
ON THE EVOLUTION OF IMEDIA IMPLEMENTATIONS*

T. CLEENEWERCK AND D. DERIDDER AND J. BRICHAU AND T. D'HONDT

Vrije Universiteit Brussel, PROG
Pleinlaan 2, 1050 Brussels

Belgium, BE
E-mail: {tcleenew|dderidde|jbrichau|tjdhondt}@vub.ac.be

With the advent of iMedia, the traditional content component was extended with a
behavioral component (i.e. software). The development of this behavioral component
using traditional software development techniques is cumbersome because of the
extreme deadlines and extremely short time-to-market situation. We propose a new
development approach that provides the media producer with sufficient control to
define and change the product in very short time frames. The system is based on
existing technologies like generative programming, transformation systems and domain
engineering. Since the iMedia domain is in continuous flux, and these technologies are
mostly designed for stable domains, the evolution of the implementation was a crucial
problem hampering its successful application. Solutions and mechanisms are presented
that ameliorate the modularity and consequently the evolution.

1. Introduction

Media broadcasting companies are currently augmenting their media-offer
with different kinds of interactivity such as online gaming, virtual community
building, and active TV show participation at home. The production of this
interactive form of media (iMedia) encompasses the publication of a behavioral
component (the software that provides the interactivity), along with the original
content component. The development and evolution of this behavioral
component by using traditional software development techniques is
cumbersome. Hence there exists an urgent need for a different approach to handle
this kind of development. This is easily motivated when looking at the specific
characteristics of the iMedia development context.

iMedia software development takes place in an environment in which
extreme strict deadlines and an extremely short time-to-market situation
constrain the development process. As broadcasting occurs in real-time, missing
the broadcast deadline consequently renders the iMedia software completely
useless. Moreover last minute changes are paramount, since a lot of product
features are crystallized as development moves onwards. Traditional software
development approaches have trouble accommodating this kind of environment.

* This research is partially performed in the context of the e-VRT Advanced Media
project.

The iMedia Software Generation System (IMSGS) approach we propose in
Section 2 combines existing research from the areas of generative programming,
transformation systems and domain engineering. In essence the main goal of our
approach boils down to providing more autonomy and flexibility to the media
producer for adapting the iMedia software product.

Of course from time to time the media producers will require new features
that were not anticipated in the original design of the IMSGS. In that case the
generation system itself should be changed by a software expert. As reported
extensively in literature, it isn't trivial to evolve a system that is based on
transformation systems and generative programming technology. So in order to
increase the practical feasibility of our approach we have investigated how we
could make the evolution of the generation system easier to do (Section 3).

2. An iMedia Software Generation System

An IMSGS is always installed for a certain product range and enables the
easy specification and generation of different tailor-made “instances” of this
product range. The tailorisation of such an instance is done by the media
producer (the domain expert). This stands in shrill contrast to the traditional
situation in which the domain expert only plays a prominent role in the early
phases of the process. So we are partially transferring the responsibility of
adapting the software from the programmer to the domain expert (media
producer). This requires advanced software development techniques accompanied
by an appropriate software development process. In our work we focus on the
former. A good candidate for the latter are agile software development processes,
e.g. eXtreme Programming [1], and Adaptive Software Development [7].

2.1. Domain-specific Languages

Central to the IMSGS approach is the use and development of domain-
specific languages (DSLs) [9]. DSLs are languages specifically designed to
express a range of applications in a particular domain. This entails that the
language constructs of a DSL reflect the concepts of a domain and protects the
DSL programmer from non-iMedia-specific technical issues. Therefore, we
propose to use DSLs as a means to develop the iMedia software such that the
media producers themselves can write, adapt, and maintain the iMedia software.
Media producers are thus less dependent on the software developers.

The main role of the software developers in our approach will be to develop
these domain-specific languages. The design and implementation of a DSL
involves two mappings. The first mapping establishes the concepts of the
domain analysis and maps them onto appropriate language constructs. In
essence, this mapping is about the design of the language based on a domain

analysis. A second mapping establishes a link between the domain language and
a general-purpose programming language. In essence, this involves the
implementation of a compiler for the DSL.

The design of a DSL should be based on a careful domain analysis.
Programs expressed in an iMedia DSL should reflect domain concepts and
relations explicitly, allowing a media producer to understand, write and
maintain an iMedia DSL program. In contrast, an iMedia program remains an
executable specification. This means that on the one hand, the DSL should not
only cover the required domain concepts but also more general concepts such as
control flow of the program. On the other hand some domain concepts and
relations are not explicitly reflected in language constructs of the DSL because
their main purpose was to explain the domain. Often, these concepts and
relations are implicitly present in the implementation of the DSL compiler. In
our approach we make these concepts explicit in a Domain Ontology.

DSL compilers are commonly implemented using generative programming
systems such as transformation systems, but also involve the creation of
traditional frameworks, components, etc. In general, a program written in a DSL
is transformed into a program written in a general-purpose language. The
transformation process itself is achieved by programs written in transformation
systems and other generative technologies ([8], [10], [3], …). This allows us to
deal easily with the inherent large number of possible programs that can be
written in a DSL. Note that the output of a DSL compiler is often code that
instantiates a framework or that acts as glue code between components.

2.2. Composition of Domain-specific Languages

Creating a “universal” DSL in which one could express all possible
conceptions of iMedia products is not possible or desirable. Since the resulting
complexity of such a DSL, it would also be overly general and thus resemble a
general-purpose programming language. In essence, a DSL is developed for a
specific kind or aspect of iMedia products, such as one DSL for quizzes, one
for online communities, etc. However, it is also the case that many DSLs will
have to share common domain concepts, such as layout, user-interface, and
communication. Each of these common domain concept groups constitutes a
domain on their own, requiring the development of a separate DSL.
Consequently, an iMedia product will be specified in multiple DSLs, each
addressing a particular aspect of the domain concepts required in the iMedia
product. On the technical level, this implies that a compiler of an iMedia DSL
is actually a composition of multiple DSL compilers. There will exist a
compiler for each domain that should be covered by the “main” DSL. As a
result we will have to deal with combining the collection of programs generated

by each DSL compiler. This combination is achieved using a compositional
generative technology. The difference between compositional generators and
transformational generators (written using a transformation system) is that the
former generate programs by glueing smaller program parts together via a
composition mechanism, while the latter transforms a program into another.

2.3. Illustration

In what follows we will briefly illustrate the IMSGS approach with TV
Quizz example. To support the media producer in developing his particular
iMedia Quiz-software he is provided with a suitable Quiz-DSL based on a Quiz
domain ontology, with a compiler to transform the quiz-DSL description into
an executable software program. The quiz-DSLs contain several domain concepts
(e.g. round, question), but also comprises concepts necessary for describing
execution-oriented concepts (e.g. control flow). Note that the actual quiz
description will also refer to other aspects of the quiz-product than the ones
shown here (e.g. the user interface is described in a specialized UI-DSL).

The next step in the development process is to compile this specification in
order to generate the corresponding implementation. Note that the generated
product is fully functional and does no longer involve manual programming.
Consequently if the producer decides a few hours before broadcasting that the
software should be changed, he can easily change the specification and recompile
it. For example changing the order in which questions are asked from random to
sequential can be easily done. So instead of having to contact the IT-department
and file a change request, the media producer now has the autonomy and
flexibility of adapting the “software” himself.

Of course this was the case because the original domain analysis of the
Quiz-IMSGS anticipated this kind of change. Hence they had already created the
necessary DSL language constructs. It is clear that a certain point in time, the
producer's needs will no longer match the capacities of the Quiz-IMSGS.

3. Evolution of an IMSGS Implementation

Even though the construction and implementation of a DSL-based system
is already greatly facilitated, evolving such a system is still a complex
undertaking. This is probably why DSL technology is mostly used in relatively
stable domains that have matured over the years (e.g. LaTeX for typesetting).
Unfortunately, the domain of media is in continuous flux, exploring new
possibilities and trying to exploit advances in available technology. Hence in
our research we focus especially on the evolvability of such IMSGS

implementations. In the following section we illustrate the impact of
unanticipated changes in an IMSGS with the quiz example. In Section 3.2 we
will briefly discuss the problem of implicit dependencies which are actually the
reason behind the difficulties encountered when evolving an IMSGS.
Consequently we will introduce the mechanisms we had to conceive and
develop to counter these difficulties in Section 3.3.

3.1. Impact of Unanticipated Changes

Let us return to the quiz example from Section 2.3. Suppose a media
producer wants to create a quiz with multiple players. Suppose also that the IT-
department did not anticipate this in the original quiz-DSL. As a result the
Quiz-IMSGS needs to be altered. Unfortunately, adding multiplayer support has
severe repercussions on different parts of the IMSGS: the domain ontology, the
language constructs, the generators, and the traditional software components.

In the domain ontology we should add concepts such as time, players. We
will also have to update existing concepts such as flow, and points to take the
players into account. In the flow of a quiz the order in which the player plays
and the questions they get to answer must be specified. The point system must
be refined to assign points to different players. The semantics defined in the
point system and the turns of the players determines the number of times the
same question may be answered. These changes must be reflected by concise
modifications to the DSL language constructs. First there are a couple of new
language constructs needed: a construct to describe and initialize the points, a
construct stating the turn of the two players (in this case simultaneous). Second
existing language constructs must be changed. The conditions of the points are
extended to a Boolean expression over the players that answered the questions.
Third the impact changes of language constructs on other constructs must be
considered and clarified. On the domain level, there is a relation between the
point system, the turn of the players and the number of times the same question
may be asked. Clearly this must also be the case in the DSL. Adding
multiplayer functionality involved thus a major change in the language
semantics. Finally the DSL compiler and the underlying component system
must be adjusted, refactored and tested. Naturally this must not corrupt the
existing implementation to avoid unexpected changes in the existing iMedia
products.

3.2. Implicit dependencies

Changing the IMSGS must be reflected in its three main parts: domain
models, DSLs and component libraries and frameworks. Since these parts are

mapped onto each other by two mappings (section 2), the most difficult step in
applying the changes is the co-evolution of those mappings.

It requires traversing and overcoming two mappings made during the initial
construction of the DSL: domain concepts to DSL concepts and DSL concepts
to components. Each of the mappings is non-trivial and if a change is not
applied with care, the internal correctness and consistency of the DSL can be
broken. Currently there is little or no support to keep the mapping between
domain concepts to DSL concepts alive, traceable and manageable. This renders
the dependencies between domain concepts and DSL concepts implicit. The
implicit dependencies are easily broken or violated when the system evolves.

The mapping between the different DSL concepts to components and
program code is tangled and coupled. Again this is due to implicit dependencies
within the implementation of the compiler. Therefore currently changing a DSL
requires often reconsidering the whole implementation.

Because of the changes in the DSL compilers, the generated programs each
DSL compiler produces change as well. Consequently the composition of the
generated programs must be able to cope with these changed programs.
Therefore research is also conducted on the composition of those generated
programs. This composition to achieve an integration of their respectively
generated programs is quite hard and is often a manual process. The integration
of generated programs often involves multiple modifications to a generated
program at different locations. These required changes should happen
obliviously and should be propagated accordingly. Furthermore the resulting
integration might cause particular undesired interferences that break the
functionality of the generated program.

3.3. Countering the Evolution Difficulties

The dependencies between the domain concepts and their implementations,
must be made explicit. This way the changes to a part of the system can be
traced back to the dependent parts, allowing us to estimate and examine the
impact on the dependent parts. In order to make the dependencies more explicit,
the implicit dependencies are extracted out the parts of the system and new
mechanisms have been conceived to establish these dependencies. This way, the
modularity and evolvability of the overall system is thus increased.

We focus on the evolution of DSLs on two levels: evolution of the DSL
concepts and evolution of the DSL implementation. We conceived three
mechanisms to make the dependencies more explicit. The first one handles the
dependencies of the domain knowledge and the DSL concepts to facilitate the
evolution of the domain and the DSL. The other two are complementary

mechanisms to facilitate the evolution of the DSL implementation. The second
one focuses on the dependencies within the implementation of a compiler for a
specific DSL and the third one focuses on the dependencies that arise when
composing the different generators together.

The first mechanism follows a concept-centric approach [5, 6] that manages
and tackles the evolution of the DSL concepts. This approach bridges the
remaining “gap” between domain concepts and DSL concepts, making it
possible to trace the changes at the domain level to changes of their
corresponding DSL concepts. The domain knowledge provides a basis for
reasoning about the impact of a change in the DSL language on the domain
level itself but also on the DSL level. As a result, insuring consistency in the
concepts used in the language becomes a lot easier.

The second mechanism is a new DSL development technique called the
Linglet Transformation System (LTS [4]). A DSL implementation consists of
stand-alone, modular and reusable language modules. In contrast to other
transformation systems, the language modules of LTS are composed via an
explicit composition mechanism in a language specification. The composition
mechanism takes of care of the necessary inputs that are required by a module
and handles the results produced by a module. The dependencies of the modules
are made explicit and are external to the modules, hereby reducing the
complexities involved during the evolution of a DSL.

The third mechanism is aimed to increase the composability of individual
generators that each define their proper DSL[2]. In general, generators are not
designed nor implemented to be composed. We have developed composable
program generators using an extension to the technique of logic
metaprogramming. These generators identify integration locations in their
generated program where other program parts can be inserted. The integration
itself can be specified in a separate specification. Internal to each generator, the
transformations are expressed using logic rules. These rules are written such that
a generator can produce multiple implementations for a single program. Possible
interferences at the foreseen integration locations can be circumvented by 'laws'
which choose another implementation for the generated program.

4. Conclusion

Developing iMedia imposes extreme requirements that cannot be met by
traditional software development techniques. A new approach called the iMedia
software generation system (IMSGS) based on generative programming,
transformation systems and an explicit representation of domain knowledge.

Central to the approach are domain-specific languages, which proved to be a
very suitable technology for this kind of development. An iMedia
implementation is now the product of the combination of the program parts
produced by the compilers of the different DSLs describing an iMedia product.

However the evolution of the overall implementation of our approach was
hampered by a series of implicit dependencies. To make these more explicit, we
followed a concept-centric approach in DSL design, conceived an
implementation mechanism (LTS) to handle the internal dependencies in the
implementation of the compilers, and conceived a composition mechanism
based on logic meta programming to handle the dependencies in the
combination of the different parts of a iMedia implementation. Consequently
the consistency of the evolution of the language could be more effectively
guaranteed and the modularity of the implementation has been increased. These
mechanisms improved the evolvability of IMSGS to the extent that the
underlying technology now becomes a feasible option for coping with the
extremities of iMedia software development.

References

1. K. Beck. Extreme Programming Explained - Embrace Change. Addison-
Wesley, 2000.

2. J. Brichau, K. Mens, and K. De Volder. Building composable aspect-
specific languages using logic metaprogramming. Proceedings of GPCE
Conference, LNCS 2487, pages 110–127. Springer-Verlag, 2002.

3. J. Clark. Xsl transformations (xslt) version 1.0 w3c recommendation 16
november 1999, 1999.

4. T. Cleenewerck. Component-based DSL Development. In Proceedings of
GPCE03 Conference, LNCS 2830, pages 245–264. Springer-Verlag, 2003.

5. D. Deridder. A concept-oriented approach to support software maintenance
and reuse activities. In Knowledge-based Software Engineering, Frontiers in
Artificial Intelligence and Applications, Vol. 80. IOS Press, 2002.

6. D. Deridder. A concept-centric approach to software evolution - enabling
open adaptive software development. OOPSLA 2004 Workshopreader,
Workshop on Ontologies as Software Engineering Artefacts, 2004.

7. J. A. Highsmith III. Adaptive Software Development - A Collaborative
Approach to Managing Complex Systems. Dorset House Publishing, 2000.

8. M. van den Brand, P. Klint, and J. Vinju. Term rewriting with traversal
functions, 2001.

9. A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

10. E. Visser. Stratego: A language for program transformation based on
rewriting strategies. LNCS, 2051:357, 2001.

