, encapsulation brought us a step closer to
our goal.

3.3 Conflicts

The reuse of language constructs and semantics can be hampered by conflicts
and information dependencies that occur when two or more of those reusable
elements are combined. The definition of a conflict was a point of much debate in
the workshop. From the debate the following preliminary definition of a conflict
can be summarized as follows: a conflict is a non-trivial resolution of two language
components, which have a mutual interest. An interest of a language component
can be every part of the language on which the component depends:

Constrains the conditions under which a component may be executed
Requirements the conditions which a component relies on when executing
Inputs the information or structures the component needs to performs its task
Outputs the information or structures the component produces and/or changes

of a conflict categorization of conflicts

In target-driven transformation systems the conflicts are resolved manually in
the modules that produce the targets. These modules actually deal with several
concerns at the same time. The transformations are in this regard not well mod-
ularized from a separation of concerns viewpoint. Source-driven transformation
systems tried to unhook most of the different concerns and put them in separate
modules. As a result of this separation of concerns, the conflicts that were man-
ually tackled must now be tackled by the transformation systems itself. There
exist various schemes to cope with conflicts. The most common approach is to
define an order by scheduling the two language components to achieve the de-
sired combined result. The prerequisite for this schema is that there must exists
some correct partial order in which the language modules must be executed.



But for language modules which both create the same entity with a different
content, ordering is not sufficient and more invasive composition mechanisms
are needed like the ones supported in LTS (Linglet Transformation System).
Additionally the constraints and requirements of language modules could also
be more taken into account. The semantics of a DSL is often specified by its
translation to another language. Although this is a formal semantics, it is hard
to derive any properties form such a description. Up till now, one could consider
typing as the most widely spread implementation of this idea. A richer mech-
anism like operational semantics, descriptive logic, f-logic, ontology semantics,
etc., would certainly help to detect and even resolve conflicts. Despite most of
these formalisms being around for quite some time, very few DSL designers seem
to revert to them. There are several reasons for that but the main reason is that
it is for most DSLs (like for example specification languages) quite unclear what
we would like to describe. Krzysztof suggested the use of state charts as an al-
ternative mechanism. Although it doesn‘t capture the full semantics, there are
interesting properties that can be calculated out of a start chart. In an offline
discussion Bryant and Cleenewerck argued that a more suitable and specific se-
mantic formalism is needed. Some of the attendees pointed out that a lot of those
conflict resolution schemes can be found in other research tracks like aspects,
hyperspaces, subject oriented programming, etc. The ideas and mechanisms of
these schemes probably could contribute to the existing transformation systems.

3.4 DSL Test-case example

The discussions were often broken off or stalled because of the absence of a sin-
gle shared test-case DSL. The problems mentioned were initially very abstract
because we didn‘t want to delve to deep in a particular problem domain and
implementation approach. Soon we realized that such statements are no help for
anybody. Not every participant had the same background making it impossible
to understand the statement. In order to concretize some of the statements, the
statements were rephrased with more problem domain information. Although
this helped a bit, since most of the participants were not familiar with prob-
lem domain itself, the general problem domain knowledge was difficult to grasp.
Moreover, in a single afternoon there is not enough time to discuss the problem
domain, the general concepts and the ideas behind the domain-specific state-
ment. So after such an attempt it was up to the other participants to recognize
the abstract statement in their problem domains. Not seldom due to the absence
of such recognition of ideas and statements there was only a poor response. It
became rapidly clear that a shared test-case DSL would greatly ease the discus-
sions.

In response to that need we tried first to get a more solid grip on the true
nature of a domain-specific language. In Ekman and Bryant a DSL is an set of
syntactical and semantical extensions to a general purpose language. In DeLes-
ley a DSL is described with a set of concepts and rules described using logics.
The DSLs of VanGorp are meta-models which are refinements (model to model
transformations) and model to code transformations. In Goderis a DSL is a logic



program querying facts to produce an effect. Clearly there is no strict definition
of what a DSL is. We found that DSLs can be classified according to number of
axes:

Language axis The language axis refers to the relationship between GPL (gen-
eral programming language) and DSLs. DSLs range from GPL programs, to
extensions of GPLs all the way to an entirely new language.

Structural axis The structural axis refers the amount of flexibility and mech-
anisms to compose a program. In GPL a program is a complex composition
of fine-grained language constructs. Any construct can almost be composed
with any other construct. The more domain-specific a DSL is, the more
the composition of language constructs is restricted. At the far-end of this
spectrum we find the specification languages, which constitute merely of the
assigning of values to properties. Domain-specifity is thus more a matter
of a degree. Because of this wide range of DSLs we may need to revert to
a set of smaller DSL examples instead of searching after the holy grail in
programming languages.

As a first attempt to reach a shared test-case DSL we distilled and reformu-
lated our research questions to a set of requirements to which such a common
DSL should adhere to.

A Declarative DSL Approach to UI Specification The three most impor-
tant and distinguishing research questions in the context of a declarative DSL
approach to UI specifications are:

– How to make keywords dependent on each other
– Which keywords should be provided and which keywords can be extended.

And how to allow a developer to extend keywords.
– How to ensure a developer does not violate the meaning of a certain keyword

when extending it such that contradictions are avoided.

From these research questions we can compile the following list of require-
ments to which a test-case DSL should adhere to:

– Dependencies among keywords
– Open variability’s in the language which must be provided and/or extended.
– Conflicting and non-conflicting constraints caused by simple use of the ex-

isting keywords or by the extensions of them.

Knowledge Representation in Domain Specific Languages There are
various DSL implementation techniques with very different capabilities. A formal
comparison of these techniques would reveal how knowledge is captured and
made executable. From that comparison, properties on the kind of information
that can be handled can be derived and used to establish a hierarchy of DSL
techniques and DSLs, much like the regular-language, context-free language, and
Turing machine hierarchy in complexity theory.



For example: Small-step operational semantics is a classical way of formally
defining programming languages. Small-step semantics is based on the process of
term reduction. Each term is reduced to a simpler term, until it becomes a normal
form which cannot be further reduced. Reduction has two nice properties:

(1) Reductions only make use of local information. Reducing a term only
affects that particular term; it does not affect any surrounding terms. Assuming
that the reduction rules are confluent, reductions can be applied in any order.

(2) User-defined reductions can be supported within a language by means
of partial evaluation. If an expression only references constants, then it can be
evaluated (i.e. reduced) at compile-time. This mechanism is completely trans-
parent and requires very little in the way of compiler support; it’s what the Sym
calculus uses to handle type equations.

Full transformation systems which use rewrite rules are considerably more
powerful than partial evaluation. A rewrite rule can affect any number of terms
in any way. Rewrite rules are also especially prone to clashes and conflicts, which
makes them difficult to use and debug.

The important question here is, in the context of common DSL test-case,
what kinds of DSLs require the full power of a rewriting transformation system,
and what kinds can be implemented with simpler processes.

Reusable Language Specification Modules in JastAdd II Our paper
deals with the approach where a GPL is extended with a DSL, and where the
DSL extensions are expressible in the base language. The DSL is transformed
into the GPL either through direct translation to GPL code or through calls to
a framework. This situation is useful when the generated code is to verbose to
hand code or to complicated to write by hand and therefore needs additional
semantic checks. The DSL high-level representation may also simplify domain
specific optimizations.

Some questions that form the basis for our work include:

Composition How can we express the language specifications to enable trans-
parent composition of separate GPL and DSL specificiations?

Separation of concerns How can we achive good separation of concerns in
the language specifications? We would like to separate the logical phases in
the compiler such as name binding, type analysis, and code generation while
at the same time allowing language constructs to be expressed in a modular
fashion.

GPL API How do we model a suitable API to the GPL that the DSL can use
to reuse existing components such as name binding and type analysis? Can
the DSL also contribute to these components, e.g. add new scopes to the
name binding module?

A suitable test-case DSL for this research must require a tight integration
with the target language (in this case the GPL) compilation phases, e.g. name
binding, type analysis, etc., on the one hand, but remaining modular with respect
to the target language and other extension module on the other hand.



Object-Oriented Language Specifications: Current Status and Future
Trends As already mentioned, the use of object-oriented techniques and con-
cepts greatly improves language specification languages towards better mod-
ularity, reusability and extensibility. To achieve modularity, extensibility and
reusability to the full extent these techniques need to be combined with aspect-
oriented techniques since semantic aspects also crosscut many language com-
ponents. Moreover, special algorithms have to be invented (e.g. forwarding) to
improve modularity of underlying formal methods. Another shortcoming of cur-
rent approaches is lack of scalability since they do not fully support grammatical
operators such as described in [Wil99]. The ideal solution where the language de-
signer can freely combine language components based on different formal meth-
ods is less likely to appear in forthcoming years.

In order to experiment or validate further research in this direction a test-
case DSL is required which is more like a family of DSLs or a DSL production
line constructed out of a set of different language components.

4 Conclusion

Summarizing what was said in each discussion topic, we conclude that :

– There is a lot of potential for reuse in (1) languages that must be customized
to support different sub-domains by means of language extensions and in (2)
languages that evolve overtime to keep up with changes in their associated
domains. Reusable language specifications for various domains are still rather
rare and tend to be more related to language implementation mechanism
then to language features.

– Object orientation plays an important role in the design of todays transfor-
mation systems. The introduction of OO techniques and concepts in trans-
formation systems facilitates the development of new languages, increases
the modularity of the components and allows more reuse.

– The reuse of language constructs and semantics can be hampered by con-
flicts and information dependencies that occur when two or more of those
reusable elements are combined. A richer mechanism like operational seman-
tics, descriptive logic, f-logic, ontology semantics, etc., but customizable and
more suitable for DSLs would certainly help to detect and even resolve con-
flicts. Also the ideas and mechanisms of conflict resolution schemes available
in aspects, hyperspaces, subject oriented programming, etc. probably could
contribute to the existing transformation systems.

– The discussions were often broken off or stalled because of the absence of
a single shared test-case DSL. As a first attempt to reach a shared test-
case DSL we distilled and reformulated our research questions to a set of
requirements to which such a common DSL should adhere to.



Table 1. List of workshop participants.

Name Affiliation E-mail Address

Thomas Cleenewerck Vrije Universiteit Brussels, Bel-
gium

tcleenew@vub.ac.be

Krzysztof Czarnecki University of Waterloo, Canada czarnecki@acm.org
Jörg Striegnitz Research Centre Juelich, Germany J.Striegnitz@fz-juelich.de
Markus Völter none voelter@acm.org
DeLesley Hutchins University of Edinburgh, UK d.s.hutchins@sms.ed.ac.uk
Barrett R. Bryant University of Alabama at Birming-

ham, USA
bryant@cis.uab.edu

Pieter Van Gorp Universiteit Antwerpen, Belgium Pieter.VanGorp@ua.ac.be
Simon Dobson Trinity College, Dublin IE simon.dobson@cs.tcd.ie
Sofie Goderis Vrije Universiteit Brussels, Bel-

gium
sgoderis@vub.ac.be

Torbjörn Ekman Lund University, Sweden torbjorn.ekman@cs.lth.se
Görel Hedin Lund University, Sweden gorel@cs.lth.se

References

[BL02] B. Bryant and B.-S. Lee. Two-level grammar as an object-oriented require-
ments specification language. In Proceedings of the 35th Annual Hawaii In-
ternational Conference on System Sciences (HICSS’02)-Volume 9, page 280.
IEEE Computer Society, 2002.

[BLS98] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: tools for imple-
menting domain-specific languages. In Proceedings Fifth International Con-
ference on Software Reuse, pages 143–153, Victoria, BC, Canada, 2–5 1998.
IEEE.

[dM01] O. de Moor. Intentional programming., 2001.
[DM03] Kyung-Goo Doh and Peter D. Mosses. Composing programming languages

by combining action-semantics modules. Sci. Comput. Program., 47(1):3–36,
2003.

[EH04] Torbjörn Ekman and Görel Hedin. Rewritable Reference Attributed Gram-
mars. In Proceedings of ECOOP 2004, volume 3086 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2004.

[EL88] E. Epstein and W.R. Lalonde. A smalltalk window system based on constraints.
In Proceedings of OOPSLA88. ACMPress, 1988.

[FB89] B. Freeman-Benson. Constraint technologie for user-interface construction in
ThingLabII. In Proceedings of OOPSLA89. ACMPress, 1989.

[KV01] Tobias Kuipers and Joost Visser. Object-oriented tree traversal with jjforester.
In Mark van den Brand and Didier Parigot, editors, Electronic Notes in Theo-
retical Computer Science, volume 44. Elsevier, 2001.

[MM03] T. Sloane M. Mernik, J. Heering. When and how to develop domain-specific
languages. Technical Report Technical Report, SEN-E0309, CWI, 2003.

[Paa95] Jukka Paakki. Attribute grammar paradigms a high-level methodology in
language implementation. ACM Comput. Surv., 27(2):196–255, 1995.

[van74] A. van Wijngaarden. Revised report on the algorithmic language ALGOL 68.
Acta Inf., 5:1–236, 1974.

[Wil99] D. Wile. Integrating syntaxes and their associated semantics. Technical Report
Technical Report, USC/Information Science Institute, 1999.


