
ON THE EVOLUTION
 OF INTERACTIVE MEDIA IMPLEMENTATIONS *

T. CLEENEWERCK AND D. DERIDDER AND J. BRICHAU AND T. D’HONDT

Vrije Universiteit Brussel, PROG
Pleinlaan 2

Brussels, Belgium
E-mail: {tcleenew|dderidde|jbrichau|tjdhondt}@vub.ac.be

With the advent of iMedia, the traditional content component was extended with a
behavioral component (i.e. software). The development of this behavioral component
using traditional software development techniques is cumbersome because of the
extreme deadlines and extremely short time-to-market situation. We propose a new
development approach that provides the media producer with sufficient control to
define and change the product in very short time frames. The system is based on
existing technologies like generative programming, transformation systems and domain
engineering. Since the iMedia domain is in continuous flux, and these technologies are
mostly designed for stable domains, the evolution of the implementation was a crucial
problem hampering its successful application. Solutions and mechanisms are presented
that ameliorate the modularity and consequently the evolution.

1. Introduction

In today's highly competitive market, media production companies are
under continuous strain to maintain a high degree of consumer satisfaction. This
is achieved amongst others by providing new kinds of services such as the
publication of real-time news feeds over multiple channels (e.g. internet, mobile
phone, PDA). It is clear that these new media products pose a number of
technical challenges for the construction of the supporting software systems.
These challenges can in part be overcome by using advanced content
management systems, for instance (e.g. [9], [10]). Besides relieving the media
producer of coping with the complex technological side, these systems also
provide a way to manage the storage and publication of the vast flow of content.

More recently, media broadcasters have observed that media consumers are
no longer satisfied with the traditional situation in which the consumer has to
“sit back, relax and consume the media”. Hence they need to augment their
media-offer with different kinds of interactivity such as online gaming, virtual
community building, active TV show participation at home,….

* This research is partially performed in the context of the e-VRT Advanced Media
project (funded by the Flemish Government) which consists of a joint collaboration
between VRT, VUB, UG, and IMEC.

The production of this interactive form of media (iMedia) encompasses the
publication of a behavioral component, along with the media's traditional
content component. This behavioral component specifies the interactivity with
the media consumer and is inevitably implemented as a software program.
Because of the different nature of this behavioral component and its inherent
development-intricateness, there exists an urgent need for a kind of behavior
management system (BMS). This need is easily motivated when looking at the
specific characteristics of the context in which iMedia software development
takes place.

First of all, iMedia software development takes place in an environment in
which extreme strict deadlines constrain the development process. As
broadcasting occurs in real-time, missing the broadcast deadline consequently
renders the iMedia software completely useless. Unfortunately in traditional
software development practices, it is quite common to miss deadlines.

A second characteristic of iMedia is the extreme short time-to-market
situation. The general media situation is one in which many events and
decisions occur in real-time and on extremely short notice. Last minute changes
are paramount, since a lot of product features are crystallized as development
moves onwards. Traditional software development approaches have trouble
accommodating this kind of challenge. Imagine having to file a change request,
(followed by the traditional analysis-design-implementation triplet) asking for a
late change when the system must go live in one hour.

Another characteristic is the current need for extreme deployment (i.e. multi-
platform and multi-channel media-publication). Since each device and platform
has its own set of specific capabilities, such as available display size and
memory, this need rapidly forms a bottleneck in the production environment. It
is clear that this requirement is difficult to fulfill within the strict deadline /
short time-to-market context. Hence it requires appropriate support from the
software development approach.

It is within this context of extreme characteristics that we propose an
alternative approach to iMedia software development. The approach we propose
in Section 2.1 combines existing research from the areas of generative
programming, transformation systems and domain engineering. This results in a
system that is best described as an iMedia Software Generation System
(IMSGS). In essence the main goal of our approach boils down to providing
more autonomy and flexibility to the media producer for adapting the iMedia
software product. Such an IMSGS is always installed for a certain product
range and enables the easy specification and generation of different tailor-made
“instances” of this product range. The tailorisation of a particular instance is
done by the media producer (the domain expert). This stands in shrill contrast
to the traditional situation in which the adaptation of the software can only be
done by a software programmer.

Of course from time to time the media producers will require new features
that were not anticipated in the original design of the IMSGS. In that case the
generation system itself should be changed (by a software expert). As reported
extensively in literature, it isn't trivial to evolve a system that is based on DSL
and generative programming technology. So in order to increase the practical
feasibility of an IMSGS approach we have investigated how we could make the
evolution of the generation system easier to do. We have dedicated Section 3 to
this contribution.

2. An iMedia Software Generation System

In most software development approaches, the role of a domain expert is
limited to the first phases of the process. During those phases, domain experts
inject their expertise and state their requirements for the software to be built.
Usually from that point on, the rest of the development process is in the hands
of the software expert. This unbalanced participation in the process by both
parties often prohibits the domain experts to request last minute changes, and
often results in uncontrollable and delayed development times.

In order to meet the extreme characteristics discussed in the introduction,
the media producer should get a more active and more prominent role in the
iMedia development process. This necessitates advanced software development
techniques accompanied by an appropriate software development process. A
good candidate for the latter are agile software development processes (e.g.
eXtreme Programming [1], and Adaptive Software Development [8]). In our
work we focus on providing tool-support for developing the behavioral
component of an iMedia product.

2.1. Domain Specific Languages

To provide media producers with a more active role in the development of
the iMedia software itself, our approach aims at bridging the gap between the
media domain expert and the software developer. Central to this approach is the
use and development of domain-specific languages (DSLs) [12]. DSLs are
languages specifically designed to express a range of applications in a particular
domain. This entails that the language constructs of a DSL reflect the concepts
of a domain and hide the DSL programmer from non-iMedia-specific technical
issues. Consequently, a well-designed DSL allows a domain expert to write
programs in this DSL. Therefore, we propose to use DSLs as a means to
develop the iMedia software such that the media producers themselves can write,
adapt, and maintain the iMedia software. Media producers are thus less
dependent on the software developers and, as a result, extreme deadlines and
extreme adaptability can be brought in reach of the media developer.

Clearly, to achieve such an approach, software developers are needed to
develop these domain-specific languages. The design and implementation of a
DSL involves two mappings. The first mapping establishes the concepts of the
domain analysis and maps them onto appropriate language constructs. In
essence, this mapping is about the design of the language based on a domain
analysis. A second mapping establishes a link between the domain language and
a general-purpose programming language. In essence, this involves the
implementation of a compiler for the DSL.

The design of a DSL should be based on a careful domain analysis.
Programs expressed in an iMedia DSL should reflect domain concepts and
relations explicitly, allowing a media producer to understand, write and
maintain an iMedia DSL program. In contrast, an iMedia program remains an
executable specification. This means that on the one hand, the DSL should not
only cover the required domain concepts but also more general concepts such as
control flow of the program. On the other hand some domain concepts and
relations are not explicitly reflected in language constructs of the DSL because
their main purpose was to explain the domain. Quite often, these concepts and
relations are implicitly present in the implementation of the DSL compiler. In
our approach we make these concepts explicitly available in a Domain
Ontology. It is the difficult task of the language designer to incorporate the
more common language features in the domain concepts and to select the
appropriate domain concepts to be represented explicitly in the DSL language

DSL compilers are commonly implemented using generative programming
systems such as transformation systems, but also involve the creation of
traditional frameworks, components, etc. In general, a program written in a DSL
is transformed into a program written in a general-purpose language. The
transformation process itself is achieved by programs written in transformation
systems and other generative technologies ([11], [13], [4]). Transformation
systems offer flexible programming languages oriented towards transformation
processes. This allows us to deal easily with the inherent large number of
possible programs that can be written in a DSL. Note that the output of a DSL
compiler is often code that instantiates a framework or that acts as glue code
between components. In Figure 1 we sketch the different elements in an
IMSGS.

Figure 1 : Overview of the IMSGS.

2.2. Composition of Domain Specific Languages

Creating a “universal” DSL in which one could express all possible
conceptions of iMedia products is not possible or desirable. Since the resulting
complexity of such a DSL, it would also be overly general and thus resemble a
general-purpose programming language. In essence, a DSL is developed for a
specific kind or aspect of iMedia products, such as one DSL for quizzes, one
for online communities, …. However, it is also the case that many DSLs will
have to share common domain concepts, such as layout, user-interface, and
communication. Each of these common domain concept groups constitutes a
domain on their own, requiring the development of a separate DSL.
Consequently, an iMedia product will be specified in multiple DSLs, each
addressing a particular aspect of the domain concepts required in the iMedia
product.

On the technical level, this implies that a compiler of an iMedia DSL is
actually a composition of multiple DSL compilers. There will exist a compiler
for each domain that should be covered by the “main” DSL. As a result we will
have to deal with combining the collection of programs generated by each DSL
compiler. This combination is achieved using a compositional generative
technology. The difference between compositional generators and
transformational generators (written using a transformation system) is that the
former generate programs by glueing smaller program parts together via a
composition mechanism, while the latter transforms a program into another
program.

2.3. Illustration

In what follows we will briefly illustrate the IMSGS approach with a
number of examples extracted from a case-study conducted in the context of the
e-VRT Advanced Media Project (http://www.xmt.be). The iMedia product
domain that is used throughout the examples are TV Quizzes.

To support the media producer in developing his particular iMedia Quiz-
software he is provided with a suitable IMSGS. This Quiz-IMSGS is written
by the IT-department and consists of a quiz-DSL, and a compiler to transform
the quiz-DSL description into an executable software program. As described in
the previous sections, the compiler itself contains a transformation system and
an intelligent composition engine. Note that the only IMGMS -elements that
are visible to the media producer are the language in which he is able to describe
his quiz, and the corresponding generated software.

The quiz-DSLs contains several domain concepts (e.g. “round”, “question”,
“answer”, “points”), but also comprises concepts necessary for describing
execution-oriented concepts (e.g. “control flow”, “random order”, “sequential
order”).

Note that the actual quiz description will also refer to other aspects of the
quiz-product than the ones shown here (e.g. the user interface is described in a
specialised UI-DSL). Consider the following example description in the quiz-
DSL.

 round R1 {
 question Q1 {
 title : "Capital city of Belgium"
 type : multivalued
 choices { A:"Paris", B: "Brussel", C:"None" }
 expected answer : B }
 question Q2 {...}
 question Q3 {...}
 }

 flow R1 {
 questions : 3, random order
 points {
 correct : +2}
 }

The first part of the description specifies the contents of the quiz-round
labelled “R1”. This round contains a set of questions “Q1”, “Q2”, …. The
description of the first question indicates that it is a multiple-choice
(“multivalued”) question that asks to give the capital city of Belgium. The
different answer-choices as well as the correct response are specified. The second

part of the description focuses on the flow of round “R1”. There are 3 questions
that are asked in a random order. Whenever a question is answered correctly the
player gains 2 points. In all the other cases the points remain unchanged.

The next step in the development process is to compile this specification in
order to generate the corresponding implementation. Note that the generated
product is fully functional and does no longer involve manual programming.
Consequently if the producer decides a few hours before broadcasting that the
software should be changed, he can easily change the specification and recompile
it. For example changing the order in which questions are asked from random
to sequential can be easily done by replacing one line in the flow (“questions: 3,
random order” becomes “questions: 3, sequential order (Q1 Q3 Q2)”). So
instead of having to contact the IT-department and file a change request, the
media producer now has the autonomy and flexibility of adapting the software.

Of course this was the case because the people that did the domain analysis
for the Quiz-IMSGS anticipated this kind of change. Hence they had already
created the necessary DSL language constructs (random order, sequential order),
as well as the necessary generators responsible for generating the corresponding
code. It is clear however that a certain point in time, the producer's needs will
no longer be satisfied by the capacities of the Quiz-IMSGS. This is not
necessarily a result of a lack of expressiveness of the DSL. It could also be that
the generators or framework components require updating. We will focus on
how we approach the evolution of such an IMSGS in the next section.

3. Evolution of an IMSGS Implementation

Even though the construction and implementation of a DSL-based system
is already greatly facilitated, evolving such a system is still a complex
undertaking.

This is probably why DSL technology is mostly used in relatively stable
domains that have matured over the years (e.g. LaTeX for typesetting). As we
have argued in the former sections we believe that DSL-technology is a valid
candidate for improving the way in which iMedia software products are
developed. Yet the domain of media is in continuous flux, exploring new
possibilities and trying to exploit advances in available technology. Hence in
our research we focus especially on the evolvability of such IMSGS
implementations.

In the following section we illustrate the impact of unanticipated changes in
an IMSGS with the quiz example. In Section 3.2 we will briefly discuss the
problem of implicit dependencies which are actually the reason behind the

difficulties encountered when evolving an IMSGS. Consequently we will
introduce the mechanisms we had to conceive and develop to counter these
difficulties in Section 3.3

3.1. Impact of Unanticipated Changes

Let us return to the quiz example from Section 2.3. Suppose a media
producer wants to create a quiz with multiple players. Suppose also that the IT-
department did not anticipate this in the original quiz-DSL. As a result the
Quiz-IMSGS needs to be altered. Unfortunately, as we will see, adding
multiplayer support has severe repercussions on different parts of the IMSGS:
the domain ontology, the language constructs, the generators, and the traditional
software components.

In the domain ontology we should add concepts (and relationships between
these concepts) such as “time”, “players”. We will also have to update existing
concepts such as “flow”, “point system”, and “points” to take the players into
account. In the flow of a quiz the order in which the player plays and the
questions they get to answer must be specified. The point system must be
refined to assign points to different players. The semantics defined in the point
system and the turns of the players determines the number of times the same
question may be answered.

These changes must be reflected by concise modifications to the DSL
language constructs. The adjustments to the example are shown below; the
specification of the round is omitted because this section remains the same.

First there are a couple of new language constructs needed: a construct
“player {...}” to describe and initialize the points, a construct stating the turn of
the two players (in this case simultaneous). Second existing language constructs
must be changed. The conditions of the points are extended to a Boolean
expression over the players that answered the questions (the symbol “&” denotes
the and relationship). Third the impact changes of language constructs on other
constructs must be considered and clarified. On the domain level, there is a
relation between the point system, the turn of the players and the number of
times the same question may be asked. Clearly this must also be the case in the
DSL. When the players answer sequentially and the point system has actions for
the second player, then the same question may be answered twice. Adding
multiplayer functionality involved thus a major change in the language
semantics.

 player P1 {
 points : 0
 }
 round R1 {
 ...
 }
 flow R1 {
 questions : 3, random
 players : P1, P2
 turn : all simultaneous
 points {
 first & correct : +2
 }
 }

Finally the DSL compiler and the underlying component system must be
adjusted, refactored and tested. Naturally the additions must not corrupt the
existing implementation to avoid unexpected behavioral changes in the existing
iMedia products.

3.2. Implicit Dependencies

Changing the IMSGS must be reflected in its three main parts: domain
models, DSLs and component libraries and frameworks. Since these parts are
mapped onto each other by two mappings (Section 2) the most difficult step in
applying the changes is the co-evolution of those mappings.

It requires traversing and overcoming two mappings made during the initial
construction of the DSL: the mapping from domain concepts to DSL concepts
and from DSL concepts to components. Each of the mappings is non-trivial
and if a change is not applied with care, the internal correctness and consistency
of the DSL can be broken.

Currently there is little or no support to keep the mapping between domain
concepts to DSL concepts alive, traceable and manageable. This renders the
dependencies between domain concepts and DSL concepts implicit. The implicit
dependencies are easily broken or violated when the system evolves.

The mapping between the different DSL concepts to components and
program code is tangled and coupled. Again this coupling and tangling is due
implicit dependencies within the implementation of the compiler. Therefore
currently changing a DSL requires often reconsidering the whole
implementation.

Because of the changes in the DSL compilers, the generated programs each
DSL compiler produces change as well. Consequently the composition of the
generated programs must be able to cope with these changed programs.

Therefore research is also conducted on the composition of those generated
programs.

This composition to achieve an integration of their respectively generated
programs is quite hard and is often a manual process. The integration of
generated programs often involves multiple modifications to a generated
program at different locations. These required changes should happen
obliviously and should be propagated accordingly. Furthermore the resulting
integration might cause particular undesired interferences that break the
functionality of the generated program.

3.3. Countering the Evolution Dependencies

In many software engineering disciplines evolution of the systems is
increased by taking care of the implicit dependencies between the parts of the
system. Since the implementation approach we propose for iMedia is still a
software engineering discipline, the same strategy to increase the evolvability
can be used. The dependencies in the IMSGS which are dependencies with the
domain concepts and the dependencies of their implementations, must be made
explicit. This way the changes to a part of the system can be traced back to the
dependent parts, allowing us to estimate and examine the impact on the
dependent parts. In order to make the dependencies more explicit, the implicit
dependencies are extracted out the parts of the system and new mechanisms have
been conceived to establish these dependencies. This way, the modularity and
evolvability of the overall system is thus increased.

In our research we focus on the evolution of DSLs on two levels: evolution
of the DSL concepts and evolution of the DSL implementation. We conceived
three mechanisms to make the dependencies more explicit. The first one handles
the dependencies of the domain knowledge and the DSL concepts to facilitate
the evolution of the domain and the DSL. The other two are complementary
mechanisms to facilitate the evolution of the DSL implementation. The second
one focuses on the dependencies within the implementation of a compiler for a
specific DSL and the third one focuses on the dependencies that arise when
composing the different generators together. Additionally the two techniques are
developed for the two different kinds of generative programming techniques:
transformational and compositional techniques.

The first mechanism follows a concept-centric approach ([6], [7]) that
manages and tackles the evolution of the DSL concepts. This approach bridges
the remaining “gap” between domain concepts and DSL concepts, making it
possible to trace the changes at the domain level to changes of their
corresponding DSL concepts. The domain knowledge provides a basis for

reasoning about the impact of a change in the DSL language on the domain
level itself but also on the DSL level. As a result, insuring consistency in the
concepts used in the language becomes a lot easier.

The second mechanism is a new DSL development technique called the
Linglet Transformation System (LTS) [5]. A DSL implementation consists of
stand-alone, modular and reusable language modules. In contrast to other
transformation systems, the language modules of LTS are composed via an
explicit composition mechanism in a language specification. The composition
mechanism takes of care of the necessary inputs that are required by a module
and handles the results produced by a module. The dependencies of the modules
are made explicit and are external to the modules, hereby reducing the
complexities involved during the evolution of a DSL.

The third mechanism is aimed to increase the composability of individual
generators that each define their proper DSL ([2], [3]). In general, generators are
not designed nor implemented to be composed. We have developed composable
program generators using an extension to the technique of logic
metaprogramming. These generators identify integration locations in their
generated program where other program parts can be inserted. The integration
itself can be specified in a separate integration specification. Internal to each
generator, the transformations are expressed using logic rules. These rules are
written such that a generator can produce multiple implementations for a single
program. Possible interferences at the foreseen integration locations can be
circumvented by “laws” which choose another implementation for the generated
program.

4. Conclusion

Developing iMedia imposes extreme requirements that cannot be met by
traditional software development techniques. A new approach called the iMedia
software generation system (IMSGS) based on generative programming,
transformation systems and an explicit representation of domain knowledge.
Central to the approach are domain-specific languages, which proved to be a
very suitable technology for this kind of development. An iMedia
implementation is now the product of the combination of the program parts
produced by the compilers of the different DSLs describing an iMedia product.

However the evolution of the overall implementation of our approach was
hampered by a series of implicit dependencies. To make these more explicit, we
followed a concept-centric approach in DSL design, conceived an
implementation mechanism (LTS) to handle the internal dependencies in the

implementation of the compilers, and conceived a composition mechanism
based on logic meta programming to handle the dependencies in the
combination of the different parts of a iMedia implementation. Consequently
the consistency of the evolution of the language could be more effectively
guaranteed and the modularity of the implementation has been increased. These
mechanisms improved the evolvability of IMSGS to the extent that the
underlying technology now becomes a feasible option for coping with the
extremities of iMedia software development.

References

 1. 1.K. Beck. Extreme Programming Explained - Embrace Change. Addison-
Wesley, 2000.

 2. J. Brichau, K. Mens, and K. De Volder. Building composable
aspectspecific languages using logic metaprogramming. In D. Batory, C.
Consel, and W. Taha, editors, Proceedings of GPCE Conference, volume
2487 of LNCS, pages 110–127. Springer-Verlag, 2002.

 3. J. Brichau. Declarative Metaprogramming for a Language Extensibility
Mechanism. In Workshopreader ECOOP 2004, Workshop on Reflection
and Meta-Level Architectures, 2004.

 4. J. Clark. Xsl transformations (xslt) version 1.0 w3c recommendation 16
november 1999, 1999.

 5. 4.T. Cleenewerck. Component-based DSL Development. In Proceedings of
GPCE03 Conference, Lecture Notes in Computer Science 2830, pages
245–264. Springer-Verlag, 2003.

 6. 5.D. Deridder. A concept-oriented approach to support software
maintenance and reuse activities. In T. W. et al., editor, Knowledge-based
Software Engineering, Frontiers in Artificial Intelligence and Applications,
Vol. 80. IOS Press, 2002.

 7. 6.D. Deridder. A concept-centric approach to software evolution - enabling
open adaptive software development. Technical report, To appear in
OOPSLA 2004 Workshopreader, Workshop on Ontologies as Software
Engineering Artefacts, 2004.

 8. J. A. Highsmith III. Adaptive Software Development - A Collaborative
Approach to Managing Complex Systems. Dorset House Publishing, 2000.

 9. Mindhouse. Mindset : Interactivity and Commerce through the Moving
Image.

 10. Sublime. Sublime iTV Suite: The Professional’s Choice for WYSIWIG
Creation and Editing of MHP iTV Applications

 11. M. van den Brand, P. Klint, and J. Vinju. Term rewriting with traversal
functions, 2001.

 12. A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

 13. E. Visser. Stratego: A language for program transformation based on
rewriting strategies. Lecture Notes in Computer Science, 2051:357, 2001.

