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Chapter 1

Introduction

Computer software is built to automate labour-intensive, repetitive and com-
plex tasks. Automatisation of these tasks quite often yields advantages in
increased productivity and reliability. The initial investment to develop
the software pays off because the activity it automates needs to be exe-
cuted frequently and reliably. The classic ’waterfall’ model for software
engineering relies on the fact that a domain analyst summarizes the speci-
fications of the task (specified by domain experts) and communicates them
to the software developers. The software is then commonly implemented
using general-purpose programming languages and through reuse of exist-
ing software artifacts available in libraries. However, this process consumes
quite some time as the domain analyst and the development team have to
understand the concepts of the domain expert very well and also need to
have a solid technical background in the chosen implementation technology.
Furthermore, repetitive tasks are also very common in the development of
software itself. Developers often need to write identical or similar pieces of
code in different software applications. This also provides those developers
with ample opportunities to make the same mistakes over and over again.
Last but not least, in most cases, the initial version of the software rarely
meets the expert’s expectations.

Program generation and Domain-specific Languages are related technolo-
gies that bridge the gap between domain experts and developers through
implementation automatisation of similar and frequently needed programs.
The generation of program parts or the generation of entire software applica-
tions introduces automatisation in the software development process itself.
A program generator, or an automated programmer, is a software program
that is implemented once and can be applied to generate the same or similar
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6 CHAPTER 1. INTRODUCTION

programs many times with the same reliability. In most cases, the program
generator is a compiler for a domain-specific language. In a domain-specific
language, language constructs are offered to the developer that are more
suited to express a program in the required problem domain. Thus, a pro-
gram generator will produce an executable program for a specification or
a domain-specific program supplied by the developer. This brings program
development closer to the domain expert and may even allow him to specify
an entire program.

In this survey, we first classify and summarize engineering methods to
build program generators, followed by a description of some of their short-
comings with respect to evolution and composition. Program generation is,
of course, quite a broad concept in computer science. The compilation of
a program written in any programming language to bytecode is quite often
referred to as program generation or code generation. On the other end of
the spectrum, the automatic derivation of algorithms from declarative, se-
mantic specifications is also called program generation or program synthesis
[26, 27]. Therefore, we first define the kind of program generation that is
considered in this survey.

1.1 Definition

Program generation is at the heart of a broad range of techniques, tools and
development paradigms in software engineering. The most well known pro-
gram generators for software developers are probably compilers. A compiler
transforms a program written in a high-level programming language into a
semantically identical program in low-level bytecode. A totally different kind
of program generation can be found in integrated development environments
that generate code skeletons based on UML design models. The advent of
generative programming [10], product-line architectures [3, 4], MDA [14]
and knowledge-based software engineering has further boosted interest and
research in program generators. Depending on the context, program gener-
ators produce entire applications, components, classes, methods, code skele-
tons, etc. . . . Therefore, they are often referred to with different names such
as application generators, component generators, code generators, software
generators, etc. . . .

In essence, any program that produces program code as output can be
called a program generator. Of course, most program generators produce a
program based on some input specification, commonly supplied by the de-
veloper. Moreover, the input specification is often a program itself, meaning
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that such program generators are actually program transformers: they trans-
form an input program into an output program. Program transformation is
defined as: The systematic development of efficient programs from high-level
specifications by meaning-preserving program manipulations. Also known as
optimisation [12]. In fact, many program generators are program transform-
ers but in program generators, the difference between the input language is
very different from the output language. As such, program transformations
such as refactorings cannot be considered as program generation. Program
generators are also often seen as compilers for domain-specific languages.
In many cases, the input specifications are written in a high-level language
specifically designed to express abstractions applicable to a certain domain.
The compiler for the domain-specific language is thus actually a program
generator, that generates an implementation of the domain-specific program
in an executable language.

In the context of this survey, we focus on program generators in the
context of generative programming, product-line architectures and imple-
mentations for domain-specific languages (DSLs)[31]. Czarnecki [10] defined
generative programming as follows:

Generative programming is a software-engineering paradigm based
on modeling software families such that, given a particular re-
quirements specification, a higly customized and optimized inter-
mediate or end-product can be automatically manufactured on
demand from elementary, reusable implementation components
by means of configuration knowledge.

This definition implicitly assumes that the generated end-product is a
completely functional software component. This is quite important as it
means that we consider that a generated part implements its complete func-
tionality such that the developer is not required to modify the generated
part once it has been generated. This specifically rules out skeleton code
generators. Furthermore, this definition points out that program generation
specifically targets the construction of a customized and optimized program.
This is a particular advantage of program generation when it is compared
with other reuse techniques, which we discuss in the following section. The
elementary, reusable implementation components are the pieces of the pro-
gram that are used by the generator to construct the resulting program.
They can be implemented in text files, patterns, templates, transforma-
tions, . . . . The configuration knowledge mostly is the input specification
for the program generator and is specified by the developer. Other parts of
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the configuration knowledge are contained in the generator itself and specify
rules and constraints on valid compositions of the elementary implementa-
tion components and perhaps even other knowledge that the generator may
use to generate a correct and efficient program.

Another definition of generative programming can be found on the web-
page of the GCSE working group [9]:

The goal of generative and component-based software engineer-
ing is to increase the productivity, quality, and time-to-market
in software development thanks to the deployment of both stan-
dard componentry and production automation. One important
paradigm shift implied here is to build software systems from
standard componentry rather than ”reinventing the wheel” each
time. This requires thinking in terms of system families rather
than single systems. Another important paradigm shift is to
replace manual search, adaptation, and assembly of components
with the automatic generation of needed components on demand.
Generative and component-based software engineering seeks to
integrate domain engineering approaches, component-based ap-
proaches, and generative approaches.

We can conclude by saying that in the rest of this text, program genera-
tors are software programs that produce a finished end-product that cannot
and should not be changed by hand to render the end-product usable in a
particular application. This is an obvious requirement when using program
generators as implementations for domain-specific languages.

1.2 Applications of Program Generators

The two major applications for program generation techniques in the context
of this work are as a reuse technique and as an implementation technique
for DSLs. We now describe how program generation is suited for each of
these applications.

1.2.1 Generators as a Reuse Technology

Program generators are particulary useful in the context of software reuse
[11]. Subroutine libraries, object-oriented frameworks and component li-
braries are the most common solutions used by developers today to accom-
plish reuse of frequently needed program parts. However, subroutine and
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component libraries offer reusable parts that have a fixed behavior that can-
not be changed by the application developer. This is in contrast with the
frequent need to make slight variations to the behaviour of some parts [20].

The library developer can anticipate to this need and provide a number
of different versions for each part. However, this frequently leads to a large
library, containing many different versions of the same reusable part. Main-
taining and evolving such a library becomes quite a difficult task. This is
because for each new possible variation, a complete part has to be written,
often leading to code duplication. This library scaling problem [6, 5] ham-
pers maintainability of the library as too much code is duplicated. Another
solution is to leave the reusable part open to adaptation by the library user.
Object-oriented frameworks are more flexible and are specifically designed
to be customized by the application developer.

Although these reuse technologies have also proven their usefulness, the
application developer is still forced to adapt the reusable part by hand and
craft the required source code to fit his particular requirements. To ac-
complish this, the developer needs a deep understanding of the part’s in-
ternals and adapting it is often not a trivial task, if it is possible at all.
Furthermore, and most importantly, no means exist to guarantee that the
customized framework or library part works as expected. Last but not least,
in many cases, it is even impossible to package a reusable implementation as
a component, subroutine or framework. Object-oriented design patterns, for
example, and other collaboration schemes cannot be implemented by either
of the mentioned reuse technologies without requiring specific adaptations
by the developer.

This is where generative approaches are most applicable and provide a
powerful reuse technology that tackles some of these shortcomings. The
library provider implements a generator that is able to generate all dif-
ferent versions of the reusable part. The application developer can then
choose among the available ’versions’ to match his requirements instead of
implementing them himself. A generator thus represents an entire (and
closed) family of library parts: each generated part implements a differ-
ent combination of functionalities offered by the generator. The application
developer obtains this generated part by providing a specification to the
generator. This specification is commonly written down in a kind of lan-
guage defined by the generator. Since this language is commonly designed to
express a particular kind of specification, it is often referred to as a domain-
specific language. This is why generators are also often seen as compilers for
domain-specific languages. The generator compiles a specification written
in a domain-specific language into an executable program.
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A widely known example of a program generator is a parser generator.
It is impossible to build a library that contains a parser for each possible
programming language and a framework to build parsers can only provide
some commonly used structures, still leaving much of the implementation
process to the developer. The only viable solution is to build a software
generator that generates a parser for a given (programming) language as
described by the developer. Parser generators such as Lex & Yacc [16] and
SmaCC [7] have more than proven their usefulness. Using these tools, a
parser can be generated for many programming languages, given a grammar
specification (in the BNF domain-specific language for grammars) as input
to the generator. More advanced software generators have also been built
for the domain of data structures. For example, DiSTiL [24] is a generator
for data structures. The output of the generator is an encapsulated data
container.

1.2.2 Generators as Implementations for Domain-specific Lan-
guages

As we already mentioned in the previous section, program generators are im-
plementations for domain-specific languages. Like any other programming
language, domain-specific languages are used to implement or describe soft-
ware. Programming languages offer a set of language constructs with well
defined semantics and a set of rules that define the valid set of programs
which can be written in the language. These language constructs are the
smallest program construction units. A program is thus nothing more then
a valid composition of these construction units.

Software developers are trained to analyze a problem and express it in
a program. The closer the abstractions of the problem domain are with the
available construction units, the easier the problem can be expressed as a
composition of the available construction units. In order to close this gap,
a great number of different language paradigms and languages have been
build by language designers. Although particular problems were more eas-
ily expressed in one programming language then the other, each language
remained turing complete. Because of this requirement that every program
must be expressible in every language, languages designers were forced to
provide a set of generic construction units and accompanying rules. These
kind of languages, often called general purpose languages, could not com-
pletely close the gap between the abstractions of the problem domain and
the generic construction units.

To further close the gap between the problem domain and the solu-
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tion domain, language designers were forced to give up turing completeness.
This resulted in a new set of programming languages, the so-called domain-
specific languages (DSLs). The language constructs of domain-specific lan-
guages completely coincide with the abstractions used in the domain of the
language. Expressing a problem in terms of a valid program becomes there-
fore very straightforward.

Language developers soon realized that the compiler for a domain-specific
language could greatly be simplified by transforming the expressions of the
DSL to expressions of a GPL and subsequently compiling the latter by the
GPL compiler. This strategy was quickly adopted by the majority of the
DSL developers since it allowed not only the reuse of the compiler but also
the reuse of the libraries, frameworks and components.

1.3 Classification

Building a program generator is quite a complex task. Therefore many
different generative programming techniques were developed to improve and
alleviate the effort of the implementation of a program generator. Based on
the implementation technique used to build a program generator, we can
identify four major kinds of program generators:

Ad-hoc: Many program generators are developed using standard compiler
implementation techniques and tools. Most of their implementation is
written in a general-purpose programming language and the generator
is a stand-alone executable. Some prominent examples are, of course,
language compilers but also parser generators such as Lex and Yacc.

Metaprogramming: Using metaprogramming libraries or reflective pro-
gramming language facilities, we can also build program generators.
C macro facilities are a weak version of this technology, but Scheme
and Lisp macros are a lot more powerful in this context. The Smalltalk
and OpenC++ metaprogramming facilities are also an example tech-
nology we can use to build program generators.

Transformational: Program transformation systems are a powerful tech-
nique to implement program generators. In this setting, a generator
is implemented as a set of program transformation rules, which are
applied to an internal representation of the input specification. Each
transformation rule rewrites a small part of the program and the sub-
sequent application of these transformation rules ultimately results in
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the generated output program. Some program transformation systems
that are well known in the context of program generation are Draco
and ASF+SDF.

Compositional: Programs can also be generated by glueing smaller pro-
gram parts together. These program generators are implemented us-
ing a composition system that composes generic program fragments.
These program fragments are parameterized such that they can be
customized to fit in a particular composition. A program generator
generates an output program by selecting the appropriate program
fragments, based on the input specification, and assembles them to
produce the generated output program. The GenVoca system is a
prominent example of this kind of program generators.



Chapter 2

Program Generation
Technologies

In this chapter, we present an overview of implementation techniques for
program generators and domain-specific languages, based on the classifica-
tion we provided in the previous chapter. For each technique, one or more
existing technologies are briefly described.

2.1 Ad hoc Generators

Many generators are stand-alone programs that are implemented in a general-
purpose programming language. We call this kind of generators ad-hoc gen-
erators because they have been built without the use of a specific generator
infrastructure. Building such ad-hoc generators closely resembles the de-
velopment of any software application. They are in fact written as normal
software applications that happen to produce program code as output. A
particularity is that most ad-hoc generators are developed using standard
compiler implementation techniques and tools. Therefore, we shortly intro-
duce the common implementation architecture of a compiler. More infor-
mation on compiler implementation techniques can be found in [1].

In figure 2.1, the standard internal form of a compiler is shown. The
front-end of a compiler accepts the input specification and produces an
internal representation for it. A translator manipulates this internal rep-
resentation and converts it into a representation of the resulting program.
Finally, a back-end produces the resulting program in the desired output
format. The front-end of commonly known compilers is a scanner and a
parser that produce an internal parsetree representation of the program.

13



14 CHAPTER 2. PROGRAM GENERATION TECHNOLOGIES

The translator is a machine-code generator that converts the tree into the
a representation of the compiled program and possibly performs some opti-
mizations. The back-end of most compilers outputs the real machine code
into a file on the disk.

Implementing ad-hoc generators requires an enormeous amount of effort.
Besides the use of tools such as parser and scanner generators, it is a com-
pletely manual process. Developers will have to design and implement the
internal representation and the translator completely from scratch. More-
over, ad-hoc generators provide no interoperability as each ad-hoc generator
uses his own internal representation and input notations. An ad-hoc gen-
erator is a complete black box, thereby completely compromising its com-
posability and interoperability with other generators. The extensibility and
reusability of an ad-hoc generator is also very low, as this not only requires
access to the source code but also a deep and thorough understanding of it.

Of course, almost all compilers are examples of ad-hoc program gener-
ators. Other quite well known examples are the parser generator tools Lex
& Yacc [16] and SmaCC (parser generator in Smalltalk) [7] .

Front End
(scanner / parser) Transformer Back End

(code generator)

parsetree
transformed 
parsetree

Figure 2.1: Traditional Compiler Architecture.

2.2 Metaprogramming Languages and Libraries

Instead of building a program generator from the ground up, it is eas-
ier to make use of the metaprogramming facilities offered by a general-
purpose programming language or by a metaprogramming library for the
language. The Smalltalk Meta-Object Protocol (MOP) [23, 13], Open-
Java [28], OpenC++ [8] and the .net CodeDOM [18] are typical examples
of metaprogramming libraries available in a general-purpose programming
language. They are also referred to as API-based program generators [33],
as the library provides an interface that can be used to perform program
generation. Another kind of metaprogramming is through syntax-extension
mechanisms such as macro’s, integrated in many programming languages
such as C, Lisp and Scheme, which we will discuss in the end of this section.
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There are, of course, differences in possibilities in each of the metaprogram-
ming libraries and facilities we mentioned. The Smalltalk MOP, for example,
allows full runtime reflection as opposed to the OpenC++ and OpenJava
libraries that only allow for compile-time metaprogramming. The .net Code-
DOM supports metaprogramming for multiple .net languages as opposed to
OpenJava that is specifically focused on Java. Nevertheless, in the context
of program generation, we are only concerned with facilities available for
program generation, either at compile-time or at runtime. This means that
we are interested in how each library implements abstractions to represent
a program and what operations are available to build and manipulate a
program.

All metaprogramming libraries or reflection protocols offer an imple-
mentation to represent and manipulate a program. Once again, the internal
representation of such a program is commonly an abstract syntaxtree. A
program generator build with the use of a metaprogramming library is a
program that uses the library to construct an internal representation of the
program to be generated. This renders the difference between this kind of
generators and the previously described ad-hoc generators rather small: i.e.
both kinds use a general-purpose language to implement a program gener-
ator. The advantage over ad-hoc generators is of course the reduced effort
of implementation but also the reusability due to the common internal rep-
resentation. A shared internal representation facilitates reuse of existing
generators in the implementation of a new generator.

In the Smalltalk MOP, a Smalltalk class is represented by an object in-
stance of the class Metaclass, which implements methods to allow various
manipulations. We can, for example, add or remove methods, instance vari-
ables, etc.. Each method is also represented as an object instance of the class
CompiledMethod that also supports various manipulations through meth-
ods. Furthermore, there are classes to represent each smalltalk language
construct in the parsetree of a method. Through these MOP facilities, we
can manipulate existing programs as well as create new programs. It is
not our intention to describe the entire Smalltalk MOP here or not even
all facilities for static metaprogramming. The interested reader is therefore
referred to [23, 13]. The approach taken by the other metaprogramming
libraries (OpenJava, OpenC++,. . . ) is very similar. Each kind of abstract
syntax element is represented by a separate class that implements various
manipulation methods. To illustrate the implementation of a program gen-
erator through metaprogramming, we include an example taken from the
online manual of OpenJava in figure 2.2. This program generator auto-
matically implements empty methods in a class according to the interfaces
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that the class implements. The execution of the generator starts with the
translateDefinition() method. In this method, all inherited methods
are retrieved from the class definition, available through the this variable.
For each inherited method that is abstract, is not overriden in the class itself
and has a void return type, we generate an empty implementation on the
class using the makeEmptyMethod method. Here, a new method syntaxtree
element is created by copying the signature of the inherited method and
creating a statementlist that contains a simple return statement.

import openjava.mop.*;

import openjava.ptree.*;

import openjava.syntax.*;

public class AutoImplementerClass instantiates Metaclass extends OJClass

{

public void translateDefinition() throws MOPException {

OJMethod[] methods = getInheritedMethods();

for (int i = 0; i < methods.length; ++i) {

if (! methods[i].getModifiers().isAbstract()

|| methods[i].getReturnType() != OJSystem.VOID

|| hasDeclaredMethod( methods[i] )) continue;

addMethod( makeEmptyMethod( methods[i] ) );

}

}

....

}

private boolean hasDeclaredMethod( OJMethod m ) {

try {

getDeclaredMethod( m.getName(), m.getParameterTypes() );

return true;

} catch ( NoSuchMemberException e ) {

return false;

}

}

private OJMethod makeEmptyMethod( OJMethod m ) throws MOPException {

/* generates a new method without body */

return new OJMethod( this,

m.getModifiers().remove( OJModifier.ABSTRACT ),

m.getReturnType(), m.getName(), m.getParameterTypes(),

m.getExceptionTypes(),

new StatementList( new ReturnStatement() )

);

}

Figure 2.2: Program generator for ’automatic methods’ written in OpenJava

Building a program generator using these metaprogramming libraries is
quite similar to building an ad-hoc program generator: i.e. the generator
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is again written in a general-purpose programming language. The major
difference with ad-hoc generators can be found in the common infrastructure
that is used by the program generators, i.e. the metaprogramming library.
This not only alleviates the developer from the tedious task of implementing
a representation himself, it also allows for simple technical exchange of the
program to be generated between multiple generators.

Macro systems are also a very well known metaprogramming facility to
perform program generation. But again, many different macro systems exist
and thus have a very different expressiveness and power. For example, Lisp
and Scheme macro’s are much more powerful than C macro’s because they
operate on the program representation rather than on strings. In general,
macro’s are functions that are executed at compile-time and translate a part
of the program in which they are used. Macro’s can be used for optimiza-
tion by inlining of function calls but they can also serve as an implementa-
tion technique for extending the language with domain-specific constructs,
sometimes even with domain-specific syntax. A macro definition can be
compared with a transformation definition, which is described in the next
section. The execution of macro’s at compile-time is often referred to as
macro expansion, this is because macro’s operate in place by transforming
the syntactic language construct they define into existing, native language
constructs. Therefore, macro’s are the most simple kind of program trans-
formations integrated as a metaprogramming facility in a general-purpose
language.

2.3 Transformational Generators

Transformational generators constitute a large body of generators being
used today. We classify them this way because these generators are imple-
mented using a general program transformation system. Although many
different kinds of those transformation systems exist, they always have a
transformation engine at their core that executes transformation rules to
transform an input program into an output program. Although program
transformations may be expressed in any programming language, specialized
transformation languages are more appropriate to express program trans-
formations. This is because transformation languages provide specialized
support for operations frequently needed to implement transformations. Op-
erations such as pattern matching, querying and traversals are native to the
transformation language, while they need to be implemented by hand in a
general-purpose language, which is often quite a cumbersome job. Other im-
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portant features such as backtracking of transformations, dependency anal-
ysis and scheduling the application order of the transformation rules, are
important features often supported by the transformation system.

In general, a program in a transformation language consists of a set of
transformations. Each transformation specifies a mapping of (a part of) the
input program to (a part of) the output program. Two fundamentally dif-
ferent kinds of transformations exist: forward and reverse transformations.
Forward transformations are source-driven. This means that the output
program is constructed by walking over the source program and applying
transformations. Reverse transformations are target-driven: the output pro-
gram is a template that is filled in by querying over the source program.
Both kinds of transformations are not mutually exclusive and some systems
support both, such as XSLT [29]. There are other important differences be-
tween transformations such as their scope and stages of the transformation
process. We do not consider these differences here and refer the interested
reader to a survey on transformation mechanics [32].

The most simple kind of forward transformations are rewrite rules. A
rewrite rule consists of a pattern that needs to be matched in the input and
a pattern that is produced in the output when the rewrite rule is applied.
The following rewrite rule specifies that the input pattern double(X) must
be replaced by the output pattern 2*X, where X is a variable in the pattern:

double(X) -> 2*X

Such a rewrite rule will, for example, transform 4 + double(4) into 4
+ 2*4. A rewrite rule is applied by the transformation system if the input
pattern of the rule can be matched in the input program. In most cases,
the system will continue executing rewrite rules as long as any rewrite rule
is still applicable. Many programmers are already accustomed to the most
simple kind of this generative programming technique in the form of macro’s
found in programming languages such as Lisp, Scheme and C. In macro’s
and also in the example above, the rewrite rule matches a pattern in the
input program’s text. However, in most cases, transformation systems op-
erate on an internal representation of the input and output program, which
is most often an abstract syntax tree. The rewrite rule mechanism is the
basic technique underlying forward transformation technology. The iinput
program is gradually transformed into the output program. In each transfor-
mation step, a pattern in the input program is matched and a corresponding
pattern is produced in the output program.

Reverse transformations are very different from forward transformations.
They are based on queries over the source program to construct the output
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program. This kind of transformations is more adequate if the output pro-
gram is rather fixed and only needs some customizations that are driven
by the input program. Reverse transformations emerged in template-based
generation of webpages or programs [32]. For example, consider the fol-
lowing template (in pseudo code) to generate a webpage. The output of
this (reverse) transformation is an html webpage that contains a title
and a content that are obtained from the input program by launching the
getTitle() and getContent() queries.

<html>

<head>

<title> <query> getTitle() <query> </title>

<body>

<query> getContent() <query>

</body>

</html>

Obviously, too many transformation systems exist to describe them all
in detail here. Therefore we limit ourselves to some key techniques that are
often used in the context of generative programming.

2.3.1 Draco

Draco [20] is an approach to domain engineering using domain-specific lan-
guages and transformation technology, designed and implemented by John
Neighbors [20]. The main goal is to bring the reuse in software engineering
from the implementation phase to the design and analysis phase. Reuse
of design and analysis is achieved by writing software in domain-specific
languages. Domain-specific languages are different from general-purpose
languages because they typically allow to describe a problem at a higher
(domain-specific) level in which the requirements and/or design are explicit.
These languages encapsulate the knowledge of a particular domain and have
been carefully designed and tailored by domain-analysts. Hence, programs
written in domain-specific languages explicitly describe their requirements
and/or design, which would have been lost if they were directly implemented
in a general-purpose programming language. Program generation is an es-
sential part of Draco as the domain-specific program is a high-level descrip-
tion from which a program in a general-purpose programming language is
generated.

The domain-specific languages in Draco are implemented using a (for-
ward) transformation system. The transformations operate on the internal
(parsetree) form of the program and translate it into a program in another
language. This might again be a domain-specific language, meaning that
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the program needs to be translated further on, until it is expressed in an
executable language. For this purpose, Draco makes a (conceptual) dis-
tinction between application-, model- and execution domains. Application
domains encapsulate knowledge about a particular class of applications, such
as spreadsheets, broadcasting, banking, . . . . Modelling domains are used to
encapsulate knowledge about parts that can be used to implement appli-
cations, such as databases, graphics, numerics, . . . . And finally, execution
domains are concrete programming languages such as Java, C++, Smalltalk,
. . . . Languages in the application domain are implemented in terms of lan-
guages in the modelling domain. These languages are, in turn, implemented
in execution-domain languages. This means that a program, written in a
particular application-domain language, will be subsequently refined into
(perhaps many) model-specific languages and eventually into a program in
a general-purpose language. This setup is illustrated in figure 2.3.

Figure 2.3: Stepwise refinement through Draco domains (from [10]).

The translation process in Draco uses two kinds of transformations: opti-
mizations and refinements. Optimizations are intra-domain transformations,
meaning that they rewrite a program to a program expressed in the same
domain. This is often done for simplification or optimization of the program.
The following transformation rule is a simplified example of an optimization
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rule for a mathematical language implemented in Draco. The rule is named
ADDX0 and it specifies that the addition of any term X with zero is the term
itself. Obviously, these rules follow the rewrite rule paradigm.

(TRANS ADDX0 (ADD X 0) X)

Refinements are inter-domain transformations and ’refine’ a domain-
specific program to an executable program. Refinements transform the
internal representation of a program in a certain domain to the external
or internal representation of the program in another domain. Refinements
can be seen as the mapping of a domain-specific language element to its
implementation. There can even be multiple refinements for the same lan-
guage element. This means that there are multiple ways to transform a
program to its executable implementation, especially if we also consider the
application of the optimization transformations. Figure 2.4, illustrates the
multiple ways in which an exponentiation expression may be refined to its
implementation. It is possible however, that a particular refinement pro-
duces an implementation that conflicts with the subsequent refinement of
that implementation. Therefore, refinements are equiped with conditions
and assertions. The conditions of a certain refinement ensure that it is only
executed if the conditions are true. The assertions are annotations that are
attached to the resulting implementation and can be used by the conditions
of further applicable refinements on that implementation.

Figure 2.4: Alternative refinement paths for EXP(X,2) to a C program (from
[10]).
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The translation of a (domain-specific) program in Draco is a semi-automatic
process, where the system may ask the user to suggest the next translation
step. In order to prevent the system from asking too much questions during
the translation process, the developer may specify a set of tactics or strate-
gies in the system. Tactics and strategies are guidelines that help the system
to determine when to apply which refinement. Furthermore, domain-specific
procedures can be specified whenever a set of transformations can be applied
algorithmically.

2.3.2 Intentional Programming

The primary focus of the Intentional Programming system (IP) is modu-
lar language implementations [10]. In IP, a language is implemented as a
set of modular parts, each implementing a particular language abstraction.
The modularity of these parts facilitates their reuse in other language im-
plementations, as well as the implementation of new language abstractions
in an existing language. This is in contrast with traditional language imple-
mentations (i.e. compilers) that are very hard to extend or modify. Hence,
it is no mistery that the IP technology is of primary interest to domain-
specific language implementers because it especially facilitates the building
of domain-specific languages as a set of modular parts. We already explained
how program generators are domain-specific language compilers, so it should
be clear that the IP system is a program generator technology.

The IP system calls these modular language abstractions intentions, re-
ferring to the IP vision that a programmer should express his intentions
explicitly in the code, rather than implicitly using inadequate language fea-
tures. This vision is shared by designers of domain-specific languages, in
which adequate language abstractions are used to reflect the domain and
its operations. Implementing a domain-specific language in the IP system
boils down to implementing a set of intentions. For the purpose of this dis-
sertation, we will discuss intentions from a program generation viewpoint.
That is: each intention defines a (forward) transformation that implements
the semantics of the intention’s language abstraction by generating program
code for it. But intentions define much more than transformations. An
interesting aspect of IP is that a source program is not represented as text
but as active source, that is, as a data structure with behavior at program-
ming time. This means that besides the definition of a transformation, each
intention defines how it should be visualized in the program source (e.g. as
a mathematical formula, a UI spec, . . . ), how it should behave in the de-
bugger, how it behaves in the version control system, etc. . . . Each of these
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functionalities is defined by a separate method on the intention module,
much like methods of classes in object-oriented programming.

The system triggers the necessary functionalities by invoking the ap-
propriate methods on the active source representation of the program. The
active source is a tree of nodes where each node is an instance of a particular
intention in the input program. In fact, the tree is actually a graph because
there are not only links that reflect lexical relationships in the program
structure, but also links that denote dependencies and other relationships
between nodes. The concept of active source and other important partic-
ularities are equally important to the IP system. In the remainder of this
section, we limit our discussion of IP to the program generation technology
it uses. For other aspects of IP, we refer the interested reader to [10, 19, 2].

Figure 2.5 shows a part of the active source tree for the expression x+y+z.
The full lines show the sourcetree structures and correspond to parent-child
links in the tree. The dashed lines show relations and dependencies between
the nodes. In this example, a use of a variable or an operator points to the
corresponding declaration.

Reduction

IP refers to the program generation process as the reduction process. Dur-
ing reduction, the original source program is incrementally transformed to
the low-level implementation. Each intention performs his part of the trans-
formation process and transforms a small part of the source program. An
intention can either transform directly to the low-level language, or it can
generate code that will (partially) be transformed by other intentions.

An intention specifies how it should be reduced by means of a reduction
method. In IP terminology, the program code produced by an intention’s
reduction method is called the Rcode of the intention. The system starts the
reduction by invoking the reduction method on the root node of the source
tree. The root node subsequently invokes the reduction method on its child
nodes and uses the resulting Rcode to produce his how Rcode representation.
Furthermore, during reduction, each node can also ask information from
other nodes in the source graph.

As in each transformation system, the order of application of the re-
duction methods is often quite important. Different orderings of reductions
might result in different result programs, which may or may not be correct.
In general, this is because reductions change the source graph and might in-
fluence each other’s result through these changes. The problem of ordering
transformations is commonly referred to as the scheduling of transforma-
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Figure 2.5: Source tree for x+y+z and int x=1, int y=2 (adapted from
[10]).
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tions. In an open system where new transformations can be introduced in
the system, it is unpractical to let the developer specify the schedule for
a particular set of transformations. Whenever new intentions are added,
the schedule should be revised, requiring a detailed analysis of the influ-
ences between the intentions. This obviously requires detailed knowledge
of the particular intentions. To overcome this, the reduction methods of
all intentions in IP have to adhere to a few basic principles such that the
transformation schedule can be determined by the system itself. The general
idea behind the following principles is that the reduction method of each in-
tention can assume that the entire source graph is already in its final state,
except for the changes to be performed by the reduction method itself:

• Reductions cannot remove nodes or links from the source graph. Each
reduction actually attaches the resulting Rcode to the source graph.
The source graph grows during the reduction process until the entire
program is reduced. Because reductions cannot remove information
from the source graph, the reduction process will always terminate.

• A method that is executed on a node may only access neighbouring
nodes in the source graph and nodes that were passed as arguments
of the method. Furthermore, a method may only add new links to
the node it is executing on. If a method needs information from a
distant node in the source graph, the neighbouring nodes should have
methods that forward the method invocation to their neighbours and
so on until the desired node is reached. The advantage here is that the
system knows which nodes use information from which other nodes
during the reduction process. This means that the system can build
an overview of the dependencies between the different intentions. This
information is important to support the next principle.

• The answer to each question may not change during the entire reduc-
tion process. This is monitored and enforced by the system. If the
information in a particular node is changed (e.g. by adding a new
link to the node), all methods that were already invoked on that node
are re-executed and the results are compared with the previous ex-
ecutions. When the results have changed, the system rolls back to
an instant in the reduction process where the methods were not yet
invoked and tries invoking the methods in a different order. This is
possible because of the following principle.

• Method invocations can occur asynchronously. The system can then
decide in what order these methods are actually executed. The more
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method invocations occur asynchronously, the more possible orderings
the system can try.

As a result, the system can try to find a correct application order for the
reductions, such that a particular reduction does not invalidate the results
of a previously executed reduction. This is opposed to having a fixed trans-
formation order for a set of intentions, which complicates the extensibility
and composability of intentions. In most of the cases, the IP system will be
able to schedule the reductions in a correct order. The reduction process
can only fail to find a schedule if there are reductions that change the same
intentions in incompatible ways. This might happen if an extension library
contains reductions that change intentions in the language being extended.

2.3.3 ASF+SDF Meta-environment

ASF+SDF Meta-Environment[17] is an interactive development environ-
ment for the generation of interactive systems for manipulating programs,
specifications, etc. ASF+SDF is the result of the marriage of two formalisms
ASF (Algebraic Specification Formalism) and SDF (Syntax Defintion For-
malism). The syntax is described with context-free functions of the form
symbol1 ... symboln -> result symbol. The semantics is defined by
equations written in ASF. Unlike other transformation systems there is not
a strict separation between the concrete syntax and the syntax used in the
equations. The concrete syntax of the language being defined can be used
inside the equations for that language instead of using the abstract syntax.

Below is an example grammar specification is shown of the grammar for a
small tree language using BNF syntax and ASF+SDF syntax. The language
has three kind of nodes: a number NAT, an f and a g node. The last two
nodes each contain two other nodes. Grammar specification in ASF+SDF:

"f" "(" Node "," Node ")" -> Node

"g" "(" Node "," Node ")" -> Node

NAT -> Node

Same grammar but written in BNF:

Node ::= "f" "(" Node "," Node ")"

Node ::= "g" "(" Node "," Node ")"

Node ::= NAT

ASF+SDF also offers an abbreviated notation for a functional syntax
style. The specification below contains the above grammar rewritten in the
abbreviated notation:
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f(Node,Node) -> Node

g(Node,Node) -> Node

NAT -> Node

ASF+SDF is a typed rule based system. The equations are executed
as rules and must be type safe. An equation consists of two open terms
(AST nodes) L (left hand side) and R (right hand side), possibly containing
variables. Because ASF+SDF is typed, the variables used inside terms must
be declared and typed as well. By default, every function (non-terminal)
tag name is declared as a variable name which is type of course the function
itself. The default variables for the tree language are listed below:

Node -> Node

NAT -> NAT

To distinguish between several terms of the same type extra variable
ranges are declared. In the example below, every name starting with ’Node’
and followed by a number e.g. Node1, Node90, Node342 is a variable of type
Node.

Node[0-9]* -> Node

NAT[0-9]* -> NAT

For an equation to be correct, the type of the variables must match the
contents of a term and all the variables that occur in R must also occur in
L. Let us walk through some example equations (see below). The first one
rewrites every node f with the value 5 into a new node f with the value 6.
The second one rewrites every f node into a g node. Finally, the third rule
rewrites every f node with two equals numbers to the number.

[1] f(5) = f(7)

[2] f(NAT3) = g(NAT3)

[3] f(NAT1, NAT1) = NAT1

The right hand side of an equation must always be a new term (AST
node) which type corresponds to the name tag of the function (non-terminal)
defining that term. So composing two existing terms in the right hand side
of the rewrite rule is not possible. Consider the following false language
defining h-v trees.

context-free syntax

"h" "(" Node ")" -> Node

"h" -> Node

"v" "(" Node ")" -> Node

"v" -> Node

"node" "(" Node "," Node ")" -> Node

equations

[1] Node(node2,node1) = node2(node1)
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The aim of the first and only rewrite rule is to rewrite tree terms of
type Node containing two other terms of type Node into the composition
of first child term with the second child term respectively called node1 and
node2. Since ASF+SDF cannot create a new term with the type of term
being another term, ASF+SDF compiler tries to parse the right hand side
as a term that contains two other terms node1 and node2. Luckely for us,
the syntax does not correspond with the last syntax definition, and this
interpretation fails.

A equation may also preceded by a condition. The equation below in-
crements the number in all the f nodes by one if the number is bigger then
5.
[4] NAT3 > 5 and NAT4 := NAT3 + 1

=================

f(NAT3) = f(NAT4)

The search for an applicable rule is determined by the reduction strategy,
that is, the procedure used to select a subterm for possible reduction. In our
case the leftmost-innermost reduction strategy is used. This means that a
left-to-right, depth-first traversal of the term is performed and that for each
subterm encountered an attempt is made to reduce it. Next, the rules are
traversed one after the other. The textual order of the rules is irrelevant. If
the selected subterm and the left-hand side of a rule match, we say that a
redex has been found and the following happens. The conditions of the rule
are evaluated and if the evaluation of a condition fails, other rules (if any)
with matching left-hand sides are tried. If the evaluation of all conditions
succeeds, the selected subterm is replaced by the right-hand side of the rule
after performing proper substitutions. Substitutions come into existence by
the initial matching of the rule and by the evaluation of its conditions. For
the resulting term the above process is repeated until no further reductions
are possible and a normal form is reached (if any).

Very often rewrite rules need to traverse a particular tree or subtree
in order to: retrieve information or nodes that are located elsewhere in
the tree, retrieve context information, apply a rewrite rule in a particular
subtree, etc. Because this is quite cumbersome to implement with rewrite
rules, extensions are made to the rewrite rules.

The extension ASF+SDF provides are traversal functions [30]. There
are three kinds of traversals functions transformer, accumulator and trans-
former accumulator. The transformer function traverses his first element
and may carry extra information along its path in its other arguments. An
accumulator traversal traverses his first element and updates the accumu-
lator with the right hand side of the traversal function. An accumulator
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transformer traversal combines the two. The definition of such a function
is similar to the other equations. During traversal the traversed nodes are
matched against the first argument of the function and the other arguments
given when the traversal was initiated are matched with the rest. To each of
these three traversal a visiting strategy can be specified and one can specify
whether a traversals stop at matching occurrences using the break keyword
or continues using the continue keyword. The two supported strategies are
bottom-up and top-down.

Consider for example the following inc traversal which increments all
numbers by one. The first line is the definition function by a syntax def-
inition followed by a traversal tuple containing the kind of traversal, the
visiting strategy and the visiting policy. The semantics of the function is
defined by an arbitrary number of equations.

context-free syntax

inc(Node) -> Node {traversal(trafo, top-down, continue)}

equations

[1] inc(N) = N + 1

The type system of ASF+SDF can also work against the language devel-
oper. Types are only derived from the name of the non-terminal. Because
there is no subtype relationship between types, the a variable in a term
must be of the exact type of the content it suppose to match. Consider the
following false language definition.

context-free syntax

"a" -> A

"b" -> B

A -> Node

B -> Node

f(A,B) -> Node

f(B,A) -> Node

hiddens

variables

"node"[0-9]* -> Node

equations:

[1] f(node1 node2) = node2

In the language the first and only rewrite rule wants to rewrite the tree
f(A,B) into the tree with one element B but without referring in the rewrite
rule whether the first and second argument contain the node A or B, instead
using the type Node. For the current language definition the rewrite rule
wont work because during parsing of the expression f(a,b) the tree f(A,B)
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(according to the fifth syntax function (production)) does not contain any
nodes of type Node.

2.3.4 XSLT

The XSLT language [29] is commonly used to transform XML documents
into something else. The result of the transformation may be another XML
document, an HTML or even a PDF document. Although it was not in-
tended as a program transformation system but as a document transfor-
mation system, XSLT can be used to transform programs. This is because
an abstract syntax tree of a program can also be represented as an XML
document. Obviously, representing the parsetree of the source program as
an XML document is a prerequisite.

XSLT has the interesting feature of supporting both forward and re-
verse transformations. An XSLT program, or so-called stylesheet, contains
a number of forward transformations that are applied to the source XML
document to produce a target XML document. Like any forward trans-
formation, each XSLT transformation consists of a pattern that needs to
be matched in the source document and the corresponding result pattern
in the target document. In XSLT, these transformations are called ’tem-
plates’, referring to the template result pattern. For example, the follow-
ing template (adapted from [29]) transforms occurrences of an XML tag
<greeting> to an HTML document displaying the (textual) contents inside
the <greeting> and </greeting> tags. The source pattern is described
inside the <xsl:template match="greeting"> tag, which says that this
XSLT template transforms occurrences of the <greeting> tag. Inside the
result pattern, we use the <xsl:value-of select="."/> tag to retrieve the
(textual) contents between the <greeting> and </greeting> tags.

<xsl:template match="greeting">

<html>

<body>

<p>

<xsl:value-of select="."/>

</p>

</body>

</html>

</xls:template>

The application of the templates on an XML document automatically
occurs in a recursive fashion, until a template is found that transforms a
particular subtree of the XML document. The application of any other
templates for the transformation of that subtree is entirely determined by
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the template that matches on the root of that subtree. For example, in the
example above, no more templates will be executed on the subtree beneath
the <greeting> and </greeting> tags. This is because XSLT requires that
an explicit control flow is defined on the application of the templates. The
standard control flow is one that recursively descends the xml document
and tries to match any template. The standard control flow is overrid-
den if a user-defined template matches a particular tag. The application of
templates is expressed by explicitely calling a template on (a part of) the
subtree (e.g. <xls:apply-templates select="greeting">). To further
control the application of templates, XSLT provides the developer with con-
trol flow constructs to implement iterations (<xsl:for-each>) and branches
(<xsl:if>,<xsl:choose>). In general, we conclude by saying that XSLT
transformations and the transformation application control flow are tangled.

Besides the use of forward transformations, XSLT provides support for
querying the source document through XPath expressions. The result of
these queries are used inside the result patterns of the templates. We are
not going to discuss the details of the XPath query language here, but merely
illustrate its usage. In the previous example, we already used it to retrieve
the contents of the current node under transformation (i.e. the "." in the
<xsl:value-of select="."/> construct). Using XPath, we can retrieve
information from anywhere in the source XML document by expressing a
path over the tree that starts at the current node under transformation.
This allows us to implement reverse transformations because we can ’fill
in’ a particular result pattern with information retrieved from the source
document. For example, the following template transforms the root node of
the source tree into an html document and retrieves its information from the
source tree using XPath. It accomplishes the same transformation as our
previous example but it uses XPath to query the subtree of the rootnode
(which is the current node under transformation) to retrieve the <greeting>
tag.

<xsl:template match="/">

<html>

<body>

<p>

<xsl:value-of select="greeting"/>

</p>

</body>

</html>

</xls:template>
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2.4 Compositional Generators

Compositional program generators produce an output program by compos-
ing several smaller program building blocks together. The building blocks
are programming abstractions such as classes, functions, components, tem-
plates, aspects, hyperslices, . . . . The idea is that each building block im-
plements a particular feature and can be composed with the other building
blocks through a composition technique. It is also common that a set of
composition rules and constraints govern dependencies between the sepa-
rate building blocks such that the generator always produces a correctly
working system. The use of compositional program generators depends on
wether or not we can implement the required features in separate program
parts and recompose them to generate an output program. A compositional
generator We describe the most important composition program generation
techniques below.

2.4.1 GenVoca Generators

GenVoca is a design methodology for creating software product-lines. In the
GenVoca model, a software application is generated through the composition
of layers of abstraction. Each layer implements a particular feature and
consists of abstractions native to the programming language (e.g. classes,
methods, functions, templates, mixins, ...). Stacking layers onto each other
yields a complete application containing the features implemented by the
respective layers. This is because each layer ’refines’ the layer above it by
composing its internal abstractions with the already existing abstractions in
the layers above or by adding new ones. Several different implementation
technologies have been used to implement the GenVoca model. The most
prominent and well-know examples are through C++ templates [10] and
Java mixin-layers [25]. In both these implementation techniques, the object-
oriented inheritance is used to compose the different layers.

In order to obtain a particular application, we need to describe the de-
sired composition of layers in a GenVoca equation. Conceptually, in these
equations, programs are values and refinement-layers are functions. These
functions take a program as input and produce a program refined with the
particular feature (implemented by the layer) as output. For example, con-
sider the following equations:

application1 = f(g(x))
application 2 = h(i(x))
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In this example, we define two applications. application1 is the pro-
gram x, extended with the features f and g and application2 is program
x, extended with features h and i.

In the GenVoca model, the generator’s implementation is based on lan-
guage features available (or integrated) in the general-purpose language.
For the purpose of implementing GenVoca layers and generators in Java,
the language was extended with mixins and mixin layers. In short, a mixin
in Java is a class without a static superclass. This means that the super-
class of this mixin class is not specified at the definition of the class. Instead,
when the mixin class is used, it must be supplied with a superclass, which
can again be a mixin class. As such, we can use the same mixin class to
extend the behaviour of many other classes. To use a mixin class, we define
a new class that is the composition of the mixin with its superclass. This is
done through the typedef construct. The following example illustrates the
composition of a mixin M with a class C into the new class N.

typedef N M < C >

A mixin-layer is a mixin that contains other mixins and classes. It is
used to group mixins together. Clearly, mixin layers are used to implement
GenVoca layers and mixins and normal classes are the basic abstractions
inside each layer. The composition of genvoca layers is thus implemented
as the composition of mixin layers. Inheritance between mixin-layers is
defined in terms of inheritance of its parts. In figure 2.6, the inheritance
hierarchy for a composition of layers x, f and g is shown. Layer x is the
core of the application and is refined by layers f and g. Therefore, layer x is
implemented using normal classes, while the other layers consist of mixins.
The resulting application is the composition of these layers or, technically,
the set of most specialized subclasses of each inheritance chain.

Of course, not all layers can be stacked onto each other and some com-
positions might not even result in a working system. These problems are
respectively solved by a type-checker and a design-rule checker. The type-
checking is based on the fact that layers are grouped in realms and each layer
can only accept layers of a particular realm as input. This means that the
result of certain functions cannot be used as a parameter of other functions.
A realm can thus be seen as a typing mechanism for layers and the argu-
ments and return value of a function in a GenVoca equation are statically
typed. The correctness of the equations is then checked by a type-checker.
More complex, semantic design-level dependencies are expressed by adding
applicability constraints to the layers. These constraints can describe the in-
compatibility of features or they can enforce a certain order on the stacking
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Figure 2.6: The inheritance hierarchy implementing the f(g(x)) GenVoca
equation.

of the layers, etc. . . .

2.4.2 Subject-oriented Programming and Multidimensional
Separation of Concerns

In Subject-Oriented Programming (SOP) [21, 15], an application is built
through the composition of subjects. Each subject is a collection of pro-
gram parts and the composition merges appropriate parts together to build
the resulting program. A subject may be a complete application by itself or
it may be an incomplete fragment that needs to be composed with other sub-
jects. As in all composition-based techniques, the idea is that each subject
implements a separate feature of the entire program and the composition
of subjects integrates their corresponding features in the output program.
The composition of subjects is governed by composition rules that establish
correspondence between entities in different subjects. The corresponding
entities are then merged together in a specific way, which is also indicated
by the appropriate composition rule. There are many different composi-
tion rules and they are described separately from the subjects, which is
in contrast with the mixin-implementation technique for GenVoca, where
one kind of object-oriented composition technique is used to compose the
different parts.

Because of this diversity in composition rules, the composition of sub-
jects is quite flexible and facilitates the reuse of subjects across different
applications. As we already mentioned, a subject is a syntactically cor-
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rect program, implementing a particular feature which may or may not be
an already complete program. Since the SOP technique has been applied
in practice in the context of class-based object-oriented programming, this
means that subjects consist of classes, containing methods and instance vari-
ables. The composition rules are described in separate files and establish a
composition between these three kinds of parts in each of the participating
subjects. The rules are divided in correspondence and combination rules.
The correspondence rules establish a correspondence between the different
parts that need to be composed and the combination rules determine how
the corresponding parts should be composed. The most basic and default
correspondence rule establishes a correspondence between elements of the
different subjects that have the same name. Exceptions to this rule can be
manually described. A combination rule for different parts either joins the
parts together or one of the parts replaces the other. Furthermore, order-
ing constraints can be specified to control how method bodies are combined
and a function can be specified to compute the return value of a composed
method.

The subject-oriented programming technique has now evolved into multi-
dimensional separation of concerns (MDSOC) [22], of which it is now a part.
MDSOC is also mentioned as an aspect-oriented software-development ap-
proach and is a generalization of subject-oriented programming to all phases
of the software development lifecycle. It also includes a number of improve-
ments and extensions to the composition rules, which we do not describe
here as the general concept remains the same.
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Chapter 3

DSL Evolution Problems

Domain-specific languages that are implemented using program generation
techniques, and more specifically using program transformation, are also
prone to evolution problems. In this chapter, we identify those issues that
need to be solved to enhance evolvability of DSL implementations.

3.1 Introduction

Despite the obvious advantages of DSLs, the disadvantage is that because
the underlying libraries, frameworks and components written in GPL evolve,
the DSL compiler must evolve as well. Over time, new functionality is added
and new notions in the domain are introduced, which must be incorporated
in the DSL.

The cost of building a full implementation for a DSL compiler from
scratch has been greatly reduced by the advent of transformation systems.
Unfortunately the cost of adapting an existing DSL implementation or the
implementation of another similar DSL often boils down to the same amount
of work. Naturally, given the already existing implementation of a DSL, this
cost to high. The reuse of parts of a DSL implementation gets limited by
the high degree of coupling between those parts. Whenever a part evolves or
changes, the other parts get invalidated or even corrupted. In this chapter we
investigate what causes the high degree of coupling between these modules
and what the effects are on future evolutions of the language.

37
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3.2 Compiler Design

The construction of a compiler for a DSL is based on the architecture of a
compiler for general purpose languages. The architecture of such compilers
divide a compiler into several functional layers. The most common layers
are lexing, parsing, several transformation layers like type checking, trans-
forming, optimizing, finally pretty printing etc. The layers are put on top
of each other so that the output produced by a layer serves as the input for
the next layer. A transformation layer consists of a set of transformation
modules each dealing with a specific part of the transformation.

Usually BNF or some variant is used to specify the DSL grammar, but of
course other formalisms can be used as well. From the grammar a parser can
be constructed. This can be done very easily and a lot of tools like JACC,
SMAK, etc are available that automate this process. After the parser is
released on the code text an syntax tree (AT) is produced. The AT is pruned
from concrete syntax information, since this information is not relevant for
the rest of DSL implementation. The result of this pruning is an abstract
syntax tree (AST) which is called the source AST since it is derived form a
DSL program. The AST is then processed by several transformation layers
which manipulate the tree until a new and valid AST has been obtained.
This AST is the AST of the target program written in the desired target
language. We will refer to this tree as the target AST. Depending on the
transformation system at hand, this tree is immediately handed over to the
compiler of the target language or is pretty printed into a character stream
which is then given to the compiler of the target language.

In the layered architecture of the compilers, the output of one layer
serves as the input for the next layer. In order for this scheme to work, the
structure of the input accepted by one layer must be carefully tuned to the
output of the previous layer. This dependency between two layers burdens
and jeopardizes the evolution because changes in the output of one layer can
cause various errors in the successive layers.

The kind of errors and their traceability depend on the specific paradigms
and implementations of the transformation we can identify 3 kinds of prob-
lems that may occur:

failure During the execution of the transformation module, the modules or
the whole layer breaks.

invalidate The transformation module apparently still works but the mod-
ule returns a different result.
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ineligible The transformation module is no longer triggered because the
conditions for the module are no longer satisfied. When the module is
not removed from the compiler, it is dormant and may become active
again and cause unexpected results.

Although this a architecture that fits most transformation systems, note
that the different architectural layers may not always be cleanly separated
and presented to the developer of DSL compilers. However, we will use this
architectural schema in our analysis of the problems regarding the evolution
of DSL implementations with transformation systems.

3.3 Transformation Modules

3.3.1 Identification

There are conceptually two viewpoints for modeling the transformations
source driven and target driven. The viewpoints respectively takes the
source language and the target language as the dominating structure to de-
termine the identification of the transformation modules, the scheduling of
the transformation modules and the composition of the results of the trans-
formation modules. In the source driven viewpoint or architecture, transfor-
mation modules are identified and constructed based on particular parts of
the source AST. The default scheduling mechanism follows the structure of
the source language ranging from leftmost-innermost to rightmost-outermost
but can be customized, if desired. The results of the transformation mod-
ules are composed according to the structure of the source AST nodes that
are transformed. Transformation systems that follow this viewpoint are
ASF+SDF, TXL, XSLT, BCG etc. In the target driven viewpoint or archi-
tecture, transformation modules are identified and constructed based on the
desired parts of the target AST. The scheduling and composition is entirely
based on the target structure and must thus be specified by the user. Trans-
formation systems that follow this viewpoint are LMP, Joistra, Templates,
XSLT, ... etc.

Because the transformation modules in these two viewpoints are oriented
differently, languages and their non-functional requirements like reuse and
evolvability are conceived also differently. In the source driven viewpoint
new languages are designed, constructed and implemented by a set of source
language constructs. Each language construct is transformed by a number
of transformation modules. Existing languages evolve through new language
constructs and by refining and enriching the language constructs semantics.
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In the target driven viewpoint new languages are designed, constructed and
implemented by a set of desired targets. Each target is constructed by a
number of transformation modules which retrieve their information from
the input AST (often called a model). Existing languages evolve through
new targets and by refining and enriching existing targets.

In order to further discuss the evolution and reuse problems of those two
viewpoints in general we use the syntax of two representative transformation
systems. Currently, only examples in the source driven viewpoint are given.
The representative for this viewpoint is ASF+SDF.

3.3.2 Granularity

As in any programming model, the granularity of the entities that are con-
structed is very important. Coarse grained entities are usually more straight-
forward to build, because less effort is needed to decompose the problem into
a set of finer grained entities. On the other hand such entities are usually
hard to evolve and to reuse. When writing a set of transformation modules,
decisions on the granularity of those entities must also be made .

Let us illustrate the two sides of the granularity spectrum to implement
a DSL compiler with rule-based transformation systems. Consider the fol-
lowing AST of a program consisting of one subject which contains an article
and a title. A title has two parts, a main title and a subtitle.

subject(title("first title", "second title"),

article("The new council abruptly canceled ...")

Suppose we want to compile this AST into a HTML page. The titles
must be centered and printed on top of each other at the top of the page.
The subtitle must be printed in gray and in font size 9.

In the first approach the rewrite rules match the largest possible struc-
ture which they still can rewrite. The advantage of this strategy is that the
implementation of a transformation is very simple. This is certainly the case
for this example, because the whole transformation can be written using one
big rewrite rule (shown below). The rule matches a subject containing a title
and rewrites this tree into the required HTML code.

context-free syntax

font(element*, int, string) -> element

cap(element*) -> element

"br" -> element

center(element*) -> element

text -> element

subject(title article) -> subject
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title(text,text) -> title

article(text) -> article

equations

[1] subject(title(text, text2), article(text))

= center(text br font(text2, 9, "gray")) br text

The first disadvantage of this strategy is its sensitivity to any increase
in variability of the language. Any slight increase will most likely force
existing rewrite rules to be split up hence, introducing a lot of duplication.
Let us consider two small changes. Suppose we extend the language (shown
below) so that a subject contains a title and a set of articles. Rewriting
the articles in the subject rewrite rule would require us to iterate within a
rewrite rule over different articles, something which is not possible in rewrite
rule systems. So we are obliged to write down another rewrite rule (line 2).
Note that this is not a shortcoming of rewrite rule systems. Adding this
kind of iterative capabilities would break down the rewrite rule system to
yet another general purpose language.

Another disadvantage is that a lot rewrite logic gets duplicated. Be-
cause of the duplication, future evolutions will most likely require changes
in several rewrite rules. Consider another language extension (also shown
below) that introduces a variant of a title that only consists of a main title.
Rewriting both kinds of titles in a single rewrite is simply not possible. We
must copy the subject rule and adapt it so that the rule handles the new
kind of titles (3). In the process the transformation logic concerning the
main title and the subject got duplicated.

context-free syntax

title(text) -> title

article(text) -> article

equations

[1] subject(title(text, text2), articles*)

= center(text br font(text2, 9, "gray")) br articles*

[2] article(text) = text

[3] subject(title(text), articles*) = center(text) br articles*

In order to avoid those evolution and reuse problems, it is clear that we
need to take another approach. The only other strategy is to implement the
transformation by dividing it in small rewrite rules that capture the smallest
possible structure which they still can rewrite. This strategy maximizes the
amount of reusable rewrite logic and minimizes the need to split up existing
rewrite rules. Any increase in variability requires a minimum amount of
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implementation effort because of the reuse possibilities and avoids constant
refactoring of the existing rewrite rules.

The example program contained two concepts: a title and a subject.
The implementation of the transformation according to the new strategy
yields (see below) in a rewrite rule for titles (3), a rewrite rule for the article
(2) and one for subjects (1). The title is rewritten into a html structure
rendering the main and the sub title centered, in the requested font and on
top of each other. Since the subject merely contains a title, the subject is
rewritten by its title with a subtitle.

context-free syntax

subject(title) -> subject

equations

[1] subject(title, article) = title br article

[2] article(text) = text

[3] title(text,text2) = center(text br font(text2, 9, "gray"))

The two small evolutions can easily be incorporated in this implementa-
tion of the language. Adding articles to the subjects merely involves chang-
ing the subject rewrite rule to incorporate more then one article (1) and
adding a variant of text requires only the addition of one new title rule (2).

[1] subject(title articles*) = title br articles*

[2] title(text) = center(text)

Although this fine-grained division of a transformation into several rewrite
rules works perfectly well in this example, the strategy has also several
drawbacks. Each of these drawbacks is discussed in the following sections.
Firstly, the strategy only minimizes the dependencies between de grammar
and the transformation and vice versa but not all of the dependencies can
be completely eliminated. The remaining dependencies are discussed in
section 3.4. Secondly, because of the transformation on transformation de-
pendencies, such transformations can never be completely written separately
(section 3.5). Thirdly, transformations that only my execute in a particular
context or need information out of their context get broken by this strategy
(section 3.6).

3.4 Grammar and Transformation Dependencies

The specification of the grammar and the implementation of the transforma-
tions are separated in different layers. This separation allows the two parts
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to evolve independently. Besides the benefits like multi-target transforma-
tions for example, the danger of this approach is that the grammar and the
transformation can evolve out of synch: transformation layers can impose
new constraints, can remain ignorant of certain features of the grammar or
may even be corrupted because of changes to the grammar.

The first transformation layer takes as input the source AST from the
parsing phase. Each transformation module in the transformation layer
takes a portion of the source AST and produces a piece of the target AST.
To avoid any discrepancy between the grammar’s output and the transfor-
mations input one must carefully check wether all information captured in
the grammar is used by the transformations and whether the assumptions on
the structure made by the transformations are met by the grammar. These
two sanity checks must be performed whenever the grammar or transforma-
tion systems are changed.

3.4.1 Assumptions on the input AST by the transformations

The rewrite rules of any rule-based systems consists of a left hand side and
a right hand side. The left hand side is a pattern which is matched against
the source AST. In order words, the left hand side of each rewrite rule is
an assumption on the structure of a particular part of the source AST.
The complete set of these assumptions dictate the complete structure of the
source AST. The consequences or severeness of what can wrong when one
of the assumptions are not met by the source AST of the grammar depend
on the semantics of the rewrite rules.

Whenever the patttern of a rule matches a set of nodes of the source
AST, the top level node of that match is replaced by its right hand side.
The right hand side consists soley of either new elements that must be
created or elements that have been matched by the left hand side. Therefore
rewrite rules cannot fail during their execution or become invalidated. In
this paradigm rewrite rules either match or they do not match, hence rewrite
rules can only become ineligible. Let us illustrate this kind of error when one
the assumptions is not met by the grammar. In the example a set of rewrite
rules are given for a initial grammar where charts and articles are siblings
in a larger structure. Because common parts of charts and articles must be
treated differently, the set of rewrite rules implicitly assumed that charts
are not contained in articles. Next, an seamless innocent evolution of the
grammar is presented which allowed charts to be included inside articles.
Because the assumption within the rewrite rules was no longer satisfied
certain rewrite rules become ineligible.
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Consider the following AST which describes a multimedia article of a
newspaper. Articles are contained in a subject, accompanied by a title and
a set of multimedia objects.

(subject OilPrice

(title "Index Page")

(article (text "The amount of oil produced by the OPEC"

(comment "OPEC ..." ) "..." ))

(chart "Oil Prices of 1999 until 2003"

(x (range 1999 2003))

(y (value 10)

(value 20)

(value 30)

(value -40 (comment "War in Irak") ))

Each subject corresponds to a separate page. At the top of the page the
title of the article is printed followed by the articles text and was concluded
by a list of multimedia objects. Although both the article text and the graph
contain comment nodes, the rendering of the comments depends on their
context. Comments in articles are displayed as three little dots. A mouse
click on the dots is required to be able to read the comments. Comments
in charts are immediately shown when the mouse points to the a particular
value on the chart.

A set of rewrite rules were developed in order to transform the above
source AST into a HTML page. The following set is a snapshot of the en-
tire set of rules that only deal with comments. First the subject tree is
rewritten into the tree transform chart(transform article(Subject))
and immediately after the substitution the newly created tree gets first
of all rewritten triggering the transform article rule and afterwards the
transform chart rule. The transform article rule traverses the subject
until it reaches the article node, which triggers its execution and so forth.
This set of transformation rules will thus first traverse the article and sub-
sequently the chart.

Subject = transform_chart(transform_article(Subject))

transform_article(Article) = transform_article_comments(Article)

transform_article_comments(Comment(Text))

= <a href="javascript:ShowInWindow(Text))"> "..." </a>

transform_chart(Chart) = transform_chart_comments(Chart)

transform_chart_comments(Comment(Text))

= <a onmouseover="javascript:popup(Text))"> "..." </a>

Consider the following evolution of the example language where an article
also may contain inline multimedia objects. After changing the grammar
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to reflect this need, we could write the following example AST in which the
graph is now directly contained in the text of the article.

(subject OilPrice

(title "Index Page")

(article

(text "The amount of oil produced by the OPEC"

(comment "OPEC ..." )

"..."

(chart "Oil Prices of 1999 until 2003"

(x (range 1999 2003))

(y (value 10)

(value 20)

(value 30)

(value -40 (comment "War in Irak") ))))

The semantics of the language wasn’t changed so we should be able to
use same set of rewrite rules. We would also expect that the outcome of
the transformation is the same. But this isn’t the case. Running the set of
rewrite rules against the above example results in a graph with comments
represented as dots instead of popup windows. When we take a closer look
at the rewrite rules we discovered an implicit assumption. During the trans-
formation of the article, every comment contained in the article is changed.
Afterwards, the charts and their comments are transformed. This implemen-
tation worked because it assumed that the chart wasn’t a part of the article.
The change in the grammar, permitting us to put also charts inside the arti-
cles, placed the charts hierarchically under the article node. Therefore also
the graph comments got rewritten as they were normal article comments.

3.4.2 Assumptions on the transformation system by the gram-
mar.

The left hand side of a rewrite rule is a pattern that is matched against
the source AST. The total set of these patterns determines the parts of the
source AST that are taken into account during the transformation process.
Naturally one expects that all the information captured by the grammar is
taken in to account by the transformation process. The only way to make
sure that all the information of the grammar is properly used is to check
wether every AST structure that is allowed by the grammar is matched by
at least one rewrite rule. For large and complex systems, this is a complex
and cumbersome task.

Grammars are a very powerful means to describe the set of valid expres-
sions of a language. Their expression power becomes particularly visible in
cases where grammars need to capture a large number of combinations. To
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capture a number of combinations we only rely on two mechanisms: alterna-
tives and references to other productions. Each production which refers to
other productions define a combination. The alternatives for the referenced
productions are declared by other productions. The number of combinations
is the product of each number of alternatives for every referenced produc-
tion. Capturing a number of combinations in grammars is so natural we
often even don’t realize the total number of possible combinations.

While capturing a large number of combinations in the grammar can be
very declaratively expressed. The transformation of ASTs derived of such
grammars must be able to deal with every combination or group of combi-
nations individually. Even with a systematic development of the necessary
set of rewrite rules, certain combinations allowed by the grammar get easily
overlooked. Let us illustrate this kind of problem.

The initial DSL used in the example is a DSL for describing games
consisting of objects and rules telling how the objects should interact. The
semantics can expressed using only two rewrite rules. Next we propose an
evolution of the language where we add support for active objects, these are
objects that move by themselves. The extension of the language involves
merely a simple alternative of one of the productions of its grammar, but it
tripled the number of rewrite rules needed to implement its new semantics.

Consider the following AST which describes a game consisting of two
objects: a car and a wall, and one rule which is triggered when the car hits
the wall.

(rule

(normalobject(CAR))

(hit)

(normalobject(WALL))

(...))

The language of the AST consists of three concepts: objects, actions
and rules. Objects are graphically rendered on the screen and can be moved
to any valid position on the screen. Actions denote a relationship between
two objects. Rules state which relationships between two objects must hold.
When the relationship holds, the code attached to the rule is executed. The
first three lines below, define an object, the hit action and under action.
The next 4 lines define a game rule consisting of two elements, an action
and a piece of code which is executed when the rule is triggered. In the last
part, the semantics of the language is specified. Note that there are only 2
rules needed, one rule to handle hit actions and another rule to handle the
under action. The hit action defers from the under action because when hit
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actions occur a specific event object is returned that can be used to retrieve
properties of the event.

concrete syntax

"object" "(" ID ")" -> object

"hit" -> hit

"under" -> under

"rule" "(" element "," action "," element "," code ")" -> rule

object -> element

hit -> action

under -> action

equations

[1] rule(normalobject(ID), hit, normalobject(ID2), code) =

[2] rule(normalobject(ID), under, normalobject(ID2), code) =

Till now, the language only supports passive objects which can only be
moved by user input. But in many games certain objects move by themselves
according to a certain pattern. Therefore the language is extended by a new
kind of objects, called moving objects. These objects have their thread
of execution and compute their own position on the screen. When a rule
with moving objects is triggered, the motion of the moving objects must be
suspended before the code of the rule is executed and must afterwards be
resumed again. Using these kind of objects, we can write the following AST
of a game. It consisting of two objects: a bouncing ball and a wall, and a
rule which is triggered when the bouncing ball hits a wall.

(rule

(movingobject(BOUNCING_BALL))

(hit)

(normalobject(WALL))

(...))

Extending the grammar with moving objects requires one production
specifying the syntax of a moving object (first line) and requires an alterna-
tive for the element production (second line). Because of the ease of being
able to add another possibility for an element of a rule, we are not con-
fronted with the huge increase of new possibilities that are now captured in
the grammar. The rule production refers to the action production and refers
two times to the element production. Multiplying the number of combina-
tions of an action with the square of the number of elements results now in
8 possible combinations, that is 3 times the number of possibilities captured
in the original grammar. Since normal objects and moving objects must be
treated differently, these 6 new combinations (last 5 lines) must be captured
by individual rewrite rules. First we need to determine which are the new
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6 combinations compared to the original implementation. Then we need to
determine for which of these new combinations a new rewrite rule is needed
and subsequently add it to the set of rewrite rules. In our example we only
needed 5 rewrite rules.

Even the extension of this little language with one alternative resulted
in an increase of a large number of combinations. The extension of this lan-
guage with various unary and binary actions, object layouts, input-devices,
etc. towards a full fledged gaming language can rapidly increase the number
of new combinations. During the review of the existing set of rewrite rules
to determine the new combinations and while determining the necessary
rewrite rules, certain combinations may easily get overlooked.

concrete syntax

"movingobject" "(" ID ")" -> movingobject

movingobject -> element

equations

rule(movingobject(ID), hit, movingobject(ID2), code) =

rule(movingobject(ID), hit, normalobject(ID2), code) =

rule(normalobject(ID), action, movingobject(ID2), code) =

rule(movingobject(ID), under, movingobject(ID2), code) =

rule(movingobject(ID), under, normalobject(ID2), code) =

3.5 Transformation and Transformation Dependen-
cies

In a layered compiler architecture there are often several transformation lay-
ers involved, because a single transformation module was not able to trans-
form the source AST directly into a correct target AST. The first transfor-
mation layer takes as input the AST that is produced after parsing the DSL
program, the remaining transformation layers take as input the result of
the previous layers. Those remaining transformation layers are particularly
difficult to mange because their input structure is no longer well described
as opposed to the input of the first transformation layer. Maintaining the
consistency between grammar and first layer was hard, one can imagine that
the maintenance of the next layers will only increase.

When a transformation of at least two source AST elements needs the
result of the transformation of another AST element then the former trans-
formation must be divided in several modules and put in several transforma-
tion layers. These transformation modules will then transform the results of
previous transformation modules until the desired target AST is obtained.
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Consider the following AST of a program consisting of one subject which
contains a two titles: a main title and a subtitle.

subject(title("first title", "second title"))

Suppose we want to compile this AST into a HTML page. The titles
must be centered and printed on top of each other at the top of the page.
The subtitle must be printed in a font size so that the width of the title and
subtitle are the same. Additionally when the subtitle is a title of a subject,
the subtitle must also be printed in gray.

The example program contained two concepts: a title and a subject.
The implementation (see below) yields in a rewrite rule for titles (3) and
one for subjects (1).

concrete syntax

font(element*, string) -> element

font(element*, int) -> element

cap(element*) -> element

"br" -> element

center(element*) -> element

text -> element

subject(title) -> subject

title(text,text) -> title

spraygray(element*) -> element { traversal(trafo, top-down, break) }

subject(element*) -> subject

equations

[1] subject(element*) = spraygray(element*)

[2] spraygray(font(text, int)) = font(font(text, int), "gray")

[3] size := computefontsize(text,text2)

====================================================

title(text,text2) = center(text br font(text2, size))

The title is rewritten into a html structure rendering the main and the
sub title centered, in the requested font and on top of each other. Since
the subject merely contains a title, the subject is rewritten by its title and
its gray subtitle. The graying of the subtitle is performed by the spraygray
rewrite rule which is triggered when the subject is rewritten. The spraygray
rewrite rule may not rewrite just any text but only the subtitle text. There-
fore the rule traverses the result of the title and is triggered when it matches
a font node. Since only the subtitle is wrapped in a font node, we can make
sure that the spraygray rule only rewrites the subtitle text.

As you can see from the above implementation, when transformations
operate on the results of other transformations their implementation heavily
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relies on the results of the previous transformation. Now suppose some time
later, that the main title must be printed in font size 12. The title rewrite
rule is looked up and changed accordingly:

[3] size := computefontsize(text,text2)

===========================================================

title(text,text2) = center(font(text, 12) br font(text2, size))

When the DSL compiler is run against our input, the main title will
be printed in gray as well. Unwillingly we broke the implicit condition of
the capitalize rule, which is now unable to distinct between the text of the
subtitle and the text of the main title because both parts of the title are
contained in a font node.

One might suggest that another way of implementing this transformation
is by first traversing the source AST and rewrite the subtitle text by a grayed
text and subsequently rewrite the title. In this example, this idea does not
resolve the problem. Consider the alternative implementation here below:

[1] subject(title) = spraygray(title)

[2] spraygray(title(text,text2)) = title(text, font(text, "gray"))

[3] element2 = font(text2, string) and

size := computefontsize(text, text2)

==============================================================

title(element1,element2) = center(text br font(element2, size))

The title rewrite rule needs to access the text of the subtitle in order
to compute its fontsize. Therefore the subtitle (element2) in the rule is
matched is against the font node, rendering it dependent on the spraygray
rewrite rule. We thus end up with the same dependency.

There are of course other examples, where this idea would work but it
would only shift the problem. Instead of making the rewrite rules dependent
on target results produced by other transformations, the rewrite rules would
depend on a intermediate structure that is no longer equal to the structure
described the grammar.

3.6 Information dependencies

A transformation transforms the source AST structure into an the target
AST structure. Naturally, all the necessary information to construct the
target AST can thus be retrieved from all over the source AST. As we ex-
plained in the previous sections, a transformation is implemented by a set
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of transformation modules. The division into transformation modules as-
signs to each transformation module a responsibility to construct a part
of the target AST using a part of the source AST. However the part of
the source AST required often consists of several source AST nodes which
are not necessarily direct connected (e.g. parent child relationship). These
transformations modules are called multi-source transformations modules
or global-to-local transformation modules. Usually one source AST node is
chosen as the pivot node from which all other nodes can be reached. This
choice mainly depends on the specific capabilities in transformation systems
to reach other nodes given a node. When the context of a node can not be
reached the most top-level node is chosen, otherwise the triggering node is
usually chosen. The other nodes necessary nodes are called non-local nodes.
Transformation modules that use the pivots to retrieve the non-local nodes
introduce dependencies between the elements of the source AST structure.
These are called the information dependencies. These dependencies serious
complicate the implementation and the future evolutions of the entire lan-
guage. Note that we do not distinguish between the source driven or the
target driven viewpoint. Although depending on the architectural viewpoint
on transformation modules the division is initiated differently, the informa-
tion dependencies remain the same.

3.6.1 Cause and illustration for the need for non-local AST
nodes

The language constructs of DSLs are based on the concepts of a particular
domain. The language constructs allows us to use and state properties over
domain concepts. Expressions in DSLs are declarative statements over the
relationships between those domain concepts. In contrast, general purpose
languages (GPL) on the other hand consists of a set of primitives to ex-
press state, computation referring to other computations and control flow.
Clearly the structure of a DSL can significantly differ from from the struc-
ture of GPL. A compiler for a DSL must transform the declarative state-
ments of a GPL into a set of referring computations and control flow. In
the process, it must overcome the structural differences between both lan-
guages. Because of these structural problems some transformation modules
need several indirectly connected AST nodes.

In order to illustrate this, consider the following DSL of which the gram-
mar is given below. The DSL consists of general elements like a string, a
set of images, a link or a reference and three main concepts: menus, pages
and sections. Menus have two layers: main menus and submenus and four
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rendering strategies: layout for the menu captions consisting of images, and
the kind of animation and layout directions for the main and submenus.
Furthermore, the caption of the main and submenus is specified by a gen-
eral element. Pages have a title and a arbitrary number of sections which
consists of a name and a title and may also contain a series of sections,
elements. Links and references either point to pages or to sections within
pages (provided that the name of the section is unique).

root(menu,page*) -> root

menu(mainmenu*,menulayout,menulayout,imagelayout,menuanimation) -> menu

main(ID,element, submenu*) -> mainmenu

sub(ID,element) -> submenu

horizontal -> menulayout

vertical -> menulayout

toggleimage -> imagelayout

slide -> menuanimation

"vertical" -> vertical

"horizontal" -> horizontal

"toggleimage" -> toggleimage

Page(ID,title,element*) -> page

Section(ID,title, element*) -> element

title(String) -> title

ref(ID) -> element

String -> element

Image* -> element

Link(element, ID) -> Link

Image(ID) -> Image

The following AST of a program is written in this language. The program
defines a menu and a news page. There are two main menus: headline and
themes. The caption of the headline menu item is a set of images and the
menu item refers to the headline section. The second main menu item is
themes. This menu item expands into a submenu with two items. The
main menus are horizontally layouted whereas the submenus are vertically
layouted, both are animated with the slide effect. Furthermore, the images
of the menu captions are toggled when the mouse hovers over the menu item.
The news page consists of a title and two sections. The title of the headline
section is ”Explosion kills...” and refers to the iraq section.

menu(

(main(headline, link( imageset((imag1,imag2)), headline, ())),

main(themes,"Theme",

(sub(themes,"Culture"),

sub(themes,"Science"))),

imagelayout(toggleimage),

menulayout(horizontal),
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menulayout(vertical),

menuanimation(slide)

)

page(news,

title("News"),

(section(headline,

title("Explosion kills .."),

(text(" "),

ref(iraq)),

),

section(iraq

...

))

)

The compiler for this language must transform such specifications into
HTML. Besides the semantics described above, there are some additional
requirements. The titles of the sections must be numbered and the references
to the section must contain the number and the title.

The division of this transformation according to the source driven view-
point into smaller transformation modules yields to a lot of transformation
modules that require several indirectly connected source AST nodes in or-
der to produce the desired target AST parts. Because these are the kind of
transformation modules, only these modules are described in figure 3.1. Note
that these descriptions are not correct ASF+SDF rewrite rule nor adhere
to any other transformation system, the descriptions are written in a kind
of pseudo-syntax for multi-source transformations. For each transformation
module the triggering AST node is chosen to function also the pivot node.
The non-local nodes required by the transformation modules are prefixed
with a ”+”. The relationship between the pivot node and the other nodes
isn’t expressed because this would clutter up the rewrite rules to much. Let
us quickly go over each of them:

• The rearrange menu transformation module (1) must rearrange the
larger part of its arguments, making it dependent on the specific nature
and combination of those arguments. The modules animates its menu
and applies the layouts for the main menu and the submenus. Notice
also that imagelayout is not used because a menu does not directly
need it.

• The image layout transformation module (2) requires an set of images
in order to implement the toggleimage effect.

• The link transformation module (3) constructs a html link to the given
section hereby needing the page containing this section to complete its
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reference. This of course give rise to the section transformation module
(7) that creates an html anchor tag around every linked section.

• The section transformation module (4) was a bit harder to write down.
The module must prefix the title with its hierarchical number. There-
fore all the parent sections are needed in order to construct the number.

• The ref transformation module (5) is quite similar to the section mod-
ule (4) and the link module (3). The ref module constructs a html link
to the section. The only direct information available for this rule is an
identifier of the section. Like the link module, we need to retrieve the
page containing the section and the section itself. The section is also
needed because its title is part of the caption of the link. Addition-
ally we need all the parent sections in order to construct the section
number, just like the section module (4).

• The title transformation module (6) animates the title of a page just
like the animation of the menu linking to it.

3.6.2 Current implementation approach

Implementing multi-source transformation modules is quite some work. More-
over a systematic approach is certainly recommended to keep an overview
of the dependencies between the implemented transformation modules.

The key issue in the implementation of such transformations is the as-
signment of the responsibility to retrieve the non-local nodes. There are
roughly two strategies: (1) transformation modules retrieve their own non-
local nodes starting from their pivot node and (2) separate transformation
modules transform the source AST so that all non-local nodes become avail-
able in the pivot node of the actual transformation module.

The first strategy is often quickly discarded because the transformation
modules heavily depend on the location and properties of the required nodes.
These dependencies hamper the future evolution of the whole compiler (cfr
section 3.4). Therefore the second strategy is chosen. In this strategy the
retrieval of the other AST nodes involves 6 steps:

1. common ancestor Find a source AST node that is a common ancestor
of the pivot node and all other non-local nodes. This node serves as a
starting point.

2. find Find all the non-local nodes starting from the common ancestor.



3.6. INFORMATION DEPENDENCIES 55

3. collect Collect the non-local nodes.

4. distribute Propagate the collected nodes to the pivot node.

5. add Add the collected nodes to the pivot node.

6. cleanup Prune the AST nodes of the collected nodes that are no longer
needed.

In the above cookbook recipe, separate transformation modules must
traverse the source AST to find the necessary nodes, and must distribute
them to the pivots. Such traversals are directly supported by the larger
part of the transformation systems, which were extended with traversals or
similar capabilities. With a traversal over a tree all its node can be visited,
information can be accumulated and/or changes to certain nodes can be
made. They alleviate the developer of manually walking down the tree,
talking into account every kind of node. The number of types of nodes
roughly correspond to the number of productions in the grammar. Because
real life languages are described by grammars that consists of a few hundreds
of productions, even a simple traversal definition would rapidly become very
large.

Let us illustrate with the rearrange main transformation module rule
how the source AST can be rewritten using traversals. Generally, according
the cookbook there are 4 groups of traversals needed: one for initiating the
traversals at the common ancestor, one for finding and collecting the non-
local nodes, one for distributing these nodes to the pivot, and finally one for
pruning the source AST.

The implementation of the information retrieval for the rearrange main
menu transformation module can be found in figure 3.2. The pivot of the
module is the menu node. The module additionally requires all the submenus
of the main menu. The common ancestor of the menu and the submenus
is the menu source AST node. This node serves as the starting point for
the provide submenus (1) traversal. The submenus can be found in the
main menus, hence the collect submenus (2) traversal is invoked around the
mainmenu*. The collect submenus traversal matches all the sub source AST
nodes (first parameter). An additional parameter sub* serving as an accu-
mulator for the obtained submenus is added to the collect submenus rule.
In this example, there is no need to distribute of the submenus because
the pivot is the same node as the common ancestor. The addition of sub-
menus to menu AST node involves merely the creation of an new menu AST
node containing the desired results. Finally, the submenus must be pruned
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from the mainmenu AST nodes, provided of course that the submenus are
no longer needed. This is accomplished by the cleanup traversal (3).

3.6.3 Problems with the current approach

The support for tree traversals has greatly improved and reduced the amount
of code needed to express the traversal. But when looking at from an evolu-
tion perspective, traversals do not always seem fit for the job. The traversals
transform the source AST to alleviate the actual transformation modules of
this task. In other words, the actual transformation modules are put in
another layer taking as input a transformed source AST. In section 3.5 we
described already some general evolution problems of layering transforma-
tion modules on top of each other. Beside the layering problems also the
implementation of the traversals hamper future evolution. Let us analyze
their implementation more in depth following the steps of the cookbook
recipe.

Collect

As long as the non-local nodes do not depend on each other, each node can
be collected and provided separately. But when there are non-local nodes
that depend on the context of other non-local nodes then the collection and
distribution become rapidly very complex. The context dependent nodes
must be collected together with the other nodes on which they depend.
Both nodes be stored in an intermediate node, in order not to lose their
context relationship. Upon distribution the correct set of context nodes can
then be retrieved together with the other nodes on which they depend.

In our example language, this situation occurs in both the title transfor-
mation module and link transformation module. Let us illustrate the above
mechanism with the title transformation module.

The title transformation module animates the title of a page using the
same animation effect as the animation of the menu linking to that page. So
the title AST nodes lack the source AST nodes containing the animation of
the menu that is linking to that page containing the title. In other words, the
animation of the menu passed to the titles of the pages must adhere to the
condition that the menu links to the page containing the title. The condition
cannot be checked upon the collection of animation nodes, because during
the collection phase we don’t know yet for which page to look for. Only
during distribution when the page titles are visited we know for which pages
we need the animation. So during the collection phase, we must both collect
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the menu animation and the set of pages that are linked from the menu. The
set of pages can then be used during the distribution to select that menu
animation source AST node which menu links to the page containing the
title.

Let us quickly run over the implementation (see figure 3.3). The com-
mon ancestor of the page titles and menus is the root source AST node.
It is the starting point for the provide titleanimation traversal (1). The
collection of the menu animation and the set of pages that are linked form
the menu is divided in three traversals. The collect titleanimation traversal
is triggered on menus where it combines in a new pageanimations node:
the pages linked in the main menu and in the submenu with the animation
of that menu. The combination into a new node was necessary because a
accumulator traversal can only return one result. The collection of the menu
animation is performed in traversal (3) and the collection of the pages (4) is
performed in traversal. Finally the pageanimations are propagated to the
pages where the appropriated animation is selected based on the list of page
identifiers.

Distribute

The distribution of extra source AST nodes to a pivot node must be added
to the compiler with caution. Different distributions may overlap because
they are triggered on the same kind of nodes within overlapping subtrees.
In such cases, the outcome of the compiler is totally based on the scheduling
of the traversals since the scheduling prioritizes the distributions. One can
of course try to refine both distributions so that their subtrees no longer
overlap. But this option only shifts the problems. Instead of carefully
scheduling the traversals, now upon each addition of a traversal refinements
to all other traversals must be considered.

To illustrate the problems caused by these dependencies let us analyze
the implementation (figure 3.4) of the image layout transformation module
((2) in figure 3.1). The module required a set of images to apply its lay-
out upon. The pivot of the module is a set of images and the extra node
is the imagelayout of the menu containing this set of images. The com-
mon ancestor of the pivot and the extra node is the menu AST node. The
provide imagelayout traversal (1) is triggered on the menu AST node. It
first collects the imagelayout of the menu (2) and afterwards distributes the
layout to every set of images within that same menu (3).

Suppose the language is extended with an optional image layout for the
captions of the submenus. If there is no such special layout then the image
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layout for the main menu is used. Below is implementation of the traversals
to provide the optional image layout to the captions of the submenus. The
image layout of the submenu may only be distributed to the submenus,
therefore the distribution is divided in two traversals (4) and (5). The first
traversal is triggered when a submenu is matched. Inside the submenu, the
fifth traversal is started. The latter is triggered when the set of images are
matched where the traversal composes the images with the collected layout.

[1] layout := collect_imagelayout2(menu, ) and layout != nil

===========================================

provide_imagelayout(menu) = distribute_imagelayout(menu, layout)

[2] layout := collect_imagelayout(menu, )

and nil == collect_imagelayout2(menu, )

===========================================

provide_imagelayout(menu) = distribute_imagelayout(menu, layout)

[3] collect_imagelayout2(

Menu(mainmenu*,menulayout, menulayout2, imagelayout,

imagelayout2(Layout), menuanimation) ), Layout2) = Layout

[4] distribute_layout(submenu, Layout) = distribute_layout2(submenu, Layout)

[5] distribute_layout2(image*, toggleimage) = toggleimage(image*)

The distribution of the image layout for main menus ((3) in figure 3.4)
overlaps with the above distribution of the image layout for submenus (4)
en (5). The former distribution traverses the entire menu source AST node
and the latter only the submenu source AST nodes of the menu source AST
node. Because of this dependency the first distribution must be scheduled
after the latter, otherwise the images of the submenus will be layouted like
the images of the main menu.

Add

Adding the non-local source AST nodes to the pivot node involves two tasks:
the composition of the non-local nodes with the other nodes and the addi-
tions of the new source AST nodes to the pivot node.

In some cases the collected node(s) must be composed with the already
existing child nodes of the pivot node. Composition of two already existing
nodes say A and B is not directly supported by many transformation systems
but only indirectly through the creation of a new node containing other
already existing nodes. The only way to circumvent this is by creating a
new node C of the same type of A and fill it with the other existing nodes
B and with the nodes that were contained in the existing node A. This is
not a problem as long as there is only one type of A nodes involved. As



3.6. INFORMATION DEPENDENCIES 59

soon as there are other node types, each type must be handled separately.
In the case of rewrite systems, for each node type there must be a separate
rewrite rule. This increases the dependency between the grammar (defining
the different node types) and the traversals. Such dependencies and their
negative implications on the evolution of the grammar were discussed in
section 3.4.

Recall the image layout transformation module (2) in figure 3.1 which
required a set of images to apply its layout upon (see figure 3.4 for its
implementation). The pivot of the rule is a set of images and the extra non-
local node is the imagelayout of the menu containing this set of images. The
common ancestor of the pivot and the non-local node is the menu AST node.
The provide imagelayout traversal (1) is triggered on the menu AST node. It
first collects the imagelayout of the menu (2) and afterwards distributes the
layout to every set of images within that same menu (3). Let us have a close
look at the distribute layout traversal, in particular at how it composes the
image layout with the images. The traversal matches only when the layout
(second argument) is the toggleimage layout, and thus rewrites the set of
images with a new toggleimage node containing the images. Whenever
there is a new layout, a new distribute layout traversal must be written for
it.

One could argue why the following version of the distribute layout traver-
sal was not used:

[3] distribute_layout(image*, Layout) = Layout(image*)

The above version no longer specifies a specific layout and should thus work
for every used layout. Well, in most transformation systems the right hand
side would be interpreted as a new node of type layout which contains a set
of images. Naturally, this is not what was intended. Transformation systems
which do support variables as the tag name of a node would interpret the
right hand side as a new node which type is the node Layout and which
contains a set of images. Again, this is not what was intended.

Now that the new source AST nodes are constructed, they must added
to the pivot node. In order to add the new nodes the pivot node, the pivot
node must be rewritten to another node so that it can hold the extra nodes.
Recall the rearrange menu transformation module ((1) in figure 3.1) which
needs direct access to its submenus. The provide submenus traversal (1) in
figure 3.2 rewrites the menu AST node into another menu AST node in which
the submenus are contained.

Although this might not seem very harmful, adding these extra nodes
changes the signature of the menu AST node. Since signatures are widely
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used in many transformation systems by transformation modules to distin-
guish between the different types of node and their subnodes, a change to
the signature of anode can render a lot of transformation modules invalid,
corrupt and ineliged. The title animation transformation module ((6) in
figure 3.1) for example, depends on the signature of the menu AST node (see
(2) in figure 3.3). This traversal and the menu rearrange traversals must
therefore carefully be scheduled, otherwise one of the traversals conditions
may suddenly fail which would in turn result in strange and hard to trace
errors.

The signature dependencies of all traversals must thus carefully be ana-
lyzed and to manually order the traversals so that each traversal can safely
be executed. For the our example language, here is the list of signature de-
pendencies between the traversals for the transformation modules in figure
3.1.

• the submenu relocation before rearrange the main menu

• title animation before submenu relocation

• title animation before link resolving

• link resolving before reference resolving

• section numbering before reference resolving

• link resolving before section numbering

From the above list, the following sequence in which the traversals can
safely be executed can be derived: rearrange the main menu, relocate the
submenu, resolve the references, number the sections, resolve the links and
animate the menu.

3.6.4 Overall process

It does not suffice to implement each need multi-source transformation mod-
ule separately. The dependencies between the traversals of each multi-source
transformation module must be taken into account. Without an overall pro-
cess to guide the integration of their implementation, it is very likely that
their traversals will interfere with the traversals of other transformation
modules (cfr. section 3.6.3). These are the necessary steps of this overall
process that need to be taken when integrating implementations of multi-
source transformation modules:



3.6. INFORMATION DEPENDENCIES 61

1. Refactor Check whether there are transformation modules that need
the same of nodes and/or perform the same computations. If this is
the case, one might consider to refactor the common nodes and logic
out of the transformation modules (see section 3.6.4).

2. Order Establish an order for the retrieval of the non-local nodes for
each multi-source transformation module so that they can be found,
collected, and distributed without interfering with the other traversals
(see section 3.6.3).

3. Implement Implement the necessary traversals for each multi-source
transformation module (see section 3.6.2).

4. Clean Group the cleaning traversals so that no nodes are removed that
still might be needed by other transformation modules (see section 3.6.4).

Refactor

Some multi-source transformations require the same nodes and/or perform
the same computations. This duplication is an opportunity to reduce the
amount of traversals and logic in the compiler. However, such refactorings
have also a negative side.

The common nodes should be refactored out of the preliminary descrip-
tion of at least one transformation module so both transformation modules
could refer to the node that contains the common nodes. Consider for exam-
ple the reference (5) and section numbering (4) transformation modules in
figure 3.1 where both modules require the hierarchical number of a section.
The hierarchical number of a section can first be computed and stored in
the sections. This information can then be used by the references refering to
these sections. Another example where refactoring can reduce the amount
of logic and traversals is between the link (3) and the reference (5) trans-
formation module in figure 3.1. Both modules require the page containing
the section to which they refer in order to construct a HTML link. Instead
of each computing and retrieving the page of the sections, both could rely
on a separate traversal which stores the page node containing the section in
the section node. Unfortunately applying refactorings is not without any
risk. Refactorings introduce more scheduling dependencies which can be in
conflict with already existing dependencies.
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Clean

In the cookbook recipe of section 3.6.2 each multi-source transformation
module is responsible for cleaning up the source AST i.e. removing the
collected nodes from the original source AST nodes when those nodes were
no longer necessary. The cleaning traversal was never initiated by the main
traversal after the collection of the required nodes or after the distribution of
the collected nodes because the decision to initiate the clean up can only be
made after taking into account all the other traversals. Next, two situations
are discussed which show why this is the case.

• Nodes that are needed by several transformation modules may only
be removed after the traversals of the latest transformation module
are executed. In our example language, this situation occurred be-
tween the title animation transformation module ((6) in figure 3.1 and
figure 3.3) and the menu rearrange transformation module ((1) in fig-
ure 3.1). Both modules require the same menu animation. Since the
menu rearrange transformation module transformed the whole menu,
the title must be animated before the menu got rearranged and the
cleanup traversal ((6) in figure 3.3) for the title animation transforma-
tion module had to be simply ignored.

• Several nodes required by different transformation modules which are
contained in a same parent AST node are better removed by single
traversal. Consider the image layout transformation module ((2) in
figure 3.1) and the menu rearrange transformation module (1) in fig-
ure 3.1. The image layout module is scheduled before the menu re-
arrange module and removes the image layout from the menu ((6) in
figure 3.4). Since the menu rearrange module rearranges the menu
node and the menu node is changed by the image layout module, the
implementation of the menu rearrange module ((1) in figure 3.1) must
be adapted to cope with another kind of menu node. To avoid all
these kind of tweaks one can combine the cleanup of the shared parent
menu node into one traversal and schedule the traversal after the last
transformation module that depends on that, in this case the menu
rearrange transformation module.

3.6.5 Conclusion

Providing the non-local nodes to the pivot nodes of the multi-source trans-
formation modules in current day transformation system is not easy. Quite
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lot of heuristics and guide lines need to be followed to bring the implemen-
tation to a good end and to prohibit to certain extent future evolutions.
There are two major problems with the current approaches:

• The traversals often depend on each other and therefore need to be
carefully scheduled. Moreover the scheduling must be done manually.

• The signature and the type of the nodes are both used as conditions
to trigger transformation modules. The addition and removal of nodes
therefore easily breaks the trigger conditions of other transformation
modules.
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//submenu relocation and rearranges the main menu

[1] menu(mainmenu*,menulayout(layout1),menulayout(layout2),

imagelayout, menuanimation(layout3))

+ submenu*

= layout3(layout1(mainmenu*), layout2(submenu*))

//imagelayout

[2] imagelayout(toggleimage)

+ image*

= toggleimage(image*)

//link resolving

[3] link(element, ID)

+ page(ID2, ...)

+ section(ID3, ... )

= a(element, ID2.ID3)

//section numbering

[4] section(ID1, title, ...)

+ ...

+ parent section(IDn, ...)

= ID0.IDn...ID1 title ...

//reference resolving

[5] ref(ID)

+ ...

+ parent section(IDn, ...)

+ section(ID, title, ... )

+ page(ID0)

= a(ID0.IDn...ID1 title, ID2.ID)

//title animation

[6] title(String)

+ page(ID, title, ..)

+ menuanimation(animation)

+ Link(element, ID)

= animation(title(String))

[7] section(ID, ... )

+ Link(element, ID)

= a(ID1, section(ID, ...))

Figure 3.1: The transformation modules that need several indirectly con-
nected source AST nodes.
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[1] provide_submenus(

menu(mainmenu*,menulayout,menulayout, imagelayout, menuanimation))

= menu(mainmenu*, collect_submenus(mainmenu*, ),

menulayout, imagelayout, menuanimation)

[2] collect_submenus(sub, sub*) = sub sub*

[3] cleanup(main(ID,element, submenu*)) = main(ID,element)

Figure 3.2: The traversals for submenu resolving

syntax-functions

pageanimations(ID*, Animation) -> menulinklayout

equations

[1] provide_titleanimation(Root)

= distribute_titleanimation( collect_titleanimation(Root, ) )

[2] collect_titleanimation(

Menu(mainmenu*,menulayout, menulayout2,imagelayout, menuanimation), ID*)

= pageanimations( collect_pages(mainmenu*, ID*)

+ collect_pages(submenu*, ID*),

collect_menuanimation(menuanimation, ))

[3] collect_menuanimation(menuanimation(Animation1), Animation) = Animation1

[4] collect_pages(Link(Element,ID), ID*) = ID ID*

[5] distribute_titleanimation(Page(ID,title,element*),

pageanimations( ID1* ID ID2*, Animation(slide)) )

= Page(ID, i_slide(Title), element*)

[6] cleanup( Menu(mainmenu*,menulayout, menulayout2,imagelayout, menuanimation) )

= Menu(mainmenu*,menulayout, menulayout2,imagelayout)

Figure 3.3: The traversals for title animation

[1] provide_imagelayout(menu)

= distribute_imagelayout(menu, collect_imagelayout(menu, ))

[2] collect_imagelayout(imagelayout(Layout), Layout2) = Layout

[3] distribute_layout(image*, toggleimage) = toggleimage(image*)

[4] cleanup(Menu(mainmenu*,menulayout, menulayout2, imagelayout,

imagelayout2(Layout), menuanimation) )

= Menu(mainmenu*,menulayout, menulayout2, menuanimation)

Figure 3.4: The traversals for image layout



66 CHAPTER 3. DSL EVOLUTION PROBLEMS



Chapter 4

Generator Composition
Problems

In this chapter, we deal with the composability of program generators. This
is required to enhance reusability of program generators across different
development contexts.

4.1 Introduction

A traditional program generator is generally considered in isolation. Con-
temporary program generators produce program parts that are encapsulated
modules with a well-defined interface. The internals of the generated mod-
ules are completely determined by a single program generator, i.e. the gen-
erated modules are black-box. The kind of modules depends on the target
language in which the program part is generated. For example, in a class-
based object-oriented language, the generated program parts are classes on
which a set of methods are defined. As a consequence, the use of multiple
such program generators in the development of an application entails that
the developer needs to write glue code to make the generated modules work
together. In such a setting, the program generator composition problem is
quite equivalent to the component composition problem , i.e.: how do we
correctly compose black-box program modules? The difference with classic
components is, of course, the use of generative technology such that the
component itself can be customized, providing more flexibility compared to
library components.

However, many frequently implemented program parts are not or can
not be implemented using encapsulated modules. Such program parts are

67
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actually collaborations between multiple modules (e.g. publish-subscribe
dependencies) or conceptual modules that are spread across different im-
plementation modules (e.g. synchronisation). The integration of such non-
encapsulated program parts in modules produced by other generators cannot
be achieved by hand without breaking the black-box property of the gen-
erated program parts. The manual integration requires detailed knowledge
on the internals of the modules and might result in broken functionality.

While writing low-level glue code to manually compose traditional reusable
components is a completely natural scenario, it is undesirable in the case
of generated components and even problematic or almost impossible when
these generated parts are not even encapsulated modules. There are several
reasons for this. First, the interface (and behaviour) of a generated part
might change whenever the specification of the generated part is adapted.
Since this specification is part of the program itself, the specification is sus-
ceptible to changes at any time. Second, the composition of the generated
parts cannot always be expressed in terms of the public interfaces of the
generated parts. Such a composition is either impossible to achieve or it
would force a developer to break the black-box property of the generated
part. If this latter would be possible, the developer would still have a hard
time understanding the generated code and making the correct adaptations
to it. Third, the integration of non-encapsulated program parts in generated
encapsulated parts might break the functionality of both parts quite easily.
This can be caused either by low-level (syntactic) conflicts or more high-level
(semantic) problems. Last but not least, the integration of non-encapsulated
parts requires that the developer is confronted with the low-level details of
the generated program parts.

As such, compositions of generated program parts are not practical and
can often result in incorrect compositions. Therefore, we propose to compose
the program generators instead of the generated parts. A composed gener-
ator then produces the composition of the generated parts. In the following
section, we briefly explain why compositions of generated components are
undesirable.

4.2 Composition of Generated Parts

The most straightforward approach to use several program generators in
the development of a software application is generating the required parts
separately and composing these parts by hand. This means that the gener-
ated parts can be composed by the developer in the same way as standard
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reusable components from a library can be composed. This approach is
quite feasible if the generated parts are encapsulated modules that are in-
dependent of any other generated parts.

Everything becomes quite different when the generated program parts
are not independent of other generated parts or when the generated parts
are not even encapsulated modules. In those cases, developers cannot threat
the generated parts as black-box components. Once the generators have pro-
duced their output code, the developer will need to write program code or
even change generated code such that the generated program parts commu-
nicate and interoperate. In these cases, the use of program generators only
alleviates much of the initial coding effort for the separate program parts.
A lot of manual work still needs to be done in verifying and correcting the
generated parts. Moreover, future evolutions have to repeat this work or
may also introduce new problems. In practice, this also means that the gen-
erators need to be executed in a certain order. This order may or may not be
constrained by the generators themselves, based on their input requirements
and produced output code.

For example, for the development of a new compiler, developers will often
use a parser generator. The parser generator accepts a grammar specifica-
tion and will generate both a parser and a parsetree structure. The develop-
ment environment also offers them the possiblity to generate frequently-used
design patterns, such as the visitor design pattern. They plan to use the vis-
itor design pattern to implement traversals of the parsetree for compilation,
pretty-printing, optimizations, etc. . . . To do this, they need to manually
specify what generated classes are actually parsetree classes and they also
need to know how a parsetree will look like at runtime. This requires them
to have some knowledge on the generated code. At that moment, the de-
velopers doe not consider this a problem since they need to know what
the parsetree looks like for other parts of the program as well. As such,
they do not assume this to be a disadvantage. However, once they try to
compile the program, the program does not work at all and strange errors
appear. After investigation, they notice that the visitor generator generates
an accept method on each of the parsetree classes, thereby overwriting the
original accept method generated by the parsetree generator. The parse-
tree already contained an accept method that is used by the parser to build
the parsetree. Therefore, they have powerful refactoring tools and decide
to modify the implementation of the parser and parsetree such that the ac-
cept method, generated by the parsetree generator, is renamed. Afterwards,
they regenerate the visitor and everything works as expected. Some months
later, a change to the language specification is made, resulting in a change
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of the grammar specification. They regenerate the grammar and suddenly
the compiler does not work anymore. After some time, somebody recalls
that they had to modify the generated code such that it would not conflict
with the visitor generated code. They apply this refactoring but the visitor
generator is unable to regenerate because it cannot find the right parsetree
classes. At that moment, they also realize that the input specification of
the visitor generator was based on the generated code for the old grammar
specification.

Depending on the kind of generated parts, the composition of the parts
with the rest of the program requires little or deep understanding of the
generated code. Clearly, the intention of program generation is not only
to generate code for frequently used structures, but also to hide its imple-
mentation details. As such, the more a developer needs to know about
the generated code to make the software work, the less advantage the use
of program generation has brought to the development of the application.
Moreover, as the interoperability code for each generated part is manually
written, the implicit dependencies between the generated parts will often
be broken each time a generated part is regenerated. Since these implicit
dependencies need to be manually revised after each regeneration, the more
implicit dependencies between generated parts, the less advantage in using
program generators.

In a best-case scenario, the generated program parts are encapsulated
components that communicate with the rest of the program through a well-
defined interface. In order to correctly compose the generated program
parts, the developer only requires knowledge about the interface of the gen-
erated part. In this case, the composition is technically identical to the
composition of traditional reusable components. The most important dis-
advantage here is that extra glue code and adapters need to be written,
introducing extra technical code and indirections in the program. More
importantly, the manual written code introduced implicit dependencies be-
tween the generated parts.

In a worst-case scenario, one or both generated parts crosscut other com-
ponents in the program. Their mutual composition, or even the composition
with manually written code often requires manual adaptations to the gener-
ated parts. Furthermore, the developer needs a deep understanding of the
generated code and the composition becomes hard and might brake gener-
ated functionality. This scenario often results in the developers needing to
understand the entire generated part, resulting in a practical disadvantage
of using a generator at all.
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