: { Vrije Universiteit Brussel
FACULTEIT VAN DE WETENSCHAPPEN
Vakgroep Informatica
Laboratorium voor Programmeerkunde

Integrative Composition of
Program Generators

Proefschrift ingediend met het oog op het behalen van de graad van
Doctor in de Wetenschappen

Johan Brichau

Academiejaar 2004 - 2005

Promotors: Prof. Dr. Theo D'Hondt, Prof. Dr. Kim Mens







Contents

1 Introduction

2

1.1

1.2
1.3
1.4

1.5
1.6

1.7

Research Context . . . . . . . . . .. . ..
1.1.1 Program Generation . . . . . ... ... .. ... ... .....
1.1.2  Generative Programming . . . . . . ... .. ... ... ....
Problem Statement: Composability of Program Generators . . . . . .
Thesis Statement . . . . . . . ... L
Approach of the Dissertation . . ... ... ... ... ... ......
1.4.1 Integrative Composable Program Generators . . ... ... ..
1.4.2 Domain-specific Integrative Compositions . . . . . . .. .. ..
1.4.3 Feature Description Language . . . . . . . .. . ... ... ...
Contributions of the Dissertation . . . . . . ... ... ... ......
Perspectives . . . . . . . L
1.6.1 Model-Driven Architecture . . .. .. ... ... ... .....
1.6.2 Composable Aspect-specific Languages . . . . . . . .. ... ..
Outline of the Dissertation . . . . . . . . . .. .. ... ... ......

Program Generation

2.1
2.2
2.3
2.4

2.5
2.6
2.7

Introduction . . . . . . . . ..
Definition . . . . . . . . ..
Generation as a Reuse Technology . . . . ... ... ... ... ....
Generative Programming Techniques . . . . . . . . . .. ... .. ...
2.4.1 Classification . . . . . . . . . ... ... ...
2.4.2 Commonalities and Variabilities . . . . .. ... ... ... ..
Ad hoc Generators . . . . . . . . . . ...
Metaprogramming Languages and Libraries . . . . . . . ... .. ...
Transformational Generators . . . . . . ... ... ... ........

27.1 Draco . . . . ... e e
2.7.2 Intentional Programming . . .. ... ... ... ... ... ..
2.7.3 XSLT . . . . e

iii

© 00 = ot W

10

11
13
13
14
14
14
15
15



2.8 Compositional Program Generation. . . . . . .. ... ... ... ... 37

2.8.1 GenVoca Generators . . . . . . . . . ... 37
2.8.2 Aspect-oriented Programming . . . . . . ... ... ... ... 39
2.8.3 Subject-oriented Programming and Multidimensional Separa-
tion of Concerns . . . . . . .. ... 40
Analysis of Program Generator Composition 43
3.1 Introduction. . . . . . . . .. . .. ... 43
3.2 Modular Program Generators . . . . . . . ... ... ... ... .... 45
3.2.1 Motivations . . . . . .. ... e 45
3.2.2 Examples . . . . . .. 47
3.3 Translation and Integrative Composition . . . . . . . . ... ... ... 54
3.3.1 Requirements and Definition . . . .. ... ... ... ... .. 56
3.3.2 Invasive Integrative Composition . . . . . . .. ... ... ... 57
3.4 Functional Generator Composition . . . . . .. .. ... ... ..... 60
3.4.1 Translation Composition . . . . . . . . ... ... ... ..... 60
3.4.2 Integrative Composition . . . . . . . .. .. ... ... ..., 61
3.4.3 Analogy with Monad Composition . . . . . ... ... ... .. 64
3.5 Integrative Composition Technique . . . . . . . . ... ... ... ... 66
3.5.1 Integrative Composition Interface . . . . . . . .. ... ... .. 67
3.5.2 Integrative Composition Specification . . . ... ... ... .. 67
3.5.3 Composition Conflicts . . . . . . ... ... ... ... ... 68
3.5.4 Conflict Resolution . . . . . . ... .. ... ... ... ... 69
3.6 Modularization and Composition in Existing Technologies . . . . . . . 69
3.6.1 Ad-hoc and Metaprogramming Generators. . . . . . . . .. .. 70
3.6.2 Transformational Generators . . . . . ... ... ... ..... 71
3.6.3 Compositional Generators . . . . . . . ... ... ... ..... 72
3.7 Conclusion . . . . . . ... 73
Building Integrative Composable Generators 75
4.1 Introduction . . . . . . . . . . . . ... 75
4.2 Architecture . . . . . . . ... 76
4.2.1 Implementing Integrative Composable Generators . . .. . .. 76
4.2.2 The Generative System . . . . . .. ... ... L. 79
4.3 Integrative Composition . . . . . . . . . ... 80
4.3.1 Program Parts . . . . ... ... oo oo 81
4.3.2 Integrative Composition Interface . . . . . . . . ... ... ... 83
4.3.3 Special Program Parts . . . . .. ... .. o0 85
4.3.4 Integration Specification . . . . . . . ... ... 86

4.4 Generator Implementation . . . . . . ... ... 90



4.4.1 Integrative Variabilities . . . . . .. .. .. ... .. ... 90

4.4.2 Dependency Relations . . . . . ... ... 0oL 92
4.4.3 Generative Programs . . . . . . ... ..o L 94
4.4.4 Adaptations for Conflict Resolution . . . . ... ... ... .. 98
4.5 The Generative Programming System . . . . . . ... ... ... ... 101
4.5.1 Integration Propagation . . . .. .. .. ... .. .. ...... 101
4.5.2 Integration and Dependency Enforcement . . . . . .. ... .. 102
4.5.3 Composition Conflict Detection and Resolution Enforcement . 105
4.6 Language Definition . . . . . .. .. ... ... .. .. .. .. ..., 107
4.7 Domain-specific Integrative Composition . . . . . . .. ... ... ... 107
4.7.1 Integrative Composition of Composed Generators. . . . . . . . 108
4.7.2 Decomposition in Domain-specific Models . . . . . .. ... .. 109
4.7.3 Example Decomposition . . . . . . ... ... ... ... 110
4.7.4 Example Domain-specific Integrative Composition . . . . . . . 113
4.8 Development Discussion . . . . . . . .. ..o 115
4.8.1 Developer Roles . . . . . .. .. .. oo 115
4.8.2 Language Definition . . . . . . ... ... ... 117
4.8.3 Generator Implementation . . . . . . ... ... 118
4.8.4 Integrative Generator Composition . . . . . .. ... ... ... 119
4.9 Conclusion . . . . . . .. 119
Generative Logic Metaprogramming 121
5.1 Imtroduction . . . . . . . . . ... 121
5.2 Logic Metaprogramming . . . . . . . . . . . .. ... ... 122
5.2.1 Soul . ... 123
5.2.2 Important Predicates. . . . . . . . .. ... ... ... ... .. 126
5.2.3 Representational Mapping . . . . . . ... ... 127
5.3 Generative Logic Metaprogramming System . . . . . . .. .. ... .. 128
5.4 Language Definition in GLMP . . . . ... ... ... ... ... 130
5.4.1 Representational Mapping of Program Parts . . . . .. .. .. 130
5.4.2 Integration and Dependency Relations . . . . . . . ... .. .. 132
5.4.3 Integration Relation Propagation . . . . . . . . . ... .. ... 135
5.4.4 Composition Conflicts . . . . . . ... ... ... ... ..... 135
5.4.5 Additional Logic Metaprograms . . . . . . . . .. ... ... .. 138
5.5 Integrative Composable Generators in GLMP . . . . . .. ... .. .. 139
5.5.1 Dependency Relation Declarations . . . . ... ... ... ... 139
5.5.2 Generative Logic Metaprograms . . . . . . .. ... ... ... 139
5.5.3 Additional Logic Metaprograms . . . . . . . . ... ... .... 143
5.6 Generator Composition . . . . . ... ... 144

5.6.1 Integrative Composition . . . . . . . . ... ... ... ... .. 144



6

7

5.6.2 Translation Composition . . . . . . . .. .. ... ... ..... 144

5.7 Integrative Composition Examples . . . . . . . .. ... ... ... .. 146
5.7.1 Invasive Integration of Variable Program Parts . . . .. .. .. 147
5.7.2  Integration of Required Program Parts . . . . . . ... ... .. 149
5.7.3 Adaptation for Integrative Composition . . . . .. ... .. .. 151

5.8 Domain-specific Tree Integration . . . . . . ... ... ... ... ... 152
5.8.1 Tree Language Definition . . . . ... ... ... .. .. .... 152
5.8.2 Generation of Tree Programs . . . . ... ... ... ...... 154
5.8.3 Integrative Composition . . . . . . . ... ..., 155

5.9 Prototype GLMP System . . . . .. ... ... ... ... 155

5.10 Conclusion . . . . . . . . . . e 156

Feature Description Language 159

6.1 Introduction. . . . . . . . .. . ... .. 159

6.2 Feature Diagrams . . . . . . . . . .. . L oo 160

6.3 Feature Description Language . . . . . . . .. .. ... ... ... .. 162

6.4 GLMP Feature Description Language . . . .. ... ... ... .... 163
6.4.1 Program Parts . . .. .. ... ... ... ... L. 163
6.4.2 Integration and Dependency Relations . . . . . . ... ... .. 164
6.4.3 Composition Conflict Detection . . . . . . . ... ... ... .. 167

6.5 Integrative Compositions . . . . . . . .. ... oL 167

6.6 Conclusion . . . . . . .. . . 169

A Library of Generators 171

7.1 Introduction: Library Context. . . . . . . . . . ... ... ... .... 171

7.2 Data Container Generator . . . . . . . . . . ... ... .. ....... 173
7.2.1 Integrative Compositions . . . . . ... ... ... ... ... 175
7.2.2 Internal Implementation . . . . . . ... ... ... ... ... 177

7.3 Observer Generator. . . . . . . . . . .. ..o 178
7.3.1 Integrative Compositions . . . . . . .. .. ... ... ..... 181
7.3.2 Internal Implementation . . . . . . . ... .. ... ... .. 186

7.4 User Interface Generator . . . . . . . . . . . .. ... ... ... . ... 189

7.5 Composed Generators . . . . . . . . . ... .. ... 193
7.5.1 Consistent Data Containers . . . . . . ... ... ... ..... 193
7.5.2 Document Editor Generator . . . . . .. .. ... ... ... .. 196
7.5.3 Forms Editor Generator . . . . . ... ... ... ... .. ... 201
7.5.4 Integrated Document Editor Generator . . . .. ... ... .. 201

7.6 Discussion . . . . . . ..o e 206

7.7 Conclusion . . . . . . . . . e 209



8 Conclusion and Future Work 211

8.1 Summary . . . . ... e 211
8.2 Conclusion . . . . .. . . e 213
8.2.1 Contributions . . . . . . . . ... L 214

8.3 Future Work . . . . . .. 216
8.3.1 Future Research . . . . .. ... ... ... ... ... ..., 216
8.3.2 Improvements . . . . . . . . .. .. ... 219

A Language Definitions 223
A.1 Smalltalk Language . . . . . . .. .. .. ... 223
A.1.1 Program Parts . . . ... ... ... 223
A.1.2 Dependency and Integration Relations . . . . . . ... ... .. 223
A.1.3 Dependency Relation Enforcement . . . . . .. ... ... ... 224
A.1.4 Integration Relation Enforcement . . . . . . . .. ... ... .. 224
A.1.5 Composition Conflict Detection . . . . . . ... ... ... ... 224
A.1.6 Integration Relation Propagation . . . . . . ... ... ... .. 225
A.1.7 Additional Metaprograms . . . . . . . ... ... ... ... .. 226

A.2 Feature Description Language . . . . . . ... ... ... ... ... .. 227
A.2.1 Program Parts . . . ... .. ... ... 227
A.2.2 Dependency and Integration Relations . . . . . ... ... ... 227
A.2.3 Dependency Relation Enforcement . . . . .. .. ... ... .. 227
A.2.4 Integration Relation Enforcement . . . . . . . . ... ... ... 228
A.2.5 Additional Metaprograms . . . . . .. .. ... ... ... 228

B Observer-observable Generator 231
B.1 Generative Programs . . . . . . ... .. oL oL 231
B.1.1 AddObserver Part . . . . . ... ... ... .. ......... 231
B.1.2 Changed Part . . . . . ... ... .. o 231
B.1.3 Initializer Part . . . . . . ... ... oo 232
B.1.4 Observable Part . . . .. ... ... ... ... .. ....... 232
B.1.5 ObservableVar Part . . . ... ... ... ... ... ..., 232
B.1.6 Observer Part . . . . . . . ... ... ... ... ... .. ..., 232
B.1.7 Observers Part . . . . .. ... ... ... .. ... 233
B.1.8 Update Part . . ... ... ... ... .. ... .. ... ... 233
B.1.9 Additional Programs . . . . . . . ... .. oL 233

B.2 Dependency Relations . . . . .. .. ... oo 0oL 234
B.3 Integrative Compositions . . . . . . . . ... ... ... 234
B.3.1 Framework Specialization . . . . .. ... .. ... ... ... 234

B.3.2 Aspectual Integration . . . . .. ... ... 0oL 234



viii

C Data Container and Consistency Generators 237
C.1 Data Container Generator . . . . . . . . . .. ... ... ... ..... 237
C.1.1 Generative Programs . . . . . . . . ... ... ... ....... 237

C.2 Consistency Generator . . . . . . . . . . ... oo 241
C.2.1 Generative Programs . . . . . ... ... ... .. ... ... .. 241
C.2.2 Required Parts . . . . ... .. .. ... 241
C.2.3 LockA variable part . . . . . . ... ... ... .. ... 241
C.2.4 SyncVarA variable part . . . ... ... ... ... .. ..... 241
C.2.5 SendAddA method part . . . . . .. ... .. ... ....... 242
C.2.6 SendRemoveA method part . . . . ... ... ... ... .. ... 242
C.2.7 SyncA method part . . . .. .. .. ... ... ... ... 242
C.2.8 Additional Programs . . . . . ... ... ... ... 243

C.3 Dependency Relations . . . . .. ... ... .. ... ... ... .... 243



Nederlandstalige Abstract

Recente software-ontwikkelingsmethoden zoals Model-driven Architectures (MDA),
Generatief Programmeren en Product-line Engineering hebben een vernieuwde inter-
esse gewekt in de automatische generatie van software. Deze ontwikkelingmethoden
steunen immers op het gebruik van software generatoren. Zij steunen meer bepaald op
generatoren die op basis van een specificatie, een complete implementatie produceren
van een stuk software. Een software generator is zelf een software programma dat een
bepaalde specificatie vertaalt naar een uitvoerbare implementatie. De generatie van
user interfaces, parsers, data structuren,. .. (op basis van visuele tekeningen, grammat-
ica’s, e.d.) zijn typische en succesvolle voorbeelden. De ontwikkeling van dergelijke
software generatoren is uiteraard een orde in complexiteit groter dan de enkelvoudige
en manuele implementatie van de software die ze genereren. Om de complexiteit van
software generatoren te kunnen bevatten worden dan ook specifieke (zgn. generatieve)
programmeertalen en technieken aangewend voor hun implementatie. Deze technieken
bieden vooral geschikte mechanismen aan voor het implementeren van generatoren zo-
danig dat die een efficient en correct stuk software genereren.

Het onderzoek dat in deze doctoraatsverhandeling beschreven wordt behandelt
het bouwen van software generatoren als een modulaire compositie van andere genera-
toren. We stellen een generatieve techniek voor die de geschikte mechanismen aanbiedt
om modulaire compositie te verwezenlijken. Dit is in tegenstelling tot bestaande gener-
atieve technieken, waarbij generatoren vaak als alleenstaande en monolithische imple-
mentaties benaderd worden. Nochtans dienen verschillende generatoren vaak dezelfde
programmastructuren en algoritmes te genereren. Dit leidt dan weer tot duplicatie in
de implementatie van de verschillende generatoren. Daarenboven zijn deze gezamelijke
programmastructuren vaak ook nuttig als afzonderlijk gegeneerde programmas. Het
is daarom nuttig om afzonderlijke generatoren te implementeren en deze te herbruiken
in de implementatie van diverse andere generatoren. Dit vereist echter een specificke
compositietechniek voor generatoren die de afzonderlijk gegenereerde programmas op
een correcte wijze integreert.

Voor het bouwen van modulair composeerbare generatoren identificeren we twee
verschillende soorten van compositie van generatoren: vertaalcompositie en integratieve
compositie. Bij vertaalcompositie is het gegenereerde programma van de ene gener-
ator de invoerspecificatie van de andere generator. Integratieve compositie van gen-
eratoren is een compositie waarbij de geproduceerde programmas van de generatoren
geintegreerd worden tot één enkel geproduceerd programma. Terwijl vertaalcomposi-
tie triviaal kan worden toegepast, vereist integratieve compositie een aangepaste com-
positietechniek en implementatie van de generatoren. Het is dan ook deze integratieve
compositie die specifiek wordt uitgewerkt in deze verhandeling.



Bij de integratie van gegenereerde programmas is het belangrijk dat de function-
aliteit van de gegeneerde programmas behouden blijft na hun integratie en ook dat hun
integratie betekenisvol is. Daarom dienen bij een integratieve compositie van program-
mageneratoren de compositieconflicten gedetecteerd te worden en dient de integratie
uitgevoerd te worden volgens een welbepaalde specificatie. Daarbij komt het vaak voor
dat de gegenereerde programmas aangepast dienen te worden om de integratie te kun-
nen voltrekken. Deze aanpassingen kunnen gericht zijn op het structureel aanpassen
van de gegenereerde programmas om de integratie te bewerkstelligen maar kunnen
ook nodig zijn voor het oplossen van compositieconflicten. De generatieve techniek
die in deze verhandeling geintroduceerd wordt biedt dan ook de nodige mechanis-
men aan voor het implementeren van generatoren die hun gegenereerd programma
automatisch aanpassen aan een bepaalde integratieve compositie. We beschrijven ook
de techniek van ’Generative Logic Metaprogramming’ als een adequaat implemen-
tatiemedium voor integratief composeerbare generatoren. Deze techniek is een uit-
breiding van de bestaande techniek voor logisch metaprogrammeren met constraint
solving. De logische programmeertaal wordt daarbij aangewend voor de implementatie
van een software generator. De combinatie van de logische evaluator en de constraint
solver is het uitvoeringsmechanisme die de generatie en de integratieve compositie
uitvoert.

Door het aanbieden van de adequate implementatiemechanismen is het bouwen
van integratief composeerbare generatoren mogelijk zodanig dat deze herbruikbaar
zijn in de implementatie van andere generatoren. Het composeren van herbruikbare
implementaties van generatoren biedt tevens de mogelijkheid tot het implementeren
van generatoren die elk een bepaalde functionaliteit genereren. Een compositie resul-
teert dan in een generator die een programma produceert die al deze functionaliteit
bevat.



Acknowledgements

Being a researcher and a PhD. student at the Programming Technology Lab is much
more than working on your research topic and graduating by writing your dissertation.
In the past six years, I have not only been able to explore various interesting research
topics, but I have also been involved in many teaching and project activities. I want
to thank my promotor prof. dr. Theo D’Hondt for having provided me with all these
opportunities and for giving me the freedom to investigate the research topics I found
interesting. I especially want to thank him for promoting this dissertation and for
giving me the final ’kick in the butt’ to start writing!

I am also greatly indebted to prof. dr. Kim Mens, my co-promotor, who has
been a great help in getting the text of this dissertation in its current state. I think
he has seen some horrible draft versions of parts of this text but, nevertheless, he
was still able to provide me with useful comments for improvements. Similarly, my
colleague Thomas Cleenewerck has been more than a great help. He has provided me
with many useful comments and ideas and he has certainly spent some valuable time
in proof reading. I hope I will be able to return the favor to him very soon! I also
want to thank Tom Tourwé and Wolfgang De Meuter for proof reading parts of my
dissertation. Their comments have also improved this text considerably.

I also want to thank my committee members (Don Batory, Lodewijk Bergmans,
Viviane Jonckers, Tom Tourwé, Dirk Vermeir) for their inspiring comments and in
particular Don Batory for providing me with some very interesting and detailed com-
ments. A special word of thanks is also more than appropriate to those people who
have relieved me from some of my duties and provided me with the opportunity to fo-
cus entirely on writing my dissertation. I am greatly indebted to Maja D’Hondt, Dirk
Deridder, Thomas Cleenewerck, Wim Vanderperren and Kris Gybels for assuming
many of my responsibilities. This also holds for all my colleagues at the Programming
Technology Lab. In order of appearance on the website: thank you Andy Kellens,
Coen De Roover, Dirk Deridder, Dirk van Deun, Ellen Van Paesschen, Isabel Michiels,
Jessie Dedecker, Johan Fabry, Kris Gybels, Linda Dasseville, Pascal Costanza, Peter
Ebraert, Sofie Goderis, Stijn Mostinckx, Thomas Cleenewerck, Tom Van Cutsem and
Wolfgang De Meuter!

Thanks to my girlfriend Annelies for putting up with me and not having fled the
house during the last couple of months when I was only concerned with writing my
dissertation. Last but not least, a big thank you goes to my parents who have given
me the opportunity to study and who have always supported me in doing what I liked.
Although my father is no longer around to thank him appropriately, he is beyond any
doubt the one person who has sparked my interests in technology, computers and
programming.






Chapter 1

Introduction

Program generators are designed and implemented to generate efficient and correct
implementations for reusable program parts. However, program generators themselves
are hardly reusable in the implementation of other program generators because they
are not designed nor implemented to compose with other program generators. This
dissertation presents a generative programming technique in which program generators
can be composed to integrate their respective generated programs. Whenever possible,
anticipated interferences in the integration of these generated programs are detected
and resolved automatically.

1.1 Research Context

Implementing the same program structures and algorithms in different applications
exposes application developers to ample opportunities to make the same mistakes
over and over again. Therefore, it is desirable that developers reuse existing im-
plementations in different application contexts. Such reusable parts are often more
stable because of their proven uses [JGJ97]. Prominent examples of this assembly
of reusable parts approach to software engineering are component-oriented program-
ming [Szy98], subroutine libraries, object-oriented frameworks [JF88] and product-line
architectures [BJMvH02, BLHMO02|. These approaches are mostly inspired by real-
world factory product-lines, where the same assembly pieces are used to build many
different finished products (e.g. the same engines, wheels, batteries and so on...are
all used in different types of cars).

In today’s software development, reuse is most often achieved through the use of
subroutine and component libraries. These libraries provide adequate data structures,
algorithms, components, etc. .. that can be reused in many different applications. The
problem with such a library is that the library components offer a fixed implementa-



6 CHAPTER 1. INTRODUCTION

tion and behavior. Adaptations to the provided behavior, that cannot be addressed
through parameterization and specialisation, necessitate changes to the internal im-
plementation and, consequently, require a deep understanding of the implementation.
This is in contrast to the frequent need for such variations in the behavior of reusable
library parts. Users of a library part often require that one or more features are in-
cluded in the library part’s functionality. To cope with this need, library developers
are forced to provide multiple versions of each library part that implement one or
more desired adaptations. The Booch library of data structures [Boo87] is a good
and often cited example of a library that provides an implementation for 17 pos-
sible data structures (stacks, lists, queues, etc...) along 11 general features that
can be included in each of these data structures [Big98]. For the queue data struc-
ture alone, there are 26 meaningful implementations that each provide a different
combination of features [Big98]. As the number of desired features increases, this
inevitably leads to a combinatorial explosion of the number of parts that need to be
implemented in the library. This observation is referred to as the library scaling prob-
lem [Big94, BSST93, Big98| and leads to serious maintenance and evolution problems.
The primary cause for this problem is that conventional programming techniques fail
in providing adequate abstractions to modularize the implementation of the features
such that each possible library part can be built as a composition of modules. As a
result, the implementation of the same feature is duplicated in various versions of the
library part. Moreover, particular combinations often require subtle changes to the
implementation of the individual features. This further complicates the maintenance
of the individual features included in the different versions. Although object-oriented
languages already provide adequate support for the modular implementation of some
feature-variations through frameworks, the possible variations and separation of func-
tionalities remain limited. For example, the static structure of a framework remains
fixed and cannot be adapted and the specialization of original framework behavior can
only be expressed by means of inheritance or association. Last but not least, not every
possible feature can be adapted through parameterization because it cannot always
be represented as a first-class implementation element. These limited possibilities
of adaptation in object-oriented languages have also been addressed in research on
aspect-oriented software development [KLM*97, SB00, TOHJ99]. In aspect-oriented
languages, some additional linguistic abstractions were introduced to modularize the
implementation of adaptations to methods and classes that cannot be implemented
in a scalable way using traditional object-oriented languages. This also illustrates the
need for adaptations to program parts that cannot be expressed using the linguistic
features available in a particular programming language.



1.1. RESEARCH CONTEXT 7
1.1.1 Program Generation

Generative approaches to software engineering [Cza98, Cle88, SB00] offer a different
approach for the implementation of reusable parts and tackle the library scaling prob-
lem by a mechanized process that produces the different implementations of a library
part in a systematic way [SB0O0].

Although program generators have been mentioned as long as 25 years ago [Joh79,
Nei80] (see also [SZDO00]), the interest in program generation has grown rapidly over
the recent years by the advent of software development paradigms such as product-line
engineering [BJMvH02, BLHMO02], generative programming [Cza98] and model-driven
architectures (MDA) [Gro]. Program generators are at the very heart of these develop-
ment paradigms, where they are used to build completely functional implementations
of (reusable) program parts. The generated implementation of these reusable program
parts requires no (manual) modifications by the developer. In essence, the generated
program part can be used in the implementation of an application as a black-box
reusable program part. This is in contrast to the use of program generation in CASE
(Computer-Aided Software Engineering) tools, where only a part of an implementa-
tion is generated and where manual completion of the generated code is required (e.g.
in the production of code skeletons from UML diagrams). This latter use of program
generation is primarily targeted to increase programming productivity and not at the
generation of complete programs.

Over the years, many program generators were developed, some of which have
specifically illustrated the usefulness of program generation. Perhaps Lex and Yacc [LMB]
are the best known program generators. They can produce a parser for many lan-
guage grammars, specified in an extended BNF language. The generation of parsers
is an adequate application of program generation because it is impossible to provide a
library that contains all possible parsers. This is because the variation in functionality
between each parser cannot be captured through parameterization or object-oriented
specialisation without running into the library scaling problem or a very inefficient im-
plementation. Another prominent example of a program generator is a user-interface
generator. A Ul generator produces code to construct a user-interface that is specified
by the developer (e.g. in a visual builder tool). A good example of such a generator is
included in the Visualworks Smalltalk development environment. Another frequently
used program part is a data container that allows to store a collection of values. DiS-
TiL [SB97] is an example generator that produces a data container according to a set
of desired features that can be included in the implementation of the data container.
All these generators produce completely functional implementations that can be used
in the development of an application. This is also the kind of program generators that
is considered in this dissertation, which is discussed next.



8 CHAPTER 1. INTRODUCTION

1.1.2 Generative Programming

Any program that produces another program as output can be called a program gen-
erator. This includes compilers for programming languages as well as code-skeleton
generators for UML models. However, code-skeleton generators are CASE tools that
assist a developer in implementing a program but they do not implement a complete
program. More specifically, the generated program requires further completion by
the developer to implement its functionality. In contrast, compilers produce an entire
program that should not be modified by the developer. The generated program of the
compiler should thus be considered as a ‘black box’ because we do not require any
knowledge on its implementation details and should not modify them. Furthermore,
modifying a generated program produced by a compiler is particularly difficult since
we can easily break the generated functionality. Likewise, program generators that
are considered in the generative programming paradigm [Cza98] aim for an automated
mapping of a high-level description to a completely functional low-level implementa-
tion. This dissertation considers program generators in the context of generative pro-
gramming and consequently considers program generators that produce a completely
functional program part. Such program generators accept a specification of features
and produce the corresponding program part by generating an implementation that
only contains code for the requested features.

The possible implementations that can be generated are fixed by the program
generator. As a consequence, a single program generator represents an entire (and
closed) family of library parts: each generated part implements one or more of the
possible features offered by the generator. Because this specification of requested fea-
tures is often expressed in a high-level language, program generators can also be seen
as compilers for domain-specific languages [vKV00, SB00]. However, a program gen-
erator is usually different from a traditional compiler because it produces a program
written in a high-level programming language instead of machine code. Most of the
time, this is because it alleviates the effort of writing the generator and delegates the
further translation of high-level programs to bytecode to the compiler of the high-level
language. Of course, the development of a generator is more difficult than the (man-
ual) development of the individual programs that can be generated. But for highly
reusable domains, the development of a generator and the design of its corresponding
domain-specific language is often worth the extra effort. Furthermore, many develop-
ment techniques and technologies exist that support the implementation of program
generators. While program generators can be implemented using any programming
language, particular languages offer linguistic features and abstractions that are more
appropriate for the development of program generators [vWV03]. These languages
can be referred to as generative programming languages. Although these generative
programming languages and techniques already provide a number of advantages to the



1.2. PROBLEM STATEMENT: COMPOSABILITY OF PROGRAM GENERATORS9

developer of a program generator, no contemporary technique provides abstractions
to implement sufficiently modular composable program generators, which is the topic
of this dissertation.

1.2 Problem Statement: Composability of Program Gen-
erators

Although program generators are a powerful and scalable implementation technique
for a family of reusable program parts, reuse of program generators themselves in the
implementation of other program generators is more problematic. This is because in
contemporary generative programming techniques, a program generator is considered
in isolation. A generator produces a single standalone program that is implemented
in one or more encapsulated modules (available in the program’s implementation lan-
guage). The application developer can use the generated program in his application
by accessing the well-defined interface of the generated program. Conversely, pro-
gram generators are not designed nor implemented to be composed. More specifically,
generators cannot be composed such that their generated programs are correctly inte-
grated into a single generated program. A correct integration of generated programs
is a composition of the generated programs that:

e prevents undesired interferences between the generated programs such that their
functionality is not broken.

e implements the required interactions to achieve a combined functionality of the
generated programs.

A correct integration is trivially possible if the generated programs are implemented
using encapsulated modules that merely require interaction through their respective
interfaces. However, many integrations and the corresponding interactions between
generated programs are hard or even impossible to achieve using the composition
mechanisms available in the program’s implementation language. This is especially
true for the integration with program parts that cannot be implemented in encap-
sulated modules. Such crosscutting program parts are also commonly referred to
as crosscutting concerns [KLMT97, TOHJ99]. The implementation of a crosscut-
ting concern is distributed over multiple program modules and requires an invasive
integration in other (generated) programs. An invasive integration means that the
generated program parts are inserted in the internal implementation of a generated
program. Such an invasive integration clearly modifies the internal implementation
and can consequently cause interferences that break the functionality of the generated
programs.



10 CHAPTER 1. INTRODUCTION

In contemporary generative techniques, an invasive integration of separately gen-
erated programs requires that the developer builds an entirely new generator or that
he accomplishes the integration manually. However, manual integration of gener-
ated programs is most undesirable. In a manual invasive integration, the developer
needs to understand the internal implementation details of both generated programs
to establish the desired interactions and to prevent the undesired interferences in the
integration. Consequently, a manual integration requires profound knowledge on the
internal implementation details of the generated programs. This cripples the advan-
tage of using a program generator or even the use of a reusable program part.

We conclude that the lack of composability of program generators harms their
reusability. Developers are forced to implement the generation of similar or identical
program parts in each generator instead of reusing an existing generator that produces
those program parts. Some existing generative programming technologies already
provide a modularization mechanism for the implementation of program generators
but the modules are almost always tightly coupled. This lack of genericity cripples
the reusability of the modules outside their original generator context [Big00].

1.3 Thesis Statement

In this dissertation, we introduce a generative programming technique that supports
the development of integrative composable generators. Integrative composition of gen-
erators results in a composed generator that produces an (invasive) integration of the
respectively generated programs. In an integrative composition, the required inter-
actions between the generated programs can be implemented while all anticipated
undesired interferences are automatically prevented. An integrative composition of
program generators does not require a profound knowledge on the entire internal im-
plementation of a generated program, nor does it require knowledge on the internal
implementation of the program generator. However, it does require that the integra-
tive composable generators are designed and implemented for integrative composition.

Integrative composable generators permit us to modularize the generation of indi-
vidual concerns in separate program generators. An integrative composition of such
generators produces a program that implements all concerns. In other words, integra-
tive composable program generators permit the modular implementation of program
generators. Such modularization improves the maintainability and evolvability of a
program generator. It also allows to reuse a program generator, that produces an
implementation for a particular concern, in the development of other generators that
also require to generate that concern.



1.4. APPROACH OF THE DISSERTATION 11

1.4 Approach of the Dissertation

1.4.1 Integrative Composable Program Generators

An integrative composition of program generators conflicts with the desirable black-
box property of their generated programs. Some knowledge on the internal imple-
mentation of the generated programs is required to achieve an integration of these
generated programs. More specifically, to specify an invasive integration of generated
programs, we need to be able to specify at what specific locations in the generated
program the integration needs to occur. Furthermore, an invasive integration also re-
quires us to actually modify the internal implementation of the generated program at
those locations. Last but not least, the generated programs may require to be adapted
at various other locations to achieve a correct invasive integration with the desired in-
teractions and without the undesired interferences. Therefore, integrative composable
program generators break the black-box property of their generated programs and pro-
vide a controlled access to the internal implementation of these programs. This access
is provided through an integrative composition interface defined by the program gen-
erator. However, while some internal implementation details of the generated program
are exposed for integrative composition purposes, many more internal implementation
details remain hidden. It is imperative that these internal implementation details are
not broken as a consequence of the integrative composition. Therefore, an integrative
composition is governed by a composition conflict detection mechanism that prevents
detectable undesired interferences in the integration of the generated programs. Fur-
thermore, to accommodate particular integrations and to resolve some of the possible
composition conflicts, the generated program of a generator can be automatically
adapted by the program generator itself. A program generator accomplishes this by
providing alternative implementations for its generated program. These alternative
implementations are driven by the possible composition conflicts and the specification
of an integrative composition. Therefore, the implementation of integrative compos-
able program generators also requires an appropriate generative programming language
that provides support for the generation of alternative implementations of the gener-
ated program. We describe the importance of the generative programming language
and the composition conflict and resolution mechanism in more detail in the following
paragraphs.

Generative Logic Metaprogramming

The technique for implementing integrative composable generators presented in this
dissertation is independent of a particular generative programming language. In
essence, we present an overall architecture for the implementation of generators to
enable integrative composition. However, to validate the concepts of the proposed



12 CHAPTER 1. INTRODUCTION

technique, we present the technique of logic metaprogramming [Wuy01, DVMWO0O,
Vol98, MMWO02] as an appropriate generative programming language for the imple-
mentation of integrative composable program generators. In particular, the logic
metaprogramming language offers linguistic support that is appropriate for the im-
plementation of integrative variabilities. Integrative variabilities are the adaptations
that are required in the implementation of a generated program to integrate with
another generated program. This includes the necessary adaptations to implement
the desired interactions in the integrated generated programs and the adaptations to
resolve particular undesired interferences.

Composition Conflict Detection and Resolution

An integrative composition often requires that interactions occur in the integration
of the generated programs. However, other interactions need to be prevented because
they might break the functionality of the generated programs. These latter kind of in-
teractions are more appropriately referred to as undesired interferences or composition
conflicts. Although it is impossible to detect all possible composition conflicts in an
integrative composition, it is guaranteed that all anticipated composition conflicts in
a particular programming language are detected. The composition conflict detection
mechanism is built into the proposed generative programming technique. This mech-
anism verifies all integrative compositions for the occurrence of declared composition
conflicts. These composition conflicts are declared for each programming language
that can be used as an output language for generators built in the technique.

Once a composition fails because of a detected conflict, the composition conflict
needs to be resolved. Integrative composable program generators can automatically
resolve certain composition conflicts by providing alternative implementations for their
generated programs. An alternative implementation provides the same functionality
in the generated program using an implementation that circumvents the composition
conflict. These alternative implementations are implemented by the developer of
an integrative composable generator. The automatic conflict resolution mechanism
prevents that the developer who composes the generators needs to adapt a generated
program (or even a program generator) to resolve the composition conflicts.

In this dissertation, we implement a composition conflict detection and resolution
mechanism using a system that combines a constraint checker with logic metapro-
gramming. The constraint checker provides the core mechanism for the composition
conflict detection and resolution mechanism. The possible composition conflicts can
be declared as constraints in the logic metaprogramming language. These constraints
are verified and enforced by the constraint checker. The composition conflicts are
resolved automatically because the constraint checker enforces the selection of appro-
priate alternative generated programs that do not violate the constraints. This also



1.4. APPROACH OF THE DISSERTATION 13

means that the actual resolution to composition conflicts is implemented by the pro-
gram generators themselves. This conflict detection and resolution mechanism is also
language-independent and can be used for program generators with various output
languages. For this purpose, the system can be configured with language definitions
that specify the possible composition conflicts in each language. Consequently, we
can detect and resolve composition conflicts in the integration of programs in various
languages.

1.4.2 Domain-specific Integrative Compositions

An integrative composition can be specified for program generators that share the
same output language. These output languages can be situated at many different
levels of abstraction. This is because a program generator does not always produce a
low-level implementation directly. Instead, a generator can produce code in a domain-
specific language that needs to be further translated into executable (low-level) code.
This translation process is done by another generator that accepts a program in that
domain-specific language. The resulting stepwise translation from high-level spec-
ifications to low-level code through various domain-specific languages provides an
opportunity for integrative composition in these domain-specific languages. What is
even more important is that an integrative composition at a domain-specific level also
provides the opportunity to detect and resolve domain-specific composition conflicts.

The technique for integrative composition that is developed in this dissertation is
language independent and can be applied easily to integrative composition in domain-
specific languages. Furthermore, the technique provides specific support for the inte-
grative composition of generators that are composed of several other generators that
perform a stepwise translation of the program through various languages. An inte-
grative composition that occurs in a common domain-specific language used by both
generators ensures that all anticipated domain-specific composition conflicts, as well
as all conflicts in more low-level languages are automatically detected and prevented.

1.4.3 Feature Description Language

Although domain-specific integrative compositions are particularly desirable, the de-
sign and implementation of domain-specific languages requires a tremendous effort.
Therefore, we also provide an alternative approach that does not allow domain-specific
integrative compositions but does allow to detect and resolve higher-level (domain-
specific) composition conflicts. This approach is based on the use of a Feature De-
scription Language. This language can be used as an input language by many different
generators and allows to describe more semantic properties about the generated pro-
grams.



14 CHAPTER 1. INTRODUCTION

1.5 Contributions of the Dissertation
The major contributions of the research in this dissertation are the following:

Integrative Composition of Program Generators We identify the need to build
program generators that can be composed to integrate their generated programs.
We develop an architecture and describe the technique to build program gen-
erators that can be composed with the intention of integrating their generated
programs. This composition is referred to as integrative composition.

Composition Conflict Detection and Resolution We describe how to detect an-
ticipated composition conflicts in the integration of generated programs and
provide a mechanism for the automatic resolution of these composition conflicts
whenever possible.

Generative Logic Metaprogramming We present the technique of logic metapro-
gramming as an appropriate generative programming language for the imple-
mentation of integrative composable program generators.

1.6 Perspectives

Integrative composition of program generators presents opportunities in the domain
of model-driven architecture (MDA) and aspect-oriented programming.

1.6.1 Model-Driven Architecture

The Model-Driven Architecture (MDA) [Gro] is an initiative by the Object Manage-
ment Group (OMG) to define an approach to software development based on modeling
and automated mapping of models to implementations. The vision of MDA is that
platform-independent models (PIMs) are automatically mapped onto more platform-
specific models (PSMs).

Generative programming techniques are a likely approach for transforming the
PIMs into PSMs and further into code. There even exist quite a number of transforma-
tion techniques that are developed and used specifically in the context of MDA [CHO3].
The transformation of the PIM into the PSM requires that platform-specific details
are injected into the PIM. This is specifically illustrated by the automated mapping
of what MDA refers to as pervasive services. Pervasive services are, for example,
transactions, security and directory services. These are typical examples of program
elements that will ultimately crosscut the model or the executable code [DD02].

The realization of automated mappings will thus ultimately require the integration
of the generated code for the application and the generated code for the pervasive



1.7. OUTLINE OF THE DISSERTATION 15

services. Building the transformations as integrative composable program generators
presents an interesting opportunity for the technique developed in this dissertation.

1.6.2 Composable Aspect-specific Languages

A particular application of composable program generators is the building of compos-
able aspect weavers. Aspect weavers are compilers for aspect languages and therefore
they are program generators. An aspect weaver takes an aspect description and inte-
grates that aspect’s implementation in the base program. The languages that are used
to describe the aspects are called aspect languages. On the one hand, some aspect
languages offer a high-level domain-specific language to describe the aspect’s func-
tionality (e.g. RG [MKL97], COOL [Lop97]). On the other hand, because there can
be many kinds of aspects in a single program, more general-purpose aspect languages
were developed (e.g. Aspect] [KHH'01] and HyperJ [OT99]). Aspects written in a
domain-specific language are easier to read and write because they are described at
the problem domain level. However, a domain-specific aspect language can be used
to express a specific kind of aspects only, while a general-purpose aspect language can
express a wider range of aspects. The downside of aspects written in a general-purpose
aspect language is that they lose all advantages associated with domain-specific lan-
guages and consequently are more difficult to write and understand.

Building composable aspect weavers for domain-specific aspect languages recon-
ciles the advantages of domain-specific aspect languages with the ability to implement
multiple kinds of aspect in a single application. Using contemporary generative tech-
niques, building a new aspect language would require to change the entire aspect
weaver. Modularly composable aspect weavers, on the other hand, can be composed
to build a new aspect weaver that weaves multiple kinds of aspects, expressed in
different aspect-specific languages.

1.7 Outline of the Dissertation

Chapter 2 provides an overview of contemporary generative programming techniques
and technologies.

Chapter 3 analyses the modular composition of program generators and establishes
the need for integrative composition of program generators.

Chapter 4 explains the overall generative programming technique for integrative
composable program generators without delving into concrete implementation
details.



16 CHAPTER 1. INTRODUCTION

Chapter 5 provides an implementation of the technique introduced in chapter 4
using generative logic metaprogramming.

Chapter 6 describes the Feature Description Language and how it is implemented
in the generative logic metaprogramming technique.

Chapter 7 validates the approach by implementing a library of integrative compos-
able program generators.

Chapter 8 concludes the dissertation and describes future work.



Chapter 2

Program Generation

Program generation automates a part of the building process of a software application.
Many different techniques have been developed over the past few decades, covering a
wide spectrum of applications and ranging from partial code generation based on do-
main models to domain-specific languages, software product lines and model-driven
architectures. In this chapter, we provide an overview of program generation tech-
niques in the context of the generative programming paradigm and describe a number
of representative technologies.

2.1 Introduction

Most computer software is built to automate labour-intensive, repetitive and complex
tasks. Automatisation of these tasks often yields advantages in increased productivity
and reliability. The initial investment to develop the software pays off because the
activity it automates needs to be executed frequently and reliably. However, such
repetitive tasks are also very common in the development of the software itself. De-
velopers often need to write identical or similar pieces of code in different software
applications. This also exposes those developers to ample opportunities to make the
same mistakes over and over again. Program generation offers a solution by automat-
ing the implementation of such reusable program parts. Generation of program parts
or the generation of entire software applications introduces automatisation in the
software development process itself. A program generator is a software program that
implements an automated programmer. It is implemented once and can be applied to
generate the same or similar programs many times with the same reliability. Like any
other reuse technique, a program generator is most useful to automate the building
of frequently-used programs or program parts. But when compared to more tradi-
tional implementation techniques for reusable parts (such as components, frameworks,

17



18 CHAPTER 2. PROGRAM GENERATION

etc...), a program generator is a scalable implementation technique for an entire set
of similar reusable program parts.

Program generation is, of course, a broad concept in computer science. It is
at the heart of a broad range of techniques, tools and development paradigms in
software engineering. The most well known program generators for software devel-
opers are probably compilers [ASU86]. A compiler transforms a program written
in a high-level programming language into a semantically identical program in low-
level bytecode. A totally different kind of program generation can be found in inte-
grated development environments that generate code skeletons based on UML design
models[FS00]. The advent of generative programming [Cza98|, product-line architec-
tures [BJMvH02, BLHMO02] and MDA [Gro] has further boosted interest and research
in program generators. Depending on the context, program generators produce entire
applications, components, classes, methods, code skeletons, etc.... Therefore, they
are often referred to with different names such as application generators, component
generators, code generators, software generators, etc.... Furthermore, the automatic
derivation of algorithms from a semantic specification is also referred to as program
generation or program synthesis [Smi90, SJ95]. However, the required implementation
techniques for the implementation of program synthesizers, application generators and
compilers are very different. Therefore, we first define the kind of program generators
that are considered in this dissertation.

2.2 Definition

Program generation is the process of producing code automatically by a program
generator [SZDO00]. In contrast with compilers, most program generators produce
a program in a high-level language instead of bytecode. Of course, in essence, any
program that produces any program code as output can be called a program generator.
Furthermore, most program generators produce their program based on some input
specification, commonly provided by the developer. This input specification is often
a program itself, which means that such program generators are actually program
transformers: they transform an input program into an output program. Program
transformation can be defined as follows [Unk]:

The act of transforming one program into another.

In fact, many program generators are program transformers, but for program gen-
erators, the input language is very different from the output language. As such,
program transformations such as refactorings [Fow99] cannot be considered as pro-
gram generation. In many cases, program generators are also considered as compilers
for domain-specific languages [vKV00]. This means that the input specification is



2.2. DEFINITION 19

written in a domain-specific language, which is a high-level language specifically de-
signed to express abstractions applicable in a certain domain. The compiler for the
domain-specific language is thus actually a program generator, that generates an im-
plementation of the domain-specific program in an executable language.

In the context of this dissertation, we focus on program generators in the context
of generative programming and product-line architectures. Czarnecki [Cza98] defined
generative programming and program generators as follows:

Generative programming is a software-engineering paradigm based
on modeling software families such that, given a particular requirements
specification, a highly customized and optimized intermediate or end-
product can be automatically manufactured on demand from elementary,
reusable implementation components by means of configuration knowl-
edge.

A program generator is a program that takes a higher level specifi-
cation of a piece of software and produces its implementation. The piece
of software could be a large software system, a component, a class, a pro-
cedure, and so on.

In this dissertation we simply call the program part produced by a generator a ‘pro-
gram’. The definition of generative programming implicitly assumes that the gener-
ated end-product is a completely functional software component. This is important as
it means that we consider that a generated program implements its complete function-
ality such that the developer is not required to modify the generated program after it
has been generated. This specifically rules out skeleton code generators. Furthermore,
this definition points out that program generation specifically targets the construction
of a customized and optimized program. This is a particular advantage of program
generation when it is compared with other implementation techniques for reusable
progams, which we discuss in the following section. The elementary, reusable imple-
mentation components are the pieces of the program that are used by the generator
to construct the resulting program. They can be implemented in text files, patterns,
templates, transformations, .... The configuration knowledge mainly consists of the
higher level specification that is provided to the program generator. Other parts of
the configuration knowledge are contained in the generator itself and specify rules and
constraints on valid compositions of the elementary implementation components and
perhaps even other knowledge that the generator may use to generate a correct and
efficient program.

Another definition of generative programming can be found on the webpage of the
GCSE working group [Cza]:

The goal of generative and component-based software engineering is



20 CHAPTER 2. PROGRAM GENERATION

to increase the productivity, quality, and time-to-market in software de-
velopment thanks to the deployment of both standard componentry and
production automation. One important paradigm shift implied here is to
build software systems from standard componentry rather than ”reinvent-
ing the wheel” each time. This requires thinking in terms of system fam-
ilies rather than single systems. Another important paradigm shift is to
replace manual search, adaptation, and assembly of components with the
automatic generation of needed components on demand. Generative and
component-based software engineering seeks to integrate domain engineer-
ing approaches, component-based approaches, and generative approaches.

We can conclude by saying that in the rest of this dissertation, program genera-
tors are software programs that, given a high level specification, produce an efficient
implementation of a software program that may not be adapted by the developer by
manually implementing or changing parts of the generated program code.

2.3 Generation as a Reuse Technology

Program generators are particularly useful in the context of software reuse [BSTT94a).
Subroutine libraries, object-oriented frameworks and component libraries are the most
common solutions used by developers today to accomplish reuse of frequently needed
program parts. However, subroutine and component libraries offer reusable parts that
have a fixed behavior that cannot be changed by the application developer. This is
in contrast with the frequent need to make slight variations to the behavior of some
parts [Nei80]. The library developer can anticipate this need and provide a number
of different versions for each part. However, this frequently leads to a large library,
containing many different versions of the same reusable part. The Booch library of
data structures [Boo87] is a good and often cited example of a library that provides
an implementation for 17 possible data structures (stacks, lists, queues, etc...) along
with 11 general features that can be included in each of these data structures [Big98].
For the queue data structure alone, there are 26 meaningful implementations that each
provide a different combination of features [Big98|. Maintaining and evolving such a
library becomes quite a difficult task. This is because for each variation, a complete im-
plementation has to be written, often leading to code duplication. Because of this code
duplication, this library scaling problem [Big94, BSST93] hampers maintainability of
the library. Although object-oriented frameworks have also proven their usefulness in
the implementation of customizable programs, they only provide a limited solution
to the scaling problem. In essence, object-oriented frameworks allow customization
through inheritance and parameterization. Through inheritance, the existing meth-
ods can be extended with new behavior but the extension cannot effectively change



2.4. GENERATIVE PROGRAMMING TECHNIQUES 21

the existing implementation in the superclass. Last but not least, in many cases,
it is even impossible to package a frequently used program part as a component, a
subroutine or a framework with an efficient implementation. Object-oriented design
patterns [GHJV95], for example, implementations of tree structures, parsers, collabo-
ration schemes such as publish-subscribe, etc. .. cannot be implemented efficiently by
means of frameworks or fixed library components in all their possible versions without
requiring a lot of manual customizations by the application developer.

Generative approaches come to the rescue and provide a powerful technique for
the efficient implementation of frequently used program parts in a scalable way. The
library provider implements a program generator that is able to generate all different
versions of the reusable part. The program generator produces the implementation
as it is described by an input specification. A generator actually represents an entire
(and closed) family of reusable programs: each possible generated program implements
a different combination of functionalities offered by the generator. A widely known
example of a program generator is a parser generator. It is impossible to build a library
that contains a parser for each possible programming language and a framework to
build parsers can only provide some commonly used structures, still leaving much of
the implementation process to the developer. The only scalable solution for an efficient
implementation is to build a program generator that generates a parser for a given
(programming) language as described by the developer. Parser generators such as Lex
& Yace [LMB] and SmaCC [BR] have proven the usefulness of program generation.
Using these tools, a parser can be generated for many programming languages, given a
grammar specification (in the BNF domain-specific language for grammars) as input to
the generator. More advanced software generators have also been built for the domain
of data structures. For example, DiSTiL [SB97] is a generator for data structures. The
output of the generator is an implementation of a data container.

2.4 Generative Programming Techniques

2.4.1 Classification

Building a program generator is quite a complex task. Therefore many different
generative programming techniques were developed to improve and alleviate the effort
of the implementation of a program generator. Based on the implementation technique
used to build a program generator, we can identify four major kinds of program
generators:

Ad-hoc Many program generators are developed using standard compiler implemen-
tation techniques and tools. Most of their implementation is written in a general-
purpose programming language and the generator is a stand-alone executable.



22 CHAPTER 2. PROGRAM GENERATION

Some prominent examples are, of course, language compilers but also parser
generators such as Lex and Yacc.

Metaprogramming Using metaprogramming libraries or reflective programming
language facilities, we can also build program generators. C macro facilities
are a weak version of this technology, but Scheme and Lisp macros are a lot
more powerful in this context. The Smalltalk and OpenC++ metaprogramming
facilities are also an example technology we can use to build program generators.

Transformational Program transformation systems are a powerful technique to im-
plement program generators. In this setting, a generator is implemented as a set
of program transformation rules, which are applied to an internal representa-
tion of the input specification. Each transformation rule rewrites a small part of
the program and the subsequent application of these transformation rules ulti-
mately results in the generated output program. Some program transformation
systems that are well known in the context of program generation are Draco and
ASF+SDF.

Compositional Programs can also be generated by glueing smaller program parts to-
gether. These program generators are implemented using a composition system
that composes generic program fragments. These program fragments are pa-
rameterized such that they can be customized to fit in a particular composition.
A program generator generates an output program by selecting the appropriate
program fragments, based on the input specification, and assembles them to
produce the generated output program. The GenVoca system is a prominent
example of this kind of program generators.

2.4.2 Commonalities and Variabilities

A domain analysis precedes the development of a program generator. In such a do-
main analysis, the commonalities and variabilities of the different possible generated
programs are identified. The commonalities are those functionalities of the generated
programs that need to be included in each generated program. The variabilities are
the functionalities that can be included, excluded or adapted in each of the generated
programs. Deciding what is variable and what is common (or invariant) corresponds
to deciding what parameters a subroutine needs to make it reusable. In program gen-
erators, the variabilities determine what a user of a generator can specify in an input
specification.

In the implementation of a program generator, the developer has to implement
the generation of the common and variable functionalities of the generated programs.



2.5. AD HOC GENERATORS 23

Many different generative techniques exist. We will now describe each of these tech-
niques more in detail. For each technique, we will describe some of the most prominent
concrete technologies.

2.5 Ad hoc Generators

Many generators are stand-alone programs that are implemented in a general-purpose
programming language. We call this kind of generators ad-hoc generators because
they have been built without the use of a specific generator infrastructure. Building
such ad-hoc generators closely resembles the development of any software application.
They are, in fact, written as normal software applications that happen to produce
program code as output. A particularity is that many ad-hoc generators are developed
using standard compiler implementation techniques and tools. Therefore, we shortly
introduce the common implementation architecture of a compiler. More information
on compiler implementation techniques can be found in [ASUS6].

In figure 2.1, the standard internal form of a compiler is shown. The front-end
of a compiler accepts the input specification and produces an internal representation
for it. A translator manipulates this internal representation and converts it into a
representation of the resulting program. Finally, a back-end produces the resulting
program in the desired output format. The front-end of commonly known compilers
is a scanner and a parser that produce an internal parsetree representation of the
program. The translator is a machine-code generator that converts the tree into the
a representation of the compiled program and possibly performs some optimizations.
The back-end of most compilers outputs the real machine code into a file on the disk.

Implementing ad-hoc generators requires an enormous amount of effort. Besides
the use of tools such as parser and scanner generators, it is a completely manual pro-
cess. Developers will have to design and implement the internal representation and
the translator completely from scratch. Moreover, ad-hoc generators provide no in-
teroperability as each ad-hoc generator uses his own internal representation and input
notations. An ad-hoc generator is a complete black box, thereby completely compro-
mising its composability and interoperability with other generators. The extensibility
and reusability of an ad-hoc generator is also very low, as this not only requires access
to the source code but also a deep and thorough understanding of it.

Of course, almost all compilers are examples of ad-hoc program generators. Other
quite well known examples are the parser generator tools Lex & Yacc [LMB] and
SmaCC (parser generator in Smalltalk) [BR] .



24 CHAPTER 2. PROGRAM GENERATION

transformed

parsetree parsetree
> Transformer

Front End
(scanner / parser)

ul Back End
(code generator)

Figure 2.1: Traditional Compiler Architecture.

2.6 Metaprogramming Languages and Libraries

Instead of building a program generator ‘from scratch’; it is easier to make use of
the metaprogramming facilities offered by a general-purpose programming language
or by a metaprogramming library for the language. The Smalltalk Meta-Object Pro-
tocol (MOP) [Riv96, GR83], OpenJava [TCKI00], OpenC++ [Chi95] and the .net
CodeDOM [Mic]| are typical examples of metaprogramming libraries available in a
general-purpose programming language. They are also referred to as API-based pro-
gram generators [Voe| because the library provides an interface that can be used to
perform program generation. Another kind of metaprogramming is through syntax-
extension mechanisms such as macros, integrated in many programming languages
such as C, Lisp and Scheme, which we will discuss in the end of this section. There
are, of course, differences in possibilities in each of the metaprogramming libraries
and facilities we mentioned. The Smalltalk MOP, for example, allows full runtime
reflection as opposed to the OpenC+-+ and OpenJava libraries that only allow for
compile-time metaprogramming. The .net CodeDOM supports metaprogramming for
multiple .net languages as opposed to OpenJava that is specifically focused on Java.
Nevertheless, in the context of program generation, we are only concerned with fa-
cilities available for program generation, either at compile-time or at runtime. This
means that we are interested in how each library implements abstractions to represent
a program and what operations are available to build and manipulate a program.

All metaprogramming libraries or reflection protocols offer an implementation to
represent and manipulate a program. Once again, the internal representation of such
a program is commonly an abstract syntaxtree. A program generator built with the
use of a metaprogramming library is a program that uses the library to construct an
internal representation of the program to be generated. This renders the difference
between this kind of generators and the previously described ad-hoc generators rather
small: i.e. both kinds use a general-purpose language to implement a program gener-
ator. The only advantage over ad-hoc generators is the reduced implementation effort
and the reusability due to the common internal representation. A shared internal
representation facilitates reuse of existing generators in the implementation of a new
generator.



2.6. METAPROGRAMMING LANGUAGES AND LIBRARIES 25

In the Smalltalk MOP, a Smalltalk class is represented by an object instance of the
class Metaclass, which implements methods to allow various manipulations. We can,
for example, add or remove methods, instance variables, etc. ... Each method is also
represented as an object instance of the class CompiledMethod that also supports var-
ious manipulations through methods. Furthermore, there are classes to represent each
Smalltalk language construct in the parsetree of a method. Through these MOP facili-
ties, we can manipulate existing programs as well as create new programs. It is not our
intention to describe the entire Smalltalk MOP here or not even all facilities for static
metaprogramming. The interested reader is therefore referred to [Riv96, GR83]. The
approach taken by the other metaprogramming libraries (OpenJava, OpenC++,...)
is very similar. Each kind of abstract syntax element is represented by a separate class
that implements various manipulation methods. To illustrate the implementation of
a program generator through metaprogramming, we include an example taken from
the online manual of OpenJava in figure 2.2. This program generator automatically
implements empty methods in a class according to the interfaces that the class im-
plements. The execution of the generator starts with the translateDefinition()
method. In this method, all inherited methods are retrieved from the class definition,
available through the this variable. For each inherited method that is abstract, is
not overridden in the class itself and has a void return type, we generate an empty im-
plementation on the class using the makeEmptyMethod method. Here, a new method
syntaxtree element is created by copying the signature of the inherited method and
creating a statementlist that contains a simple return statement.

Building a program generator using these metaprogramming libraries is quite sim-
ilar to building an ad-hoc program generator: i.e. the generator is again written in a
general-purpose programming language. The major difference with ad-hoc generators
can be found in the common infrastructure that is used by the program generators,
i.e. the metaprogramming library. This not only alleviates the developer from the te-
dious task of implementing a representation himself, it also allows for simple technical
exchange of the program to be generated between multiple generators.

Macros

Macro systems are also a very well known metaprogramming facility to perform pro-
gram generation. But again, many different macro systems exist and thus have a very
different expressiveness and power. In general, macros are functions that are executed
at compile-time and translate a part of the program in which they are used. Macros
can be used for optimization by inlining of function calls but they can also serve as an
implementation technique for extending the language with domain-specific constructs.
A macro definition can be compared with a transformation definition, which is de-
scribed in the next section. The execution of macros at compile-time is often referred



26 CHAPTER 2. PROGRAM GENERATION

import openjava.mop.*;
import openjava.ptree.x*;
import openjava.syntax.x;

public class AutoImplementerClass instantiates Metaclass extends 0JClass
{
public void translateDefinition() throws MOPException {
0JMethod[] methods = getInheritedMethods();
for (int i = 0; i < methods.length; ++i) {
if (! methods[i].getModifiers().isAbstract()
|| methods[i].getReturnType() !'= 0JSystem.VOID
|| hasDeclaredMethod( methods[i] )) continue;
addMethod ( makeEmptyMethod( methods[i] ) );

private boolean hasDeclaredMethod( 0JMethod m ) {
try {
getDeclaredMethod( m.getName(), m.getParameterTypes() );
return true;
} catch ( NoSuchMemberException e ) {
return false;
}
}

private 0JMethod makeEmptyMethod( OJMethod m ) throws MOPException {
/* generates a new method without body */
return new 0JMethod( this,
m.getModifiers() .remove( 0JModifier.ABSTRACT ),
m.getReturnType(), m.getName(), m.getParameterTypes(),
m.getExceptionTypes(),
new StatementList( new ReturnStatement() )

)

Figure 2.2: Program generator for ’automatic methods’ written in OpenJava



2.7. TRANSFORMATIONAL GENERATORS 27

to as macro expansion. This is because macros operate in place by transforming the
syntactic language construct they define into native language constructs. Macros are
a powerful kind of program transformations integrated as a metaprogramming facility
in a general-purpose language. C macros offer a simple textual expansion but Lisp
and Scheme macros are much more powerful because they operate on the program
representation rather than on strings. The R5RS Scheme [KCR98| macro facility is
amongst the most advanced macro systems available in programming languages today.
It offers a template-based, hygienic rewriting facility.

2.7 Transformational Generators

Transformational generators constitute a large body of generators being used today.
These generators are implemented using a general program transformation system. Al-
though many different kinds of those transformation systems exist, they always have
a transformation engine at their core that executes transformation rules to transform
an input program into an output program. Although program transformations may
be expressed in any programming language, specialized transformation languages are
more appropriate to express program transformations. This is because transformation
languages provide specialized support for operations frequently needed to implement
transformations. Operations such as pattern matching, querying and traversals are
native to the transformation language, while they need to be implemented by hand in
a general-purpose language, which is often quite a cumbersome job. Other important
features such as backtracking of transformations, dependency analysis and schedul-
ing the application order of the transformation rules, are important features often
supported by the transformation system.

In general, a program in a transformation language consists of a set of transfor-
mations. Each transformation specifies a mapping of (a part of) the input program
to (a part of) the output program. Two fundamentally different kinds of transfor-
mations exist: forward and reverse transformations. Forward transformations are
source-driven. This means that the output program is constructed by walking over
the source program and applying transformations. Reverse transformations are target-
driven: the output program is a template that is filled in by querying over the source
program. Both kinds of transformations are not mutually exclusive and some systems
support both, such as XSLT [Tid01]. There are other important differences between
transformations such as their scope and stages of the transformation process. We
do not consider these differences here and refer the interested reader to a survey on
transformation mechanics [vWVO03].

The most simple kind of forward transformations are rewrite rules. A rewrite rule
consists of a pattern that needs to be matched in the input and a pattern that is



28 CHAPTER 2. PROGRAM GENERATION

produced in the output when the rewrite rule is applied. The following rewrite rule
specifies that the input pattern double(X) must be replaced by the output pattern
2xX, where X is a variable in the pattern:

double(X) -> 2xX

Such a rewrite rule will, for example, transform 4 + double(4) into 4 + 2%4. A
rewrite rule is applied by the transformation system if the input pattern of the rule
can be matched in the input program. In most cases, the system will continue exe-
cuting rewrite rules as long as any rewrite rule is still applicable. The rewrite rule
matches a pattern in the input program’s text. However, in most cases, transforma-
tion systems operate on an internal representation of the input and output program,
which is most often an abstract syntax tree. The rewrite rule mechanism is the basic
technique underlying forward transformation technology. The input program is grad-
ually transformed into the output program. In each transformation step, a pattern in
the input program is matched and a corresponding pattern is produced in the output
program. More advanced transformation techniques such as the Scheme macro facil-
ity (which was described earlier) still follow the same idea of rewrite rules. However,
they add a lot of additional power. For example, Scheme macros can use the full pro-
gramming power available in the Scheme programming language to implement their
transformations.

Reverse transformations are very different from forward transformations. They
are based on queries over the source program to construct the output program. This
kind of transformation is more adequate if the output program is rather fixed and only
needs some customizations that are driven by the input program. Reverse transforma-
tions emerged in template-based generation of webpages or programs [vWV03]. For
example, consider the following template (in pseudo code) to generate a webpage. The
output of this (reverse) transformation is an html webpage that contains a title and
a content that are obtained from the input program by launching the getTitle()
and getContent () queries.

<html>
<head>
<title> <query> getTitle() <query> </title>
<body>
<query> getContent() <query>
</body>
</html>

Obviously, too many transformation systems exist to describe them all in detail
here. Therefore we limit ourselves to some key techniques that are often used in the
context of generative programming.



2.7. TRANSFORMATIONAL GENERATORS 29

2.7.1 Draco

Draco [Nei80, Nei89] is an approach to domain engineering using domain-specific lan-
guages and transformation technology, designed and implemented by John Neigh-
bors [Nei80]. The main goal is to bring the reuse in software engineering from the
implementation phase to the design and analysis phase. Reuse of design and anal-
ysis is achieved by writing software in domain-specific languages. Domain-specific
languages are different from general-purpose languages because they typically allow
to describe a problem at a higher (domain-specific) level in which the requirements
and/or design are explicit. These languages encapsulate the knowledge of a particular
domain and have been carefully designed and tailored by domain-analysts. Hence,
programs written in domain-specific languages explicitly describe their requirements
and/or design, which would have been lost if they were directly implemented in a
general-purpose programming language. Program generation is an essential part of
Draco as the domain-specific program is a high-level description from which a program
in a general-purpose programming language is generated.

The domain-specific languages in Draco are implemented using a (forward) trans-
formation system. The transformations operate on the internal (parsetree) form of
the program and translate it into a program in another language. This might again be
a domain-specific language, meaning that the program needs to be translated further
on, until it is expressed in an executable language. For this purpose, Draco makes a
(conceptual) distinction between application-, model- and execution domains. Appli-
cation domains encapsulate knowledge about a particular class of applications, such
as spreadsheets, broadcasting, banking, .... Modeling domains are used to encap-
sulate knowledge about parts that can be used to implement applications, such as
databases, graphics, numerics, .... And finally, execution domains are concrete pro-
gramming languages such as Java, C++, Smalltalk, . ... Languages in the application
domain are implemented in terms of languages in the modeling domain. These lan-
guages are, in turn, implemented in execution-domain languages. This means that a
program, written in a particular application-domain language, will be subsequently
refined into (perhaps many) model-specific languages and eventually into a program
in a general-purpose language. This setup is illustrated in figure 2.3.

The translation process in Draco uses two kinds of transformations: optimizations
and refinements. Optimizations are intra-domain transformations, meaning that they
rewrite a program to a program expressed in the same domain. This is often done for
simplification or optimization of the program. The following transformation rule is a
simplified example of an optimization rule for a mathematical language implemented
in Draco. The rule is named ADDXO0 and it specifies that the addition of any term X
with zero is the term itself. Obviously, these rules follow the rewrite rule paradigm.

(TRANS ADDXO (ADD X 0) X)



30 CHAPTER 2. PROGRAM GENERATION

statistics
reporting
domain

application
domain

data base
domain

statistical
calculation
domain

modeling
domains
algebraic
calculation
domain
operating executable execution
system language domains

domain domain

— is refined by

Figure 2.3: Stepwise refinement through Draco domains (from [Cza98]).

Refinements are inter-domain transformations and ’refine’ a domain-specific pro-
gram to an executable program. Refinements transform the internal representation of
a program in a certain domain to the external or internal representation of the pro-
gram in another domain. Refinements can be seen as the mapping of a domain-specific
language element to its implementation. There can even be multiple refinements for
the same language element. This means that there are multiple ways to transform a
program to its executable implementation, especially if we also consider the applica-
tion of the optimization transformations. Figure 2.4, illustrates the multiple ways in
which an exponentiation expression may be refined to its implementation. It is pos-
sible however, that a particular refinement produces an implementation that conflicts
with the subsequent refinement of that implementation. Therefore, refinements are
equiped with conditions and assertions. The conditions of a certain refinement ensure
that it is only executed if the conditions are true. The assertions are annotations that
are attached to the resulting implementation and can be used by the conditions of
further applicable refinements on that implementation.

The translation of a (domain-specific) program in Draco is a semi-automatic pro-
cess, where the system may ask the user to suggest the next translation step. In
order to prevent the system from asking too much questions during the translation
process, the developer may specify a set of tactics or strategies in the system. Tactics



2.7. TRANSFORMATIONAL GENERATORS 31

EXPx2 optimization
EXP(X. 2) - XX

EXP refinement: EXP refinement:
binary shift Taylor
[[ POWER:=2 ; NUMBER:=X ; ANSWER:=1 ; [[ 8UM:=1 ; TOR:=2"LN(X) ; TERM:=1 ;
'WHILE POWER=0 DO FCR I:=1 TO TERMS DO
[[ IF ODD(POWER) [l TERM:=(TOPA]"TERM ;
THEN ANSWER:=ANSWER"NUMBER SUM=5UM+TERM]] ;
POWER:=POWERN?2 ; RETURM SUMT]
NUMBER=NUMBER"NUMBER]] ;
RETURN ANSWER]] C refinement
for*
C mfinaments¢ C refinements Y
C code for C code for X*X
binary shift Taylor

Figure 2.4: Alternative refinement paths for EXP(X,2) to a C program (from [Cza98]).

and strategies are guidelines that help the system to determine when to apply which
refinement. Furthermore, domain-specific procedures can be specified whenever a set
of transformations can be applied algorithmically.

2.7.2 Intentional Programming

The primary focus of the Intentional Programming system (IP) is modular language
implementations [Cza98]. In IP, a language is implemented as a set of modular parts,
each implementing a particular language abstraction. The modularity of these parts
facilitates their reuse in other language implementations, as well as the implementa-
tion of new language abstractions in an existing language. This is in contrast with
traditional language implementations (i.e. compilers) that are very hard to extend
or modify. Hence, it is no mystery that the IP technology is of primary interest to
domain-specific language implementers because it especially facilitates the building
of domain-specific languages as a set of modular parts. We already explained how
program generators are domain-specific language compilers, so it should be clear that
the IP system is a program generator technology.

The IP system calls these modular language abstractions intentions, referring to
the IP vision that a programmer should express his intentions explicitly in the code,
rather than implicitly using inadequate language features. This vision is shared by
designers of domain-specific languages, in which adequate language abstractions are
used to reflect the domain and its operations. Implementing a domain-specific lan-
guage in the IP system boils down to implementing a set of intentions. For the purpose
of this dissertation, we will discuss intentions from a program generation viewpoint.



32 CHAPTER 2. PROGRAM GENERATION

That is: each intention defines a (forward) transformation that implements the se-
mantics of the intention’s language abstraction by generating program code for it.
But intentions define much more than transformations. An interesting aspect of IP
is that a source program is not represented as text but as active source, that is, as
a data structure with behavior at programming time. This means that besides the
definition of a transformation, each intention defines how it should be visualized in
the program source (e.g. as a mathematical formula, a UI spec, ...), how it should
behave in the debugger, how it behaves in the version control system, etc.... Each of
these functionalities is defined by a separate method on the intention module, much
like methods of classes in object-oriented programming.

The system triggers the necessary functionalities by invoking the appropriate
methods on the active source representation of the program. The active source is
a tree of nodes where each node is an instance of a particular intention in the input
program. In fact, the tree is actually a graph because there are not only links that
reflect lexical relationships in the program structure, but also links that denote depen-
dencies and other relationships between nodes. The concept of active source and other
important particularities are equally important to the IP system. In the remainder of
this section, we limit our discussion of IP to the program generation technology it uses.
For other aspects of IP, we refer the interested reader to [Cza98, MSvWO01, ADK'98].

Figure 2.5 shows a part of the active source tree for the expression x+y+z. The
full lines show the sourcetree structures and correspond to parent-child links in the
tree. The dashed lines show relations and dependencies between the nodes. In this
example, a use of a variable or an operator points to the corresponding declaration.

Reduction

IP refers to the program generation process as the reduction process. During re-
duction, the original source program is incrementally transformed to the low-level
implementation. Each intention performs his part of the transformation process and
transforms a small part of the source program. An intention can either transform
directly to the low-level language, or it can generate code that will (partially) be
transformed by other intentions.

An intention specifies how it should be reduced by means of a reduction method.
In IP terminology, the program code produced by an intention’s reduction method is
called the Rcode of the intention. The system starts the reduction by invoking the
reduction method on the root node of the source tree. The root node subsequently
invokes the reduction method on its child nodes and uses the resulting Rcode to
produce his own Rcode representation. Furthermore, during reduction, each node can
also ask information from other nodes in the source graph.

As in each transformation system, the order of application of the reduction meth-



2.7. TRANSFORMATIONAL GENERATORS 33

subtree representing X+Y+Z

subtree representing int X=1

operator | ____ ,
- .

T -------- > X
X - a--!
1
1
1
1
i
i type  bo---moo
1
operator  f---- - i
|
]
i
1 i
_________ !
Y : !
1 1
| y
int
z Y
A
1
]
i
!
subtree representing int Y=2 type  [TTTTTTTTT
2

Figure 2.5: Source tree for x+y+z and int x=1, int y=2 (adapted from [Cza98]).



34 CHAPTER 2. PROGRAM GENERATION

ods is often quite important. Different orderings of reductions might result in different
result programs, which may or may not be correct. In general, this is because reduc-
tions change the source graph and might influence each other’s result through these
changes. The problem of ordering transformations is commonly referred to as the
scheduling of transformations. In an open system where new transformations can
be introduced in the system, it is impractical to let the developer specify the sched-
ule for a particular set of transformations. Whenever new intentions are added, the
schedule should be revised, requiring a detailed analysis of the influences between the
intentions. This obviously requires detailed knowledge of the particular intentions.
To overcome this, the reduction methods of all intentions in IP have to adhere to a
few basic principles such that the transformation schedule can be determined by the
system itself. The general idea behind the following principles is that the reduction
method of each intention can assume that the entire source graph is already in its
final state, except for the changes to be performed by the reduction method itself:

e Reductions cannot remove nodes or links from the source graph. Each reduc-
tion actually attaches the resulting Rcode to the source graph. The source graph
grows during the reduction process until the entire program is reduced. Because
reductions cannot remove information from the source graph, the reduction pro-
cess will always terminate.

e A method that is executed on a node may only access neighboring nodes in the
source graph and nodes that were passed as arguments of the method. Further-
more, a method may only add new links to the node it is executing on. If a
method needs information from a distant node in the source graph, the neigh-
boring nodes should have methods that forward the method invocation to their
neighbors and so on until the desired node is reached. The advantage here is that
the system knows which nodes use information from which other nodes during
the reduction process. This means that the system can build an overview of the
dependencies between the different intentions. This information is important to
support the next principle.

e The answer to each question may not change during the entire reduction process.
This is monitored and enforced by the system. If the information in a particular
node is changed (e.g. by adding a new link to the node), all methods that were
already invoked on that node are re-executed and the results are compared with
the previous executions. When the results have changed, the system rolls back
to an instant in the reduction process where the methods were not yet invoked
and tries invoking the methods in a different order. This is possible because of
the following principle.



2.7. TRANSFORMATIONAL GENERATORS 35

e Method invocations can occur asynchronously. The system can then decide in
what order these methods are actually executed. The more method invocations
occur asynchronously, the more possible orderings the system can try.

As a result, the system can try to find a correct application order for the reduc-
tions, such that a particular reduction does not invalidate the results of a previously
executed reduction. This is opposed to having a fixed transformation order for a set
of intentions, which complicates the extensibility and composability of intentions. In
most of the cases, the IP system will be able to schedule the reductions in a correct or-
der. The reduction process can only fail to find a schedule if there are reductions that
change the same intentions in incompatible ways. This might happen if an extension
library contains reductions that change intentions in the language being extended.

2.7.3 XSLT

The XSLT language [Tid01] is commonly used to transform XML documents into
something else. The result of the transformation may be another XML document,
an HTML or even a PDF document. Although it was not intended as a program
transformation system but as a document transformation system, XSLT can be used
to transform programs. This is because an abstract syntax tree of a program can also
be represented as an XML document. Obviously, representing the parsetree of the
source program as an XML document is a prerequisite.

XSLT has the interesting feature of supporting both forward and reverse trans-
formations. An XSLT program, or so-called stylesheet, contains a number of for-
ward transformations that are applied to the source XML document to produce a
target XML document. Like any forward transformation, each XSLT transforma-
tion consists of a pattern that needs to be matched in the source document and
the corresponding result pattern in the target document. In XSLT, these trans-
formations are called ’templates’, referring to the template result pattern. For ex-
ample, the following template (adapted from [Tid01]) transforms occurrences of an
XML tag <greeting> to an HTML document displaying the (textual) contents in-
side the <greeting> and </greeting> tags. The source pattern is described inside
the <xsl:template match="greeting"> tag, which says that this XSLT template
transforms occurrences of the <greeting> tag. Inside the result pattern, we use
the <xsl:value-of select="."/> tag to retrieve the (textual) contents between the
<greeting> and </greeting> tags.

<xsl:template match="greeting">
<html>
<body>
<p>



36 CHAPTER 2. PROGRAM GENERATION

<xsl:value-of select="."/>
</p>
</body>
</html>
</x1ls:template>

The application of the templates on an XML document automatically occurs in
a recursive fashion, until a template is found that transforms a particular subtree
of the XML document. The application of any other templates for the transfor-
mation of that subtree is entirely determined by the template that matches on the
root of that subtree. For example, in the example above, no more templates will
be executed on the subtree beneath the <greeting> and </greeting> tags. This
is because XSLT requires that an explicit control flow is defined on the applica-
tion of the templates. The standard control flow is one that recursively descends
the xml document and tries to match any template. The standard control flow is
overridden if a user-defined template matches a particular tag. The application of
templates is expressed by explicitly calling a template on (a part of) the subtree (e.g.
<xls:apply-templates select="greeting">). To further control the application
of templates, XSLT provides the developer with control flow constructs to implement
iterations (<xsl:for-each>) and branches (<xsl:if>,<xsl:choose>). In general, we
conclude by saying that XSLT transformations and the transformation application
control flow are tangled.

Besides the use of forward transformations, XSLT provides support for querying
the source document through XPath expressions. The result of these queries are
used inside the result patterns of the templates. We are not going to discuss the
details of the XPath query language here, but merely illustrate its usage. In the
previous example, we already used it to retrieve the contents of the current node under
transformation (i.e. the "." in the <xsl:value-of select="."/> construct). Using
XPath, we can retrieve information from anywhere in the source XML document by
expressing a path over the tree that starts at the current node under transformation.
This allows us to implement reverse transformations because we can 'fill in’ a particular
result pattern with information retrieved from the source document. For example, the
following template transforms the root node of the source tree into an html document
and retrieves its information from the source tree using XPath. It accomplishes the
same transformation as our previous example but it uses XPath to query the subtree
of the rootnode (which is the current node under transformation) to retrieve the
<greeting> tag.

<xsl:template match="/">
<html>



2.8. COMPOSITIONAL PROGRAM GENERATION 37

<body>
<p>
<xsl:value-of select="greeting"/>
</p>
</body>
</html>
</x1s:template>

2.8 Compositional Program Generation

Compositional program generators produce an output program by composing sev-
eral smaller program building blocks together. The building blocks are programming
abstractions such as classes, functions, components, templates, aspects, hyperslices,

The idea is that each building block implements a particular feature and can
be composed with the other building blocks through a composition technique. It is
also common that a set of composition rules and constraints govern dependencies be-
tween the separate building blocks such that the generator always produces a correctly
working system. The use of compositional program generators depends on whether or
not we can implement the required features in separate program parts and recompose
them to generate an output program. A compositional generator We describe the
most important composition program generation techniques below.

2.8.1 GenVoca Generators

GenVoca [BST194b] is a design methodology for creating software product-lines [BJMvHO02].
GenVoca has now been generalized into the AHEAD model[BSR03| but we restrict
ourselves to the discussion of the original GenVoca model because its generalization

is not important with respect to our discussion.

In the GenVoca model, a software application is generated through the composition
of layers of abstraction. Each layer implements a particular feature and consists of
abstractions native to the programming language (e.g. classes, methods, functions,
templates, mixins,...). Stacking layers onto each other yields a complete application
containing the features implemented by the respective layers. This is because each
layer 'refines’ the layer above it by composing its internal abstractions with the already
existing abstractions in the layers above or by adding new ones. Several different
implementation technologies have been used to implement the GenVoca model. The
most prominent and well-know examples are through C++ templates [Cza98] and Java
mixin-layers [SB98]. In both these implementation techniques, the object-oriented
inheritance is used to compose the different layers.



38 CHAPTER 2. PROGRAM GENERATION

In order to obtain a particular application, we need to describe the desired com-
position of layers in a GenVoca equation. Conceptually, in these equations, programs
are values and refinement-layers are functions. These functions take a program as
input and produce a program refined with the particular feature (implemented by the
layer) as output. For example, consider the following equations:

applicationl = f(g(x))
application2 = h(i(x))

In this example, we define two applications. applicationl is the program x,
extended with the features £ and g and application?2 is program x, extended with
features h and 1i.

In the GenVoca model, the generator’s implementation is based on language fea-
tures available (or integrated) in the general-purpose language. For the purpose of
implementing GenVoca layers and generators in Java, the language was extended with
mixins and mixin layers. In short, a mixin in Java is a class without a static superclass.
This means that the superclass of this mixin class is not specified at the definition of
the class. Instead, when the mixin class is used, it must be supplied with a superclass,
which can again be a mixin class. As such, we can use the same mixin class to extend
the behavior of many other classes. To use a mixin class, we define a new class that
is the composition of the mixin with its superclass. This is done through the typedef
construct. The following example illustrates the composition of a mixin M with a
class C into the new class N.

typedef N M < C >

A mixin-layer is a mixin that contains other mixins and classes. It is used to
group mixins together. Clearly, mixin layers are used to implement GenVoca layers
and mixins and normal classes are the basic abstractions inside each layer. The
composition of genvoca layers is thus implemented as the composition of mixin layers.
Inheritance between mixin-layers is defined in terms of inheritance of its parts. In
figure 2.6, the inheritance hierarchy for a composition of layers x, £ and g is shown.
Layer x is the core of the application and is refined by layers £ and g. Therefore, layer
x is implemented using normal classes, while the other layers consist of mixins. The
resulting application is the composition of these layers or, technically, the set of most
specialized subclasses of each inheritance chain.

Of course, not all layers can be stacked onto each other and some compositions
might not even result in a working system. These problems are respectively solved
by a type-checker and a design-rule checker [BG97]. The type-checking is based on
the fact that layers are grouped in realms and each layer can only accept layers of
a particular realm as input. This means that the result of certain functions cannot



2.8. COMPOSITIONAL PROGRAM GENERATION 39

X1 X2 X3 X4
layer
X
yA\ AN AN 7N
T |y T
Gl '-.-t G2 '-.- G4 '-1-' layer
| | | G
] ] ]
JAN
T T
F1 ‘-1 F3 '-.- layer
F
4 application 1

Figure 2.6: The inheritance hierarchy implementing the f (g(x)) GenVoca equation.

be used as a parameter of other functions. A realm can thus be seen as a typing
mechanism for layers and the arguments and return value of a function in a GenVoca
equation are statically typed. The correctness of the equations is then checked by
a type-checker. More complex, semantic design-level dependencies are expressed by
adding applicability constraints to the layers. These constraints can describe the
incompatibility of features or they can enforce a certain order on the stacking of the
layers, etc. ...

2.8.2 Aspect-oriented Programming

Aspect-oriented programming [KLM™97] is a novel programming technique to mod-
ularize the implementation of so-called crosscutting concerns. Crosscutting concerns
are parts of a program that cannot or cannot be easily modularized using contempo-
rary programming languages. Often cited examples of such crosscutting concerns are
synchronisation, error-handling, persistence, security, etc.... In an aspect-oriented
programming language, a novel modularization is offered in which the implementa-
tion of such a crosscutting concern can be syntactically modularized. Such a module is
commonly referred to as an aspect and consists of two main parts: the aspect function-
ality and a pointcut or crosscut definition. This crosscut definition specifies where or
when the aspect’s functionality needs to be invoked. This is where aspects differ from
traditional language modules: the aspect itself specifies where or when it needs to be
invoked. The first aspect languages were domain-specific languages to describe, for
example, synchronisation (COOL [Lop97]) or loop-fusion (RG [MKL97]). Afterwards,
more general-purpose aspect languages were developed, such as the well-known As-
pectJ aspect language [KHHT01]. Aspect] is an extension to the Java programming



40 CHAPTER 2. PROGRAM GENERATION

language with aspects.

In aspect-oriented programming, the program that actually executed is produced
by an aspect weaver. An aspect weaver accepts the definition of a set of aspects and
the so-called base program and weaves the aspect implementation (its functionality)
into the base program at the appropriate locations defined by the crosscut. Such an
aspect weaver can be seen as a program generator that modifies the original program
and composes it with the aspect implementation. Consequently, aspect weavers can
be seen as compositional program generators.

2.8.3 Subject-oriented Programming and Multidimensional Separa-
tion of Concerns

In Subject-Oriented Programming (SOP) [OKK™96, HO93], an application is built
through the composition of subjects. Each subject is a collection of program parts
and the composition merges appropriate parts together to build the resulting pro-
gram. A subject may be a complete application by itself or it may be an incomplete
fragment that needs to be composed with other subjects. As in all composition-based
techniques, the idea is that each subject implements a separate feature of the entire
program and the composition of subjects integrates their corresponding features in
the output program. The composition of subjects is governed by composition rules
that establish correspondence between entities in different subjects. The correspond-
ing entities are then merged together in a specific way, which is also indicated by
the appropriate composition rule. There are many different composition rules and
they are described separately from the subjects, which is in contrast with the mixin-
implementation technique for GenVoca, where one kind of object-oriented composition
technique is used to compose the different parts.

Because of this diversity in composition rules, the composition of subjects is quite
flexible and facilitates the reuse of subjects across different applications. As we already
mentioned, a subject is a syntactically correct program, implementing a particular
feature which may or may not be an already complete program. Since the SOP
technique has been applied in practice in the context of class-based object-oriented
programming, this means that subjects consist of classes, containing methods and
instance variables. The composition rules are described in separate files and establish
a composition between these three kinds of parts in each of the participating subjects.
The rules are divided in correspondence and combination rules. The correspondence
rules establish a correspondence between the different parts that need to be composed
and the combination rules determine how the corresponding parts should be composed.
The most basic and default correspondence rule establishes a correspondence between
elements of the different subjects that have the same name. Exceptions to this rule can
be manually described. A combination rule for different parts either joins the parts



2.8. COMPOSITIONAL PROGRAM GENERATION 41

together or one of the parts replaces the other. Furthermore, ordering constraints
can be specified to control how method bodies are combined and a function can be
specified to compute the return value of a composed method.

The subject-oriented programming technique has now evolved into multidimen-
sional separation of concerns (MDSOC) [OT99], of which it is now a part. MDSOC is
also mentioned as an aspect-oriented software-development approach and is a gener-
alization of subject-oriented programming to all phases of the software development
lifecycle. It also includes a number of improvements and extensions to the composition
rules, which we do not describe here as the general concept remains the same.



42

CHAPTER 2. PROGRAM GENERATION



Chapter 3

Analysis of Program (enerator
Composition

In the previous chapter, we provided an overview and a classification of existing gener-
ative programming techniques. The primary goal of these techniques is the development
of program generators that generate black-box programs. Although this black-box prop-
erty is desirable to hide implementation details and prevent broken functionality of the
generated programs, it limits the reusability of the program generators. In this chap-
ter, we explain how black-box generated programs prevent a composition of generators
such that their respectively generated programs are integrated. More importantly, we
identify a set of requirements for a composition technique for program generators that
combines the advantages of black-box generated programs with the ability to integrate
the generated programs of different program generators.

3.1 Introduction

A program generator is generally considered in isolation. Using contemporary gen-
erative techniques, a program generator produces a program that is implemented in
one or more encapsulated modules with a well-defined interface. The application
developer can use the generated program by accessing this interface. The internal
implementation of this generated program is hidden and considered as a black-bozx
for the application developer who applies the generator. Consequently, the applica-
tion developer cannot and should not change any internal implementation details of
the generated program. He can only use the mechanisms available in the program-
ming language (such as parameterization and inheritance) to influence or adapt the
behavior of the generated program. Although a mechanism such as inheritance al-
ready provides some powerful adaptation possibilities, it also requires more detailed

43



44 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

knowledge on the internal implementation to achieve a correct adaptation. This con-
flicts with the black-box property of generated programs. Nevertheless, the black-box
property is desirable because it hides the application developer from the complexity
of the generated code. In essence, most of the internal implementation details of a
generated program are completely determined by the program generator. However,
using multiple program generators in the development of a single application will in-
evitably require a composition of the generated programs. The black-box property of
the generated programs implies that we can only compose such generated programs
by means of glue-code. However, such glue-code composition of black-box generated
program modules is not sufficient. First of all, many frequently implemented parts of
programs are not or can not be implemented using encapsulated modules. Examples
of such program parts are collaborations between multiple modules (e.g. the imple-
mentation of publish-subscribe dependencies) or conceptual modules that are spread
across different implementation modules (e.g. synchronisation code). This is also il-
lustrated by the advent of aspect-oriented software development [KLM*97, Fil02] that
refers to these program parts as crosscutting code. Although there is a clear need for
generators of crosscutting code, composition of the generated crosscutting code with
other generated programs is problematic. This is because crosscutting code requires
to be integrated into a (generated) program. The black-box property of generated pro-
grams hides all internal implementation details which severely restricts the possible
integrations. In essence, we can only express an integration with the public interface
(methods) of a generated program. More invasive integrations require more detailed
knowledge on the internal implementation of the generated programs. Furthermore,
even if we can access the internal implementation and specify a more invasive inte-
gration of the crosscutting code in the generated program, this integration can still
lead to undesired interactions and break the functionality of the generated programs.
Such undesired interactions (or interferences) are even more apparent when multiple
crosscutting code parts are integrated in a (generated) program. On the other hand,
interactions are also frequently intended or required in particular integrations. This
means that in some integrations, such interactions need to be prevented, while in other
integrations, the interaction is part of the integration itself.

As we will illustrate later on, even if we do not consider crosscutting code, par-
ticular compositions of generated programs require interactions that are hard or even
impossible to achieve in a given programming language by means of glue-code, in-
heritance or parameterization . Instead, such interactions also require an invasive
integration of the generated programs. To achieve an invasive integration of gener-
ated programs, we propose a particular composition of program generators that we will
refer to as integrative composition. In an integrative composition of two generators,
each generator can perform an invasive modification to the generated program of the
other generator. This means that parts of the implementation of a generated program



3.2. MODULAR PROGRAM GENERATORS 45

are inserted in, or integrated with, another generated program. The result is a merge of
the generated programs that combines their individual structures and functionalities.
Clearly, this requires a composition technique that breaks the encapsulation bound-
aries of the generated programs. Furthermore, the composition mechanism needs to
prevent undesired interactions (interferences) but needs to be sufficiently flexible to
allow the intended interactions between the generated programs.

In the following section, we describe modular program generators and why in-
tegrative composition is important in their implementation. Next, we describe how
functional composition is inadequate to support such integrative composition and
finally, in section 3.5, we discuss the requirements for an adequate integrative compo-
sition technique. The actual generative technique that is designed to allow integrative
compositions is described in the following chapter.

3.2 Modular Program Generators

It is considered good practice to implement individual features of a software program
in separate modules and use a composition technique to recompose the separate mod-
ules into a working program. FEach of the separate modules themselves is again a
program that can be decomposed into separate modules. This principle of separa-
tion of concerns and hierarchical decomposition [Dij76] is a driving force in software
engineering and programming language technology. The more we separate the imple-
mentation of individual features of a program into separate modules, the more we can
reuse these individual modules in the implementation of other programs, and thus,
reuse the feature they implement. The same principle holds for the development of
program generators. By modularizing the implementation of a program generator, we
can reuse the individual modules in the implementation of other program generators.
In this section, we first motivate why modular generators are best achieved through a
modular composition of program generators and illustrate this motivation by means
of a set of small example generators. We also describe the two different kinds of
composition that are needed to build meaningful compositions of these generators. In
particular, we discuss the difficulties involved with integrative composition.

3.2.1 Motivations
Separation of Generated Concerns

In applying the principle of separation of concerns [Dij76] to the implementation of
a program generator, it is best to modularize according to the concerns that need to
be generated. This means that the generation of each concern of the output program
needs to be implemented in a separate module of the program generator. For example,



46 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

a generator that produces a traversable tree implementation can consist of a module
that implements the tree implementation structure and a module that produces the
traversal methods that need to be integrated in the tree implementation. This modu-
larity is desirable because the implementation of each module can concentrate on the
generation of a single concern. Consequently, such a modularity structure is a natural
way of structuring the implementation of a program generator. Because the individual
modules implement the generation of a particular concern, they can be reused in the
implementation of other generators that also require the generation of that concern.
It also means that a crosscutting concern in the generated program corresponds to a
modularized concern in the program generator.

Separation of Generation and Integration

To maximize reusability of the individual modules, their coupling needs to be reduced
to a minimum. It means that each module must make as few assumptions as possible
about the other modules. In program generators, this does not only mean that each
module may not be concerned with how another part of the program is generated,
but also that each module may not be concerned with what the generated programs
produced by the other modules look like. Each module may only be concerned with
the generation of its particular part of the program and may not be concerned about
how it must compose or integrate its part of the program with the other generated
program parts. The integration itself must be a property that is determined by the
composition of the individual modules.

For example, the module that generates the traversal code must only concentrate
on the generation of the traversal methods. These methods need to be integrated in
the tree implementation. However, to produce these methods, the traversal generator
must know how the child nodes of a node can be retrieved. Furthermore, to produce
a complete implementation for a traversable tree, the methods need to be included
in the implementation of the classes that implement nodes and leaves. The module
that produces the traversal code is strongly coupled to the module that produces the
tree implementation if it can only produce traversal code for that particular tree im-
plementation. For example, this occurs if the generated traversal code assumes the
existence of a method with a particular name and signature in the tree implemen-
tation that retrieves the child nodes. To achieve a minimal coupling, the modules
need to be parameterized with information required from other modules. In the ex-
ample of the traversable tree, the module that produces the traversal code needs to
be parameterized with the method (included in the tree implementation) that can be
invoked to obtain the child nodes. Another parameter is the exact location where the
methods need to be integrated in the tree implementation. This means that the spec-
ification of the composition or integration of the generated program parts (produced



3.2. MODULAR PROGRAM GENERATORS 47

by each individual module) needs to be specified external to the implementation of
the modules.

A separately specified composition or integration of the generated program parts
allows that the generated program part of a module is not specifically implemented
for integration with a specific other program part. In this way, each generator module
makes as few assumptions as possible about the other modules and their generated
program parts, which enhances the reusability of each module.

Composition of Program Generators

The composition technique to compose the generator modules, mentioned in the pre-
vious sections, needs to consider these individual modules as individual program gen-
erators. This is because each module can only produce its own program part and must
be parameterized with information that is needed from other modules to generate its
own part of the program. Consequently, a module behaves as a stand-alone program
generator. At least, the composition technique will need to consider the modules as
individual program generators. Such a composition technique for individual genera-
tors will not only allow to build modular generators but will also allow to compose
existing generators. Another advantage of building modular generators as a compo-
sition of other generators is that the generation of a single concern (implemented by
a single generator) can also be useful in manually implemented programs. In other
words, a generator that produces the implementation of a crosscutting concern can
also be useful when considered in isolation. A modular composition technique for pro-
gram generators does not only allow us to build compositions of existing generators
but also allows us to build modular generators of which the individual modules are
program generators themselves. More specifically, a modular composition technique
for program generators that addresses the integration of the generated programs will
allow developers to compose the functionality generated by each program generator
into a single generated program.

3.2.2 Examples

Building a program generator as a modular composition of generators that each pro-
duce an individual concern of the generated program, is a natural way of structuring
a program generator. To clarify this, we introduce two example program generators
without delving into their particular implementation details. A first example intro-
duces a tree generator which is composed with traversal and balancing generators.
A second example focuses on the composition of a graph generator and an observer-
observable generator. Each of the examples illustrates how separation of generated
concerns is useful to structure the modularization of a program generator. We will



48 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

use these examples throughout this chapter to illustrate the problems associated with
the modularization and the required composition. We also implement them in the
following chapters.

Tree-implementation generator

The tree generator produces an object-oriented implementation of a tree structure.
This generator accepts a specification of a tree implementation consisting of names
of nodes and leaves, as well as a specification of restrictions on the structure of the
possible trees that can be built with it. This specification restricts which kind of
nodes may be a child of a specific kind of node and how many children this particular
kind of node may or must have. In figure 3.1, an example specification for a tree
implementation is shown. The syntax of the specification is not important but it
shows that in a tree implementation specification, a tree is modeled by the names of
the nodes and the leaves. Each node (e.g. NodeA and NodeB) has a list of possible
children associated with it. In the example, NodeA can only have children of the kind
of LeafA and NodeB. Furthermore, each node also specifies its arity (the number of
children it (can) have) and whether it is a fixed or maximum number. For example,
NodeB is restricted to a maximum of 4 children.
Node NodeA

children LeafA,NodeB

multiplicity fixed 2
Node NodeB

children LeafB,NodeA

multiplicity maximum 4

Leaf LeafA
Leaf LeafB

Figure 3.1: An example tree specification.

The generated implementation for a tree consists of a set of classes, corresponding
to the specified nodes and leaves. The implementation that is generated for the tree
specification of figure 3.1 is illustrated as a UML model in figure 3.2. Some common
behavior and state for nodes and leaves are implemented in the classes SuperLeaf
and SuperNode respectively. Each (concrete) node class implements the necessary
methods to attach nodes, remove nodes, etc.... Furthermore, all generated methods
implement the necessary checks to prevent any incorrect tree structures. These checks
prevent the creation of trees that do not correspond to the restrictions specified in the
input specification and prevent the creation of cycles in the tree. For example, the
generated implementation of the child:at: method on NodeB (that adds a child node
to a node of kind NodeB) is shown in figure 3.3. Furthermore, a value can be contained



3.2. MODULAR PROGRAM GENERATORS 49

in each node and leaf and can be accessed through generated set and retrieve methods.
Summarized, the generated implementation contains all structures and behavior that
is necessary to build a correct tree and is tailored towards the requested features.

SuperLeaf
value
value()
value:(aValue)

SuperNode LeafA LeafB
children
children()
childAt:(pos)
child:at:(node,pos)

AN

NodeA NodeB

child:at:(node,pos) child:at:(node,pos)

Figure 3.2: An example tree implementation.

NodeB >> child: aChild at: aPosition

((aChild isKindOf: LeafB) or: [aChild isKindOf: NodeA])
ifTrue: [self error:’Creating incorrect tree’]
ifFalse: [children at: aPosition put: aChild]

Figure 3.3: Generated implementationf for the NodeB >> child:at:

Contemporary implementation techniques such as object-oriented frameworks and
library components cannot be used to implement the variability and tailorability with
the same efficient implementation as the one produced by the tree generator. On the
one hand, a (static) library cannot implement all possible tree implementations that
can be specified. A tree generator, on the other hand, can produce an entire family
of possible tree implementations. The tree generator automates the process of writ-
ing the different implementations manually. Furthermore, an implementation of the
tree as a specialization of a generic object-oriented framework (or with customizable
library components) has to rely on object-oriented inheritance or parameterization to
implement the possible variabilities of each tree implementation. Besides the names of
nodes and leaves, there is a variability in the generated code of the child:at: method
that ensures that a created tree adheres to the restrictions in the specification w.r.t.



50 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

the possible child nodes. This generated code is different depending on the chosen re-
strictions. Using contemporary programming languages, the implementation of these
variabilities is best done using parameterization. This means however, that at each
instantiation of a node or leaf, the correct arguments (e.g. names of possible kinds
of nodes and leaves) must be supplied. This can again be solved using the template
method or abstract factory patterns [GHJV95]. However, the developer also needs to
ensure the consistency of these arguments with the rest of the implementation (i.e.
the given names of nodes and leaves must exist). This could also be solved by some
additional code in the framework or library component that checks this. However,
all this additional code further complicate the generated program and reduces the
performance. Therefore it is best to generate the implementation. Furthermore, with
a generator, the desired specifications of the tree implementation are described in a
domain-specific language (specific to the domain of trees) instead of in the (object-
oriented) solution domain. As a conclusion, the generation of a tree implementation
is particularly useful, compared to more traditional implementations.

Reuse of the Tree Generator

It would be useful if we could reuse the basic tree-implementation generator in the im-
plementation of other, more advanced, tree-implementation generators. For example,
we could implement a parsetree generator, a traversable tree generator, a balanced
tree generator and a traversable, balanced tree generator. All these examples would
benefit from reusing the implementation of the tree-implementation generator. It
means that we would like to compose this basic tree-implementation generator with
other generators that produce an implementation for these more advanced features.
The result of this composition is an advanced tree-implementation generator. One can
also consider this composition as an extension to the tree-implementation generator
to produce more advanced tree implementations (i.e. traversable, balanced, ... trees).
The following paragraphs describe each advanced feature and its integration in the
generated tree implementation in more detail and a last paragraph considers an evo-
lution of the original tree-implementation generator.

Parser and parsetree generator Given a grammar description, this generator pro-
duces a parser and all structures required to build a parsetree. Building a gen-
erator for a parser and its produced parsetree structures is useful because it is
impossible to implement all possible parsers and their corresponding parsetrees
in a library with the same efficient implementation. Furthermore, the genera-
tion of parsers and parsetrees has already shown to be a useful application for
program generators [LMB, JCC].

In the implementation of this parsetree generator, we want to reuse the existing



3.2. MODULAR PROGRAM GENERATORS 51

tree generator. This alleviates the implementation of the parsetree generator
because we can rely on the tree generator to produce a correct tree structure.
As such, this generator should be a composition of the new parser generator
and the existing tree generator. It accepts a specification of a grammar and
annotations that specify the abstract syntaxtree structure and it produces a
parser class and classes that implement the parsetree.

Traversable tree generator The tree implementation produced by the original tree
generator implements accessor methods for the children of a node, which makes
it possible to traverse a tree. However, applications that use a tree might require
a particular kind of tree traversals. Traversals can be either in-order, pre-order
or post-order. Furthermore, some of the nodes and leaves might not be required
for a specific traversal, but they still need to be traversed in order to reach the
children of those nodes.

Traversal code in object-oriented style is an example of crosscutting code. Al-
though a traversal can be implemented without crosscutting code (i.e. in a
functional style), the crosscutting implementation is more appropriate because
the crosscutting traversal code can access the internal state of each object it
traverses without the need for public accessor methods. Furthermore, a cross-
cutting implementation of traversals allows the client code to invoke the traversal
in an appropriate object-oriented message sending style. The implementation
of the traversal program requires a lot of repetitive code in each of the tree’s
implementation classes. As a consequence, it is most useful to generate its imple-
mentation. Even if particular design patterns (such as the visitor design pattern
[GHJV95]) are adopted, a lot of code is still repetitive.

To implement a traversable tree generator we would again want to reuse the
existing tree generator. This tree generator can produce the necessary tree
implementation which is then integrated with the generated traversal code, pro-
duced by the new traversal generator. The traversable tree generator accepts a
tree and traversal specifications and produces a traversable tree implementation.

Balanced tree generator The tree implementation that is generated by our tree
generator does not contain any code to balance the tree structure. In the case of
a parsetree, balancing is not required. However, we can think of many applica-
tions of tree structures in which a balancing operation would be useful. Hence,
we want a generator for a balanced tree structure. Once again, instead of imple-
menting this generator from scratch, it is useful to reuse the tree generator in the
implementation of the balanced tree generator. As such, we need a composition
of the tree generator with a generator for a balancing algorithm. The resulting
generator accepts a tree specification and an ordering condition on the tree and



52 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

produces a balanced tree implementation.

Traversable, balanced tree generator Now that we have a tree generator, a bal-
ancing generator and a traversable generator, we should be able to combine
them to build a tree that is both balanced and traversable.

Evolution in the tree generator Consider that the original tree generator needs
to be changed such that some new features (such as nodes with parent links,
sorted trees,...) can be incorporated in the generated tree implementation.
Another possible evolution is that we replace the existing tree generator with a
new generator that produces a slightly different implementation. Obviously, we
would want to reuse the balancing and traversal generators in combination with
the new or changed tree generator. In other words, we do not want changes to
propagate to the other generators. This is possible if the traversal and balancing
generators are sufficiently generic and modular and most importantly, loosely
coupled with the tree generator.

The tree generator example, and its traversal and balancing constituents in partic-
ular, illustrate the need for stand-alone, crosscutting code generators. The traversal
and balancing generators each generate a single concern of a traversable, balanced tree
implementation. Both the balancing code and traversal code are required to crosscut
the tree implementation. It is also desirable to implement a traversal generator once
and be able to use it on both manually implemented and generated tree implemen-
tations. In essence, the separate implementation of the traversal generator allows
reuse of this generator on many different generated and manually implemented tree
implementations. Besides the fact that the generated traversal and balancing imple-
mentations are required to crosscut, there are also some dependencies between the
generated code of the different generators, such as methods or variables generated by
one generator that need to be referenced, or used, by the code generated by another
generator. We will come back to these issues later on.

Constraint-Network generator

In a second example, we build a generator that produces an implementation for a
constraint network. The generated implementation will consist of a graph structure
where the nodes represent values and the edges represent constraints. Whenever
we change the value of a particular node, the consistency of the network is verified
by checking the appropriate constraints. In fact, the constraints can propagate a
change in one node to a change of the value in another node. The generation of this
network involves the generation of a graph structure and the generation of a constraint
solver. For the purpose of this example, we will focus on the graph generator and the



3.2. MODULAR PROGRAM GENERATORS 53

generation of a particular part of the constraint solver that can be implemented as an
observer-observable collaboration.

Graph-implementation generator Our graph generator is similar to a our tree
generator. Given a description, it generates an object-oriented implementation
for a graph structure. This implementation provides the necessary classes for
each kind of node and edge, with graph manipulation methods implemented in
them. The description also specifies particular features of the graph such as
directed or undirected edges and if nodes can be connected by multiple edges,
etc.... Generating a graph implementation has the same advantages as the
generation of a tree structure.

Observer generator A generator for an observer-observable collaboration produces
an object-oriented framework together with some crosscutting code that needs
to be woven into an application. The observer framework implements a collab-
oration between several objects such that an object (the observable) can notify
other objects (observers) whenever something interesting has changed about
the observable. The sending of these notifications (by a message send) requires
crosscutting code. The idea is that the observable is independent of its observers
and that the observers can change dynamically. For that purpose, the observ-
able merely invokes a message each time the observers need to be notified. This
message is implemented by the observer framework and notifies all observers
who can react appropriately. More information about the observer-observable
collaboration can be found in [GHJV95]. A possible variation in functionality
for this collaboration is that observers can be allowed to subscribe only once,
as opposed to receiving multiple notifications of a single event. The generated
code will thus be different if multiple subscriptions are allowed or not. Another
possible variation is located in how the observer is linked to its observable. The
observer can pass itself on via the notification message of the observers keep a
reference to the observable.

Although the observer generator can best be implemented as a crosscutting code
generator, the integration of the generated graph implementation with the observer
implementation requires more than a cross-cutting of the observer code with the
graph code. Figure 3.4 shows the generated graph implementation and the generated
observer-observable implementation separately. The integration of these implementa-
tions that is required to implement the constraint-network generator must achieve that
the neighbours of a node are in fact the observers of the observer. This integration
does thus not only require a structural integration of both implementations but also
requires a semantic interaction. The semantic interaction consists of a unification of
the neighbours and observers.



54 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

GraphNode GraphEdge
neighbours sourceNode
edges 2 * | destinationNode
connect:(edge) source()
disconnect:(edge) destination()

[ NodeA ] [ NodeB [ NodeC | EdgeBC | EdgeAB
Observer Observable
observers
observable

changed:(aspect)
addObserver:(observer)
— delObserver:(observer)

update:(aspect)

Figure 3.4: Generated graph implementation and the generated observer-observable
collaboration.

3.3 Translation and Integrative Composition

Now that we have described which concerns to separate and thus how the modularity
of program generators is best structured, we need a composition technique to compose
the individual program generators. We can identify two kinds of composition: transla-
tion composition and integrative composition. Each of these two kinds of compositions
has a totally different purpose.

The purpose of a translation composition is that the generated program of one
generator is translated into another language by the other generator. It means that
the generated program of the first generator is the input specification for the second
generator. The actual translation is performed by the second generator in the com-
position. A translation composition is useful because the first generator reuses the
generation capabilities of the second generator. It also allows us to build higher ab-
straction levels than those offered by the input language of a particular generator. An
example of a translation composition can be found in the modular implementation of
the Parser and parsetree generator, which is illustrated in figure 3.5. The Parser
and parsetree generator is written as a composition of a Parser generator, a Tree
generator and the Spec generator. The Spec generator accepts a grammar descrip-
tion where the production rules are augmented with specific annotations to permit
a correct construction of a parsetree. The Spec generator translates this description
into an EBNF' description which contains production rules annotated with actions



3.3. TRANSLATION AND INTEGRATIVE COMPOSITION 55

Grammar
specification

generator input l

Spec
Generator

generator output

Tree
specification

EBNF
specification

H generator input

Parser
Generator

Tree
generator

l generator output

[ Scanner ] Node
] I children Leaf
I addChild()

removeChild|

Figure 3.5: A translation composition to build the 'parser and parsetree’ generator.

to build the parsetree. At the same time, the Spec generator produces a descrip-
tion of the parsetree in the tree description language which is accepted by the Tree
generator. The Tree generator then further translates this tree specification into an
object-oriented tree implementation. Similarly, the EBNF description is handed to
the parser generator which produces a scanner and parser implementation. In the final
output program, the parser and parsetree implementation communicate only through
their public interfaces.

The purpose of an integrative composition is the integration of the generated pro-
grams produced by the generators. This kind of composition is required because in
a modular generator, the individual concerns of the generated program are generated
by individual program generators. These separately generated programs must thus
be assembled (or integrated) to produce the complete generated program. In the ex-
amples we introduced above, we frequently require such an integration of generated
programs. A first example of integrative composition can be found in the modular im-
plementation of the traversable balanced tree generator, illustrated in figure 3.6. The
generator is built as an integrative composition of the tree generator, the balancing
generator and the traversal generator. These last two generators produce crosscutting
code (variables and/or methods) that needs to be integrated in the generated program
produced by the tree generator (which consists of classes). Another example of inte-



56 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

‘ Grammar ‘ Traversal

d d
Parsetree Traversal
generator generator

Node

children

‘addChild() Les generator output

removeChild()

ray

‘ Bal_apcing ’ generator input
!

Balancing
generator

o
5
H
H
3

Figure 3.6: An integrative composition of a traversal generator and a tree generator.

grative composition can be found in the composition of the graph generator and the
observer generator to build the constraint-network generator. The generated classes
that implement the 'observables’ need to be integrated with the generated classes that
implement the graph nodes.

3.3.1 Requirements and Definition

In any composition, there are some basic requirements with respect to the input and
output languages of a generator. For translation and integrative composition, these
are respectively:

e In the case of translation composition, a generator A can be composed with
another generator B if the output language of generator A is the same as the
input language of generator B. Evidently, if generator B does not understand
what generator A is producing, the translation composition cannot work.

e For an integrative composition, a generator A can be composed with a generator
B if their output languages are the same, or can be considered as subsets of the
same (integrated) language.

For example, it is clear that a Smalltalk method cannot be integrated in a Java
class, or that a graph description cannot be integrated with an object-oriented pro-
gram. On the other hand, the integration of an SQL program with a Java program
is possible when we consider that ‘Java with embedded SQL’ is the common output
language of both generators. While SQL and Java are different languages, we can
imagine an integrative composition of generators that produce SQL and Java respec-
tively. The result is a program written in the language ‘Java with embedded SQL’.



3.3. TRANSLATION AND INTEGRATIVE COMPOSITION o7

However, this does raise some specific integration issues with respect to the embed-
ding of SQL in Java. These issues are not considered in this dissertation. In other
words, we assume that an integrated language, such as ’Java with Embedded SQL’ is
entirely defined.

We summarize the difference between translation composition and integrative com-
position in their definitions:

Translation Composition A translation composition of two generators A and B is
a composition where the output program of generator A is the input program of
generator B.

Integrative Composition An integrative composition of two generators A and B is
a composition where the output programs of both generators are integrated into
a single output program.

3.3.2 Invasive Integrative Composition

An integrative composition involves the invasive modification of the generated pro-
grams and thus requires that each generator breaks the black-box property of the
other generator’s generated program. This integrative composition requires knowl-
edge about how and where to modify this generated program without breaking its
functionality. In the following subsections, we explain the impact of invasive integra-
tive composition and we also make a distinction between a structural and a behavioral
integrative composition.

Integrative Composition Conflicts with Black-box Generated Programs

There is a distinction between translation of a program and modification of a program.
Translation of a program changes the program’s language but does not change its
meaning (or behavior). Modification of a program changes its behavior but does not
change the implementation language. Modification of a program requires detailed
knowledge about the program in order to modify it correctly, while translation only
requires knowledge about the language in which it is expressed. This distinction
is important because it imposes particular requirements on a composition technique
for integrative composition. Obviously, in an integrative composition, the generated
program is modified because it (invasively) integrates with another generated program.

A translation composition only requires that the generated program of the first
generator is written in the input language of the second generator, while an integra-
tive composition requires that one or both generators have detailed knowledge about
the generated programs of both generators. This implies that integrative composition
conflicts with the black-box property of generated programs. The black-box property



58 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

restricts the possible integrations of generated programs to glue-code composition be-
cause we only know about the public interfaces of the generated programs. Obviously,
this simple glue-code integrative composition prevents the implementation of genera-
tors for crosscutting code. Crosscutting code is required to be integrated, or woven,
into a program: it crosscuts the implementation of another program. This is in con-
trast with the fact that many frequently implemented program parts are crosscutting
and cannot be implemented as encapsulated programs. In other words, the implemen-
tation of crosscutting code generators requires an invasive integration of the generated
programs instead of simple glue-code integration. The balancing and traversal gen-
erators are clear examples of generators of crosscutting code. Although we consider
that an integrative composition by glue code is the most simple form of integrative
composition, we will always use the term integrative composition for an invasive in-
tegrative composition. Unless explicitly stated otherwise, glue-code integration is not
considered when we are dealing with integrative composition.

Structural versus Behavioral Integration

In an integrative composition, the generated programs that are integrated are not
independent of each other. On the one hand, there are often required interactions
between the integrated programs, while on the other hand, undesired interactions (or
interferences) need to be avoided. Once again, this requires that the generators in
an integrative composition require solid knowledge about the structure and behavior
of generated programs. Hence, integrative composition conflicts once again with the
black-box property of generated programs. For example, in the integrative compo-
sition of the traversal generator and tree generator, the traversal generator needs to
integrate its generated traversal methods in the classes produced by the tree genera-
tor. To generate the traversal code, the traversal generator requires knowledge about
how to access a child node from within a particular node and which classes implement
nodes and which classes implement leaves. Similarly, the balancing generator requires
knowledge about the manipulation messages that can be sent to restructure the tree.
Last but not least, the methods that are inserted may not override nor overwrite
existing methods, as this will cause undesired interactions (interferences).

The previous example is a pure structural integration. The integration of the
traversal methods in the tree’s classes is a structural modification to those classes.
Although it inserts new behavior on the tree, it does not modify existing behavior.
In essence the behavior of the tree and the traversal code interacts only through
their public interface. Furthermore, the integration only requires other structural
knowledge such as the names of the messages and the identification of nodes and
leaves. However, in some cases, the generated programs are required to interact
by means of more ‘overlapping’ implementations. For example, in the constraint



3.3. TRANSLATION AND INTEGRATIVE COMPOSITION 59

Observer-observable I l Graph I
specification specification
=

!
Graph
generator

generator input

Observer-
observable
generator

== 0l
GraphEdge == Observer generator output
sourceNode edges
destinationNode neighbours | == observers
source() — observable
destination() ‘addObserver:(observer)
delObserver:(observer)
changed:(aspect)

connect:(edge)

Figure 3.7: Integrative composition of the observer-observable generator and the graph
generator.

network generator, we require an integration of the generated programs of the graph
generator and the observer-observable generator. The generated classes that represent
nodes contain references to their neighbors. The generated framework classes of the
observer-observable generator that represent the ‘observables’ contain references to
the observers. In the constraint network, the observers of a node are its neighbors.
This integrative composition requires an interaction between the generated programs
of the graph generator and the observer-observable generator. Such an interaction
can, for example, be achieved by integrating the generated programs such that the
list of references to the neighbors is the same list as the list of observers. This can
be done by choosing an overlapping implementation for the instance variable that
contains the neighbors and the instance variable that contains the observers. This
means that the instance variables of both generated programs need to be integrated
into one single variable that is used by both.

Figure 3.7 illustrates the integrative composition of the observer-observable gener-
ator and the graph generator. Besides a structural integration, this example requires
a behavioral integration. The merging of the instance variables gives rise to a be-
havioral interaction between the generated programs. This interaction implements a
behavioral coupling between the two generated programs, i.e. the sharing of the list
of observers/neighbors. Of course, this integration is more complex as it requires that
both generated programs treat this variable consistently.



60 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

3.4 Functional Generator Composition

Now that we have identified two different kinds of composition of program genera-
tors, we investigate the appropriateness of functional composition as a technique to
implement both kinds of compositions. We will first describe how translation compo-
sition can be straightforwardly implemented by functional composition. Afterwards,
we explain how integrative composition is problematic if it is implemented as simple
functional composition.

We investigate functional composition of generators because every program gen-
erator can be represented as a function and a program as its data. In other words,
generators are functions over programs. This is because a generator accepts an input
program (the input specification) and returns another program (the generated pro-
gram). The normal way to compose functions is through functional composition. This
involves that (part of) the output of one generator is the input of another generator.
Although such functional composition is adequate if a translation of the generated
program is required, it is not appropriate if the generated programs need to be inte-
grated.

3.4.1 Translation Composition

Functional composition is particularly adequate for translation composition. In its
most simple form, functional composition occurs by chaining functions together, i.e.
apply a function on the entire result of another function. In practice it will also often
occur that we apply a function on a (well identified) part of the result of another
function. Evidently, the second function in a composition must understand the result
of the first function. Because generators are functions on programs, the second gener-
ator must thus understand the generated program of the first generator. As we have
described in the previous section, in a translation composition this means that the
output language of the first generator is the input language of the second generator.

In many programming languages, this correctness of functional composition can be
partially checked by a type checker if a function declares its input and output types.
Likewise, we can verify the correctness of a translation composition if a generator
declares its input and output languages. The following set of functions! shows how the
translation composition of figure 3.5 can be expressed using functions and functional
composition. The spec-generator is declared as a function that accepts a program in
the Grammar language and outputs two programs, one in the EBNF language and one in
the TreeSpec language. Likewise, the parser-generator is a function that converts
a program in the EBNF language to a Smalltalk program. These functions can be
composed with the tree-generator function that converts a program from TreeSpec

'"We use Haskell [Has] syntax to denote the functions.



3.4. FUNCTIONAL GENERATOR COMPOSITION 61

to Smalltalk. The result of the composition is the parserAndParsetree-generator
function that produces a combination of two Smalltalk programs that implement the
functionality described in a Grammar program.

spec-generator :: Grammar -> (EBNF,TreeSpec)
parser-generator :: EBNF -> Smalltalk
tree-generator :: TreeSpec -> Smalltalk

parserAndParsetree-generator :: Grammar -> (Smalltalk,Smalltalk)
parserAndParsetree-generator (grammar) =

let (parserspec,treespec) = spec-generator (grammar)

in (parser-generator(parserspec) ,tree-generator (treespec))

3.4.2 Integrative Composition

As we have described, an integration of generated programs by means of glue-code
poses no particular problems. It does not require us to break the encapsulation of the
modules in generated programs but does limit the kinds of integrations that can be
accomplished. We will first describe how integrative composition by means of glue code
is possible using only functional composition. Afterwards, we describe the problems
involved with functional composition to achieve an invasive integrative composition.

Glue-code Integrative Composition

Building a generator as a composition of other generators that results in integrative
composition is particularly easy if the composition of the generated programs merely
requires some glue code. Glue code composes separate programs but only uses the
public interface of the generated programs and cannot directly change or adapt the
internal implementation. The integrative composition thus boils down to invoking the
individual generators separately and generate some extra glue code that glues the gen-
erated program together. The resulting generator actually produces an integration of
the individual generated programs, but because of the encapsulation of the individual
programs, no special issues are raised in their integration. Moreover, no knowledge is
required about the internal implementation details and thus the black-box property
of each generator and generated program is conserved.

Consider, for example, the use of a datacontainer generator and a user-interface
generator in the development of a chat application. The datacontainer generator pro-
duces a class that implements the datacontainer in accordance with the set of required
features. The datacontainer is used to keep a list of open network connections. The
user-interface generator produces code that builds a user-interface for the chat appli-
cation, based on the programmer’s descriptions. In the chat application, the generated
datacontainer implementation and the generated user-interface implementation only
interact through their public interfaces. An example of such an interaction can be



62 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

found in the method that is executed when the user presses the disconnect button of
the chat user-interface. This method will close all network connections by iterating
over the datacontainer.

Invasive Integrative composition

Although functional composition of generators is adequate for translation composition
and glue-code integration, it is inadequate for invasive integrative composition. Of
course, we could use functional composition of generators to obtain that one generator
modifies the program produced by another generator. However, this would mean that
a generator always has to accept another generated program and be able to integrate
its generated program with it. As we have described before, this requires breaking
the encapsulation of generated programs and means that the generator should have
detailed knowledge about the generated program it receives as input such as how
and where to modify it. As such, during the development of a generator, we need to
consider the integration of its generated program in any possible generated program.
This introduces a tight coupling between the generators. Changes made to one gen-
erator might thus require changes to other generators or otherwise the integration of
the generated programs might be broken.

We illustrate this again with a number of functions that represent generators.
Consider the following functions that represent the tree, traversal and balancing gen-
erators. The treegenerator accepts a TreeSpec program and produces a TreeProgram.
This TreeProgram code thus needs to be accepted by both the traversal and balanc-
ing generators. The traversal generator also accepts a TraversalSpec and produces
a TraversableTreeProgram, while the balancing generator accepts a BalancingSpec
program and produces a BalancedTreeProgram.

treegenerator :: TreeSpec -> TreeProgram
traversalgenerator :: TreeProgram -> TraversalSpec -> TraversableTreeProgram
balancinggenerator :: TreeProgram -> BalancingSpec -> BalancedTreeProgram

Using the functions above, we can use standard functional composition to create
a traversable tree generator and a balanced tree generator. However, to create a
generator that produces a balanced and traversable tree, we need to change either
the traversal or balancing generator’s signature. Otherwise, the balanced traversable
tree generator cannot be built using functional composition of the tree, balancing and
traversal generators. For example, consider that we change the balancing generator’s
function to:

balancinggenerator: :TraversableTreeProgram->BalancingSpec->BalancedTraversableTreeProgram

This required change in signature is not an artificial trick, it reflects an inherent
problem in the composition. In essence the first signature of the balancing generator



3.4. FUNCTIONAL GENERATOR COMPOSITION 63

specified that the generator is able to integrate its balancing code correctly into a
normal tree, while the second signature specifies that it can correctly integrate the
balancing code into a traversable tree. This distinction is important because the bal-
ancing generator expects a particular tree implementation to integrate its generated
balancing code with. The balancing generator thus has some assumptions (or require-
ments) about the tree implementation structure to allow a correct integration of its
balancing code in the tree implementation. In this example, the possible interferences
between the balancing and traversal code are only syntactic (or structural) and easy to
prevent. More complex, behavioral interactions and interferences often occur in other
integrations. An example of such a behavioral interaction is found in the constraint
network generator, as described before. Furthermore, it becomes even more obvious
because the observer-observable generator needs to be able to integrate with multiple
kinds of programs, and not only with a generated graph implementation. This requires
many different possible integrations and possible interferences that must be avoided.
Consequently, we must implement a different generator for each possible generated
program that can be integrated with our generated program. In the example of the
tree generator, a different balancing generator should be written if the balancing code
needs to integrate with a traversable tree or a simple tree. This problem is of course
applicable to all generators that produce programs that need to integrate with a tree,
leading to a combinatorial explosion of different generators that each generate the
same or similar programs but integrate it in different generated programs.

Mind that in the context of program generation, TraversableTreeProgram can-
not simply be defined as a subtype of TreeProgram. Subtyping assumes that a
TreeProgram value (program) is always substitutable by a TraversableTreeProgram
value (program). This is not the case for generators as they make invasive changes
to a program, which require profound knowledge about the entire program in or-
der not to break existing functionality. A generator that assumes that it modi-
fies a TreeProgram might thus break the extra traversal functionality defined in a
TraversableTreeProgram.

In essence, the resulting generators would need to be tightly coupled. This tight
coupling will result in a broken modularity when the generators are reused in dif-
ferent composition because their internal implementation will need adaptation to be
composable. Therefore, instead of using functional composition of generators, integra-
tive composition requires a different composition technique. The composition must
separate the integration from the generation, thereby reducing the coupling between
generators and thus rendering them more reusable. On top of this, the separation of
the generation and integration forces the generated programs to be more generic (with
respect to integrations with other programs) and thus more reusable. Although it is
impossible to ensure that any generator can integratively compose with any other gen-
erator, the decoupling of generation and integration allows to consider the composition



64 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION
with new generators without necessarily needing to change existing generators.

3.4.3 Analogy with Monad Composition

Because a program generator is a compiler of a domain-specific language, building
modular program generators resembles building modular language implementations.
Separating the implementation of an interpreter or compiler in functions for each in-
dividual language feature has been the focus of research for a number of years in the
functional programming community [Ste94]. To accomplish modularity of these func-
tions, monads and monad transformers are used. It is not our intention to explain the
particularities of monadic programming here, nor will we use it to actually implement
and compose generators. We are describing the composition of monads here to draw
the attention to the problems associated with functional composition of monads and
the similarity to composition of program generators. For more elaborated information
on monadic programming, the interested reader is referred to [Wad90, New].

A monad is a way to structure computations in terms of values and sequences of
computations using those values. Monads allow the programmer to build up compu-
tations using sequential building blocks, which can themselves be sequences of compu-
tations. The monad determines how combined computations form a new computation
and frees the programmer from having to code the combination manually each time it
is required [New]. This is remarkably similar to building modular program generators,
i.e.: the building blocks are program generators, which can themselves be compositions
of other program generators. Since monads control how computations (functions) are
combined, monads must control the integrative composition of program generators.
For that purpose, monads are associated with a ‘special’ combination function that
is responsible for chaining the computations together. In the context of program
generators, this combination function implements the integrative composition. As a
result, the integrative composition should no longer be implemented in the program
generator, but in the combination function. This is exactly what we want.

Consider the following type definitions that respectively represent the traversal
and balancing generators:

TraversalM p :: TraversalSpec -> (TraversalProgram , p)
BalancingM p :: BalancingSpec -> (BalancingProgram , p)

Without delving into monad particularities, the type TraversalM is a monad that
represents program generators that accept a TraversalSpec specification and produce
TraversalProgram code over some program p. This means that the traversal code is
integrated in the program p. The combination function associated with this monad
is able to combine computations that return values of type (TraversalProgram |,
p). Strictly speaking, the combination function ‘threads’ the traversal code through



3.4. FUNCTIONAL GENERATOR COMPOSITION 65

all computations (generators). In essence this means that the combination functions
handles the integrative composition of the traversalcode on the program. We can now
define a generator for traversable trees by defining a function that is built using a tree
generator and the traversal generator:

generator :: TreeSpec->TraversalM Tree = TreeSpec->TraversalSpec->(TraversalProgram,TreeProgram)

The generator function above defines a tree generator that accepts a TreeSpec
and produces a TreeProgram while also performing some other computation that
produces the traversal code and integrates it into the tree program. The complete
signature of this generator thus accepts a TreeSpec, a TraversalSpec and produces
a traversable tree, denoted by TraversalProgram , TreeProgram.

We have also defined a BalancingM monad in the same way as the TraversalM
monad. We could think of using both these monads to define a generator function that
produces traversable, balanced trees. Such a generator function requires a signature
like:

generator: :TreeSpec->BalancingSpec->TraversalSpec->(TraversalProgram,BalancingProgram, TreeProgram)

However, the functional composition of the monads can only lead to:

BalancingM(TraversalM p)
TraversalM(BalancingM p)

BalancingSpec->(BalancingProgram, (TraversalSpec->TraversalProgram,p))
TraversalSpec->(TraversalProgram, (BalancingSpec->BalancingProgram,p))

Which is not what we want. The type signatures of the composed monads do not
correspond with the type required for the traversable, balanced tree generator. Con-
sequently, building a traversable balanced tree generator as a functional composition
of the traversal and balancing monads is impossible. In general, the combination of
monads is problematic and impossible in the general case [Ste94]. The conclusion is
that composition of monads does not work because the composition of monads does
not allow a sufficient ‘intertwining’ of the functions.

As a solution to the monad composition problem, monad transformers were pro-
posed [LHJ95]. Composition of monads is done by a monad transformer that accepts
a monad and produces a new monad. This means that our previous TraversalM
and BalancingM monads should now be written as monad transformers. The idea is
that each monad transformer modifies a monad by inserting its own functionality. In
the context of program generators, this means that each program generator actually
transforms another generator. The result of this transformation is a generator that
combines the generation functionalities and, as such, produces an integration of the
corresponding generated programs. We thus represent the traversal and balancing
generators as the following monads transformers:



66 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

TraversalMT m p
BalancingMT m p

TraversalSpec -> m (TraversalProgram , p)
BalancingSpec -> m (BalancingProgram , p)

The functional composition of these monad transformers obtains the generator
that we desire:

generator :: TreeSpec->BalancingMT(TraversalMT(Id)) Tree
= TreeSpec->BalancingSpec->TraversalSpec->(BalancingProgram,TraversalProgram, TreeProgram)

This analogy shows that program generators cannot be simply represented as func-
tions and composed using simple functional composition to obtain a composition of
generated programs. Instead, a program generator must transform another genera-
tor, to obtain a composition of the generators’ functionalities. This boils down to a
higher-order functional composition of generators. Furthermore, each program gener-
ator must provide specific locations in the generated program that can be transformed
by another generator without breaking the original functionality of the generator. In
monad transformers, this is accomplished by lifting [LHJ95]. Lifting can be seen as a
generalization of object-oriented inheritance and overriding [Pre97].

Although the general mechanism of monad transformers provides support for in-
tegrative composition of generators, the challenge remains in identifying the possible
locations in a program that permit integration and prevent the breaking of existing
functionalities in each ‘transformation’. In essence, monadic programming could be
used to implement the proposed approach to integrative composition, explained in the
following chapter, but the identification of the possible interactions remains to be re-
searched. Furthermore, interactions between monads always need to be implemented
by lifting the monad operators and the order of composition of monads is important.
In this dissertation, we chose not to use monadic programming and developed an in-
tegrative composition technique in which the composition order is not important and
where integration (and interactions) can be specified in more appropriate terms than
lifting.

3.5 Integrative Composition Technique

We have now explained how simple functional composition of program generators is
inadequate to accomplish (invasive) integrative composition. The analogy with monad
transformers has illustrated that we need to build generators such that one generator
modifies another generator. An integrative composition is thus a transformation of
one generator by another generator. However, a generator may not modify another
generator in undisciplined ways because it might break the functionality of the gen-
erator and consequently, also the generated program. In this section, we describe the
issues that must be covered and controlled in an integrative composition.



3.5. INTEGRATIVE COMPOSITION TECHNIQUE 67

3.5.1 Integrative Composition Interface

To perform an integrative composition, we require knowledge about parts of the gen-
erated programs that need to be integrated. In the development of a generator, the
developer thus has to foresee where and how other generators might want to integrate
their generated programs. Therefore, a generator has to provide an integrative compo-
sition interface that provides controlled access to the implementation of the generated
program such that another generator can specify where it can integrate.

In the example generators that we introduced, the tree-traversal generator needs to
introduce traversal code into a tree implementation that was generated by a tree gen-
erator. The traversal generator produces the required traversal methods and the tree
generator produces the classes that implement nodes and leaves. The integration of
the traversal methods in the tree classes requires knowledge about what classes imple-
ment nodes and what classes implement leaves. The tree generator thus has to open up
the black-box property and even the encapsulation of the generated program. There-
fore, the generator provides this information about its generated program through an
integrative composition interface. Furthermore, the traversal generator needs to know
which messages can be sent in each node to access the children of that node. Last
but not least, the integration itself requires that we can insert the traversal methods
in the generated classes of the tree generator.

Evidently, this controlled breaking of the black-box property and the encapsula-
tion of the generated program needs to allow us to specify an integrative composition
of generators in terms of their generated programs. This is described in the following
section. Furthermore, modifications to a generated program for the purpose of inte-
grative composition, may not introduce undesired interferences, which is described in
a subsequent section.

3.5.2 Integrative Composition Specification

Integrative composition should not be hard-wired in the implementation of a program
generator. Instead, an integrative composition of program generators must allow that
the composer specifies how the corresponding generated programs should integrate.
This flexibility is important with respect to reusability of the individual generators in
different integrative compositions. It requires a means to specify an integration of the
generated programs and it requires that a generator provides sufficient information
about the generated program, as described in the previous section.

Of course, an integrative composition specification must remain sufficiently ab-
stract with respect to the generated programs such that the integration specification
should not be changed if the input specification of the generator is changed. This is
an obvious but important requirement because the generated program of a generator



68 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

is often different for different input specifications. If an integrative composition were
tied to concrete elements in the generated program, then the integrative composition
could require changes if the input specification is changed. This is particularly incon-
venient if a generator is built as an integrative composition of multiple generators.
It would mean that this composed generator would need to change its composition
of generators for different input specifications. The integrative composition should
thus not be specified in terms of concrete elements of the generated programs. This
means that the information provided by a generator about its generated program is
not tied to a specific instance of a generated program, but must be applicable to any
generated program of the generator. For example, the integration specification of the
traversal and tree generators should not be expressed in terms of the concrete names
of the traversal methods and tree classes. Instead, the generators need to identify
the traversal methods and the node and leaf classes by an abstract term that can
be referred to in the integration specification. In this way, the names of the traver-
sal methods as well as the node and leaf classes can change without breaking the
integrative composition.

Furthermore, the separate program generators must produce programs that can
be integrated to obtain the resulting program. If the balancing generator assumes
that the tree will be integrated with is a binary tree, then it is impossible to make
the balancing program work on an n-ary tree, without changing the generator. As
such, there exist particular assumptions between the different generators in the com-
position about what they generate. It is clear that we cannot compose anything with
anything. Moreover, the more possible functionalities generated by a generator, the
more its generated program can be tailored to integrate correctly with other gener-
ated programs. For example, if the traversal generator expects that it can generate
a program that traverses a tree by calling a method named getChild(), then this
already compromises its composability.

3.5.3 Composition Conflicts

Because integrative composition breaks the encapsulation of the generated programs,
it is likely that certain integrations cause a broken functionality. Therefore, it is desir-
able to have an automatic conflict detection mechanism for the integrative composition
of generated programs. While it is easy to detect and prevent low-level conflicts such
as (undesired) method overriding and inadvertent name captures, it is a lot more
difficult to detect any higher-level (semantic) conflicts between the generated pro-
grams. For example, a particular integration of generated programs causes that both
the programs now have to deal with the same datastructure. One generated program
might expect a set datastructure, while the other might expect an ordered list. Sets
and ordered lists are semantically different datastructures because the set does not



3.6. MODULARIZATION AND COMPOSITION IN EXISTING TECHNOLOGIES69

store duplicate values, while the ordered list does. If we do not detect such a conflict,
caused by their integrative composition, then the individual programs as well as their
integration will most likely not work correctly.

3.5.4 Conflict Resolution

Once conflicts are detected, they should be resolved. A developer who specifies the
integrative composition has very little knowledge about the implementation of the
generated program and no knowledge at all about the implementation of its generator.
However, resolution of conflicts does require that the generated program is changed
in such a way that the conflict is resolved. This requires appropriate knowledge
about the generated program or generator. Because it is undesirable to manually
change a generated program, this would mean that we need to change the generated
program by changing how it is generated. This can be done by changing the input
specification of the generator, or by changing the generator itself. Evidently, changing
the implementation of the generator to make the integrative composition work is also
undesirable. Furthermore, changing the input specification is not always an option
and might not even change the generated program such that the composition conflict
is resolved. This implies that conflicts are preferably resolved automatically. This is
again particularly easy to do in the case of low-level conflicts, where a simple renaming
is often sufficient. However, solving higher-level conflicts is not so easy. In our earlier
example, this would mean that the generator needs to adapt its generated program
to work with either a set or an ordered list datastructure.

It is desirable that as many conflicts as possible can be resolved automatically.
However, it is obvious that the resolution of these conflicts will need to be anticipated
when the generator itself is developed. In other words, it is the developer of the
generators who knows the internal implementation details of the generated program
and the generator. Consequently, it is the developer of the generator who has to
specify the resolution of possible composition conflicts. The more potential conflicts
a generator anticipates too, the better its composability with other generators.

3.6 Modularization and Composition in Existing Tech-
nologies

Some existing generative programming techniques and technologies address the mod-
ularization of program generators and the necessary integrative composition. While
some generative programming techniques permit us to modularize the implementation
of a program generator, these modules are hardly reusable in the implementation of
other generators. The modularization techniques are mostly oriented towards struc-



70 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

turing the implementation of the program generator and not towards reuse in other
generators. In essence, the modules are strongly coupled. This leads to an improved
extensibility and maintainability of the program generator, but does not promote
reusability of the individual modules. Some generative techniques also support con-
flict detection if modules are incorrectly composed. However, even if these conflicts
can be resolved, this resolution still requires an invasive modification of the generators
or the modules.

3.6.1 Ad-hoc and Metaprogramming Generators

Ad-hoc and metaprogramming generators are built using any (traditional) program-
ming technology. The implementation of the generator can thus rely on the existing
modularization techniques available in the programming language to modularize its
implementation. However, the intention of an ad-hoc generator is not the integration
with other generators, but simply to generate its required program. It will thus often
be the case that the modularization exists but that there is a strong coupling between
the individual modules. Moreover, as any ad-hoc generator can be implemented in a
different language and in a different way, the integrative composition can only occur
manually. In essence, ad-hoc generators produce their own program and are not de-
signed, nor implemented, with an integrative composition in mind. By definition, they
are black-box generators and completely prevent any kind of integrative composition
as discussed above.

Metaprogramming or API-based generators are a little different because they op-
erate on the same program representation. This would make it a lot easier to perform
integrative composition as their implementation already constructs a program using
the same representation and techniques. In essence, the metaprogramming library
could protect the generated program from inadvertent breaking of existing function-
ality. However, this still leaves resolution of composition conflicts up to the developer.
It would be possible if the generator can respond to such a conflict by producing
alternative code that does not interfere. Mind that this would require a kind of trans-
action mechanism that checks if the total set of changes made by the generator does
not interfere and subsequently applies the changes or 'rolls back’ and tries an alter-
native. Furthermore, some interferences could require that the already existing code
is changed, and thus require a roll-back over multiple generators.

Recent macro systems, such as the Scheme (R5RS) macros are powerful transfor-
mation systems embedded in a general-purpose language. They support hygienic
macro expansion and consequently prevent possible name conflicts automatically.
However, more complex interactions and interferences between the generated code
of separate macro’s are not handled by the system and require a manual implemen-
tation in each ‘composable’ macro.



3.6. MODULARIZATION AND COMPOSITION IN EXISTING TECHNOLOGIEST1

We can conclude that the mere technique of metaprogramming or API-based gen-
erators does not oppose integrative composition. However, an integrative composition
does require that the generator is designed and implemented to support the require-
ments as discussed in the previous section. Therefore, the metaprogramming tech-
nique should support this with appropriate features and abstractions. To the best
of our knowledge, this is not the case in any of the technologies that can be classi-
fied as metaprogramming generators. In contrast, transformation technologies often
are equiped with advanced scheduling systems. These transformation techniques are
discussed in the following subsection.

3.6.2 Transformational Generators

The basic modularization mechanism in a transformational generator is a transforma-
tion rule. The idea is that each transformation rule focuses on a particular part of the
transformation process. In theory, it would be possible to accomplish integrative com-
position by merging the transformation rules of the program generators. However, this
approach is especially prone to errors as it accomplishes an implicit integration of the
generated programs. In other words, all necessary transformation rules are executed
such that both programs are generated but there is no explicit control mechanism
that determines how the generated programs are actually integrated. More advanced
transformation systems contain a scheduling facility to organize the application order
of the transformation rules. This is often required because an incorrect ordering might
result in an incorrect generated program. Scheduling of transformations can help us
in preventing and resolving errors due to an incorrect application order of transforma-
tions but cannot resolve errors caused by the nature of the actual generated code. In
essence, because we merge the sets of transformations, we need to find an application
order that produces a correct integration of the generated programs. This requires
careful analysis of the transformations to come up with a schedule. Transformation
systems such as Intentional Programming [ADK 98] provide such a scheduling mech-
anism. However, the interferences in the integrative composition we discussed above
are not caused by an incorrect application order of transformations but are caused by
the generated code of individual transformations. Consequently, these interferences
cannot be solved by changing the application order of the transformations but should
be solved by selecting alternative transformations. In some transformation systems
(e.g. Draco [Nei89]), multiple (alternative) transformations can be written that trans-
form the same input element. However, the choice for alternatives is primarily an
issue of optimization and driven by input information of the transformation instead
of by possible interferences in its output.



72 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

3.6.3 Compositional Generators

Compositional generators produce a program by assembling generic modules. This
trivially means that compositional generators have a modularization mechanism and
can encapsulate the generation of separate concerns in separate generic modules. An
integrative composition of compositional generators could be accomplished by merg-
ing the set of generic modules. The composed generator can then compose the generic
modules of the different generators, leading to an integration of the generated pro-
grams. However, this often requires revisions to the generic modules and, as a con-
sequence, profound knowledge on the implementation of each generic module. This
is often because the generic modules are not even generic enough and require modi-
fications to their source code to accomplish a correct integrative composition of the
generators they are implemented for.

GenVoca generators [BSTT94b] are a prominent compositional generation tech-
nique that produce their programs by assembling object-oriented layers. Each layer
implements a separate feature of the program and can be easily left out of the gener-
ated program if it is not required by the GenVoca composition specification. As we
have described in the previous chapter, these layers can be implemented with Java
mixin-layers [SB98] and C++ templates [Cza98]. In essence the C++ templates al-
low us to construct mixins in C++. Both implementations are thus more or less the
same (at least for the purpose of this discussion). Implementing a GenVoca layer as
a mixin-layer complicates the reuse of these layers in totally different program gen-
erators. A layer that is implemented as a mixin-layer is designed and implemented
for use in a particular program generator. Mixin-layers are not sufficiently generic for
integrative composition because they make particular structural assumptions about
the other layers in a composition. In essence, a mixin layer is only parameterized with
its superclass and possibly also with some constants. As a result, all other implemen-
tation details (method calls, variables, method overriding,. ..) inside the mixin-layer
assume that mixin-layer can only be composed with a fixed set of other mixin-layers.
The required interactions between the mixin-layers are hard-coded in each mixin-
layer (such as method-calls or method overriding for example). It also means that
the functionality of that mixin-layer can be easily broken because of changes in the
composition or the internal implementation of other mixin layers. Consequently, the
implementation of the mixin-layers assumes some implicit knowledge about the other
mixin-layers in the implementation of the program generator. The composition of the
mixin-layers is checked by the GenVoca type checker and more complex dependencies
can be made explicit by means of pre- and postconditions on the mixin-layers. These
conditions are checked during composition by a design-rule checker [BG97]. Although
the mechanism of pre- and post-conditions could be used to detect interferences in an
integrative composition, an automatic resolution can only be offered when the conflict



3.7. CONCLUSION 73

occurs because a mixin-layer requires another mixin-layer that was omitted or when
the order of the composition is incorrect. All other composition conflicts cannot be
automatically resolved because they require a different implementation in the mixin-
layers. This is also mentioned and recognized in [BG97]: ‘design-rule checking deals
with the testing and assignment of static properties of system designs; it assumes that
all transformations are semantically correct’. In essence, an integrative composition
technique that merges the set of layers of different generators, violates this assump-
tion. This is because it cannot be guaranteed that the composition of a layer from
one generator with a layer from another generator is semantically correct (i.e. a layer
transforms the other layer).

It is also interesting to note that mixin-layer composition is remarkably similar
to the technique of monad transformers. A composition of mixin-layers results in
a complete set of classes. Each mixin-layer can be composed with a set of existing
classes and specializes them. In other words, a mixin-layer transforms an existing set
of classes and delivers a new set of classes that combines the original classes with the
functionality defined in the mixin-layer. This is exactly what monad transformers do:
a monad transformer transforms a monad and delivers a new monad that incorpo-
rates more functionality. Consequently, the mechanism of compositional generators
for integrative composition is appropriate, but the chosen implementation techniques
do not offer the right flexibility to perform integrative composition of independently
developed modules.

Other compositional techniques such as invasive software composition [Ass04] and
aspect-oriented programming [KLM™*97] restrict the possible integrative compositions
and consequently limit the possible interactions between the generated programs. For
example, in aspect-oriented programming languages, the integration of the aspects in
a program can only occur through advices and method introductions. Furthermore,
if a composition conflict is detected, the developer is required to manually adapt
the aspects (e.g. order of advices and method names of introduced methods). In
subject-oriented programming [HO93, OKK*96] or multidimensional separation of
concerns [0OT99], the different composition rules allow to integrate programs in many
different ways. Nevertheless, in the case of a composition conflict, the developer is
required to adapt the program himself. Although this is done automatically for the
simple syntactic naming conflicts, other conflicts (such as typing conflicts) require a
manual adaptation of the separate programs.

3.7 Conclusion

In this chapter we provided a characterization of program generator composition with
the intention of building modular program generators. We have explained how inte-



74 CHAPTER 3. ANALYSIS OF PROGRAM GENERATOR COMPOSITION

grative composition of generators is required such that the generated programs are
integrated. Moreover, we have shown that this involves that generators need to be
composed by transforming the other generator. Achieving this in a flexible way in-
volves some issues such as integration specifications, automatic conflict detection and
resolution. We conclude that no satisfactory means exists to express integrative com-
position of program generators. In the following chapters, we introduce a generative
technique to implement and execute integrative composable generators. An appropri-
ate implementation technique for integrative composable generators is presented as
an extension to the logic metaprogramming technique.



Chapter 4

Building Integrative Composable
Generators

Without delving into concrete implementation details, this chapter describes the gen-
erative programming technique for the implementation and integrative composition of
program. generators. This generative programming technique addresses the require-
ments of integrative composition that were identified in the previous chapter. Because
this technique could be implemented on top of different kinds of generative program-
ming technologies, we defer a concrete implementation by means of logic metapro-
gramming to the following chapter.

4.1 Introduction

In the previous chapter, we have described that integrative composition is required
to allow the modularization of program generators according to the different concerns
that need to be generated. The integrative composable generators, that each generate
a separate concern, can then be re-used in the implementation of other generators
or as stand-alone generators. The development of such integrative composable gen-
erators requires an adequate generative programming technique that supports their
implementation and composition in accordance with the requirements identified in
the previous chapter. In this chapter, we describe how the generative programming
technique that is developed in this dissertation tackles these requirements. In the
proposed technique, a program generator essentially consists of multiple generative
programs that each produce a well-defined part of the generated program. What
these program parts are, depends on the output language of the generator and on the
implementation decisions taken by the generator developer. Some of these program
parts are exposed through an integrative composition interface and can be integrated

75



76  CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

in another generated program. Such an integration is specified using an integration
specification.

The program generators can automatically adapt their generated programs to
achieve an integrative composition specified in an integration specification. Program
generators can also adapt their generated programs to avoid detectable composition
conflicts. These conflicts are automatically detected by the generative system and
force the program generators to resolve the composition conflict.

The overall integrative composition mechanism is language independent and the
generative system can be configured easily to allow integrative composition of pro-
gram generators with various, but identical, output languages. In the case of program
generators that produce programs in domain-specific languages, a domain-specific in-
tegrative composition can be specified. Such a domain-specific integrative composition
is often more appropriate because it is specified in the domain-specific terms. More-
over, a domain-specific integrative composition provides the opportunity to detect and
resolve domain-specific composition conflicts.

This chapter is organized as follows. In the next section, we describe the overall
architecture of the generative technique. We explain the important parts of our tech-
nique and how they relate to each other. Section 4.3 describes the actual integrative
composition mechanism in detail, followed by section 4.4 that describes how inte-
grative composable generators are implemented. Section 4.5 explains the important
elements of the generative system that executes the generators. Section 4.7, describes
how we can realize domain-specific integrative compositions and a composition of
composed generators. Finally, section 4.8 discusses the development methodology for
integrative composable generators using the technique described in this chapter.

4.2 Architecture

The following subsections provide an overview of the implementation of integrative
composable generators, followed by a description of the overall architecture of the
generative system that enables the building of such generators.

4.2.1 Implementing Integrative Composable Generators

The generative technique presented in this dissertation contains three important ele-
ments: language definitions, generator implementations and integration specifications.
Consider the schematic illustration of a modular integrative composition in figure 4.1.
The figure shows an integrative composition of generators X and Y. These generators
accept programs P, and P, in languages L, and L, respectively and both produce a
program in language L,. They are involved in an integrative composition that estab-
lishes the integration of their generated programs Al and A2. The integrated program



4.2. ARCHITECTURE 7

A1 + A2 is further translated into language L, by generator Z. Consequently, gen-
erators X and Y are also involved in a translation composition with generator Z. In
this illustration, we can identify three different conceptual elements in the modular
implementation of program generators. These elements are:

e the internal implementation of the program generators (X and Y), built to allow
an integrative composition.

e the integration specification (S) that establishes an integrative composition of the
generators X and Y and, consequently, the integration of the generated programs
A1 and A2. The integration specification is specified in terms of the integrative
composition interfaces of both generators.

e the languages (Ly,Ly and L,) that are defined by the individual program gener-
ators.

We will now describe each of these elements and their relations in more detail.
Program
Px

1
1
i
1
! Program
: Py
1
1
1

Language Ly ﬂ !
1
i
1

Generator L Generator
_______ X [, TR v I
integration

@ specification @
S integrative <:>

composition

Program Program .
Al A2 Language L translation
composition

Language Ly

(De

Language Ly

Figure 4.1: Conceptual overview of an integrative composition.

Integrative Composition Interface and Integration Specification Allintegra-
tive composable generators define an integrative composition interface. The in-
tegrative composition interface identifies and exposes separate program parts



78  CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

of the generated program for use in an integration specification. An integra-
tion specification defines an integrative composition of generators and consists
of a set of integration relations that each specify an integration of the sepa-
rate program parts (identified in the integrative composition interfaces). The
integrative composition interface is defined by the developer of the generator,
while the integration specification is defined by the developer who composes the
generators. The definition of an integration specification requires knowledge on
the output language of the program generators and requires limited knowledge
about the generated programs themselves. This limited knowledge about the
generated programs is exposed through the integrative composition interfaces of
the program generators.

Generator Internal Implementation The internal implementation of a genera-
tor is a set of generative programs that each produce a program part of the
entire generated program. These generative programs implement the genera-
tion of the program parts as well as the resolution of composition conflicts and
the necessary adaptations that need to occur to the generated program in an
integrative composition. In addition to the generative programs, the internal
implementation of a generator also contains the definition of a set of dependency
relations between the program parts. These dependency relations ensure that
the complete program is adapted consistently. As a result, given an integration
specification, a generator can adapt its generated program to fit the integration
of the generated programs. The adaptation is implemented by the developer of
the generator and is automatically enforced by the generative system. A devel-
oper is able to implement these adaptations because the possible integrations
and composition conflicts are delimited in the definition of the language that is
used by the generator as its output language.

Language Definition Each generator ‘defines’ an input language. For example, in
figure 4.1, generator X ‘defines’ language Lx. This does not only mean that the
generator translates programs in that language. The generator also includes
an entire definition of the syntactic elements of the language. This definition
includes how a program is represented and divided in separate program parts.
It also contains an explicit definition of the possible integrations that can be
expressed and the possible composition conflicts in that language. Besides the
languages defined by each generator, a definition of the most low-level output
language is also included in the generative system. Consequently, all languages
that can be used to implement generated programs are defined in a language def-
inition. As a result, a developer that implements a generator (with a particular
output language) knows about the possible statically or syntactically detectable



4.2. ARCHITECTURE 79

conflicts and integrations that might occur in an integrative composition of that
generator. In other words, the language definition governs the possible integra-
tive compositions of generators that produce programs in that language. The
definition of a language will be treated as a separate identity in the overall
architecture of our generative programming technique.

The definition of languages renders the generative technique for integrative com-
posable generators independent of a particular output language of a program
generator. The generative system allows to define and use various languages for
the implementation of the generated program. It is particularly interesting to de-
fine domain-specific languages because they allow to describe domain-specific in-
tegrative compositions. Domain-specific integrative compositions are often more
appropriate then integrative compositions of low-level generated programs. First
of all, the integrative composition can be specified in domain-specific terms in-
stead of in low-level implementation terms. Second, a domain-specific integrative
composition allows to detect and possibly resolve domain-specific composition
conflicts. The detection of such conflicts can prevent semantic interferences be-
tween the generated programs, as opposed to the syntactic conflicts that can be
detected in the low-level executable language.

4.2.2 The Generative System

The implementation of the generator, the definition of the language and the specifica-
tion of an integrative composition are handed to the generative programming system
that executes the generators and performs the integrative composition as specified in
the integration specification. This generative system also consists of three conceptual
parts:

Generative Programming Language An important element of any generative sys-
tem is the language in which a generator is implemented. The generative pro-
gramming language for integrative composable generators supports the defi-
nition of an integrative composition interface and the implementation of the
adaptations to achieve a correct integrative composition. In this dissertation,
the generative programming language is based on logic metaprogramming and
will be introduced in the next chapter.

Conflict Detection Mechanism The generative system checks all generated pro-
grams for the occurrence of composition conflicts with other generated programs.
These composition conflicts are defined in the language definition of the imple-
mentation language of these generated programs. Since the language definition
contains only all syntactic elements of a language, the possible composition con-
flicts are limited to those that can be detected statically. If a composition conflict



80 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

occurs, the system automatically forces the generators to adapt their generated
program to resolve the composition conflict. If no resolution can be offered, the
composition fails.

Integration Enforcement The integration specification describes an integrative com-
position and enforces the integration of the generated programs. On the one
hand, the integration specification is used by the generator to produce an ap-
propriate program that can be integrated. On the other hand, the specification
is used by the generative system to enforce and verify that the separately gen-
erated programs are effectively integrated as it is specified.

Roadmap

In the remainder of this chapter, the individual elements of the overall architecture
that we introduced above are explained in detail. In the following section (section
4.3), we describe the integrative composition of program generators. We explain what
program parts are, how an integrative composition interface is defined and what an
integration specification is. The implementation of integrative composable program
generators themselves is discussed in section 4.4, followed by the description of the
generative system that executes the implementation and composition of program gen-
erators in section 4.5. Because the language definition ‘configures’ all other parts of
the generative technique, it is explained where it is appropriate. Section 4.6 summa-
rizes the individual elements of a language definition. For simplicity, we will illustrate
the implementation of integrative composable generators with program generators
that produce Smalltalk programs. The use of generators that produce programs in
domain-specific (modeling) languages is discussed in section 4.7.

4.3 Integrative Composition

To reconcile the advantages of black-box generated programs with the possibility of
integrative composition, each generator defines an integrative composition interface
that exposes the generated program as a list of separate program parts. The inte-
grative composition interface thereby breaks the black-box character of the generated
program. This interface also allows a controlled access for integration purposes to
these separate program parts. We will first describe what these program parts are,
followed by what an integrative composition interface is and how it exposes these
program parts. Afterwards, we explain how an integration specification is specified.



4.3. INTEGRATIVE COMPOSITION 81

4.3.1 Program Parts

Program parts are individual pieces of a program, or more specifically, of the gen-
erated program’s parsetree. The composition interface exposes separate parts of the
generated program’s parsetree such that an integration can be specified in terms of
these parts (which is described later on). The kinds of program parts that can be
exposed are different for each possible output language. Therefore, each language
definition defines the possible parts of a program’s parsetree that can be exposed
through an integrative composition interface. For example, a generator that produces
object-oriented programs can expose separate methods, variables, classes, statements,
etc...as program parts. The actual technical representation of these program parts
depends on the implementation technology of the program generators, and is not dis-
cussed in this chapter. However, the representation of each program part needs to
contain sufficient information to identify the location of the program part in the entire
program’s parsetree. Furthermore, the assembly of the separate program parts must
result in the complete generated program. To achieve this, any given program part
needs to contain information such that its parent in the parsetree representation of the
program can be uniquely identified. This means, for example, that method or variable
definitions need to declare the class in which they are defined. As a consequence, the
location of each program part in the entire parsetree can be uniquely identified and
the entire generated program can be reconstructed as an assembly of the individual
program parts.

Each program part of the generated program is identified by a unique name. Fur-
thermore, a program part also has a type that corresponds to the type of the pro-
gram part in the parsetree. The possible types are consequently defined for each
language in which a program can be generated. A program part is thus a tuple
(name,type,representation,internals) where

name is a unique name that identifies the part.
type is the kind of the program part.

representation contains a part of the program code included in the program part
that is exposed. This must include information to uniquely determine the pro-
gram part in the entire generated program.

internals Contains the rest of the program code of the program part. It remains a
hidden piece of the internal implementation of the generated program.

The difference between the representation and the internals is determined in the
definition of the language. It can be used to determine that a particular piece of a
program part is always part of the hidden internal implementation of a program. For



82  CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

example, a program part that represent a method can hide the method body in its
internals.

Smalltalk Program Parts

The example language that we will use throughout this chapter is the Smalltalk object-
oriented language. For Smalltalk, we have defined that class definitions, method
definitions and variable definitions can be exposed as separate program parts. Conse-
quently, the possible program part types are class, method or variable, respectively.
We have also confined ourselves to a simplified representation of a Smalltalk program.
We have, for example, confined ourselves to the representation of the instance vari-
ables and methods. We have also omitted a number of technical specifications that
can be included in a class definition. These restrictions have no impact whatsoever on
the generative programming technique and were only made to simplify the given ex-
amples. It would, for example, be trivial to extend this representation to include class
variables, class methods, shared variables, etc. . .in the representation. The details of
the program parts are:

class A class program part contains a class definition. A class definition only con-
tains the class name and the superclass name in its representation. No hidden
internals are included in this part.

variable A variable program part contains an instance variable definition. The
representation contains the variable name and the class in which it is defined.
A variable program part can optionally describe the type of the variable. The
type of a variable is often valuable information in an integration, although it is
not required to generate Smalltalk programs since Smalltalk is a dynamically
typed language. This program part does not contain hidden internals.

method Each method program part defines an entire instance method. The repre-
sentation consists of the method’s name, its signature and the class in which it
is defined. The entire method body, containing all statements and local instance
variables, remains hidden in the internals of the program part.

A Smalltalk program that is represented as a set of such separate program parts can be
entirely reconstructed from the information contained in these program parts. Each
program part contains sufficient information to determine it as a unique part of the
entire generated program.



4.3. INTEGRATIVE COMPOSITION 83

child
accessor
method

value
accessor
method

children
iterator
method

node
<class>

SuperLeaf

value value accessor
value setter T Tvalue() “t—
-
i
|

! | value:(aValue)

1
children iterator ] SuperNode ! LeafA LeafB :A/
children H :
child accessor children() i i !
) ]
child:at:(node,pos)
------------------------------- \
. ! | node
child setter ! NodeA NodeB :A/
___________________________ 1
! child:at:(node,pos) child:at:(node,pos) 1] |
1

Figure 4.2: Schematic view of the tree generator and its integrative composition in-
terface.

4.3.2 Integrative Composition Interface

An integrative composition interface is a list of program parts. We will refer to the
program parts exposed in an integrative composition interface as ‘public’ program
parts. A public program part is identified in the integrative composition interface
by its name and type. It is also important to note that not all program parts of a
generated program are public parts. The developer of a program generator exposes
only those parts as public parts that are deemed useful in the context of an integrative
composition. Other program parts remain hidden. We will refer to these hidden
program parts as ‘private’ program parts.

Figure 4.2 gives a schematic overview of the tree generator and its integrative
composition interface. The generator is displayed in an octagon and the integrative
composition interface is shown by means of circles. Each circle represents a public



84 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

program part and contains the name (in bold) and type (in italic) of that program
part. The figure also contains a schematic representation of the generated tree im-
plementation in which we also identified the public program parts. We will use this
schematic notation to represent generators and their integrative composition interfaces
throughout the remainder of this dissertation.

Figure 4.2 shows that the tree generator exposes the classes that implement the
nodes and the leaves of the tree as public program parts. It is desirable to expose
these classes as public program parts because an integration of the generated tree
implementation with another program will often require the insertion of additional
methods and variables in these classes. Therefore, the developer has chosen to expose
these program parts in the integrative composition interface. It is also important to
distinguish the node classes from the leaf classes. In essence, additional behavior that
is integrated in the tree implementation will often distinguish between the nodes and
the leaves of the tree and consequently require to integrate different methods in the
node and leaf classes. Furthermore, a method that is integrated in a tree’s node class
might need access to the child nodes and the value contained in the node. Therefore,
either we expose the variables that contain the child nodes and the value as public
parts or we expose some getter and setter methods for these variables as public parts.
In the latter case, the variables remain private program parts. This choice is up to the
developer of the tree generator because it depends on how the variables must be used.
In this implementation of the tree generator, we remain close to an entire encapsulation
of the generated program and do not expose the variables in the composition interface.
The result is that in this generator, all program parts available in the public interface
of the generated tree implementation itself are also public programs parts in the
generator’s composition interface. Many internal implementation details about the
variables and the method bodies remain hidden. These internal details will be shown
later on. In figure 4.2, some types of parts are enclosed between <and >. It means
that the part actually represents a list of program parts of that particular type. The
representation of such lists of program parts is explained in the following subsection.

We have now described how an integrative composition interface breaks the black-
box property of a generated program by exposing parts of the generated program as
public program parts. However, the integrative composition interface does not com-
pletely break the black-box property of the generated program because it only provides
a limited insight (for integration purposes) in the internal implementation of a gener-
ated program. The distinction between public and private program parts makes sure
that many internal implementation details of the generated program remain hidden.
Furthermore, the granularity of the chosen program parts also determines the level of
detail that can be exposed via the composition interface. For example, for Smalltalk
programs, individual statements of a method body cannot be identified as separate
program parts. Last but not least, it is important to note that the encapsulation



4.3. INTEGRATIVE COMPOSITION 85

of the generated program is also broken because the possible program parts are not
limited to the encapsulated modules provided by the programming language. In our
example in the Smalltalk language, we are able to expose private instance variables
and methods as public parts in a composition interface. These program parts are not
encapsulated modules in the Smalltalk language but are treated as separate program
parts in the generation process.

4.3.3 Special Program Parts

Besides ‘normal’ program parts, two special kinds of program parts can be included
in an integrative composition interface. One special kind of part is a program part
that represents a list of program parts. Another kind of program part is a required
program part.

Program Listparts

Although each generator specifies the separate program parts of any of its possible
generated programs, it does not mean that each of those generated programs includes
the same number of parts. Depending on the input specification, a program genera-
tor may need to produce a different number of program parts. A possible generated
program may thus include parts that are not included in another possible generated
program of the same generator. For example, in the case of a tree generator, the
number of generated classes that represent nodes and leaves clearly depends on the
input specification. Therefore, in figure 4.2, the parts that represent the nodes and
leaves actually expose a list of classes. A single program part name can thus represent
a list of program parts. Such a program part is referred to as a program listpart. This
makes it possible that a generator produces none, one or more parts that fulfill a par-
ticular role, depending on the input specification of the generator. A program listpart
is distinguished from normal, ‘singleton’ parts because it has a different type. The
type of a listpart is noted as the type of the program parts it contains, surrounded by
brackets (e.g. <class>). Omitting this special kind of program part would limit the
power of a program generator as all generated parts would be statically fixed in the
implementation of a program generator. As a consequence, all generated programs
would consist of the same number of parts and can only differ in the internal imple-
mentation of these parts. The use of program listparts provide the extra flexibility to
produce a variable number of parts.

Required Parts

In some cases, it is useful to specify ‘empty’ program parts in the composition interface
of a program generator. They are ‘empty’ because the generator does not provide an



86  CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

implementation for them. Instead, these parts represent required parts that must be
produced by another generator. The generator that defines such required parts in its
integrative composition interface requires that these program parts are ‘filled in’ using
an integrative composition. Without them, the program generator cannot produce a
correct program. A required program part can also impose a number of restrictions
on the actual part that it can integrate with. This will be explained when we describe
the internal implementation of a program generator.

The required parts are often used in the development of crosscutting code gener-
ators. Such generators always require an integrative composition with another gen-
erator to produce a correct program. The crosscutting code generator will integrate
its crosscutting code in the required parts that are identified in its composition inter-
face. We will describe the use of such required parts in the following section where
we describe the integrative composition of the tree generator and the traversal code
generator. Thoughout the dissertation, required program parts are represented as a
circle with a dashed contour line.

4.3.4 Integration Specification

An integration specification is a set of integration relations between public program
parts, exposed by different program generators. A single integration relation specifies
a particular integration of the program parts that it is applied to. The combination
of all integration relations determines the actual integration of the entire generated
programs. The possible integration relations that can be used to specify an integrative
composition are specific for each possible output language of a generator. Therefore,
the possible integration relations are defined for each language.

For example, the integration relations available in the Smalltalk language are rela-
tions to specify that methods or variables integrate in a class, that classes or variables
unite or that methods combine in a particular order. These integration relations are
schematically depicted in figure 4.3. In the picture of each integration relation, the
program part at the left hand is implemented by a different generator than the pro-
gram part at the right hand. Each integration relation has a direction. Consequently,
we can speak of an origin and destination program part of the relation. Most inte-
gration relations are uni-directional but some integration relations are bi-directional.
We describe each of the integration relations for the Smalltalk programming language
in more detail:

In The in integration relation can be established between a method or variable pro-
gram part (the origin) and a class program part (the destination). It expresses
that the corresponding method or variable definition needs to be implemented
inside the class.



4.3. INTEGRATIVE COMPOSITION 87

Subclass The subclass integration relation is used to express an integration of
class program parts by subclassing.

Overrides The overrides integration relation defines that one method part (the
origin) overrides another method part (the destination). It consequently enforces
that the methods share the same signature and are implemented in classes in
the same inheritance hierarchy.

Unite The unite integration relation can be specified between program parts of the
same type. It specifies that these program parts need to be exactly the same
and represent only a single program part in the integrated generated program.

IncludeBefore & IncludeAfter The includeBefore and includeAfter integra-
tion relations can be established between methods that share the same signature.
They define a method combination where the destination method part’s body is
included before or after the origin method part in the integration relation.

More complex integration relations, such as those introduced in subject-oriented pro-
gramming and multidimensional separation of concerns [0OT99, TOHJ99], could also
be considered but were not implemented in the context of this dissertation.

For each integration relation specified in an integration specification, the generative
system enforces that the generators produce an implementation for the program parts
that adheres to that integration relation. The generative system verifies the generated
program parts and the composition fails if the program parts do not adhere to the
integration relation. The description of how program parts satisfy an integration
relation is included in the language definition, together with the definition of the
integration relations. Consequently, the generative system only verifies and enforces
the integration relations. The actual adaptations of the generated program parts that
are necessary to adhere to an integration relation are made by the generator itself.
The developer of a generator thus needs to implement the necessary adaptations to the
generated program parts so that they can adhere to the possible integration relations.
How this is done will be explained when we describe the internal implementation of
a program generator. It is possible because all possible integration relations between
program parts are defined for each language.

Integration of Listparts

Integration relations between listparts are enforced between the individual parts con-
tained in the listparts. However, we do not enforce that both listparts must contain
an equal number of program parts. Therefore, an integration relation on listparts
enforces that all program parts that are contained in the originating listpart of the



88  CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

subclass
m
method or
variable
method or variable m integrates in class A class A integrates as a direct subclass of class B
overrides

class or variable or method A integrates

by uniting with class or variable or method B method m integrates by overriding method n

includeAfter includeBefore

method n integrates by inclusion method n integrates by inclusion
after with method m before with method m

Figure 4.3: Possible integration relations between generated parts of Smalltalk pro-
grams.



4.3. INTEGRATIVE COMPOSITION 89

relation must adhere to the integration relation with a program part contained in the
destination listpart of the relation.

Integration of Required Parts

In an integration specification, the integration of required program parts is not dif-
ferent from the integration of other program parts. The required part needs to be
integrated (most commonly by means of a unite integration relation) with a program
part produced by another generator, thereby fulfilling the requirement.

Example Integrative Composition

An example of an integrative composition specification is shown in figure 4.4. The
traversal generator produces traversal methods for both leaves and nodes. The in-
tegrative composition that is shown establishes an integration of the generated tree
and traversal programs. More specifically, the traversal methods for nodes are inte-
grated into the classes that implement the nodes. Likewise, the traversal methods for
leaves are integrated into the classes that implement the leaves. Since both genera-
tors expose these parts and both generators produce Smalltalk code, we can specify
an integrative composition. This integrative composition also immediately shows the
use of the required program parts and the listparts.

The traversal generator includes a required program part in its integrative com-
position interface. This required program part describes that the program generator
needs the method that allows to access the child nodes from within a node. This
required program part must consequently be ‘filled in’ with the appropriate method
program part that implements this access method. Therefore, a unite integration re-
lation is drawn between the required part and the method part produced by the tree
generator that implements this method. Of course, this requires that the generated
traversal implementation is designed to accommodate the specific method signature
of this method part. We will delve into these details when we discuss the internal
implementation of a program generator. Another interesting aspect of this example
integration specification is that the in integration relations actually integrate two list-
parts instead of two simple parts. For example, the node-traversal methods listpart
represents a list of traversal methods for nodes. Each of these traversal methods must
integrate with its corresponding node class. The in integration relation enforces that
the generation of the node traversal methods listpart produces a listpart that con-
tains method program parts that each integrate in a corresponding node class. This
is because the generation of the node traversal methods takes the presence of an
integration relation into account to produce its program part. This is explained when
we describe the internal implementation of a program generator



90 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

child value
accessor accessor
method method

Tree generator

child children

setter iterator
<method> etod

node
<class>

" children \,
\ iteration !

traverse
<method>

Traversal generator

traverse
<method>

Figure 4.4: Integration relations between the tree and traversal generators.

4.4 Generator Implementation

Until now, we have only described how an integrative composition between gener-
ators can be specified. In this section, we focus on the internal implementation of
the generators to make integrative composition possible. In particular, we describe
how the internal implementation deals with ‘integrative variabilities’. In the follow-
ing subsection, we explain what these integrative variabilities are and subsequently
describe the overall implementation technique that facilitates their implementation
using dependency relations and alternative generated program parts.

4.4.1 Integrative Variabilities

Generative programming techniques provide linguistic support for the implementa-
tion of a program generator in terms of the commonalities and variabilities of its
possible generated programs. In contemporary program generators, these variabilities
are determined by the possible input specifications and result in different functionali-
ties implemented by the generated programs. Consequently, contemporary generative
techniques provide support for the implementation of such ‘functional’ variabilities. In
addition, a generative technique that supports integrative composition, in accordance



4.4. GENERATOR IMPLEMENTATION 91

with the requirements identified in the previous chapter, has to provide support to
address the variabilities that arise from the possible integrative compositions. These
‘integrative’ variabilities are the adaptations of the generated program to enable its
integration with another generated program. This includes the necessary adaptations
to correctly integrate the generated programs and to resolve specific composition con-
flicts. ‘Functional’ variabilities are very different from ‘integrative’ variabilities. While
the former arise from differences in the input specification, the latter arise from re-
quired differences in the output program to establish an integration with another
program. ‘Integrative’ variabilities are not about the implementation of different
functionalities provided by the generated program. Instead, ‘integrative’ variabilities
are about implementing the same functionalities using a different generated imple-
mentation.

Examples

In the implementation of a generator that produces a data container implementation,
a possible example of a functional variability is about the size of the data container.
The generator can, for example, produce a fixed size data container (e.g. an array) or it
can produce an implementation of a data container that can grow dynamically in size.
Such a functional variability is determined by the input specification of the generator
and is very different from the possible integrative variabilities. The name of the
implementation class and its method names are example integrative variabilities for
a data container implementation in an object-oriented programming language. This
is because another class with the same name can be generated by another generator,
leading to a name conflict. Furthermore, a particular integrative composition can
enforce that the generated implementation class is a subclass of another (generated)
class. This integration requires us to deal with integrative variabilities in the class
definition and the names of the methods defined in the class. Although these example
integrative variabilities are rather simple, it is important to deal with them explicitly
as well. For example, a name can be part of the public interface of a generated
program, where want a decent name and not an automatically renamed identifier. A
more complex integrative variability can be identified in the example of the integration
of the generated graph implementation and the observer implementation, introduced
in the previous chapter. This integration requires a unite integration relation between
two variable program parts. However, each of these variables can have a different
type. To achieve a correct integration, both generators need to adapt their generated
programs such that they agree on the variable type, if one is supplied. This is an
integrative variability that requires a substantial difference in the implementation
of the generated programs, i.e. the use of a different type for the variable and all
generated program code that uses it.



92 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

Determining the Integrative Variabilities

The integrative variabilities that need to be handled in the implementation of each
integrative composable generators are determined by:

Integration Relations As we have explained, an integrative composition is specified
by means of integration relations between public parts of different generators.
The implementation of the generator needs to deal with the possible integration
relations because it needs to be able to generate a correct implementation that
adheres to the integration relations.

Composition Conflicts Some integrative compositions result in undesired interfer-
ences between the generated programs. In such a case, a composition conflict
is detected and the generation of the program actually fails. However, when-
ever possible, an integrative composable generator should anticipate the possible
composition conflicts and try to resolve them.

We already described the possible integration relations in the Smalltalk language.
The possible composition conflicts that can be detected in the integration of Smalltalk
programs are: duplicate class names, duplicate method names in the same class, dupli-
cate variable names in the same class, accidental overriding of methods and shadowing
of variables. Most of these conflicts are actual Smalltalk language conflicts, but the
accidental overriding is a specific composition conflicts. We describe later on how
these composition conflicts are actually detected. We will now describe how the in-
ternal implementation of a program generator can resolve these composition conflicts.
In essence, the implementation of integrative variabilities is the most important as-
pect of the internal implementation of integrative composable program generators.
We deal with the integrative variabilities through the definition of dependency rela-
tions between the individual program parts of a generated program, through separate
generative programs for each program part and through the parameterization of the
generative programs with the integration and dependency relations. All these elements
are explained next.

4.4.2 Dependency Relations

There are particular dependencies between all parts (public and private) of a generated
program that must remain valid in all integrative compositions. To implement and
enforce these dependencies, the developer of a generator needs to define dependency
relations between all program parts. The generative system enforces these dependency
relations in all possible generated programs of the generator.

Figure 4.5 shows the private and public program parts in the implementation of
the tree generator, as well as all dependency relations imposed between them. The



4.4. GENERATOR IMPLEMENTATION 93

private program parts are illustrated with gray-filled circles, as opposed to the public
programs parts that are printed as white circles. The private program parts of the
tree generator contain the definition of some common superclasses for all generated
leaf and node classes. These common superclasses define the variables that are used
to contain the value and child nodes in a particular node or leaf. Figure 4.5 also shows
this implementation structure of the generated tree implementation.

children
iterator
method

<class>

value _[_SuperLeaf [ super leaf

1 | value oy
value setter Mvalue) [ value accessor
pqyalue() 1]
super node ! | value:(aValue) | !

children
children ileratnr\\A“—f—h
1 cl
]

child accessor

I
child setter !

Figure 4.5: Relations between the public and private parts in the tree generator.

One may notice that many dependency relations are in fact integration relations.
This is because dependency relations are technically identical to integration relations.
Dependency relations enforce a dependency (which can be an integration) between
the program parts that they are imposed on. The possible kinds of dependency rela-
tions that can be used also depends on the output language of the program genera-
tor. Therefore, the possible set of dependency relations is specified for each possible
language and also frequently overlaps with the possible set of integration relations.
However, we will always refer to dependency relations to denote the relations used
inside a program generator.



94 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

Smalltalk Dependency Relations

For the generation of Smalltalk programs, we have defined that all integration rela-
tions, except for the unite integration relation can be used as a dependency relation.
The additional dependency relations in the Smalltalk language are shown in figure 4.6.
We can express refers, contains, self-calls and calls dependencies between gen-
erated parts:

Refers & calls The refers and calls dependency relations are similar. The refers
relation states that a particular method refers to a particular variable by its
name. The calls relation states that a particular method calls a particular
other method. These dependency relations encode the dependencies that the
method bodies need to refer to the correct variable or method name. The
dependency relation can be enforced because a method program part explicitly
declares which variable or method names it uses.

Contains The contains dependency relation defines that a particular variable con-
tains a value of a particular class. In other words, the variable is typed to contain
an instance of that class.

Self-calls The self-calls dependency relation is an extension of the calls relation.
It does not only enforce that the first method calls the second method in the
relation, it also enforces that the methods be defined in the same inheritance
hierarchy.

The explicit definition of these dependency relations in the implementation of a
program generator prevents the breaking of these dependencies in particular integra-
tive compositions. Furthermore, these dependencies can also automatically trigger
the definition of additional integration relations in an integration specification. This
is discussed later on in section 4.5.1. It is also important to note that particular other
dependencies between generated program parts can be expressed using generator-
specific dependency relations. The dependency relations that can be used inside a
generator are thus not limited to the general language-specific dependency relations.
While the language-specific integration and dependency relations are defined in the
language definition, the generator-specific dependency relations are defined inside a
generator.

4.4.3 Generative Programs

Each separate program part is generated by a separate generative program. The
internal implementation of a program generator thus contains a generative program
for each private and public program part. This is depicted in figure 4.7. Each of



4.4. GENERATOR IMPLEMENTATION 95

refers contains
v v
variable or .
variable
class

method m refers to variable v variable v contains instances of (is typed as) class A
method m refers to class v

. self-calls . . calls .

method m self-calls method n method m calls method n

Figure 4.6: Dependency Relations in Smalltalk.

these generative programs focuses only on the generation of their particular program
part. This forces the generator developer to explicitly parameterize the generation of
that part with all information that is required from the generation of other parts to
produce its own program part. These other program parts are exactly those program
parts in the destination of an integration or dependency relation that originates from
its own part. In other words, a generative program for a program part is parameterized
by the generated program parts it needs or depends on. Each generative program can
retrieve the necessary information from the program parts it depends on because the
generative system provides access to all relations and their destination program parts.

For example, as shown in figure 4.7, the generative program of a method that
refers to a particular instance variable of the class it is located in, requires infor-
mation from the generation of that variable definition and the generation of the class
definition. This information will certainly include the name of that variable and class.
This is because the method can only be correctly generated if it uses the correct name
for the variable. Consequently, it needs this information from the variable program
part. Similarly, the generation of the method requires the name of the class. While
this latter parameterization might seem strange, we do require this because we specif-
ically enforced that a method definition program part must declare all information
needed to locate it in the entire program’s parsetree. The method program part must



96 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

include the name of its class. The generative program that produces the method is
thus parameterized by the class program part that corresponds with the class in
which the method is located.

Because a generative program can access all dependency and integration relations
that originate from its program part, it can deal with the integrative variability to
adapt its generated program such that it adheres to the relations. A generative pro-
gram fetches its required information from other program parts indirectly. Instead of
directly calling the generative programs that produce the program parts it depends
on, a generative program fetches these program parts by referring to the integration
and dependency relations that originate from its own part. This means that the
generative program retrieves the destination program parts of those relations. Conse-
quently, a generative program automatically has access to all generated program parts
that are the destination of a relation that originates from its own generated program
part. This indirect calling mechanism is important because a public program part
can be involved in many different integration relations, relating to unknown program
parts. It allows us to implement a generative program such that it takes all possible
integration relations into account for the generation of its program part. An appropri-
ately implemented generative program can thus anticipate and implement the possible
generative variabilities caused by integration relations.

Figure 4.8 shows the integrative composition of the tree generator and the traver-
sal generator. It also illustrates the parameterization of the generative programs
because of integration relations. Furthermore, even for the generation of private pro-
gram parts, it is useful to consider integration relations because particular integrative
compositions might automatically trigger the inclusion of additional integration rela-
tions, even on private program parts. This is explained later on, when we describe
integration relation propagation in section 4.5.1

| generative program for
- 'superleaf' class definition

generative program for
. 'value accessor' method
definition

generative program for
‘value' variable definition

VAMADIE fooooeemnnemmmmmmmmmemmmeme s s

Figure 4.7: Generative programs and their parameterization for parts of the tree
generator.



4.4. GENERATOR IMPLEMENTATION 97

Generation of Listparts

The generative programs that produce listparts instead of simple parts are not really
different. Of course, instead of generating one part, they need to produce a list of
parts, but the parameterization mechanism works in the same way. Although the
integration relations enforce the integration on the individual parts of the list, the
generative program itself is parameterized with the entire listpart. In the example
depicted in figure 4.8, the generative program that produces the node traversal
methods listpart is involved in an integration relations with the node classes listpart.
This generative program is thus parameterized with the entire list of node classes in
which its generated traversal methods need to be integrated. The generative program
has to generate a list of methods of which each method integrates in an appropriate
class. This is enforced by the integration relation.

Generation of Required Parts

In an integrative composition, the required part is integrated with a concrete part.
Consequently, all generative programs that are parameterized with dependency rela-
tions to the required program part have access to the (integrated) required part. In
the example of the traversal generator, depicted in figure 4.8, the generative program
that produces the node traversal methods is parameterized with the name of the class
it needs to integrate with but also with the name of the method it needs to use to
obtain the child nodes. However, the method to access the child nodes is of course
generated by the tree generator and not by the traversal generator. The traversal gen-
erator declares this dependency by means of a dependency relation to a required part.
This children iteration required part needs to be integrated with the appropriate
children iterator part produced by the tree generator. The generative program of
the node traversal methods list part now has access to the appropriate information
in the required part (i.e. the name of the children iterator method). Furthermore,
the node traversal methods list part is also involved in an integration relationship
with the node classes list part. Summarized, in this integrative composition, the gen-
erative program for the node traversal method is parameterized with the children
iterator method and the node class program parts, via the integration relations.
We have previously mentioned that a required program part has no generative
program associated with it. This was not entirely true. A required program part
does have a generative program part associated with it but this program cannot pro-
duce an implementation for the program part without the presence of an integration
relation imposed on it. The generative program does not implement the generation
of the program part itself. Instead, it implements the retrieval of the other program
part with which it is involved in an integration relation. Consequently, the generative



98 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

program cannot produce a program part without the necessary integration relation
that provides access to the other program part. For a required program part in the
Smalltalk language, a unite integration relation is required. The generative program
for the required program part must consequently be implemented to retrieve the other
program part that is involved in the unite relation. Furthermore, and most impor-
tantly, the generative program can enforce particular properties about the program
part it is integrated with. If the program part it is integrated with does not adhere to
the custom properties imposed by the generative program of the required part, then
integration can fail. This is because the generative program of the required program
part has control on how the required program part is filled in. To fail the integration,
it can violate the integration relation and produce a program part that does not ad-
here to the integration relation. For example, the required program part children
iteration of the traversal generator (depicted in figure 4.8) represents the need for
a method that iterates over the child nodes. In Smalltalk, such methods are often
implemented as methods with a Smalltalk block as argument (e.g. do:). Another
possibility for iteration of the child nodes is simply a method that returns all child
nodes in a list (e.g. children). Both these methods have a different signature. Sup-
pose, the traversal generator is written to use an iterator. The generative program of
the required program part can enforce that the method integrated with the required
part (through a unite integration) is a method with the desired signature.

4.4.4 Adaptations for Conflict Resolution

If a composition conflict occurs in the integration of generated programs, it needs
to be resolved. In contemporary generative techniques, the developer who composes
the generators is required to reconcile the generators through invasive changes in the
implementation of the generators or the generated programs. To avoid this difficult
and error-prone procedure, our technique enables that the generators adapt their gen-
erated program to circumvent the conflict. This adaptation is implemented by means
of alternative implementations for the generated program. Each of these alternative
implementations circumvents one or more composition conflicts that can occur in an
integrative composition. Since the possible composition conflicts are known for each
programming language, the developer is able to anticipate the conflicts and conse-
quently specify an alternative implementation.

Alternative Generated Program Parts

A generator can produce alternative implementations for its entire generated program
because each generative program, associated with a generated part, can produce one
or more alternative implementations. Each alternative implementation that is pro-



4.4. GENERATOR IMPLEMENTATION 99

generative program for
‘child iterator’ method
definition

iterator
method,

Tree generator

generative program for
‘leaf" class definition

| iteration |
\ method ,’

traverse generative program for
{ 'node traverse' method
definition

Trai)ersal generator

Figure 4.8: Parameterization of the generative programs in the tree-traverse integra-
tive composition.



100 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

duced for a particular program part differs from the other alternatives such that it
circumvents a particular composition conflict. Since the possible composition conflicts
are known for the output language of the generator, the developer can easily specify
alternatives for resolvable composition conflicts. The generative programming system
will adequately choose the required alternative implementations for each program part
such that no composition conflicts occur.

For example, if a generator produces a method named aux(), this method can
conflict with a method with the same name (produced by another generator). This
is because in an integrative composition, this method might be inserted in a class
that already contains a method named aux(). It can also occur that the method
is inserted in a class whose superclass defines a method with same name. This can
also lead to strange interferences. To enable an automatic resolution of this conflict,
the developer provides an alternative implementation for the program part in which
the name of aux() method is changed to auxiliary() method. The generator can
provide multiple alternative names and even provide an unlimited list of renamings
for its method. Likewise, if a generator produces a program in the tree language, it
should anticipate that the multiplicity of the tree elements can be a conflict if the tree
elements are integrated in another tree with a different multiplicity requirement.

The specification of alternative implementations for each generated program part
provides a scalable implementation technique to deal with the occurrence of multiple
composition conflicts in a single integrated program. In essence, the developer of a
program generator only provides alternative implementations for each program part.
The complete alternative implementation for the entire generated program is auto-
matically distilled by an appropriate selection of alternative implementations that do
not cause composition conflicts and that adhere to all dependency and integration
relations. Furthermore, the explicit definition of dependency relations and the pa-
rameterization of the generative programs through the dependency relations enables
an automatic propagation of alternative implementations, which is described in the
following paragraph.

Propagation of Alternatives

In most generated programs, the choice of an alternative implementation for one pro-
gram part involves that an alternative implementation needs to be chosen for multiple
other program parts. This propagation of the selection of alternative implementations
happens automatically because the generative programming system enforces the de-
pendency and integration relations. However, this still means that the generative
programs that produce the separate program parts need to produce consistent pro-
gram parts. Fortunately, the developer does not need to implement all possible alter-
native implementations for each program part explicitly. Instead, the mechanism of



4.5. THE GENERATIVE PROGRAMMING SYSTEM 101

parameterization of generative programs by the dependency and integration relations
automatically provides each generative program with the alternative implementation
of other program parts. In other words, because a generative program is parameterized
(via the dependency relations) with other program parts, an alternative implementa-
tion for the other program part automatically leads to an alternative implementation
for its own generated program part. In essence, the dependency relations ensure that
the other generated parts change consistently to produce an entirely correct program.

4.5 The Generative Programming System

We have described how integrative composable program generators are implemented
and composed. We will now describe how the generative system that executes the
generators is implemented and how it enforces a correct integrative composition. First,
we describe how the system automatically deduces additional integration relations to
make a particular integrative composition work. Afterwards, the implementation of
the conflict detection and integration enforcement mechanism is explained. We also
explain how a language definition steers the integrative composition mechanism for
the integration of programs implemented in that language.

4.5.1 Integration Propagation

In an integration specification, relations can be drawn between public parts. However,
in many cases, an integration relation between public parts can require additional in-
tegration relations between other public parts, as well as private parts. However, since
an integration relation in an integration specification can only be specified between
public parts, such additional integration relations are introduced automatically. For
that purpose, the generative system uses a set of propagation rules for integration
relations that is supplied for each language. These rules are often necessary to en-
sure the correctness or even the possibility of integrative composition. In general, a
propagation rule ensures that additional integration relations are added because of
integration relations defined in an integration specification. A propagation rule is
also recursively triggered when an integration relation was added by another propa-
gation rule. The automatic deduction of additional integration relations is necessary
because a developer who specifies an integration specification does not know about
the internal dependency relations, nor does he know about the private program parts.
Consequenty, he is unaware of the need for additional integration relations to make
the integrative composition work.

Figure 4.9 illustrates the propagation rules graphically for the Smalltalk language.
For example, the top leftmost figure illustrates the propagation rule that an in relation
induces a unite relation if the method or variable in that relation is already involved



102 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

in an in dependency relation, that is internal to the generator. This in dependency
relation might very well relate this method or variable to a private part produced
by the generator. Since no two in relations can exist on a method or variable, this
integrative composition requires that the parts related to the method or variable via
the two in relations be integrated by a unite relation. The addition of this unite
integration relation renders the integrative composition correct again.

Integration relation propagation is especially useful if the induced relations operate
on private program parts. For example, consider the example of the traversal gen-
erator. In addition to the traversal methods, auxiliary methods might be generated
that are used by all or some traversal methods. However, it is not particularly appro-
priate to expose this auxiliary method as a public part in the composition interface.
Nevertheless, the auxiliary method also needs to be integrated in the tree program’s
classes. For this purpose, the traversal generator developer has to define the auxiliary
method such that it will automatically be integrated by induced integration relations
on the traversal method parts. This is illustrated in figure 4.10. The in relation be-
tween the node traverse methods listpart and node classes listpart induces a unite
relation between the node classes listpart and the traversed node classes listpart.
Subsequently, the auxiliary method methods listpart is automatically integrated in
the node classes listpart as well.

4.5.2 Integration and Dependency Enforcement

Integration and dependency relations are enforced by the generative system. For each
possible integration or dependency relation in a particular language, the language
definition must contain a constraint that defines when the two program parts in the
relation adhere to the relation. These constraints are used by the generative system to
verify if the generated program parts adhere to the integration relation that is applied
to them. We have explained how the program generators themselves are influenced by
the use of an integration relation in a particular integration specification and how they
can adapt the generated program parts to adhere to the integration relation. Since
the actual adaptation is done by the program generator itself, the generative system
still needs to verify the integration by means of the constraints. This verification also
happens in the same way for the dependency relations.

A program generator that anticipates the possible integrative compositions, will
produce the correct program parts. However, if the constraint is violated, another
alternative implementation for the program part is selected. If no alternative im-
plementation for the program parts exists that adheres to the constraint, then the
integrative composition fails. In such a case, it means that the generator is unable
to provide an appropriate implementation for the program part that integrates in the
other program part. The constraints associated with the integration and dependency



4.5. THE GENERATIVE PROGRAMMING SYSTEM 103

in relation induces unite relation

subclass

subclass relation induces unite relation

method or

unite relation induces unite relation

subclass

variable

m
method or
variable

subclass

unite relation induces unite relation

subclass

overrides

overrides relation induces subclass relation

induced relation

contains

variable

unite relation induces unite relation

relation specified in integrative composition

dependency relation

v
contains

w
variable

Figure 4.9: Propagation of integration relations in Smalltalk.



104 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

Tree generator

node
<class> "
<AL _

Traversal g

Node
<class>

nerator

Aucxiliary
Method
<method>

traverse
<method>

self-calls

Figure 4.10: Induced integration relation propagates integration.

relations in the Smalltalk language are described next. These descriptions are pro-
vided here in natural language, an implementation of these constraints by means of
logic metaprogramming is provided in the following chapter.

unite Two program parts that are related via a unite integration relation are re-
quired to be identical. In essence, they need to represent the same program part
in the integrated generated program. The constraint thus enforces that both
program parts are entirely identical.

subclass A class A that is related to another class B via the subclass integration
relation needs to declare class B as its superclass in its representation.

in A method or variable program part that is related to a class program part via the
in relation needs to declare that it is defined inside that class.

overrides An overrides relation is associated with a constraint that enforces that
both methods have an identical signature. The constraint also enforces that the
methods are defined in the same inheritance hierarchy.

includeAfter & includeBefore The constraints associated with these integration
relations enforce that the method signatures of both methods in the relation are
identical. Furthermore, it is also enforced that the method body of the second
method in the relation is actually included before or after the rest of the method
body of the first method.



4.5. THE GENERATIVE PROGRAMMING SYSTEM 105

contains The contains dependency relation (between a variable and a class) is asso-
ciated with a constraint that enforces that the type of the variable is the type
of the class or a subtype.

refers, calls, self-calls These dependency relations are enforced by a verification if
the method actually refers, calls or self calls the appropriate method or variable
by its correct name.

4.5.3 Composition Conflict Detection and Resolution Enforcement

Detecting conflicts between generated programs occurs between all generated pro-
grams that are integrated. All integrated generated programs in a language are subject
to a set of composition constraints that are automatically imposed by the generative
system. These constraints are imposed between the program parts of programs imple-
mented in the same language but generated by different generators. These programs
can, but must not be involved in an actual integration. A composition conflict is
detected as a violation of a composition constraint. We make a distinction between
two kinds of composition constraints.

Invalidation Constraints These constraints are associated with the language of
the generated programs. They apply to all integrations of programs in that
language and are invalidated if the integration produces an invalid program in
that language.

Interference Constraints These constraints are also associated with the language
of the generated programs. They apply to all integrations and combinations of
programs in that language. They are invalidated if two programs interfere with
each other and when this interference is not enforced by an integration relation.
In other words, these constraints prevent that two programs interfere with each
other in undesired ways but they take the presence of integration relations into
account because these relations might overrule the interference. In this latter
case, the interference is actually a desired interaction that is created by an
integration relation.

All composition constraints are specified as binary constraints between the differ-
ent types of program parts in a language. All these constraints are effectively verified
against all possible combinations of appropriate public and private parts of the dif-
ferent generated programs in the same language. In some cases, binary constraints
are insufficient and a constraint has to be verified between more than two different
parts to detect a composition conflict. This happens if the conflict between two parts
depends on some information not included in those parts but in other parts of the gen-
erated program. Research in constraint programming has shown that any constraint



106 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

network with n-ary constraints can be converted to a network with only binary con-
straints [Bes99]. Consequently, the use of binary constraints does not restrict the
detectable composition conflicts. In the implementation of our technique, introduced
in the following chapter, we solve this problem because the implementation of a con-
straint can query the value of other program parts in the system. Consequently, we
can express n-ary constraints when necessary.

Table 4.1 describes the composition constraints that are imposed between the
generated program parts in the Smalltalk language. The constraints are expressed
between the different program part types in Smalltalk: class, method and instance
variable definitions. The composition conflicts that are detected by these constraints
are purely syntactic. They prevent name clashes between methods, classes and vari-
ables, overrides of methods and shadowing of variables. As we have described, some
higher-level composition conflicts can be detected in a higher-level language, which
will be demonstrated in the following chapter. Also note that the constraint that pre-
vents inadvertent overriding of methods is actually an n-ary constraint as it requires
information wether the defining classes of both methods are involved in an inheritance
hierarchy. We will show in the implementation with logic metaprogramming how we
actually implement these constraints.

Part types ‘ Smalltalk Composition Constraint
class - class Smalltalk classes may not have the same name
unless they are related in a unite integration
relation.
method - method Smalltalk methods may not have the same name
if they are defined in the same class unless they
are related in a unite relation.
method - method Smalltalk methods may not override methods

overrides integration relation. A method may
thus not have the same signature as a method
defined in a superclass.

in a superclass unless they are related in an

instance variable - instance variable | Smalltalk instance variables may not shadow
each other. An instance variable may thus not

fined in a superclass.

have the same name as an instance variable de-

instance variable - method Variables defined in a Smalltalk method may not
shadow instance variables.

Table 4.1: Smalltalk Composition Constraints



4.6. LANGUAGE DEFINITION 107

When a composition conflict occurs, the generative system tries to resolve it. This
means that the generative system forces the program generators to produce alternative
implementations for the generated programs. These alternative implementations are
implemented by the program generator itself and are oriented towards circumventing
the possible composition conflicts. Composition conflict resolution thus occurs by se-
lecting an alternative implementation for the generated programs that do not conflict.
In some cases, this might require another input specification for the program gener-
ator. If no alternative implementations can be found that do not conflict, program
generation fails. Obviously, not all composition conflicts can be resolved, but there
are many cases where it can be resolved.

4.6 Language Definition

Since we have frequently mentioned that particular definitions are part of a language
definition, we now summarize what a language definition needs to contain to enable
integrations of programs in that language. The language definition serves as a config-
uration mechanism for the integrative composition technique. A language definition
contains:

e The definition of the possible program parts and their representation.

e The definition of integration relations and the constraints that enforce them.
e The implementation of integration propagation rules.

e The definition of dependency relations and the constraints that enforce them.
e The possible composition conflicts and the constraints that detect them.

We described each of these parts of the language definition throughout the chapter
where they were needed. In the following chapter, we will explicitly describe them
in the definition of a language. Given the knowledge of a language definition, a
developer can implement an integrative composable generator that produces programs
in that language. More specifically, he can implement the integrative variabilities
because he knows about the possible program parts, the integration relations and the
compositions conflicts.

4.7 Domain-specific Integrative Composition

The entire mechanism for the implementation of integrative composable program gen-
erators is independent of the output language of the program generator. We have



108 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

shown how a language definition configures the entire generative system for an inte-
grative composition of program generators that produce programs in that language.
Although it would be possible to demonstrate the definition of other executable pro-
gramming languages such as Java, the definition of domain-specific languages rep-
resents a more interesting application. By adding the definition of domain-specific
languages to our system and by writing program generators that produce programs in
these domain-specific languages, we provide the opportunity to accomplish domain-
specific integrative compositions. Domain-specific integrative compositions are often
more appropriate because they allow us to specify a composition in domain-specific
terms instead of the low-level implementation. Furthermore, the detection of compo-
sition conflicts at a domain-specific level improves the correctness of the integrated
programs because it can be guaranteed that no composition conflicts with respect
to that domain occur. Last but not least, an integrative composition at a domain-
specific level means that all ‘lower level’ composition conflicts are also automatically
prevented. This is because an integration of domain-specific programs results in a
single integrated program that is translated as a whole to the low-level executable
language. The low-level implementation is consequently produced by single generator
and not by different generators.

4.7.1 Integrative Composition of Composed Generators

Before we consider the actual domain-specific integrative compositions, we need to ex-
plain the composition of modularly composed generators. In all previous integrative
compositions, we have described the integrative composition of monolithic generators.
However, a modularly composed generator can also be involved in an integrative com-
position. An integrative composition of composed generators is not so much different
from an integrative composition of monolithic generators. The integrative composition
interface of composed generators is simply the union of the all integrative composition
interfaces of their constituents. The difference occurs when the composed generators
are implemented as a translation composition of other generators. In such a case,
the integrative composition interface of the composed generator does not only ex-
pose program parts of the final generated program, but also exposes program parts of
the intermediate programs. These intermediate programs are the programs that are
transferred’ between the program generators in a translational composition. Conse-
quently, an integrative composition of composed generators cannot only be specified
in terms of the low-level generated programs, but possibly also in terms of the higher-
level intermediate programs. Since these intermediate programs are often expressed
in a domain-specific language, the integrative composition can be specified at the
domain-specific level.

If an integrative composition is specified at the domain-specific level, the domain-



4.7. DOMAIN-SPECIFIC INTEGRATIVE COMPOSITION 109

specific programs of both generators are integrated into a single program. This inte-
grated program is further translated into the executable language by a single generator.
However, each composed generator is built to translate the domain-specific program
itself. Therefore, the generative system performs a modification to the composition as
illustrated in figure 4.11. On the left hand side of figure 4.11, two composed generators
are integrated in terms of the domain-specific programs that describe a tree. Since the
domain-specific integration results in an integrated domain-specific program, the gen-
erative system merges the composed generators into a single generator that uses only
one generator to translate the integrated domain-specific program. This is illustrated
on the right hand side of figure 4.11.

Tree

Generator Generator Generator

Figure 4.11: Domain-specific Integration results in a merge of the composed genera-
tors.

4.7.2 Decomposition in Domain-specific Models

The definition of domain-specific languages occurs naturally in the implementation of
modular generators. In the previous chapter, we described that the modularity of a
(composed) program generator is best structured such that each program generator in
the composition addresses the generation of a single concern. Because each generator
is actually a compiler for a domain-specific language, each concern can consequently
be described in its own DSL. This is often desirable because it allows that each concern
is described in a language that is particularly appropriate for it. This means that in
a composed generator, the input specification is either expressed in multiple DSLs or
it is internally translated to these different DSLs. In both cases, the modularization



110 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

according to concerns of the generated program automatically leads to a separation of
the input specification in different DSLs, which may or may not be visible by a user
of the composed generator.

For example, consider the schematic illustration of the modular composition of
program generators in figure 4.12. Each generator in this figure is defined by its input-
and output languages. The result of this composition is a generator that produces a
program in language Lr and accepts an input program in languages L4 ,Lp and Lp.
In the figure, program e is the generated program and programs a,b,d; and dg are the
input programs. Consider that language Lg is the executable programming language
and all other languages are domain-specific languages that allow us to describe a
specific part or concern of the final generated program e. We illustrate how in this
composition, an integrative composition does not only occur at the level of the program
generated in Lg, but there is also an integrative composition at the level of language
Lc. This language is situated at a higher-level of abstraction than language L because
a program in Lo is translated to language Lg by a generator. This domain-specific
language Lo allows us to describe a part of program e in domain-specific terms.
Consequently, the program c models a part of program e in its own specific language
Lc. Therefore, we can also refer to these DSLs as domain-specific modeling languages.
These DSLs most often describe the final generated program at a higher-level of
abstraction and consequently model the program.

4.7.3 Example Decomposition

An example of the decomposition in domain-specific models is depicted in figure 4.13.
We schematically show the modular structure of the ‘parser and traversable parsetree’
generator, which is a composition of generators that were introduced in the previous
chapter. We can easily identify three different concerns in the final generated program
that are internally described in an appropriate DSL:

Parser concern generated by the parser generator and described in the EBNF lan-
guage.

Tree concern generated by the tree generator and described in the tree language.

Traversal concern generated by the traversal generator and described in the traver-
sal language.

The composed generator accepts a grammar in the grammar language. A grammar
description in this grammar language is translated into three programs in different
languages: a program in an EBNF language, a program in the traversal language and
a program in the tree language. These programs are domain-specific programs that
each describe a part of the final generated program. These three programs together



4.7. DOMAIN-SPECIFIC INTEGRATIVE COMPOSITION

Domain B
using Language Lg

Domain A
using Language L

Program Program
a b

Generator
AtoC

U

Generator

BtoC

c

1

|

I

|

|

|

1

1

1

:

Program |
|

|

1

1

i

I

Domain C !
using Language Lg !
1

1

Generator

CtoE

111

integrative

composition <:>

translation
composition

Program

Generator
DytoE

U

Program Domain D
do using Language Lp

Generator
Doto E

Domain E
using Language L

Program
e

Figure 4.12:
domain-specific models.

Schematic representation of stepwise translation through multiple



112 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

Grammar Spec

ﬂ, Grammar language

Grammar

generator
EBNF

Parser
generator

generator

Traversal
generator

Parser and Parsetree
Generator

Smalltalk
languagel
e
Node

children Parser
addchild() | Leaf stream
removeChild() parse()
traverse() traverse()

Figure 4.13: Languages and generators in the parser and parsetree generator.



4.7. DOMAIN-SPECIFIC INTEGRATIVE COMPOSITION 113

describe the entire generated Smalltalk program. They are further translated into the
Smalltalk language by the parser, traversal and tree generators respectively. For the
user of the generator, a single language is used to describe the input specification (i.e.
the grammar language). The final generated program is produced in Smalltalk and is
an integration of the generated programs produced by the parser, traversal and tree
generators. The program in the grammar language is a description for the programs in
the tree, traversal and EBNF languages because these latter programs are generated
based on the grammar program. Thus, there is a fourth part to the modularization
that regroups the other three different concerns into a single program, i.e. the grammar
program. In the grammar program, some implementation details that need to be
included in the tree, traversal and EBNF languages are hidden. Consequently, the
grammar language provides some abstraction over the other three languages that are
used. In other words, the grammar language describes the final generated program of
the 'parser and traversable parsetree’ generator at a higher level of abstraction than
the tree, traversal and EBNF languages.

The stepwise translation of an input program in one DSL, through multiple dif-
ferent DSLs into a final (executable) language is not new. It was first introduced in
generative programming by Neigbours in his PhD. dissertation on Draco [Nei80]. As
we have discussed in section 2.7.1, chapter 2, the major contribution of Draco is to
enable reuse at the domain level instead of at the implementation level. In addition
to this major advantage described by Neighbors, the implementation of a generator
becomes better structured and easier to maintain because the generation of the sep-
arate concerns is not tangled. Model-driven Architectures (MDA) also describe the
translation of one model to different specific models [Gro]. In this dissertation, we fo-
cus on the application of the integrative composition mechanism at all different levels
of abstraction. How higher the level of abstraction, how more domain-specific that
the composition can be specified and the more domain-specific that the composition
conflicts are that can be detected and possibly resolved.

4.7.4 Example Domain-specific Integrative Composition

The tree generator that was introduced in the previous sections defines a domain-
specific language to describe trees. This DSL was briefly described in the previous
chapter when we introduced the tree generator. We will now describe the language
definition of the Tree language and show an example integrative composition of gen-
erators that produce a program in this language.



114 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

Tree Program Parts

A program in the Tree language contains specifications for all nodes and leaves in the
tree. We choose to divide the program into the parts that define the separate nodes
and the separate leaves. Consequently, the following types of program parts exist in
the Tree language:

Node This program part represents the definition of a node. Its repre-
sentation contains the name of the node as well as the names of the
nodes and leaves that can be attached as a child of this node in a
tree. Furthermore, the definition of a node also includes information
on the arity of the node. The arity specifies the number of possible
child nodes as a maximum or fixed number.

Leaf The Leaf program part defines a node. A leaf definition consists of
a name.

Tree Integration and Dependency Relations

Program generators that produce Tree programs can be involved in an integrative
composition. The two integration relations that can be defined are:

supportsChild A supportsChild integration relation can be imposed
between a node program part, on the one hand, and a node or leaf
program part, on the other hand. It defines that the first node can
now also have the other node or leaf as a child in a tree.

Unite Isidentical to the unite integration relation of Smalltalk programs.

It can be imposed between node or leaf program parts.

The supportsChild relation is also the only dependency relation that can be used in
generators that produce Tree programs.

Constraints

The language definition of the Tree language also includes constraints that enforce a
correct integration of the program parts:

supportsChild In a supportsChild integration relation, the first pro-
gram part must include the name of the other node or leaf program
part in its list of possible child nodes.

Unite In a unite integration relation, the program parts are required to
be completely identical.



4.8. DEVELOPMENT DISCUSSION 115

Tree Composition Conflicts

Tree programs that are not integrated cannot conflict. In the event of an identical
name for nodes or leaves in different Tree programs, a composition conflict will occur
at the Smalltalk level. The generator that produces the tree implementation will then
propose alternative names for the implementation classes for the conflicting nodes
or leaves. However, if tree programs are integrated, all node and leaf names must be
unique (as in any Tree program). Consequently, the Tree language definition contains
the implementation of a language-specific invalidation constraint that verifies if all
node and leaf names of the (integrated) program are unique.

Integrative Composition of Tree Programs

The integrative composition that is illustrated in figure 4.14 integrates the Tree pro-
grams into a single Tree program using the supportsChild and unite integration
relations. The integrated program expresses the definition of an integrated tree im-
plementation. The resulting generated tree implementation allows to build integrated
trees. This integration is not possible at the Smalltalk language level. The integration
at the Tree language level modifies the entire generated tree implementation. For ex-
ample, the methods that allow to add a node or leaf to a NodeD2 node, now also allow
to add a NodeC2 node. An integration at the Smalltalk level cannot express this.

4.8 Development Discussion

The development of integrative composable generators requires careful design and im-
plementation of the program generators. Perhaps the most important part is the lan-
guage definition that determines the possible integration relations and consequently
also the possible integrative compositions of program generators that produce pro-
grams in that language. The design and implementation of the integrative composable
generators themselves also requires a careful consideration of the possible integrative
variabilities that need to be anticipated. In this section, we elaborate on the devel-
opment methodology of integrative composable generators, as it is proposed in this
dissertation. We first discuss the different possible developer roles and discuss the def-
inition of a language and the implementation and integrative composition of program
generators afterwards.

4.8.1 Developer Roles

We can distinguish three different developer roles in the implementation of integrative
composable generators:



116 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

Tree Generator

SuperLeaf
value
value()
value:(aValue)

SuperNode [LeafCiLeafD1 |
children [ ]
children()
childAt:(pos)
child:at:(node,pos)

NodeC2 | NodeD2 |

[ [
[ [
L L

child:at:(node,pos) | [ child:at:(node,pos) |

Figure 4.14: Integrative Composition at the Tree language level.



4.8. DEVELOPMENT DISCUSSION 117

e The developer that implements an entire program generator and defines its input
language.

e The developer that builds new generators as an integrative composition of other
generators.

e The application developer who uses existing program generators to produce
parts of the application.

Although a single person could fulfill multiple developer roles in the development pro-
cess, it is important to distinguish these roles because each role requires a particular
knowledge about the program generator and its generated program. Obviously, the
developer of a generator is required to understand the output language(s) of the gener-
ator. Using this knowledge, he is able to implement an entire integrative composable
program generator. In general, this developer has no knowledge on the implementa-
tion of other generators and their generated programs. The second role is the role of
the developer that specifies the integrative composition of program generators. This
developer also requires knowledge on the input and output languages of the generators
in the composition but he does not need any knowledge on their internal implemen-
tation. This developer also does not need knowledge on the internal implementation
of the generated programs, other than the knowledge that is required to express in-
tegrations of these generated programs. The last role is the one of the application
developer, who only requires knowledge on the input and output languages of the
program generators and the public interface of the generated program.

4.8.2 Language Definition

The definition of a language requires great care because it determines the possible
integrative compositions of generators that share this language as output language.
To design and define it, the developer needs to consider the possible integrations of
programs in that language. First of all, an appropriate set of types of program parts
and their representation needs to be determined. In this definition, the developer
sets a limit to the kind of program parts that can be manipulated in an integrative
composition. Once this set of possible program parts is defined, the developer needs
to list the possible composition conflicts that can occur and can be detected between
separately generated programs. Obviously, the developer might have to refine the
representation of the program parts to ensure that some composition conflicts can be
detected.

Next, the developer must define the integration and dependency relations. The
choice of program parts determines the possible integration relations. To define the
integration relations, the developer needs to distill the useful integrations between the



118 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS

separate program parts. The set of possible program parts, the possible composition
conflicts and the possible integration relations then determines to a large extent the
required dependency relations for that language. In the definition of the dependency
relations, the developer must ensure that all dependencies between the implementa-
tions of each separate program part can be expressed. The developer can distill the
possible dependency relations by considering what changes to the implementation of
one kind of program part require changes to other kinds of program parts, to main-
tain a consistent generated program. The possible changes to the implementation of
a program part are the integrative variabilities. As we mentioned, these variabilities
are caused by the possible composition conflicts and integration relations. As a conse-
quence, the developer needs to consider the possible integrative variabilities for each
kind of program part and determine how these variabilities can affect the implementa-
tion of other kinds of program parts. As we already mentioned, the set of dependency
relations frequently overlaps with the dependency relations. However, there can be re-
lations that are specifically designed for integration (e.g. unite and includeBefore)
and some dependency relations are have nothing to do with integration (e.g. refers,
calls).

A last part of the language definition is the definition of the integration relation
propagation rules. For this, the language developer needs to consider how an inte-
gration relation that is imposed on one program part can require the definition of
another integration relation on another program part (that is related via a depen-
dency relation). An integration relation propagation rule is often required to solve
impossible configurations of relations on a single program part (e.g. two in relations
on a variable part).

4.8.3 Generator Implementation

The implementation of an integrative composable generator requires that a developer
does not only consider the functional variabilities and commonalities of the generated
programs. A developer now also needs to consider the integrative variabilities that are
caused by the composition conflicts and the integration relations. In his design of the
separate program parts, the developer determines the commonalities and variabilities
in the generated programs. In essence, the set of program parts and their dependencies
is a commonality between all generated programs. The variabilities are limited to
the implementation of each separate generated program part. This includes both
functional and integrative variabilities. The integrative variabilities can be determined
because the developer knows the output language of his generator. The language
definition explicitly lists the possible composition conflicts and integration relations
that are available. The developer can consequently determine the required integrative
variabilities for his generator. The number of variabilities to be considered is in



4.9. CONCLUSION 119

large part determined by the number of public parts exposed in the composition
interface. Clearly, a developer who exposes no public parts rules out any possible
integrative composition and only needs to consider possible composition conflicts.
Once some parts are exposed for integrative composition, the number of integrative
variabilities becomes larger. The developer needs to implement the generation of
alternative implementations for each generated program part to circumvent possible
composition conflicts. Furthermore, each generative program of a program part must
consider the possible integration relations imposed on that part and the developer
must consequently implement this. The more integrative variabilities that a developer
copes with in the implementation of a generator, the more integrative compositions
that this generator will support.

4.8.4 Integrative Generator Composition

The specification of an integrative composition is technically quite straightforward.
The developer only needs to specify the desired integration relations on the integrative
composition interfaces of the generators involved. The integrative compositions are
verified for composition conflicts that were identified in the language in which the
integrative composition is specified.

4.9 Conclusion

We have described how integrative composable program generators are designed and
implemented. In contrast to traditional program generators, such integrative com-
posable generators must anticipate the variabilities that are caused by integrative
compositions. The approach we presented allows us to specify integrative composi-
tions through an integrative composition interface by means of integration relations.
The possible variabilities caused by composition conflicts and integrative composition
itself are captured by the generative programs that can produce multiple possible im-
plementations for a single part of the generated program. The integrative composition
mechanism that we presented is language independent and we provided a description
of how a language definition can govern the integrative compositions of program gen-
erators that share the same output language. This raises opportunities to specify an
integrative composition at the domain-specific level.



120 CHAPTER 4. BUILDING INTEGRATIVE COMPOSABLE GENERATORS



Chapter 5

Generative Logic
Metaprogramming

This chapter presents the realization of the implementation technique for integrative
composable generators that was introduced in the previous chapter. We present logic
metaprogramming as an appropriate generative programming language for integrative
composable generators.

5.1 Introduction

The technique of logic metaprogramming (LMP) [Wuy01, DVMWO00, Vol98, MMW02]
is a natural implementation technology for integrative composable generators. In the
previous chapter, we introduced the overall technique for integrative composable pro-
gram generators without delving into the details of a particular implementation tech-
nology. This is because the proposed technique does not enforce a particular imple-
mentation language for an integrative composable generator. In essence, it is possible
to use any programming language or even extend existing generative techniques to
implement integrative composable generators. However, LMP provides some appro-
priate linguistic support for the implementation of integrative composable generators.
Therefore, we present LMP as an appropriate generative programming language for
integrative composable generators.

The use of LMP to generate object-oriented programs was first introduced by De
Volder in his PhD. dissertation [Vol98]. In LMP, a program generator is implemented
as a logic (meta)program. The logic metaprograms can be used to implement program
generators for a program implemented in any kind of language. Most often, programs
in an object-oriented programming language have been generated, although HTML
webpages and LaTeX source files have been generated using LMP as well [Vol98].

121



122 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

In this dissertation, we have used the Soul logic metaprogramming language [Sou]
to implement our generators. Soul is a Prolog [Fla94] derivative, implemented in
Smalltalk, that is extended with several reflective and metaprogramming features of
which one addresses the manipulation of patterns of (object-oriented) source code.
We also chose to use Smalltalk as the object-oriented implementation language of the
generated program.

In what follows, we first describe logic metaprogramming by means of the Soul logic
metaprogramming language. Afterwards, in section 5.3, we describe that the Gener-
ative Logic Metaprogramming system (GLMP) that executes the program generators
is a combination of the Soul evaluator and a constraint checker. The implementation
of a language definition in GLMP is described in section 5.4. The implementation
of the integrative composable generators is explained in section 5.5. Section 5.6 ex-
plains the integrative and translation compositions of program generators, followed
by sections 5.7 and 5.8 that describe some example integrative compositions at the
Smalltalk level and at the domain-specific Tree language level, respectively. Finally,
a short discussion on the prototype GLMP system is given in section 5.9.

5.2 Logic Metaprogramming

Logic metaprogramming uses a logic programming language at a meta level to ma-
nipulate programs in some base language. The technique of LMP itself is not lim-
ited to program generation but has been applied in many situations that require
metaprogramming in general. LMP has also been used to discover design patterns
in object-oriented programs [Wuy98], to enforce programming conventions [MMW02],
to co-evolve design and implementation [Wuy01], to describe and deduce software
views [MPGO03, TBKGO04] and aspect-oriented crosscuts [GBO03], etc.... In the con-
text of program generation, LMP itself has already been proposed in the context
of generative programming [Vol98] and the building of aspect weavers and aspect-
specific languages [VD98, BMV02]. In this dissertation, we build upon these last two
applications of LMP to support the building of composable program generators.

The logic language that is most often used for logic metaprogramming is a Prolog
derivative called Soul [Sou]. Most of the research applications of LMP have been
using the object-oriented languages Java and Smalltalk as base languages. In the
following sections, we describe how the Soul LMP language differs from standard
Prolog and how it is used as a meta language over Smalltalk base programs. We also
describe some general ideas of logic programming, but for an in-depth overview on
logic programming in Prolog itself, we refer to [Fla94] .



5.2. LOGIC METAPROGRAMMING 123

5.2.1 Soul

Soul [Sou] is a logic metalanguage about Smalltalk programs. It was first conceived
and implemented by Wuyts in the context of his PhD. dissertation [Wuy01]. Although
Soul has a slightly different syntax, it is entirely based on Prolog and can execute nor-
mal Prolog programs (converted to Soul syntax). But Soul is much more powerful
than a standard Prolog derivative: it has a tight symbiosis with its base language
Smalltalk [Wuy01, BGW02, DGJ04]. This means that Soul programs can consist
of both Prolog-like logic programs and Smalltalk expressions and that all Smalltalk
values can be manipulated in Soul programs. Although the symbiosis itself is of mi-
nor importance in this dissertation, its advantage is that generative programs can
be implemented in a hybrid programming language. In essence, using Soul, we can
use the declarative (logic) and imperative programming styles in the implementation
of a single program generator. This allows us to choose the most appropriate pro-
gramming style to implement parts of a generative program. The declarative (logic)
programming style will primarily support the particularities that are associated with
integrative composition, while the imperative programming style is more appropri-
ate for algorithmic computations that are often required to generate a program. For
more details on the actual symbiosis and its advantages and applications to com-
putational reflection of object-oriented programs, the interested reader is referred to
[Wuy01, BGW02, DGJ04].

Soul vs Prolog

Figure 5.1 illustrates the major syntactic differences between Prolog and Soul pro-
grams. In essence, Soul logic variables are written with a leading ’?’ instead of a
capital letter, as in Prolog. Lists are written between <’ and >’ instead of ’[ and
'I’. Furthermore, the implication symbol ’: -’ of Prolog is written as ’if’ in Soul. The
use of unnamed variables is not illustrated but an unnamed variable is written as ?.
It corresponds to _ in Prolog.

For clarity on terminology we describe how parts of a logic program are denoted
in this dissertation. In Prolog or Soul, we do not refer to program statements and
expressions, but rather to logic declarations. Any logic program consists of multiple
logic declarations. A logic declaration can be either a fact or a rule. In the example in
figure 5.1, the logic program is defined by one rule and one fact. In both the Prolog and
Soul programs, the rule is the first logic declaration and the fact the second declaration.
We also denote parts of the logic declarations as logic terms and logic clauses. A term
denotes a part of the logic declaration that is manipulated as data (e.g. the <?first
| ?rest> lists in figure 5.1). A clause denotes an entire logic declaration that is
associated with a truth value. In some Prolog literature, a clause is also defined



124 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

append(<?first | ?rest>,7alist,<?first | Prestlist>) if
append(?rest,?alist,?restList).
append(<>,7alist,?alList)

append([First | Rest], Alist,[First | RestList]) :-
append(Rest,Alist,RestList).
append([],Alist,AList)

Figure 5.1: Soul (above) versus Prolog (below) programs.

as a ‘predication’. A clause can be considered as an ‘executable’ part of the logic
program (e.g. the append(?rest,?alist,?restList) clause in figure 5.1). Terms
are also always contained in clauses. Furthermore, we also describe logic programs by
the predicates that they define. In the example of figure 5.1, the logic program is a
definition for the append/3 predicate. The predicate of a clause is uniquely determined
by a name and multiplicity. The multiplicity is a number that denotes the number
of arguments associated with that predicate. The append/3 predicate has a name
append and a multiplicity 3.

A single predicate can be defined by multiple logic declarations (i.e. multiple facts
and rules). This is an essential part of logic programming. Multiple logic declarations
express multiple alternative computations to solve a query. For example, the imple-
mentation of the append/3 predicate in the example above contains two declarations:
one fact and one rule. The fact is applicable when the first argument of the predicate is
an empty list. The rule is applicable when it is not. The following query will therefore
invoke the rule and not the fact. The result returned for ?1list is <1,2,3,4>.

if append(<1,2>,<3,4>,71ist)

In this example, the logic declarations are mutually exclusive: either the fact or
the rule are executed. However, this does not need to be the case. When more
than one logic declaration is applicable, the query can automatically result in multiple
subsequent results. This is also an essential part of logic programming: a logic query
can produce multiple alternative results. For example, the following logic program
contains three alternative declarations for the test/1 predicate. The logic query
(also shown below) produces three alternative results for ?x (i.e. a, b and c).

test(a). test(b). test(c).



5.2. LOGIC METAPROGRAMMING 125

if test(?x)

Quasi-quoted Code

An important feature of Soul in the context of generative programming is the quasi-
quoted code construct. It provides quasi-quoting facilities in the Soul language and
was first introduced in the logic metaprogramming language TyRuBa [Vol], developed
by De Volder in the context of his PhD. dissertation [Vol98]. In Soul, quasi-quoted
code is written between { and }. It allows us to embed any kind of source code that
can be manipulated by the Soul programs. For example, the following Soul clause
embeds the source code of a complete Smalltalk method:

methodbody ({ testmethod
"this is a demo method source code"
instancevar := true.
~ self } )

Inside the quasi-quoted code, we can still use logic variables. The use of these
logic variables enables us to write quasi-quoted source code of which parts still have
to be computed during the generation process. In other words, a quasi-quoted code
term with logic variables embedded into its quasi-quoted code implements a source
code pattern or template that is parameterized by the embedded logic variables. The
logic variables are instantiated during program evaluation (logic inference process)
and they evaluate to their textual representation inside the quoted code.

At the present time, no syntactic limitations are imposed on the contents of a quasi-
quotedcode. The Soul language does not limit the use of quasi-quoting to syntactically
correct Smalltalk expressions, but also allows any other kind of code such as HTML,
XML, Java or even plain strings containing natural language sentences. For that
purpose, at the present time, quasi-quoted code is simply considered as a kind of
quasi-quoted string. Future extensions to Soul may incorporate a parsing of the code
inside a quasi-quotedcode to ensure its syntactic correctness. This would provide
additional syntactic correctness checks during code generation.

An example application of a quasi-quotedcode term in generative programs is
shown in the following Soul program. It contains a quasi-quotedcode term that im-
plements a template for a Smalltalk instance variable accessor method.

accessor(?varName,{ ?varName
"returns the 7varName variable value"
~ ?varName } )



126 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

The evaluation of the query if accessor(content,?methodcode) delivers the
accessor method code for the Smalltalk content variable:

content
"returns the content variable value"
~ content

This example illustrates the use of logic variables inside quoted code terms. The
presented representation of method code inside a logic clause is different from the
representation that is chosen for the implementation of integrative composable gener-
ators. This representation is described later on.

5.2.2 Important Predicates

Soul provides a large library of pre-defined standard logic predicates that are fre-
quently used in the implementation of logic programs. We briefly provide an overview
of the most important pre-defined predicates that are used in the examples later on.

member /2

The member/2 predicate verifies or retrieves elements from a list. Its first argument
is the element and the second argument is the list. Like any logic predicate, it can be
used in multiple ways. For example, it can be used to retrieve all elements from a list:

if member(?x,<1,2,3>)

The query above results in multiple subsequent results. One result for each element
of the list. The member predicate can also be used to verify if an element is contained
in the list. The result is either failure or success for that query. For example, the
following query succeeds:

if member(2,<1,2,3>)

findall/3

The findall/3 predicate is a higher-order predicate, i.e. its second argument is a
query. This query is launched and all results for that query are gathered in a list, which
is the last argument. The first argument determines which value is put into the list for
each result of the query. For example, the following query gathers all elements from
the list <1,2,3> and gathers them into a new list: <test(1),test(2),test(3)>.

if findall(test(?7x),member(?x,<1,2,3>),7list)



5.2. LOGIC METAPROGRAMMING 127

5.2.3 Representational Mapping

The use of the logic language Soul at a metalevel to reason about and manipulate
Smalltalk base programs requires a mapping of the (object-oriented) base programs
to the logic (metalevel) representation. This mapping is called the representational
mapping and it determines the parts of a program that are reified as separate logic
facts [Vol98].

In the specific context of generative programming, this mapping determines the
representation of a generated program. Similarly to many other (transformational)
generative systems, the internal representation of a generated program in LMP is a
parsetree of the program. What is fundamentally different is that this parsetree is not
represented as a single logic declaration, but is described by a set of logic declarations
that together describe the entire parsetree.

Table 5.1 describes the representational mapping of a subset of the Smalltalk
program elements to their internal representation that can be used by the Soul logic
metaprograms. This mapping reifies class, variable and method definitions as separate
logic declarations:

e A class definition is represented by a logic fact that declares the class name and
its superclass name.

e A variable definition is represented by a logic fact that declares the variable
name and the class it is defined in. It can optionally define its type, which is
useful in integrative compositions. The type is not needed for generation itself
because Smalltalk is a dynamically typed language.

e A method definition is represented by a logic fact that declares the method name,
the method body and the name of the class it is defined in. The methodbody is
represented by a quasi-quotedcode term. Some additional information about the
method body is put in the position of the ?info variable. This additional infor-
mation is produced by the generator itself and states required information about
the method body for verification of the integration and dependency relations.
The exact content of this information is discussed later on.

Furthermore, it is important that a representational mapping of a parsetree to
its logic representation is a I-on-1 mapping. This means that each logic declaration
describes exactly one part of the parsetree. Moreover, the inverse mapping of the
logic representation to the parsetree must result in the original parsetree. Obviously,
any other kind of mapping would lead to strange results. This property of the repre-
sentational mapping is not verified by the Soul system and consequently needs to be
ensured by the developer who defines the representational mapping.



128 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

’ Smalltalk Element ‘ Logic Representation ‘
class class(?name,?superClassName)
variable var(?className,?name,?Optionaltype)
method method(?className,?methodName,?methodBody, ?info)

Table 5.1: The representational mapping of Smalltalk programs.

5.3 Generative Logic Metaprogramming System

The program generators implemented in the GLMP (Generative Logic Meta Program-
ming) system are executed in a generative system that is based on logic metaprogram-
ming. The Soul logic metaprogramming language is used to implement the program
generators and to implement the language definition. The system that executes the
program generators is a combination of the Soul interpreter and a constraint checking
system. In essence, the definition of a program generator is used by the GLMP system
to construct a constraint network. To solve this constraint network, the generative
logic metaprograms (included in the generator) are executed. Figure 5.2 illustrates
the close interplay of the constraint checking system and the Soul evaluator.

Program Generators, Integration Specifications,
Language Definitions and Input Specifications

Generative LMP System

Soul < Constraint

Evaluator invokes Checking System

Generated Smalltalk Programs

Figure 5.2: The Generative Logic Metaprogramming System.



5.3. GENERATIVE LOGIC METAPROGRAMMING SYSTEM 129

The Constraint Network

The implementation of a single program generator defines a constraint network. Through-
out this dissertation, we have already visualized a program generator as a network of
program parts interconnected with relations. This visualization is an exact represen-
tation of the constraint network. The network is constructed by the GLMP system
itself. The nodes of this network are the separate program parts and the edges of the
network are the constraints. A solution of the constraint network is a set of values
for each node that satisfies all constraints. In a single program generator, the actual
constraints are defined by the dependency relations. The solution of a constraint
network defined by a single program generator is thus an entire and correctly gener-
ated program. The generated program is represented by a set of program parts. In
an integrative composition, the networks of the generators are merged into a single
constraint network. The constraints associated with the integration relations imple-
ment additional edges that link both networks. Furthermore, the merged network
is extended with constraints that prohibit composition conflicts. The GLMP system
thus also places edges between the appropriate nodes to implement the composition
conflict detection constraints. A correctly integrated program is thus produced by
solving the entire merged network.

The constraint checker is the central engine of the GLMP system. It invokes the
Soul interpreter to generate the possible program parts (values of network nodes)
and selects an appropriate set of alternative implementations for each program part
that adhere to the integration and dependency relations. For that purpose, it checks
the validity of the relations (implemented as constraints) between the program parts.
Since we also implement these constraints in Soul logic metaprograms (as we will
describe later on), the constraint checker also invokes the Soul interpreter to verify
these relations.

The Generative Logic Metaprogramming Language

The most important use of the logic metaprogramming language Soul is in the imple-
mentation of program generators. In other words, Soul is the generative programming
language. Consequently, the separate generative programs that produce the separate
program parts are called generative logic metaprograms. These generative programs
can produce multiple possible implementations for a single program part. Neverthe-
less, we also use Soul to specify the language definition, the relations and all other
elements of our approach. We will now describe how a language definition is imple-
mented in GLMP. Afterwards, we explain how the program generators themselves are
implemented.



130 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

5.4 Language Definition in GLMP

The language definition is included in the implementation of the generator that trans-
lates programs in the language. Nevertheless, the language definition and the gen-
erator implementation are completely separate. In GLMP, the language definition
consists of:

e The representational mapping that determines the program representation and
the separate program parts.

e The definition of the possible integration and dependency relations and the con-
straints that implement their enforcement, implemented using logic metapro-
grams.

e Integration relation propagation rules, implemented using logic rules.

e Composition conflict detection constraints, implemented using logic metapro-
grams.

We describe each of these items in detail in the following four subsections.

5.4.1 Representational Mapping of Program Parts

An integrative composable program generator produces a program that is conceptu-
ally split into separate program parts. In GLMP, the program generator effectively
produces a program in separate parts because it produces a program represented by
separate logic facts. The format of these logic facts adheres to the representational
mapping of a particular parsetree, as described in section 5.2.3. The representational
mapping determines the possible program parts (the possible types) and their entire
representation.

The design of a representational mapping requires great care because it is a deter-
mining factor for the possible integrative compositions and the handling of integrative
variabilities. In essence, the mapping determines the possible kinds of program parts
and consequently also determines the kind of program parts that can be exposed
through a composition interface. The granularity of the mapping also determines the
granularity of the integrative variability that any program generator can offer. For
example, the chosen representational mapping of Smalltalk in table 5.1 of section 5.2.3
defines that an entire method is represented by a single logic declaration. This means
that the internal implementation of a method is always a hidden part of the generated
implementation. Depending on the provided integration relations, this will complicate
integrations of generated programs at a sub-method level. Using such a mapping, sub



5.4. LANGUAGE DEFINITION IN GLMP 131

method-level integrations are either impossible or either require more complex inte-
gration relations for particular sub-method level integrations. In both cases, it means
that generated parts can never contain separate statements. This thus also means that
the integrative variability with respect to composition conflicts cannot be expressed
at the statement-level. In other words, we can only specify resolutions to composition
conflicts by implementing the generation of alternatives for entire method, variable or
class definitions. Furthermore, we repeat that the separate program parts defined in
a representational mapping need to contain sufficient information to reconstruct the
entire program from these separate program parts.

class(SuperNode,SuperLeaf) .
class(LeafA,SuperLeaf) .
class(LeafB,SuperLeaf) .
var (SuperNode,children,?).
class(NodeA,SuperNode) .
class(NodeB, SuperNode) .
method (SuperNode,children,{children ~ children values},<children>).
method (SuperNode,{child:at:},{ child:aChild at:aPos

children at:aPos put:aChild },<children>).
method(SuperLeaf,value,{value - content},<content>).
class(SuperLeaf,Object) .
var (SuperLeaf,content,?) .
method(SuperLeaf,{value:},{value: aValue

content := aValue},<content>).

Figure 5.3: Sample set of logic facts that represents a part of the tree implementation
generated by the tree generator (of figure 4.5).

In this dissertation, we use the representational mapping for Smalltalk programs
that was presented in table 5.1. A sample program represented by the logic facts de-
fined in this mapping is shown in figure 5.3. The chosen representational mapping con-
siders entire methods as a single program part. Because the method body is contained
in a quotedcode term and remains hidden, the representation of a method program
part does not only contain the methodbody, the class name and method signature, but
also contains an 7info ‘field’ that declares properties about the methodbody. These
properties declare the use of variables and methods called inside the method body.
These properties are produced by the generator that produces the part and they are
used by the constraints that implement the verification of dependency and integration
relations, which are explained next.



132

5.4.2 Integration and Dependency Relations

CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

From a technical viewpoint, the implementation and use of integration and depen-
dency relations is identical in GLMP. In the implementation of a program generator
or in an integration specification, the dependency and integration relations are spec-

ified by means of logic declarations.

Therefore, the language definition specifies a

logic predicate for each possible integration and dependency relation. The possible
Smalltalk integration relations and their corresponding logic declaration are shown in
table 5.2. The last column shows the predicate of the constraint that implements its
enforcement. The use of the relations in the implementation of a program generator is
shown later on. We now focus on the implementation of the enforcement constraints.

Integration Relation

Logic Declaration ‘

ConstraintPredicate ‘

subclass subclass(?partA,?partB) constraintSubclass /4
in in(?partA,?partB) constraintVarInClass /4
in in(?partA,?partB) constraintMethodInClass/4
overrides overrides(?partA,?partB) constraintOverrides/4
unite unite(?partA,?partB) constraint Unite/4
includeBefore includeBefore(?partA,?partB) | constraintIncludeBefore/4
includeAfter includeAfter(?partA,?partB) constraintIncludeAfter/4

Dependency Relation

Logic Declaration ‘

ConstraintPredicate ‘

refers refers(?partA,7partB) constraintRefers/4
contains contains(?partA,?partB) constraintContains/4
self-calls selfcalls(?partA,?partB) constraintSelfcalls/4

calls calls(?partA,?partB) constraintCalls/4

Table 5.2: Integration and dependency relations in Smalltalk.

Constraints

The enforcement of the integration and dependency relations is done by constraints

implemented with logic metaprograms.

The generative system imposes these con-

straints between the appropriate program parts of one or more program generators
and automatically verifies and enforces all the constraints in the execution of a pro-
gram generator or an integration composition. An invalidated constraint means that
the generated program or the integration is incorrect and leads to the selection of al-
ternatives for the program parts. First we describe the general form of how constraints

must be declared:



5.4. LANGUAGE DEFINITION IN GLMP 133

?constraintName (?partNameA, ?partNameB, ?partDescriptionA, ?partDescriptionB)

Each constraint is defined by its own predicate and must have four arguments.
The first two arguments will be bound to the names of the parts that are verified and
the last two arguments to the logic representation of these program parts, respectively.
Some of the constraints that implement the enforcement of the relations in Smalltalk
are shown in figure 5.4. The implementation for the enforcement of the in, refers,
subclass,calls, self-calls, overrides and unite relations are shown.

The implementation of these constraints extensively uses the unification abilities
of the logic inference engine. For example, the constraintSubclass logic rule im-
plements the enforcement of the subclass relation. This means that the first class
program part must declare the classname of the second class program part as its
superclass. This is exactly what that constraint expresses. We also show the use of
the additional 7info ‘field’ in the method program parts. For example, consider the
constraintRefers constraint, that implements the enforcement of the refers rela-
tion. There are three logic declarations. The first one verifies if the method program
part declares that it refers to the variable program part using the appropriate name.
The method representation must therefore include the name of the variable it refers
to in the logic list that is included at the position of the ?info variable. The list
is produced by the program generator itself, during generation of the method. In
future implementations, we envision to omit this ?info ‘field” and use Soul’s intro-
spective abilities to verify the implementation of the actual method body [Sou]. This
is discussed later on in the future work. In this dissertation, all required properties
about the method bodies for verification of the constraints is included separately in
the method program part. This also includes method names for verification of the
calls and self-calls relations. The other declarations of constraintRefers im-
plement the enforcement of a refers relation if the type of the variable is included
and between a method and a class.

A more complex enforcement is required for the includeAfter and includeBefore
relations. The implementation of the constraint for the includeAfter integration re-
lation is shown in figure 5.5. First of all, the constraint enforces that both methods
declare that they are defined in the same class. Next, this constraint enforces that
method?2, that is combined after methodl, has the same signature as method?2 or is
a parameterless method (i.e. a unary message in Smalltalk). We enforce the same
signature because the parameters of method2 need to be mapped onto the parame-
ters of methodl. Evidently, if method2 has no parameters, its methodbody can be
straightforwardly included. Finally, the constraint needs to verify the correct inclu-
sion of the body of method2 into the body of methodl. This requires us to verify the
method body of method1 if the body of method2 is correctly included (after) the body
of method1. This verification essentially requires parsetree matching, which is imple-



134 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

constraintMethodInClass(?m,?c,method(?class,?,?,?),class(?class,?)).
constraintVariableInClass(?v,?7c,var(?class,?,?),class(?class,?)).
constraintRefers(?m,?v,method(?,?,?,?info) ,var(?,?var,?)) if
member (?var,?info) .
constraintRefers(?m,?v,method(?,7,7,7info) ,var(?,?var,?type)) if
member (var (?var, 7type) ,7info) .
constraintRefers(?m,?c,method(?,7?,?,7?info),class(?class,?)) if
member (?7class,?info) .
constraintSubclass(?cl,?c2,class(?classl,?class2),class(?class2,?)).
constraintCalls(?ml,?m2,method(?,?s1,?,?info), method(?,7s2,7,7)) if
member (?s2,7info) .
constraintSelfcalls(?ml, ?m2,method(?,?ml1,?,?info) ,method(?,7?m2,7,7)) if
member (?m2, 7info) .
constraintOverrides(?ml,?m2,method(?c1,?m,?,?) ,method(?c2,?m,?,?)) if
inSameHierarchy(?c1,?7c2).
constraintUnite(?,7,7x,7x).

Figure 5.4: Implementation of constraints that enforce the Smalltalk dependency
relations.

mented by the includedAfter/2 predicate. In the specific case of an includeAfter
integration, it is allowed that a custom return statement is included at the end of the
method (after the included method body). The implementation of this predicate is
included in appendix A.

constraintIncludeAfter(7ml, ?m2,method(?class, ?methodl,?bodyl,7infol),
method(7class, Pmethod2, ?body2,?info2)) if
or (unarySelector (?method2) ,sameSignature(?methodl, ?method2)),
includedAfter(?bodyl, ?body2) ,
foreach(member (?x,?7info2) ,member (?x,?7infol))

Figure 5.5: Implementation of the constraint that enforces the includeAfter inte-
gration relation.



5.4. LANGUAGE DEFINITION IN GLMP 135

5.4.3 Integration Relation Propagation

The propagation of integration relations is required because an integration specifica-
tion might require additional integration relations that can be automatically derived.
In GLMP, the propagation of integration relations is implemented using logic rules.
Each such logic rule expresses how an integration relation is induced from other inte-
gration and dependency relations.

Table 5.3 shows the logic rules that correspond with the integration relation prop-
agation rules for Smalltalk depicted in figure 4.9. In the implementation of these
propagation rules, the developer can refer to internal dependency relations in both
generators (involved in the composition) via the special ?genA and ?genB variables.
The generative system executes these rules to determine additional integration rela-
tions before the generators are executed, i.e. at generator-composition time. During
this execution, the variables 7genA and ?genB are bound to the generators involved in
the composition. Moreover, these rules are executed twice. In the second execution,
the binding of the variables ?genA and 7genB is swapped because the rules need to
be applied symmetrically. To access a rule implemented in a generator, the operator
-> is used. For example, the first logic rule in table 5.3 implements the induction of
a unite integration relation because of a subclass integration relation and the pres-
ence of a subclass dependency relation in one of both generators in the composition.
The third logic rule implements the induction of a unite integration relation because
of a unite integration relation and the presence of a subclass dependency relation
in both generators. A technical detail in these rules is the use of so-called positive
variables in Soul. These are written with the +? notation for variables instead of
the normal ? notation. This is required in the implementation of these rules because
their execution can run into a never ending recursion. The solution we adopted is
through the use of positive variables because they can only unify with values and not
with unbound variables. The positive variables can consequently only unify with a
concrete solution and prevent that the execution goes into a deeper recursive process.
More information on positive variables can be found in the Soul manual available at
[Sou].

5.4.4 Composition Conflicts

Composition conflicts are detected by the invalidation of constraints that are imposed
between program parts. In GLMP, the implementation of language-specific invalida-
tion and interference constraints is identical. These constraints are automatically im-
posed between program parts based on their type. The language definition in GLMP
contains the implementation of each of these constraints as logic metaprograms.
First of all, some logic declarations define which constraints need to be imposed



136 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

’ Logic Rule ‘ Propagation

unite(?c,?b) if subclass relation induces unite relation
subclass(7a,?b), because of the subclass
?genA->subclass(?a,?c). dependency relation

unite(?c,?b) if in relation induces unite relation
in(?7a,?b), because of the in
?genA->in(7a,?c). dependency relation

unite(?c,?d) if unite relation induces unite relation
unite(+7a,+7b), because of the in
7genA->in(7a,?c), dependency relations
?genB->in(?7b,?7d) .

unite(?c,?d) if unite relation induces unite relation
unite(+7a,+7?b), because of the subclass
7genA->subclass(?a,?c), dependency relations
7genB->subclass(?b, ?d)

unite(?c,?d) if unite relation induces unite relation
unite(+7a,+7b), because of the contains
?genA->contains(?a,?c), dependency relations
7genB->contains(?b, ?d)

subclass(?7c,?d) if overrides relation induces subclass relation
overrides(?a,?b), because of the in
?7genA->in(7a,?c), dependency relations
?7genB->in(?7b,7d), and because the classes are not
not (inSameHierarchy(?c,?d)) defined in the same hierarchy

Table 5.3: Logic rules that implement integration relation propagation for Smalltalk.



5.4. LANGUAGE DEFINITION IN GLMP 137

between which types of program parts. This association is implemented using the
constraintDef predicate.The Smalltalk language definition contains the following
declarations:

constraintDef (method,method,<methodOverridesConstraint,methodUnitesConstraint>).
constraintDef (var,var,<varUnitesConstraint,varShadowsConstraint>).
constraintDef (class,class,<classConstraint>).

The first declaration states that all method program parts produced by different
generators are subjected to the methodOverridesConstraint and
methodUnitesConstraint constraints. These constraints ensure that no two meth-
ods defined in the same classes or in the same hierarchy and produced by different
generators have the same name, unless they are involved in an overrides or unite
integration relation. We can also see that the varShadowsConstraint is imposed
between all program parts of the type var, produced by different generators.

Implementation of Composition Conflict Detection Constraints

The implementation of the constraints themselves does not only need to check the
implementation of the different program parts but also needs to check the occurrence
of integration relations between these program parts. This is because a composition
conflict is never a conflict when it was enforced through an integration relation. For
example, the overrides integration relation invalidates the ‘inadvertent method over-
riding’ composition conflict. Therefore, the implementation of a composition conflict
detection constraint is often expressed with multiple alternative logic declarations.
One that is applicable in the absence of integration relations and one for each possi-
ble integration relation that can be imposed between the two parts. The developer
that implements the constraints must make sure that in the case of a composition
conflict, all alternatives fail. We illustrate this with an example constraint definition.
Additional composition conflict detection constraints are included in appendix A.
The following logic rules declare two constraints that are applicable between all
instance variable definitions of different generated programs. The first constraint is
defined by the predicate varUnitesConstraint and checks if no two instance variables
are defined on the same class with the same name. This is a composition conflict that
can occur if two class definitions are integrated by a unite relation. However, in case
of such a unite relation between the variable definitions themselves, the composition
conflict should not occur. Evidently, this means that both variables are meant to
be the same in the integrated programs and consequently, both program generators
produce an identical variable definition, which in that case, is no composition conflict.



138 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

The second constraint is defined by the varShadowsConstraint predicate. It prevents
that variables defined in subclasses shadow variables defined in a superclass.

varUnitesConstraint (?namel, 7nameB,var(?classA,?varA, 7typeld),
var(?classB,?varB, 7typeB)) if
not (or (unite (?nameA, ?7nameB) ,unite (?nameB, ?namel))),
not (and(equals(?classA,?classB) ,equals(?varA,?varB))).
varUnitesConstraint (?nameA, ?7nameB,?,?) if
or (unite(?nameA, 7nameB) ,unite (?nameB, 7namel)) .

varShadowsConstraint (?nameA, ?PnameB,var(7classA,?varA,?),
var(?classB,?varB,?)) if
not (and (inSameHierarchy(?classA,7classB),equals(?varA,?varB)))

5.4.5 Additional Logic Metaprograms

To complete the implementation of the language definition, we need to mention that
a language definition can also contain the implementation of a set of logic metapro-
grams. This set of logic metaprograms can be used by all generators that have this
language as their output language. The additional logic metaprograms are often use-
ful because they implement a frequently needed computation to generate programs in
that language.

includeAfter (?partA,?selectorA,7argumentsA, ?includeBody, ?7includeInfo) if
includeAfter(7partA, ?partB,method(?,?selectorB, ?body, 7includeInfo)),
or (unarySelector(?selectorB) ,sameSignature(?selectorA, ?selectorB)),
convertAndStripHeader (?body, 7argumentsA, ?includeBody) .

includeAfter (?partA,?selectorA,{ },<>) if
not (includeAfter(7partA, ?partB,?))

Figure 5.6: Special includeAfter/4 predicate supplied with the Smalltalk language.

For example, the includeAfter/4 predicate is implemented by such an additional
logic metaprogram in the Smalltalk language definition. Its implementation is shown
in figure 5.6. This predicate always returns a result. If an includeAfter relation
was declared with ?partA as origin, it returns the method body of the method in the
destination of the includeAfter relation. If no includeAfter relation was declared,
it simply returns an empty method body. The implementation of the predicate also
verifies if the methods can be related in an includeAfter relation. Therefore, it



5.5. INTEGRATIVE COMPOSABLE GENERATORS IN GLMP 139

verifies the signatures of the methods for compatibility and it automatically substitutes
the method arguments in the method bodies such that they can form a single method
body.

This concludes the language definition in GLMP.

5.5 Integrative Composable Generators in GLMP

The implementation of a program generator consists of three parts:
e Dependency relation declarations
e Generative logic metaprograms
e Additional logic metaprograms
e Implementation of generator-specific dependency relations

Except for generator-specific dependency relations, we discuss each of these parts in
detail in the following subsections. The generator-specific dependency relations are
defined in the same way that integration and dependency relations are specified and
implemented in the language definition. They can be included in the implementa-
tion of a single generator to express a particular dependency relation required in its
implementation.

5.5.1 Dependency Relation Declarations

The dependency relations between program parts are defined using logic facts. The
format of these logic facts is defined in the language definition of the output language
of the generator. For example, the logic facts that declare the dependency relations
used in the implementation of the tree generator are shown in table 5.4. This set of
logic declarations implements the relations shown in figure 4.5.

5.5.2 Generative Logic Metaprograms

The core functionality of a program generator, i.e. the generation of the actual pro-
gram parts, is implemented by generative logic metaprograms. Each separate pro-
gram part (and its associated generative logic metaprogram) is defined by a single
logic predicate. To illustrate this, we show the implementation of the tree generator
in table 5.5, where each row corresponds to a generated part of the tree program.
The first and second column show the generated part’s name and its corresponding
predicate in the implementation of the generator. The last column shows the gener-
ative logic metaprogram that implements this predicate and thus generates the part.



140

CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

’ Implementation Dependency

Relation Declaration

Super Node subclass of Super Leaf

subclass (superNode, superLeaf)

Node subclass of Super Node

subclass(node, superNode)

Leaf subclass of Super Leaf

subclass(leaf,superLeaf)

Children defined in Super Node

in(children, superNode)

Value defined in Super Leaf

in(value, superLeaf)

General Setter defined in Super Node

in(genSetter, superNode)

Child Setter defined in Node

in(childSetter,node)

Child Accessor defined in Super Node

in(childAccessor, superNode)

Value Accessor defined in Super Leaf

in(valueAccessor,superLeaf)

Value Setter defined in Super Leaf

in(valueSetter, superLeaf)

General Setter refers to Children

refers(genSetter,children)

Child Accessor refers to Children

refers(childAccessor,children)

Value Accessor refers to Children

refers(valueAccessor,children)

Value Setter refers to Children

refers(valueSetter,children)

Children Iterator refers to Children

refers(childrenIterator,children)

Children Iterator defined in SuperNode

in(childrenIterator,superNode)

Table 5.4: Dependency relations in the tree generator.




5.5. INTEGRATIVE COMPOSABLE GENERATORS IN GLMP 141

We explain the implementation of the generative logic metaprograms in the following
subsections, with a special focus on the handling of the integrative variabilities.

Implementation of Conflict Resolution

To resolve possible composition conflicts, each generative logic metaprogram must
generate multiple versions for each generated part. Logic programming has the inter-
esting property that a single logic program can produce multiple subsequent results.
Each of these results corresponds to an alternative implementation of the generated
program part. The GLMP system automatically selects the appropriate alternative
that does not result in a composition conflict (and that adheres to all relations).

We can easily implement these alternative results of a logic program by writing
multiple logic declarations that implement the same logic predicate. It means that
each generative logic metaprogram can be defined by a set of declarations that each
define an alternative implementation for a generated part. This native linguistic
feature in logic programming makes the LMP approach particularly interesting for
specifying the generation of alternative implementations.

For example, in the implementation of the tree generator, shown in table 5.5, the
logic metaprogram that produces the Value part contains two declarations that each
implement the generation of a different implementation for the Value part. In one
implementation, the variable is named content while in the other implementation,
the variable is named alternateContent. This alternative implementation resolves
the composition conflict where another variable with the same name is integrated
in the same class. Quite evidently, more than one alternative implementation can
be implemented and a logic metaprogram can even implement a never ending list of
alternative implementations. Obviously, such a never ending list of alternatives might
cause that the generation is a non-halting process. However, a simple solution is that
the generative system sets a maximum number of alternatives that are considered.
This is somewhat similar to what is done in some interpreters for logic programs as
well, by specifying a so-called ’cut-off’ depth for the recursion on the runtime stack
[F1la94].

Parameterization by Relations

To anticipate the possible integration relations and to produce a correct program part
that adheres to these relations, the generative logic metaprograms also need to be
parameterized by the possible integration and dependency relations that may operate
on their generated part. This involves the generative logic metaprogram calling the
predicate that defines the relation, but with multiplicity three instead of two. The
additional argument contains the program part in the destination of the relation. The



142 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

implementation of this predicate is automatically provided by the generative system
for each relation predicate. For example, for the Smalltalk language, the generative
system automatically provides the predicates unite/3, in/3, etc.... These predicates
need to be called by the generative programs to verify the presence of a relation and
to fetch the program part in the destination of that relation.

For example, the generative logic metaprogram for the SuperLeaf part, shown
in table 5.5 calls the subclass/3 predicate. The first two arguments correspond to
the source and destination part names of the relation. The last argument contains
the logic representation of the destination program part. This call explicitly param-
eterizes this generative program with the subclass relation between its own part
(the first argument in the call: SuperLeaf) and any other part it is integrated with
through a subclass integration relation. In this specific example, only the second
logic declaration of the SuperLeaf part is parameterized with this subclass relation.
The first declaration states that the generated SuperLeaf class part is a subclass of
Object. This means that the generative program normally produces its class as a
direct subclass of Object. However, an alternative implementation can be produced
(by the second logic declaration) if the SuperLeaf part is involved in a subclass
integration relation. In that case, the generated SuperLeaf program part will be a
subclass of the class program part that is the destination of the subclass integration
relation. The alternative implementation is automatically selected because the con-
straint checker enforces that the SuperLeaf program part adheres to the integration
relations imposed on it.

The required adaptations for integration of a program part are thus also imple-
mented through the generation of alternative implementations for that program part.
Multiple logic declarations in a single generative logic metaprogram allow us to deal
with the presence and absence of integration relations. We can implement a gener-
ative logic metaprogram as a set of logic declarations of which different declarations
anticipate different integration relations. Each separate logic declaration produces an
alternative implementation of the program part that adheres to particular integration
relations.

Dealing with Circular Dependencies

In the implementation of a generator, it is possible that a circular dependency is
created between program parts. Consider for example, the circular dependency shown
in figure 5.7. The method in program part methodA calls the method in part methodB
and vice-versa. The generation of either one of these program parts thus requires
the generation of the other program, which is a circular dependency. In GLMP, the
system can consequently run into an infinite loop. Nevertheless, this can be easily
solved by the developer of the generator through the definition of partially generated



5.5. INTEGRATIVE COMPOSABLE GENERATORS IN GLMP 143

program parts. For example, consider the generative logic metaprograms that produce
the methodA and methodB program parts in figure 5.8. Both generative programs
implement an alternative declaration that produces a partial implementation of the
method. This partial implementation only contains the information required by the
other generative program. In this example, this is the method name (e.g. selectorA
and selectorB).

methodB
method

calls ——

Figure 5.7: Circular dependency between program parts.

methodA (method(?class,selectorA,{},<>)).

methodA(method(?class,selectorA,{selectorA self 7?selectorB },<?se1ectorB>)) if
in(methodA,?,class(?class,?)),
calls(methodA,methodB,method(?,?selectorB,?,7)).

methodB(method(?class,selectorB,{},<>)).

methodA(method(?class,selectorB,{selectorB self 7?selectorA },<?se1ectorB>)) if
in(methodB,?,class(?class,?)),
calls(methodB,methodA,method(?,?selectorB,?,7)).

Figure 5.8: Partially generated program parts to solve circular dependencies.

5.5.3 Additional Logic Metaprograms

Besides the logic metaprograms that are directly associated with the generation of
a program part, there are other logic metaprograms defined in the implementation
of a program generator. These other logic metaprograms can be seen as auxiliary
programs that are called by one or more generative logic metaprograms that directly
generate a part. This allows the developer to factor out some common behaviour or
a complex procedure in a separate logic program.



144 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

The generative programs of the tree generator (shown in table 5.5) also call
a number of additional logic metaprograms that implement a part of the genera-
tion process. Some example predicates that are called are makeMethodHeader/3,
valAccessorName/1, makeChildSetters, etc.... The logic metaprograms that im-
plements these predicates implement a part of the generation process. Some of these
logic metaprograms implement the generation of code that can be used in the imple-
mentation of many program generators. For example, the makeMethodHeader program
assembles a Smalltalk selector (methodname) and arguments into a Smalltalk method
header. Such a header must be included in the generation of each Smalltalk method.
Other logic metaprograms are very particular to the implementation of the tree gen-
erator. For example, the makeChildSetters program implements the generation of
the list of methods that implement the addition of children to a node. This method
needs to include checks that only allow the addition of the right children to the node.

5.6 Generator Composition

5.6.1 Integrative Composition

The definition of an integrative composition boils down to declaring a set of integration
relations between public parts produced by different generators. Their declaration in
GLMP is identical to the declaration of relations used in the implementation of a
program generator, i.e. using logic declarations. Table 5.6 shows the declarations for
an integrative composition of the traversal and tree generators as shown in figure 4.8.
Mind that in our current GLMP implementation, the names of all program parts of
all generators must be unique. This is a technical detail that could easily be omitted
in future implementations.

5.6.2 Translation Composition

In a translation composition of generators, one generator needs to retrieve its input
program from another generator. In our approach, a generator makes no distinction
between an input specification that was written by a developer or one that was gen-
erated by another generator. In other words, all input specifications are assumed to
be produced by another generator. In the development of a generator, we prepare
for translation composition through the parameterization of the logic metaprograms.
However, in this case, the logic metaprogram is not parameterized by another logic
metaprogram but by the input program. Each logic metaprogram in the implementa-
tion of a generator can retrieve the appropriate parts of the input program through the
pre-defined prediate retrieveInput/2. This predicate allows to retrieve all program
parts of a certain type in the generator that provides the input program. For example,



145

GENERATOR COMPOSITION

5.6.

((2STISSBTD, ¢ (oureuy )sureNgyesT ¢ (FeoTradns, ¢ sweu, ) SSeTd) TTepUT]
¢ ((i¢FeoT1adns;)sserd’ yeoTradns ¢ yeaT) sseToqns

JT (3STISSBIDj)Feel 1/3ee1 jeor]
((2STISSBTD, ¢ (oureuy ) sureNopou‘ (spoNiadns, ¢ swreu, ) SSeTd) TTeput ]
¢ ((i“opopNtadns;)ssed‘opoNiadns ‘opou)sseroqns
JT (3STTISSBID,)8pou 1/epou OPON
(I9330989NTRA, ) SWRNIOIRINTRA
‘((i‘oTqeTaepeNTRA, ‘ JeoTIodns, ) IRA‘ONTRA‘ 199998 TRA) SID TSI
‘((s° Feo1radns; ) sseTd yeeradns ¢ 199395 TRA) UT
IT ((<oTqerxepsntes;>‘{enTepmou =: oTqeTIEASNTRA I09199g9nTeRA } ‘ I913950nTeA, ¢ FeaTIodns, ) poylow) 193395 TRA 1/I193398TRA 19)99G anfeA
(I0SS8DOyaNTRA ) SURNIOSSSIOYTRA
‘((&oTqeTIRpSNTRA, ‘ JRoTIadns, ) TeA‘ONTRA‘ T00S9DOyTRA)SIDTOI
‘((i¢Feo1radns;)ssed‘ yeoTIadns ¢ T0SS9OOYTRA) UT
FT ((<eTqetxepentes,>‘{eTqerIepenyes; IOSSedOyenTeRA,}‘I0SSEOOyONTRA, ‘ FReTIedns, ) pPoylem) I0SSed0yTRA 1/I0SS®00yTRA I0SS900Y on[eA
( (¢ Feo1radns,)sse1d‘ FeeTradns ‘onTea)ut
IT  ((i‘3usjuopejeursjTe’ yeaTradns, ) Ies)sntes
( (& Feo1radns,)sseTd‘ yeoradns ‘onTeAa)UT
IT  ((éf3rusiquod‘ yeoTradns, ) Tes)snTea T/entea onyeA
( (s “opoNxadns,)sse1d ‘opoNiadns ‘USIPTTYD)UT
IT  ((i‘usIpTTYD ‘opopIadns; ) IeA) usIpTIyYD 1/U8IpTTYD ULIPIIYD
( (¢ TepusIPTTIYD, ‘opoNIadns, ) Ien‘ UsIPTTYD ‘ 107eIS]JUSIPTTIYD)SISJoI
“ ((¢“opoNiadns,;)sserd opoNredns ¢ 103eI9]JUSIPTIYD ) UT
FT (<TRAUSPTTUD;>‘{ -¥ooTge :0p IRAUSIPTIUD; HooTge :op }‘{:op}‘epoyredns,)poyssew)I03eIs)IusIpTTIYD | T/I03RISITUSIPTIYD | IOJRID)] USIP[IYD
(I0SS®20YPTTYD, ) dWRNIOSSSIOYPTIYD
¢ ((& TRAUSIPTTIYD, ‘opoNIadns, ) Tea ‘UsIPTTYD ‘ I0SS9OOYPTIYD) SISFal
¢ ((4“opoNIadns;)ssed‘opoNIiadns ¢ T0SSeOOYPTTYD) UT
It AAAHm>szvHﬂnqu.Amm>ﬁwthﬂAOm JIOSS®DOYPTTYD, } ¢ T0SS00DYPTTYD,  opoNIedns, ) poyzauw) I0SS8OOYPTTYD 1/I0SS820yYPTIYD 10SS900Y PIIYD
(spoyaeuy, ‘ soodgepouy, ¢ 10409T9S,, ¢ SOSSRT)HIPOoU, ‘ TRAPTTYD, ) SI9949SPT TUDO el
¢ (soadgepouy ‘ epou‘ oadsearr) anduresstilex
((&€4 1090008, ¢ ) Poysom‘ 197198PTTYOUSS ¢ 19199SPTTYD ) SOPTIISAO
¢ (Sesse1)OPOU,, ‘ sOpoU‘ 193398PTTYD) UT
‘(& TRAPTTIYD, ‘j) T UeIPTTYD ‘ I19219SPTTYD) SI9ToT
JT (Spoy3euwy)I83385pPTTUD T/383385PTTYD 19331985 PITYD
(x9pRaY;  <sode‘PTTYIR> ‘ 191295PTTYD, ) I9PRSHPOY IS SR
(I18338GPTTYUD, ) BWRNISIFOSPTTYD
¢ ((;‘opoNxedns;)ssed ‘epoyredns ‘ x9339guUal) UT
f((i¢TR\USIPTTIYD, ‘opoNIadns,) TeA‘UeIpTTYD ‘ I91305uUsl) sI0101
IT ((repusapTtyd, ‘{pTTy> :and sod :gqe IRAUSIPTTYD, IOPESY, }‘I9330SPTTYD, ‘opoNIadns,)poysew)933o5usld 1/I9330gus3 19)79G [RISUSY)
( (s Feo1radns,)sserd‘ yeo1radns ‘opoNradns) sseToqns
IT ((FeoTradns; ‘epoyradng)sserd)epoyiadns 1/9poyzadns opoN Iedng
((i¢sseroaadns,;)ssed‘ 1IedTRUISIXS, ‘ FeoTIedns) SseTOqQNs
JFT ((sserdoxadns, ‘ yesTradng)ssed) yesradns
((299[lqQ* Fee1rodng) sse1d) yeoTiadns 1/Feo11adns Jeor] 1odng
suorjerea( | @jesipeiJ [ 1reg

implementation of the tree generator.

Main

Table 5.5



146 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

’ Integration Relation ‘ Implementation ‘
Leaf Traverse in Leaf in(leafTraverse,leaf)
Node Traverse in Node in(nodeTraverse,node)

Children unite Child Iterator | unite(children,childIterator)

Table 5.6: Implementation of the integrative composition of the tree and traversal
generators.

in the implementation of the tree generator in table 5.5, the logic metaprograms that
define the Leaf and Node parts access the input program through the nodeName and
leafName predicates. These predicates are implemented as separate logic metapro-
grams that retrieve the node and leaf names through the retrieveInput/2 predicate:

leafName (7name) if
retrievelInput(leaf,?leafSpecs),
member (leaf (?name) ,7leafSpecs) .

The leafName/1 predicate is implemented as a call to the retrieveInput/2 pred-
icate. The first argument of this predicate is the program part type that needs to be
gathered from the input program. The second argument contains the list of program
parts of that type in the input program. Mind that if the input program is a pro-
gram produced by another generator, there can be multiple possible implementations
of that input program. The generative programming system ensures that all gener-
ative logic metaprograms of one generator consistently use the same input program
(in the generation of one output program). In a translation composition, a genera-
tor thus fetches a possible input program and uses it to generate its own program
(i.e. it translates the input program to the output program). In case that this input
program cannot lead to a correct generated program (that, for example, integrates
with another program) because of composition conflicts, then another input program
is (automatically) chosen if one is available.

5.7 Integrative Composition Examples

We will now focus on the implementation of some interesting examples that were
mentioned in the previous chapters.



5.7. INTEGRATIVE COMPOSITION EXAMPLES 147

5.7.1 Invasive Integration of Variable Program Parts

An interesting invasive integration is the unite integration applied to variable pro-
gram parts. The unite integration enforces both variables to be identical. For the
purpose of conflict detection in integrative compositions, we have added an optional
type declaration to the representation of variable program parts. In a unite inte-
gration relation, this means that these types must also be identical. Since the rest of
the generated program often heavily relies on the type of the variable, the integration
of variables often requires to adapt an entire generated program.

Producer-\€&—-—-—-——-—-— Producer

ClassA ClassB
class class

n ProducerB

| Generator
contentsB refers
variable
contents

AddB

method

ProducerA ™

Generator |
refers contentsA | |
variable
contents

AddA

method

Figure 5.9: Integrative Composition for the integration of variables.

Consider the integrative composition of two generators (ProducerA and ProducerB)
that each generate a class that contains some code and a variable. This example is
actually a simplification of the example integrative composition of the graph generator
and observer-observable generator, introduced in chapter 3. Here we only focus on the
required adaptations for the integration of the variables produced by both generators.

The integrative composition that is shown in figure 5.9 integrates both variables
(ContentsA and ContentsB) through a unite integration relation. This integration
automatically triggers the propagation mechanism and induces a unite relation be-
tween their classes. ProducerA prefers to generate code that uses a Set as type of
the variable because it wants to rely on the implementation of Set to avoid duplicate
elements. Consequently, the ProducerA generator produces a first alternative imple-
mentation where the contents variable is typed as a Set. However, ProducerB can
only work with a variable typed as OrderedCollection. Since an Orderedcollection
can contain duplicate elements, an integration of these variables would lead to a bro-
ken functionality of the program produced by ProducerA. This interference is detected
because the variables do not unite, i.e. their type is different. Consequently, the in-



148 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

tegrative composition would fail. Fortunately, the ProducerA generator can also pro-
duce an alternative generated program with a variable typed as OrderedCollection.
Therefore, the integrative composition will work because the integrative composition
forces the selection of the alternative implementation. However, the entire gener-
ated program of ProducerA needs to be adapted such that the generated program of
ProducerA itself verifies for duplicate elements in the collection. This adaptation is
shown in the generative programs of the contentsA and contentsAddA program parts
in figure 5.10:

e The generative program for the contentsA part can produce a variable pro-
gram part that is typed as a Set or an OrderedCollection.

e The generative program for the contentsAddA method part can produce a
method that works with a Set and a method that works with an OrderedCollection.
The implementation that works with a variable typed as an OrderedCollection
checks if an element is not included in the collection before it adds it. The im-
plementation that works with a variable types as a Set simply adds it. It
consequently relies on the implementation of the Set to omit duplicates. The
selection of the appropriate alternative implementation is (automatically) en-
forced through the refers dependency relation (shown in figure 5.9).

contentsA(var(?class,contents,Set)) if
in(contentsA,producerA,class(?class,?)).

contentsA(var(?class,contents,OrderedCollection)) if
in(contentsA,producerA,class(?class,?)).

contentsAdderA(method(?class,{add: },{add:el ?var add:el},<var(?var,Set)>)) if
in(contentsAdderA,producerA,class(?class,?)),
refers(contentsAdderA,contentsA,var(?class,?var,Set)).
contentsAdderA(method(?class,{add: },{add:el (?var includes:el)
ifFalse:[?var add:ell},
<var (?var,OrderedCollection)>)) if
in(contentsAdderA,producerA,class(?class,?)),
refers(contentsAdderA,contentsA,var(?class,?var,0OrderedCollection)).

Figure 5.10: Generative programs of the ProducerA generator.



5.7. INTEGRATIVE COMPOSITION EXAMPLES 149

5.7.2 Integration of Required Program Parts

Required program parts need to be integrated with appropriate program parts, pro-
duced by another generator. The type of the required program part already limits the
possible integrations but the generative program that is associated with the required
program part can limit the possible integrations even further. The generative program
of the required program part must produce a program part that adheres to the inte-
gration relation. Since it does not implement the generation itself, it merely ‘copies’
the program part that is integrated with the required part via a unite integration
relation. A simple generative program for a required class part thus looks like:

requiredPart(?class) if unite(requiredPart,?,?class).

However, the generative program of the required part can be implemented such
that the other program part is not simply copied into the required part, thereby
violating the integration relation. As a consequence, the integrative composition fails.
Using this mechanism, a program generator can enforce particular properties on the
program parts that are integrated with the required program parts. Of course, this
mechanism is not limited to generative programs associated with required program
parts but it is particularly useful to them.

An example integrative composition where this is useful is shown in figure 5.11.
This example was already introduced in the previous chapter and is about the inte-
grative composition of the traversal generator with the tree generator. The traversal
generator contains a required part (ChildrenIteration) that needs to be filled in
with the method that provides access to the child nodes in a node. This access can
be either provided through a Smalltalk iterator method (e.g. do:) or via a method
that returns all child nodes in a list (e.g. children). Both kinds of methods impose
a different way of iterating over the children. The iterator method needs to be called
with a Smalltalk block argument that implements an action for each node. The second
kind of method simply returns all child nodes and leaves the iteration up to the caller
of the method. Based on the differences in method signatures, the traversal generator
can impose the use of a Smalltalk iterator. Therefore, the generative program of the
ChildrenIteration required part is as follows:

childrenIteration(method(?class,?selector,?body,?info) if
unite(childrenIteration, 7aPart,method(?class,?selector, ?body,?info)),
singleKeyword(?selector).

The above generative program retrieves the method program part that is integrated
with it through a unite integration relation and imposes that the method has only



150 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

generative program for
‘child iterator’ method
definition

iterator
method,

Tree generator

generative program for
‘leaf" class definition

| iteration |
A method

traverse generative program for
{ 'node traverse' method
definition

Trai)ersal generator

Figure 5.11: Parameterization of the generative programs in the tree-traverse integra-
tive composition.



5.7. INTEGRATIVE COMPOSITION EXAMPLES 151

a single argument (using the singleKeyword/1 predicate). The traversal generator
enforces this because the generated traversal implementation (i.e. the traversal meth-
ods) assume a single argument method. The generated traversal code that calls this
method is shown below. The do: message represents the single argument message
that is assumed by the traversal generator.

self do:[:child | child traverse]

The generative program that produces the node traversal methods listpart is shown
below. It produces the traversal code for each node class that it needs to integrate
methods with. Therefore it calls the in/3 and selfcalls/3 predicate to retrieve the
node classes and the iteration method signature.

nodeTraverse(?listofMethods) if
in(nodeTraverse,?,?listofNodes),
selfcalls(nodeTraverse,childrenlteration,method(?,?iterator,?,7)),
findall(method(?class, {traverse},{traverse ...
self ?7iterator [:child | child traversel}
<?7iterator>),
member (class(?class,?),?listofNodes),
?listofMethods)

5.7.3 Adaptation for Integrative Composition

The traversal generator, as it was implemented in the previous section, is not very
flexible. It requires that the method to retrieve the child nodes (generated by the tree
generator) is a Smalltalk iterator method. However, the tree generator might very
well be implemented to produce a method that returns the child nodes as a list. In
such a case, the integrative composition of the generators fails. However, we can also
implement the traversal generator such that it anticipates this integrative variability
and adapts its generated program. The resulting traversal generator can then produce
its generated program to work with a Smalltalk iterator method or with a method that
returns a list of nodes. Therefore, the generative program for the ChildrenIteration
required part is changed and becomes:

childrenIteration(method(?class,?selector,?body,?info) if
unite(childrenIteration,?aPart,method(?class,?selector, ?body,?info)).



152 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

The above generative program accepts that the program part integrates with any
Smalltalk method. The selection of appropriate methods is now encoded in the gener-
ative program that produces the traversal code, which is shown below. The generative
program now consists of an alternative for Smalltalk iterator methods and for methods
that return the list of children, respectively. This consequently means an alternative
for a single argument method or no arguments at all. This corresponds to a single
keyword message and a unary message in Smalltalk, respectively. Any other kind
of method results in a failure to generate the traversal code and thus in a failure
of the integrative composition. The alternative is implemented in the logic program
that implements the makeIteration/2 predicate. The first alternative produces the
iteration code for a single argument iterator method, the second alternative produces
the iteration code for a method that returns a list of child nodes. The alternative is
automatically chosen for a particular integrative composition.

nodeTraverse(?7listofMethods) if
in(nodeTraverse,?,?listofNodes),
selfcalls(nodeTraverse,childrenIteration,method(?,?iterator,?,?)),
makeIteration(?iterator,?iterationCode),
findall(method(7class, {traverse}, {traverse 7action ?7iterationCode},<?selector>),
and (member (class(?class,?),?listofNodes) ,traverseAction(?class,7action)),
?listofMethods)

makelteration(?selector,{self ?selector [:child | child traverse]}) if
singleKeyword(7selector).

makeIteration(?selector,{self ?selector do:[:child | child traverse|}) if
unaryMessage (7selector) .

5.8 Domain-specific Tree Integration

We now provide the implementation of the domain-specific tree integration example
that was introduced in the previous chapter.

5.8.1 Tree Language Definition

The Tree language allows us to specify a tree structure. In such a specification, the
possible names of nodes and leaves are declared, as well as some restrictions with
respect to their composition. The definition of each node must specify its possible
child nodes and leaves, as well as the fixed or maximum number of children that the
node must or can have.



5.8. DOMAIN-SPECIFIC TREE INTEGRATION 153

Representational Mapping of Program Parts

The possible program parts of a Tree language program are nodes and leaves, respec-
tively represented as follows:

node (?name, 7arity,7arityKind, ?7possibleChildren) .
leaf (?name) .

The representation of a node contains the name (?name), the number of children (in
7arity) and the concrete names of the nodes and leaves that are allowed as children
(in ?possibleChildren). The number of children determines either a fixed number
or a maximum number of children. This is determined by the 7arityKind, which is
either fixed or maximum, respectively. The representation of a leaf only contains the
name (in ?name).

Integration and Dependency Relations

The logic declarations that can be used to declare the supportsChild and unite
integration and dependency relations are:

supportsChild(?node, 7nodeOrLeaf)
unite(?nodeOrLeaf,?nodeOrLeaf)

The constraint that enforces the supportsChild dependency or integration rela-
tion is:

constraintSupportsChild(?nodeA, ?nodeB,node(?nameA,?,?,71A) ,node(?nameB,?,?,7))if
member (?nameB, 71A) .

constraintSupportsChild(?nodeA,?leafB,node(?namel,?,?,71listA),leaf (?nameB)) if
member (?nameB, ?1istA) .

The first rule checks the supportsChild relation between a node and another
node, while the second rule checks the constraint between a node and a leaf.

Composition Conflict Detection

The Tree language definition requires all nodes and leaves to have unique names. Con-
sequently, in an integrated Tree language program, the only composition conflict that
can exist is the definition of nodes or leaves with identical names. This is checked by



154 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

the uniquesConstraint, which is shown below. The first three logic rules implement
the case where there is no unite integration relation between the program parts. The
last two logic rules implement the case where a unite integration exists. In the first
case, no equal names may exist, while in the second case, equal names are required.

constraintDef (node,node,<uniquesConstraint>) .
constraintDef (leaf,leaf,<uniquesConstraint>) .
constraintDef (node,leaf,<uniquesConstraint>) .

uniquesConstraint (?partnaml, ?partnamB,node(?nodeA,?,?,7) ,node(?nodeB,?,?,7)) if

not (unite (?partnaml, ?partnamB)),

not(equals(? nodeA,?nodeB)).
uniquesConstraint (?partnameA, 7partnameB,leaf (?1leafA) ,leaf (?leafB)) if

not (unite(?partnamel, ?partnameB)),

not (equals(?leafA,?leafB)).
uniquesConstraint(?,7?,node(?nodeA,?,7,7),leaf (?1leafB)) if

not (equals(7nodeA,?leafB)).

uniquesConstraint (?partnameA, 7partnameB,node(?name, 7arity, 7kind, 7?list),
node (?name, 7arity,?kind,?1list)) if
unite(?partnamel, ?partnameB) .
uniquesConstraint (?partnamed, 7partnameB,leaf (?name) ,leaf (?name)) if
unite(7partnameA, 7partnameB) .

5.8.2 Generation of Tree Programs

Generators C and D, as shown in figure 4.14 in the previous chapter, contain a simple
implementation that serves as an example. Generator C produces the program parts
named cLeaf and cNode. Generator D produces program parts dLeaf and dNode.
Their implementation is shown in table 5.7. The generative programs that produce
the cNode and dNode program parts anticipate supportsChild integration relations
to both leaves and nodes. The dependency relations that are defined in generators C
and D are:

supportsChild(cNode,cLeaf) .

supportsChild(dNode,dLeaf) .



5.9. PROTOTYPE GLMP SYSTEM 155

[ Part [ Predicate [ Declarations ]

cLeaf cLeaf/1 cLeaf (leaf (LeafC1)).
cLeaf (leaf ({LeafCl?leafName})) if

sunite(cLeaf,?,leaf (?leafName))
cNode cNode/1 cNode (node (NodeC2,2,fixed,?children)) if
findall(?child, supportsChild(cNode,?,leaf(?child)),?leaves),
findall(?child, supportsChild(cNode,?,node(?child,?,?,?)),?nodes),
append(7leaves, ?nodes,?children) .
dLeaf dLeaf/1 dLeaf (leaf (LeafD1)).
dNode dNode/1 dNode (node (NodeD2,2,fixed,?children)) if
findall(?child, supportsChild(dNode,?,leaf(?child)),?leaves),
findall(?child, supportsChild(dNode,?,node(?child,?,?,?)),?nodes),
append(7leaves, ?nodes,?children) .

Table 5.7: Generators C and D that produce a Tree program.

5.8.3 Integrative Composition

The integrative composition of generators C and D, shown in figure 4.14 in the previous
chapter, is implemented using the following integration specification:

unite(cLeaf,dLeaf).
supportsChild(cNode,dNode) .

The result of this integrative composition is an integrated program in the Tree
language. This integrated Tree language program is then handed to the tree generator
that produces an integrated tree implementation as depicted in figure 4.14 in the
previous chapter. This integrated tree implementation is able to build integrated trees,
which would not have been possible using a Smalltalk-level integrative composition.

5.9 Prototype GLMP System

To conduct our experiments, we have implemented a prototype implementation of the
GLMP system. This prototype implements all functionality explained in this chapter
and it allows the full implementation of program generators as we have shown them.
Furthermore, it provides a simple user interface that facilitates the implementation
of program generators. Figure 5.12 shows a screenshot of this user-interface. The
windows shows the list of generators and for each generator, a list of program parts
is shown. For each program part, the developer can write the generative program
separately. By selecting multiple program parts in the list, the developer can read and
write the dependency relations imposed on these parts. The integration specifications
and language definitions are entirely implemented using editors provided with Soul.



156 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING

GLMP Editor
ObserverGenerator

part(initialize method)

ObserverSpec ™ | partiAdd,method)
CarSpec2 pari{Remove,method)
DataStructSpec part(fterator,method)
SimpleParamSpecs part{Contents,var)
GraphGenerator part(DataContainer,class)
CarSpec part{Index var)

TreeGenerator
GraphTranslator
TraversalGenerator
SimpleParamGenerator
TreeSpecs2

TraversalSpec DataContainer(class| ?name,Cbject)) if
ObserverPartnerGenerator containerName(Zname)
SimpleTestGenerator
TreeSpecs DataContainer(class(7name,?superclass)) if
DataStructGenerator sub(DataContainer,? class(?superclass,?))
ObserverPartnerGenarator2 containerName(7name)
ConsistencyGenerator v

DataContainer(?class) if

unite(DataContainer,? ?class)

treeSpecTest
carSpecCombination
graph

simpleCombiTest
simpletree

simpletest
traversableTree

observer
treeSpecCombinationTest
simpleDataContainer
carSpecGenerator
simpleParamTest
observerAspectintegration
observerFrameworkComposition
smalltalkGombiTest

Figure 5.12: User-interface of the GLMP Prototype Implementation.

5.10 Conclusion

We have described how integrative composable program generators are implemented
in GLMP. The GLMP system accepts the implementation of program generators,
input specifications, integrative compositions and language definitions in the form of
logic metaprograms. We have described how a language definition and a program gen-
erator can be implemented as logic metaprograms and how LMP provides appropriate
linguistic abstractions for the implementation of integrative variabilities.

All integrative variabilities in the implementation of an integrative composable
generator are handled through alternative generated program parts. Logic program-
ming provides us with the appropriate linguistic features of subsequent (alternative)
results of a logic program. Furthermore, alternative results are easily implemented
as multiple logic declarations that implement the same logic predicate. Each alterna-
tive logic declaration can implement the resolution to a composition conflict and the
adaptations required for integration.

The GLMP system is a close interplay between the Soul logic evaluator and a
constraint checker. To execute the generation and the integrative composition, the
GLMP system builds a constraint network and executes the logic metaprograms to
find a solution to this constraint network. The solution to the constraint network is the



5.10. CONCLUSION 157

implementation of all program parts that adhere to the dependency and integration
relations and that do not result in a defined composition conflict.



158 CHAPTER 5. GENERATIVE LOGIC METAPROGRAMMING



Chapter 6

Feature Description Language

The generative logic metaprogramming technique introduced in the previous chapters
offers a general approach to design and implement integrative composable program gen-
erators. Until now, we have described integrative compositions in different (domain-
specific) languages. In this chapter, we introduce a specific domain-specific language
that can be used by many different generators: the Feature Description Language
(FDL).

6.1 Introduction

The generative programming technique introduced in the previous chapters allows us
to design and implement integrative composable generators. The composition con-
flict detection mechanism guarantees that no declared composition conflicts occur in
the integration of the generated programs. We have shown some simple examples of
integrations at the Smalltalk and Tree language levels. However, the declared compo-
sition conflicts are limited to conflicts that can be detected in the common modeling
language(s). Many more interferences between the generated programs can exist. In
order to detect all possible composition conflicts in an integrative composition, an
appropriate hierarchy of levels of abstraction and modeling languages is necessary. In
essence, we would need to make sure that each possible composition conflict can be
declared in an appropriate modeling language and that all generators also use those
languages in their implementation. This is, however, impossible to achieve in an open
environment, where unanticipated compositions of program generators can occur and
where generators are developed independently.

In contrast, a closed environment offers more opportunities. In the development
of a library of program generators, a master design plan of modeling languages can be
defined. With this master design plan, we mean that the developer has an overview

159



160 CHAPTER 6. FEATURE DESCRIPTION LANGUAGE

of all possible generators and languages in the library. It means that an appropriate
set of modeling languages can be designed such that all composition conflicts, that
are defined in these languages, are detected. If all generators adhere to the use of
the appropriate modeling languages to express their generated implementations, all
composition conflicts can be declared, detected and even prevented. However, the de-
sign and implementation of appropriate modeling languages that express each possible
concern is still a complex and tedious task. The definition of all composition conflicts
will most likely be an even more tedious task. The effort to define appropriate lan-
guages can be reduced by the use of a so-called feature description language [vDKO02].
Instead of implementing an entire domain-specific modeling language, many program
generators accept a feature description as an input specification. A well know example
of such generators are the GenVoca generators that produce a program according to
the set of features that is defined by a GenVoca expression. Although the GenVoca
language itself is common to all GenVoca generators, the possible feature descriptions
that can be requested are different from one generator to another. Similarly, the fea-
ture description language (FDL), which is explained in this chapter, is defined once
for all generators and each generator defines the valid feature descriptions that it can
generate. This approach allows us to build a library of program generators that share
a common modeling language (the FDL) and where high-level composition conflicts
can be detected without the need for individual modeling languages.

The following section provides a brief introduction to feature diagrams. These
feature diagrams are used to describe the features that a program generator can
produce. The description of these feature diagrams needs to be expressed in the
Feature Description Language (FDL), which is explained in section 6.3. We present
the implementation of the FDL in GLMP in section 6.4, followed by how an integrative
composition of program generators occurs when an integration is specified at the FDL
level in section 6.5.

6.2 Feature Diagrams

The development of any generator is preceded by a domain analysis. This domain
analysis results in a feature model that describes the commonalities, variabilities and
dependencies of the separate features that can be included in the generated program.
A well known domain analysis methodology is FODA (Feature-oriented Domain Anal-
ysis) [ea90]. An important part of the feature model in FODA is the feature diagram,
which is a graphical notation for describing the (variable) features and their depen-
dencies. An example of such a feature diagram is given in figure 6.1. This diagram is
a well known FODA diagram example of a car (adapted from [Cza98, vDK02]). We
describe the notation of feature diagrams by means of this example. The diagram de-



6.2. FEATURE DIAGRAMS 161

scribes that a car contains the features Carbody, Transmission, Engine, Horsepower
and Trailerhook. The first four features are mandatory features that should be in-
cluded in each car. The TrailerHook feature is optional. The Transmission, Engine
and Horsepower features are composite features while the TrailerHook, Carbody,
Gasoline and others are atomic features. Composite features consist of other fea-
tures, while atomic features do not. Furthermore, the Transmission feature, for
example, consists of the mutually exclusive features Manual and Automatic. This
means that a transmission can be automatic or manual, but not both. The Engine
feature is also a composite feature but consists of the non-mutually exclusive features
Electric and Gasoline. It means that the car’s engine can be electric, gasoline
powered or a combination of both.

Car
Carbody TrailerHook
Transmission Engine Horsepower
Automatic Manual Electric Gasoline
Low Medium High
Power Power Power

Figure 6.1: Feature diagram of a car.

A feature diagram describes the set of valid featural descriptions of a software
system [Cza98]. A featural description is a set of atomic features that describes a
particular configuration. In other words, a feature diagram describes all possible valid
configurations of a concept, with respect to its possible features. In the example
above, the feature diagram describes all possible configurations of a car. A valid feat-
ural description (or configuration) is CarBody,Automatic,Electric,Medium Power.
Program generators accept such a featural description and produce a generated pro-
gram that implements the requested features. The feature diagram is thus defined
by the developer of the program generator. Each program generator must also check
if the provided featural description is valid. In our approach, we have provided a



162 CHAPTER 6. FEATURE DESCRIPTION LANGUAGE

common language to express the feature diagrams of each generator, which eases the
development of generators. In essence, the language implementation is common to all
generators. Each generator merely needs to describe the feature diagram to ‘configure’
the language. For this purpose, a language to describe feature diagrams is required.
This is described in the following subsection.

6.3 Feature Description Language

Van Deursen and Klint [vDKO02] have developed a textual notation for feature dia-
grams, which they call the Feature Description Language (FDL). We will adopt their
language in a logic notation to express feature diagrams in the implementation of pro-
gram generators. Each program generator describes all possible featural descriptions
using a feature diagram expressed in our logic variant of FDL. This means that FDL
is used as a common modeling language for a range of generators. In this section, we
describe how program generators can express a feature diagram in FDL.

Each feature that is described in a feature diagram is represented by a logic dec-
laration. The predicate of that logic declaration determines the relation (mutually
exclusive, mandatory,...) between these features:

Mandatory features These features need to be included in each featural descrip-
tion. They are defined using the all predicate:
all(?featureName,?listOfMandatoryFeatures)

Mutually exclusive features Only one of these features may be included in a fea-
tural description. They are defined using the oneOf predicate:
one0f (?featureName, 71ist0fMutuallyExclusiveFeatures)

Non-exclusive features A subset of these features should be included in a featural
description. They are defined using the more0f predicate:
moreQ0f (?featureName, ?1ist0fMutuallyExclusiveFeatures)

Optional features The feature is optional. It should not be included, but can. This
is defined using the optional predicate:
optional (?featureName)

Figure 6.2 shows the implementation of the car feature diagram of figure 6.1 in our
logic variant of the FDL language. Each generator that accepts a featural description
should provide such a specification of its feature diagram. Given this description,
the featural descriptions can be checked for correctness. We will explain later on
that this description steers the conflict detection constraints. First, we describe how
featural descriptions are represented in generative logic metaprogramming (GLMP)



6.4. GLMP FEATURE DESCRIPTION LANGUAGE 163

all(Car,<Carbody,Transmission,Engine,Horsepower,TrailerHook>).
optional(Trailerhook)

moreOf (Engine,<Electric,Gasoline>).

oneOf (transmission,<Automatic,Manual>).

one0f (horsepower, <LowPower ,MediumPower ,HighPower>) .

Figure 6.2: Feature diagram described in the logic version of FDL.

in the following section. For clarity, we will use the car example to illustrate the entire
FDL language.

6.4 GLMP Feature Description Language

In the GLMP system, the FDL language is defined similarly to all other domain-
specific languages. Its implementation is somewhat more complex because it is itself
parameterized with a feature diagram description, as shown in the previous section.
Furthermore, the integrative compositions in terms of the FDL are also different from
domain-specific integrative compositions shown in the previous chapters.

6.4.1 Program Parts

The programs in FDL are featural descriptions. These featural descriptions are the
input programs for generators that produce a Smalltalk implementation. Once again,
concrete syntax of featural descriptions is not important. Because they are essentialy
nothing more than a list of features [Cza98], they can be described by means of simple
lists, such as in [vDKO02]. Therefore, a featural description in GLMP is a set of feature
names.

There is only a single type of program part in FDL: features. It must contain an
entire featural description. The representation of a features program part in GLMP
is:

features(7name, 7featureNamelList)

The ?name is a name to identify the featural description. This is required because a
single program generator can accept multiple featural descriptions. The list of features
(?featureNameList) must contain only atomic features. For example:

features (myCar,<CarBody,Automatic,Electric,MediumPower>)

is a featural description for a car. The program part



164 CHAPTER 6. FEATURE DESCRIPTION LANGUAGE

features(hisCar,<CarBody,Automatic,Gasoline,MediumPower>)

is a program part that contains the featural description of another car (the ?name is
different).

Featural descriptions can be generated by program generators as well. This is the
case in a translational composition of programs generators, i.e. a program generator
produces a featural description that is the input specification of another generator.
Furthermore, these featural descriptions can also be integrated. Consequently, a gen-
erator will also produce alternative featural descriptions. We will explain later on how
this can drive the composition conflict detection and resolution mechanism.

6.4.2 Integration and Dependency Relations

In FDL, the integration and dependency relations are identical. The program parts of

FDL can be related through four relations: requires(x,y), excludes(x,y), compatible(x)
and unite. These relations are parameterized and they can be drawn between pro-

gram parts to enforce the inclusion or exclusion of particular features, depending on

the features declared in one of the two parts. They are illustrated in figure 6.3 and
described below:

. requires(x,y) . . excludes(x,y) .

feature x declared by F feature x declared by F
requires excludes
feature y declared by G feature y declared by G

. compatible(x) . . unite .

features declared by F
unite with
features declared by G

features declared by F and G
need to be compatible w.r.t. feature x

Figure 6.3: Dependency Relations in FDL.

Requires A requires(x,y) relation enforces that if feature x is declared in the

origin part of the relation, then feature y must be declared in the destination
part of the relation. Figure 6.4 is an example of a generator that produces



6.4. GLMP FEATURE DESCRIPTION LANGUAGE 165

a featural description of a car. It shows the use of a requires dependency
relation between separate featural descriptions. We have also included some
simple generative programs that produce the featural descriptions.

Excludes The excludes(x,y) relation enforces that if feature x is declared in the
origin part, then feature y may not be declared in the destination program part.

Compatible The compatible(x) integration relation enforces a compatibility of the
featural descriptions with respect to feature x. Feature x can be a composite
as well as an atomic feature. Featural descriptions are compatible with respect
to a particular feature x if the subfeatures of that feature can exist in the same
featural description, without violating the constraints imposed by the feature
diagram. For example, consider the use of the compatible relation in figure 6.5.
The compatible(transmission) relation is declared between the parts named
Executive Car and Employee Car. These parts contain the featural descrip-
tions of different cars, produced by different program generators. Because the
first generator produces the featural descriptions for executive cars and the sec-
ond generator produces the featural descriptions for employee cars, this inte-
gration relation enforces that employee and executive cars have the same kind
of transmission. Consequently, in this artificial example, both ‘generators’ that
accept this featural description as an input specification will produce a car such
that both cars either have a manual transmission or an automatic transmission.

Unite The unite relation has an identical meaning as in the Smalltalk language. It
enforces that the program parts are identical and thus consequently unite in the
same generated program part.

These relations can be explicitly included in the implementation of a program
generator to enforce dependencies between separate featural descriptions. Besides
the explicit relations, the same kind of dependencies are automatically enforced in a
single featural description. These ‘implicit’ dependencies are automatically derived
from the feature diagrams described in FDL. For example, the car feature diagram
enforces that if the feature Automatic is chosen for the transmission, this excludes the
feature Manual. Consequently, a featural description that declares both features is not
a correct program part. The explicit dependency relations allow us to specify custom
dependencies between separate featural descriptions. For example, we can enforce
the requires(HighPower,HighPower) dependency between featural descriptions of
different cars. We could even enforce dependencies between featural descriptions that
are an instantiation of different feature diagrams.



166 CHAPTER 6. FEATURE DESCRIPTION LANGUAGE

carA
features /. ____....... .
carA(features(myCar,<carBody,manual,electric,lowPower))

carA(features(myCar,<carBody,manual,gasoline,highPower)). ’

requires(HighPower,HighPower)

carB(features(hisCar,<carBody,automatic,electric,lowPower))

carB
features

carB(features(hisCar,<carBody,manual,gasoline,highPower)). ’

Figure 6.4: A generator that produces a car featural description.

Employee
Car
features

Executive
Car
features

patible(transmission)

Figure 6.5: An integration of featural descriptions for cars.



6.5. INTEGRATIVE COMPOSITIONS 167

6.4.3 Composition Conflict Detection

There are no separate composition conflict detection constraints defined for FDL.
Instead, the composition conflicts are detected by violations of the constraints imposed
by the feature diagram and violations of the dependency and integration relations.
The complete implementation of the FDL in GLMP can be found in appendix A. We
will now describe how this feature description language provides the ability to detect
high-level composition conflicts.

6.5 Integrative Compositions

An integration of featural descriptions does not integrate the actual generated im-
plementations. It merely serves as an enforcement mechanism for the compatibility
of features in an actual integrative composition at the Smalltalk level. Therefore,
the integrative compositions are somewhat different than those shown in the previous
chapters.

The integrative composition is not only expressed at the FDL level but also at
the Smalltalk level. This means that the composition interfaces of the generators in
our library can consist of both FDL and Smalltalk program parts. The presence of
FDL and Smalltalk program parts in a single composition interface is specifically true
for composed generators or generators that are specifically built for an integrative
composition with other generators. Figure 6.6 shows how a composed generator’s
composition interface can consist of both FDL program parts and Smalltalk program
parts. The illustration shows an integrative composition of two composed generators
(A and B). Each of the composed generators A and B is built as a translation composi-
tion of other generators (e.g. a translation composition of generators A1 and A2). The
integrative composition of A and B is specified in terms of the featural descriptions in
FDL (i.e. FDL A1 and FDL B1) and in terms of the Smalltalk program parts.The
composed generator that results from the integrative composition of generator A and
B produces a Smalltalk program that is an integration of the Smalltalk programs pro-
duced by generators A2 and B2 and enforces that the featural descriptions produced by
generators Al and B1 adhere to particular dependencies (as specified in the integrative
composition).

The composed generator A+B accepts a featural description in FDL A1 and FDL
B1. These FDLs are different because they are configured for different feature di-
agrams (i.e. the different feature diagrams of the different generators). Of course,
the feature description languages can also be the same language. They can even be
the same as FDLs A2 and B2. The scheme in figure 6.6 shows the most general in-
tegrative composition possible. In essence, the input featural descriptions in FDL A1
and B1 are translated to featural descriptions in FDL A2 and B2, which are subjected



168 CHAPTER 6. FEATURE DESCRIPTION LANGUAGE

FDL A1 FDL B1

Generator Generator

A1 B1
Generator A ﬂ ﬂ Generator B
FDL A2 FDL B2
Generator Generator | __ _ _.
""" A2 "' B2
Smalltalk L — > Smalltalk
Language Language

Figure 6.6: Integrative Composition scheme for generators using FDL.

to an integrative composition. This means that the integration enforces particular
dependencies. If these dependencies are not met, generators A1 and B1 should pro-
vide alternatives that do meet the integration relations. If a correct set of featural
descriptions in FDL A1 and B1 is found, they are handed to generators A2 and B2 that
generate the Smalltalk programs, which are integrated as specified in the integration
relations. Evidently, this requires that generators that produce FDL programs also
anticipate the possible composition conflicts. The possible composition conflicts are
known because the feature diagrams are known. Resolution of the composition con-
flicts requires to adapt the featural description by providing an alternative one. Of
course, this results in a different functionality of the final generated program, which is
not what we want. Nevertheless, we can use the mechanism of alternatives to resolve
composition conflicts because a generator often does not produce a single featural de-
scription. This is illustrated in figure 6.7. In this composition, generators A2,A3 and
B2,B3, respectively, are provided with featural descriptions as input. An integrative
composition can result in a composition conflict for one of these featural descriptions.
If possible, the generators A1 and A2 anticipate the composition conflict and provide
an alternative featural description that circumvents it. This means that a part of the
final generated programs has a different functionality. Therefore, the internal depen-
dency relations of A1 and A2 must enforce a change to the other featural descriptions



6.6. CONCLUSION 169

that are produced such that the entire final generated program still has the same func-
tionality. An example of such an integrative composition is shown in the following
chapter.

Generator

Generator

Generator A Generator B

Generator | | Generator Generator | . Generator
\\3 - a2 N B2 B3 /

Smalitalk Language

Figure 6.7: Integrative composition influences generated code of generators A3 and
B3.

6.6 Conclusion

We have described the Feature Description Language (FDL) as an alternative to the
definition of a set of domain-specific languages. The FDL does not allow domain-
specific integrative compositions but does allow us to detect domain-specific (or high-
level) composition conflicts between generators of a single library. An integrative
composition using FDL is expressed both at the FDL and the Smalltalk level. Com-
position conflicts in FDL are detected as violations of the constraints imposed by the
feature diagrams or the integration and dependency relations. Composition conflicts
can be resolved because a program generator anticipates to the possible composition
conflicts in FDL and adapts the featural description and generated Smalltalk programs
accordingly to circumvent the composition conflict.

We will use the FDL extensively in the implementation of a library of program
generators, presented in the following chapter.



170 CHAPTER 6. FEATURE DESCRIPTION LANGUAGE



Chapter 7

A Library of Generators

In this chapter, we validate our approach by implementing a small library of integrative
composable program generators. We show the flexibility of integrative compositions
at the Smalltalk level, implement a generator that exploits the featural descriptions
to resolve composition conflicts and we implement generators that compose through
domain-specific integrative composition.

7.1 Introduction: Library Context

A company produces a range of tools that are adapted to a client’s requirements. One
kind of tools is aimed at document processing, according to particular requirements.
Such Integrated Document Processing Tools are customized text editors and document
processors focused at the treatment of a particular kind of documents, specific to
a business process. The client provides a set of requirements for documents and
the company produces a tool that adheres to these requirements. This means that
the tool allows the editing and creation of documents in a particular style, lay-out,
etc. .. in disciplined ways (e.g. only by editing forms). Documents are also stored on
appropriate databases or fileservers, for collaborative editing.

The exact usage and capabilities of these tools are not important in this disser-
tation. They merely provide a scope for the development of a library of program
generators. The tools are produced by means of generators in this library. What is
important is that clients of this company order tools customized to their technical and
functional requirements. Functional requirements are, e.g. the kind of documents or
data and how they should be processed in the document processing tool, the lay-out
of the user interface, the style and lay-out of the document, etc. ... Technical require-
ments are, for example: how the documents should be stored (database, textfile,...).
Instead of building a new tool from scratch each time a client orders one, it is quite

171



172 CHAPTER 7. A LIBRARY OF GENERATORS

obvious that the developers will reuse generic implementations that they adapt to the
requirements of the client. However, many different possible feature variations exist
in many of the reusable components (e.g. parsers, data containers, user interface,
etc...). Consequently, they cannot be implemented in an efficient and scalable way
by means of a library of fixed components or by means of frameworks, without still
requiring a lot of repetitive and manual implementation work. Instead of develop-
ing a reusable component for each possible set of requirements, the developers decide
to prevent running into the library scaling problem [Big94] by adopting a program
generation approach.

A generator is implemented for some of the reusable components they require.
We briefly introduce these generators here. Their variabilities, implementations and
compositions are discussed in following sections.

Data Container generator produces a data container implementation to store ob-
jects, based on a description of requirements.

User Interface generator produces an implementation for a user interface, based
on a description of this user interface.

Observer generator produces an implementation for an observer-observable collab-
oration, based on a description of requirements.

Data Consistency generator produces an implementation of a collaboration be-
tween different generated data containers to keep their contents consistent.

In addition to these elementary program generators, the company also builds com-
posed generators for its integrated document processing tools. This is because such a
tool is also a software product that benefits from an implementation as a generator. In-
stead of building a monolithic generator for an entire integrated document processing
tool, they build it as a composition of generators in the library. The same generators
are thus reused in the implementation of the different tool generators, which are:

Document Editor generator produces an editor, customized to the user’s require-
ments, that allows to edit an entire document.

Forms Editor generator produces an editor that allows creating and editing doc-
uments by filling in a set of forms. The tool creates the document using infor-
mation entered in these forms.

Integrated Editor generator produces a combined tool that allows to edit a doc-
ument using the forms editor and the document editor simultaneously.



7.2. DATA CONTAINER GENERATOR 173

Because the company produces its own library of generators, it would be possible
to identify and use an appropriate set of modeling languages in the implementation
of each generator such that they can be composed at an appropriate domain-specific
level. As a consequence, all composition conflicts could also be declared in the appro-
priate language. However, designing and implementing an appropriate set of model-
ing languages to capture each concern and all possible composition conflicts is quite
a complex and tedious task. However, it is required to declare and detect composi-
tion conflicts between generators. Therefore, in the development of this library we
extensively use the FDL language.

Overview

The following section describes the implementation and some example integrative
compositions of the Data Container generator. Section 7.3 introduces the imple-
mentation of the Observer generator and elaborates on a set of possible integrative
compositions with this generator. The User Interface generator is described in sec-
tion 7.4. At that time, all atomic generators are introduced and we then describe
some composed generators in section 7.5. We describe some integrative compositions
of the previous generators and also describe the implementation of the Consistency
generator, which is specifically targeted at an integrative composition with the Data
Container generators. We also describe the building of the Document Editor, Forms
Editor and Integrated Editor generators through integrative compositions at the
Smalltalk, FDL and Tree language levels. In a final section (7.6), we evaluate the ex-
periments and discuss the impact of the generative technique on other characteristics
of program generators.

7.2 Data Container Generator

The Data Container generator produces a customized implementation for a data
container. Because we want to focus on the integrative compositions and not the
implementation of functional variabilities, the data container implementation that is
generated is rather simple. It allows to collect a number of values (objects), allows
to remove them and provides a method to iterate over the contained values. The
feature diagram in figure 7.1 shows the possible feature variations between the data
containers that this generator can produce. The Storage feature describes the choice
wether the data container keeps a reference to the originally added object (Reference),
or wether it only stores a copy of it (Copy). The Size feature allows choosing that
a data container instance grows automatically in size (Growable) or that it has a
fixed size (Fixed). For the Data Management feature, it can be requested that the
data container does not store duplicates of objects using the Uniqueness feature.



174 CHAPTER 7. A LIBRARY OF GENERATORS

If the Duplicates feature is included in a featural description, the data container
will allow to store the same object multiple times. A last feature (Indexing) is
concerned with how the objects are stored and removed from the data container.
Choosing the KeyValue feature means that the data container stores key-value pairs.
As a consequence, the addition method requires a key and a value as arguments
and the removal method accepts a key to identify the object to be removed. In
essence, the data container then implements a dictionary. If the Plain feature is
chosen, the container keeps a plain collection of the objects. The addition and removal
methods then have a single argument, i.e. the object to be removed or stored. The
features Storage, Size,Data Management and Indexing all have mutually exclusive
subfeatures. An additional dependency is included between the Copy and KeyValue
features. If the Copy feature is included in a featural description, then the KeyValue
feature should be chosen as well. This is because if a plain container copies the objects
upon addition, all identification of that object is lost. This means that we cannot
remove the object from the container, given the original object that is provided as an
argument to the removal method. Therefore, in case of copying the original objects,
a key should be associated with the object, such that we can remove the object,
given the key. Another additional dependency sets that if the Uniqueness feature is
chosen, then the Reference feature must be chosen as well. The implementation of
this diagram in FDL is shown in figure 7.2. This is how a program generator includes
the feature diagram description in the common featural description language.

Data
Container

Indexing

Data

0

Reference Growable

Duplicates

\ requires

requires

Uniqueness KeyValue

Figure 7.1: Feature Diagram of a Data Container.

The generated implementation for a data container consists of a single class with
the appropriate methods implemented on it. An illustration of the generator’s program
parts, their dependencies, the composition interface and a sample generated program



7.2. DATA CONTAINER GENERATOR 175

all(DataContainer,<Storage,Size,DataManagement,Indexing>) .
oneO0f (Storage,<Reference,Copy>) .

one0f (Size,<Growable,Fixed>).

one0f (DataManagement ,<Duplicates,Uniqueness>) .

one0f (Indexing,<KeyValue,Plain>).

requires (Copy,KeyValue) .

requires(Uniqueness,Reference).

Figure 7.2: Feature diagram of the Data Container Generator described in the logic
version of FDL.

is provided in figure 7.3. The DataContainer program part is the class definition.
There are two private program parts, i.e. the internal variables. The initialization
(constructor), addition, removal and iterator methods are public program parts. All
internal dependency relations in this generator express that the methods and variables
are included in the class and that the methods refer to the variables.

7.2.1 Integrative Compositions

The data container generator produces a simple program. Moreover, a data container
is almost always used as a standalone component in an application. In other words,
an application developer will address the data container via the public interface, as
any normal library component. This holds for any generated program that wants to
use the data container. Nevertheless, even for such a simple generator, we identified
some useful integrative compositions with other generators.

Subclass Another program generator (call it generator X) might produce a special-
ization for the data container class. This specialization class needs to subclass
the generated data container class. However, the developer of generator X does
not know all implementation details of the data container class. Consequently,
if generator X merely generates its class as a subclass of a generated data con-
tainer class, some methods might be inadvertently overridden or variables can
be shadowed. Furthermore, the exact name of the data container class can vary
from one generated implementation to another (because of name conflicts). For
this purpose, it is useful that generator X is integratively composed with the
data container generator. A subclass(ClassX,DataContainer) integration re-
lation ensures that the generated class in the part named ClassX of generator X
is effectively a subclass of the generated data container class. The composition
conflict detection mechanism for the Smalltalk language ensures that no meth-
ods are overridden or variables shadowed unless it is specified with an override



176 CHAPTER 7. A LIBRARY OF GENERATORS

Contents'
variable

refers refers

refers

Initialize
method

Index
variable

Iterator
method

DataContainer @

‘ Contents
DataContainer ‘//
Add — i_Lcontents | ] | Index
\:': (max ™~~~ |
Remove —_| iadd: | .
[ [remove: i -
lterator —— gy Fdo: i — Initialize
- initiaize P

Figure 7.3: Data Container Generator with a possible generated program.



7.2. DATA CONTAINER GENERATOR 177

or unite integration relationship.

Method Integration with Required Parts Generator X can also be implemented
with the intention of an integrative composition with the data container gen-
erator. For such a purpose, generator X includes a number of required parts.
These parts represent the implementation class of the data container and the
methods that the generated implementation produced by X needs to call on the
data container class. This is useful because the name of the generated data
container class and the names of the methods might differ from one generated
implementation to another because a naming conflict has been resolved. The
integrative composition thus requires to unite these required parts with their
concrete counterparts declared in the composition interface of the data container
generator. The integration relations for generator X and the data container gen-
erator are:

unite(ContainerClassX,DataContainer).
unite(ContainerAddX,Add) .
unite (ContainerRemoveX,Remove)

Unite If the generated class of generator X already is a subclass of another class,
it is impossible to integrate that class with the data container class through
a subclass integration relation. In such a case, it might suffice to unite the
generated class with the data container class. The result is that all necessary
methods and variables are automatically included in the same generated class.
If a unite(ContainerClassX,DataContainer) integration relation is declared,
the integration relation propagation mechanism ensures that all methods and
variables of both classes are integrated in the same class. The conflict detection
mechanism also ensures that no methods or variables have the same name.

7.2.2 Internal Implementation

The data container generator anticipates integrative compositions and provides alter-
native implementations for each generated program part. To illustrate these anticipa-
tions for the data container generator, we include the generative program for the Add
generated method part in figure 7.4. For simplicity, we omit the implementation of
the functional variability according to the requested features. An example of such an
implementation will be given in the description of the observer generator in the next
section. The generative program shows how the generated method part is parame-
terized by the refers dependency relations to the Contents and Index parts and by



178 CHAPTER 7. A LIBRARY OF GENERATORS

the in relation to any part. This last relation does not specify its destination part’s
name. Because of this, it automatically matches a possible in integration relation as
well as the dependency relation shown in figure 7.3. Mind that this means that the in
predicate can have multiple alternative results, one for the presence of each in rela-
tion. In this way, the generative program anticipates the presence of an in integration
relation. The generative system enforces the selection of the correct alternative result
by verifying if the generated part adheres to the integration and dependency relations.
Also mind that because of integration relation propagation, the DataContainer part
is automatically involved in a unite integration relation with the appropriate part.
Last but not least, the generative program allows to integrate a method body after
its own body through the includeAfter integration relation.

add (method(?class,{add:},{add:an0Object ...7afterBody},?completeInfo)) if
refers(add,contents,var(?contents,?class)),
refers(add, index,<var(?index,?class)>),
in(add,?,class(?class,?)),
includeAfter(add,{add:},<anObject>, ?afterBody,?info),
append(?7info,<?contents, 7index>,?completeInfo)

Figure 7.4: The Generative Logic Metaprogram for the Add method part.

The complete implementation of the data container generator can be found in
appendix C. In this implementation, it can be observed that the generated implemen-
tation only uses the Smalltalk Array and Association classes.

7.3 Observer Generator

The observer generator produces an implementation for an observer-observable collab-
oration. The intention of such a collaboration is the implementation of a one-to-many
dependency relation between objects so that when one object changes state, all its
observers (dependents) are notified and updated automatically. It is also known as
‘publish-subscribe’, ‘dependents’ or as the ‘observer pattern’ [GHJIV95]. An observer-
observable collaboration is a typical program part that is frequently used and re-used
in many different applications. This is illustrated by its adoption as a design pattern
in [GHJV95]. However, most of the time, it is not implemented through generation
but as an object-oriented framework. Of course, even though it remains a simple
example, generation of an observer-observable implementation has some advantages.
This is because even a simple collaboration such as observer-observable can have some



7.3. OBSERVER GENERATOR 179

required variabilities in its implementation. The possible variabilities that can be gen-
erated by the observer generator are illustrated in the feature diagram in figure 7.5.
A first variability is concerned with the notification of observers by an observable in
the Notification feature. The Multi feature means that a single observer object
that subscribes multiple times will be notified an equal amount of times in case of a
state change. The Single feature means that a single observer that subscribes mul-
tiple times will only be notified once. The Single and Multi features are mutually
exclusive. A second variability is concerned with how an observer knows about the
observable that it receives notifications from. The Parameter feature means that the
observable object will send itself as an argument in the notification message to the
observer. The Instance Variable feature means that the observer can keep a refer-
ence to its observable in an instance variable. Both these features can be present in
a single implementation. The Parameter feature is often required if a single observer
object can be notified by multiple observables. Because the observable sends itself
along with the notification message, the observer can identify the originator of the
notification message. The Instance Variable feature is often more practical in the
implementation of an observer.

Observer-
Observable
ObservableLink Notification
instance . .
parameter variable Single Multi

Figure 7.5: Feature Diagram of an Observer.

An example of a generated implementation together with an illustration of the ob-
server generator is depicted in figure 7.6. The generator’s composition interface and
its internal dependency relations are shown. In this generator, all generated program
parts are exposed through the composition interface. The generator actually produces
a framework implementation of the observer-observable collaboration, in accordance
with the requested features. It thus produces two classes, one for an Observer and
another class for the Observable. In this particular generated implementation, the



180 CHAPTER 7. A LIBRARY OF GENERATORS

Observer class contains an instance variable that contains a reference to an observ-
able!. Furthermore, an initial implementation of the update: method is provided,
which does nothing. In the Observable class, an instance variable is created to con-
tain references to all observers and the necessary addObserver: and delObserver:
methods are generated to add and remove observers from the observable, respectively.
The changed: method implements the notification process.

delObserv
method

addObserv
method

update
method

<variable>

Observer
class

Observer Observable
U observers
changed
observableVar
N Geserver ] [ Observable | x| " agdobserv
\l observable | [[observers [
update | [ """ . / delObserv
T lupdate: _ _____ ! Tchanged: e
) | addObserver: |
TdelObserver: g

Figure 7.6: Observer Generator with a possible generated program.

!This means that the Instance Variable feature is implemented. If it was not desired, there
would be no instance variable here.



7.3. OBSERVER GENERATOR 181

7.3.1 Integrative Compositions

The generated observer implementation can integrate with other generated programs
in multiple ways. This is, of course, achieved by an integrative composition of the
corresponding generators. We describe the most common integrative compositions
below. In all integrative compositions, the observer generator is composed with a
generator that produces a concrete observable and concrete observers.

Framework Specialization Perhaps the most common integrative composition that
one would want is one that boils down to a specialization of the framework that
is generated by the observer generator. Figure 7.7 visualizes such an integrative
composition 2. The observer generator produces the framework and the other
generator integrates its generated concrete observers and observables by sub-
classing. The figure also visualizes the generated parts of the other generator
and their internal dependencies. The advantage of this kind of composition is
that multiple concrete observer classes can be generated by the other generator.
It also allows the inclusion of more generators in the integrative composition that
integrate other observers and observables with the same generated framework
(e.g. the ObserverC class in the figure).

Aspectual Integration Another integrative composition is illustrated in figure 7.8.
This integrative composition merges a single concrete observer and a single con-
crete observable class with the observer-observable collaboration. The concrete
observer is effectively integrated into the observer class produced by the ob-
server generator. In essence, it means that the actual Observer and Observable
classes are extended with additional methods and consequently, have their inter-
faces changed. A particularity in this integrative composition is the generated
myUpdate method part. In the framework specialization, this method overrides
the method in the update method part. In this aspectual integration, these
methods unite. To make this integration relation work, the generation of the
update method part simply copies the implementation of the myUpdate method
part. This satisfies the unite integration relation and achieves the integrative
composition that we want. Indeed, the myUpdate method part contains the func-
tional implementation, while the update method part that is normally produced
by the observer generator contains an empty implementation. Although this as-
pectual integration means that the observer-observable implementation can only
be integrated with a single concrete observer and observable, such an aspectual
integration can be useful. It provides the opportunity to insert the observer col-
laboration in classes that cannot subclass from the generated implementation.

2In the figure, the lay-out of the observer generator’s generated parts has been changed a little to
fit the lay-out of the integration relations.



182 CHAPTER 7. A LIBRARY OF GENERATORS

subclass

MyModel
class LeT T

’
| publish
\ thod
self-calls —» metho
N

delObserv
method

’
.

doAction
method

/ N\
refers =/ X
updateB | model
method \  variable
refers 7 < _ .

observers

overrides

variable

updateA
method

overrides

Observer
class

addObserv
method

subclass

Observer Observable
observers
observable B
- changed:
update: . addObserver:
f] % R delObserver:
ObserverA ObserverB MyModel
update: update: doAction

ObserverC

update:

Figure 7.7: Observer generator in an integrative composition that results in framework
specialization.



7.3.

OBSERVER GENERATOR 183

This is often the case when, for example, the concrete observers also integrate
with other classes than those in the observer-observable implementation.

MyModel
class

/ \
) | publish
in \  method /

delObserv
method

changed
method

self-calls e

doAction
method

observers
variable

myUpdate

Observer

unite class

Observable
observers

Observer
observable

changed:
addObserver:
delObserver:

myUpdate:

doAction

Figure 7.8: Observer generator in an integrative composition that results in an aspec-
tual integration.

Combination of Aspectual Integration and Framework Specialization We can

also specify an integrative composition that results in a hybrid combination of
the two previous integrations. In the example integration in figure 7.9, we il-
lustrate that the concrete observers are integrated with the generated observer
implementation through subclassing, while the concrete observable implemen-
tation is integrated into the observable class.

Integration of Observer and Observable In particular cases, we might even want

to integrate the observer and observable classes themselves. This is illustrated
in figure 7.10. This is useful if the notification mechanism implemented on the



184

unite

MyModel
class

’
! publish unite

i 1
In \  method

self-calls

doAction

.
/
method ers >I/ model

variable

updateB
method X
overrides mm—__]

refers

updateA

overrides

ObserverB

subclass

subclass

changed
method

Var
variable

update
method

Observer
class

CHAPTER 7. A LIBRARY OF GENERATORS

delObserv
method

observers

variable

addObserv
method

Observable
Observer observers
observable
i changed:
update: addObserver:
ﬂ b delObserver:
ObserverA ObserverB ;
doAction
update: update:

Figure 7.9: Integrative Composition that realizes a hybrid combination of an aspectual
integration and framework specialization.



7.3. OBSERVER GENERATOR 185

observable needs to propagate changes to itself. In fact, this can be seen as an
aspectual integration of the observer and observable.

unite

MyModel

unite

delObserv
method

changed

self-calls

doAction

/
method ' mode

I
efers —> \  variable
\ /
N .

variable

observers
variable

method

update
method

Observer

unite class

Observer
observable
observers
changed:
addObserver:
delObserver:
doAction
myUpdate:

Figure 7.10: Integrative Composition of the Observer and Observable.

Integration of the observers variable The generated observer implementation also
anticipates an integration of its observers variable with another variable through
the unite integration relation. In that case, the types of the variables must
match. The generated observer implementation uses a Set or an OrderedCollection
in the observers variable, depending on the chosen features for the notification
feature (i.e. single and multi respectively). The observer generator can adapt
its generated program to use an OrderedCollection even if the single feature
was chosen. The details of this adaptation can be found in the generation code
for the addObserv method part, included in appendix B.

Other Integrations We can think of many more useful integrations with the gen-
erated observer-observable implementation. Some integrations might actually
require the observer and observable to be subclasses of other classes and the



186 CHAPTER 7. A LIBRARY OF GENERATORS

observer and observable classes are open to integration of any kind of methods
and variables.

7.3.2 Internal Implementation

The integrative compositions that were introduced in the previous section were possi-
ble because each generative program (of the separate program parts) has anticipated
the possible integrative relations and composition conflicts. However, the alternative
implementations and anticipations to integration relations in the observer generator
were never targeted at specific integrative compositions with specific generators. In-
stead, each alternative implementation is driven by the predefined list of integration
relations and composition conflicts in the Smalltalk language. In other words, the
internal implementation deals with the integrative variabilities and determines the in-
tegrative commonalities. We illustrate this with some of the generative programs that
actually implement the generation of specific parts of the observer-observable collab-
oration. A complete implementation of the observer generator is given in appendix B.

Generation of the Observer and Observable classes

The Observer and Observable classes anticipate an integration with other classes,
either through subclassing or by a unite integration relation. We show the gener-
ative program for the Observer class in figure 7.11. It shows the three alternative
implementations that can be generated. The first logic rule is the ‘standard’ class
definition that is produced if no integration relation is applied to the Observer part.
The second rule shows that the Observer part can adapt its class definition in case
it is enforced by a subclass relationship to integrate as a subclass of another class.
The third rule is applicable if a unite relationship is applied to the Observer part. In
that case, the class definition can adapt its class name to the name of the class with
which it is united. The implementation for the Observable part is almost identical.
All three logic rules automatically anticipate to name conflicts because they call the
observerName/1 predicate. The implementation of this predicate is also included in
figure 7.11 and shows three alternative names for the Observer class. Although we
could specify a logic rule here that computes an infinite list of possible names, the
specification of these names through facts allows us to define decent alternative names
for the class. This often useful because the name of the class or method can be a part
of the public interface of the generated program and can thus be called by manually
written code.



7.3. OBSERVER GENERATOR 187

Observer(class(7observerName,Object)) if
observerName (?observerName) .

Observer(class(?observerName, ?superName)) if
observerName (?observerName) ,
subclass(Observer,?,class(?superName,?)) .

Observer (class(?7name, ?super)) if
unite(Observer,?,class(7name, 7super)) .

observerName (Observer) .
observerName (AbstractObserver)
observerName (SuperObserver) .

Figure 7.11: The Generative Logic Metaprogram for the Observer class part.

Generation of the Notification Methods

The update and changed program parts (produced by the observer generator) im-
plement the methods that are the core of the observer-observable collaboration. The
second method is called by an observable when its state changes. In its execution,
the changed method program part invokes the update methods on the registered ob-
servers contained in the observers variable. The generative logic metaprogram in
figure 7.12 implements the generation of the update program part. It consists of four
alternative logic declarations. The first two logic rules implement the case where the
feature Parameter was not included in the input specification. The last two rules im-
plement the case where it is included. This can be noticed by the call to the feature
predicate, which is also part of the generator’s implementation. It is true if the fea-
tural description that is provided in the input specification of the generator contains
the feature that is passed as an argument. The first and third logic rules generate the
‘standard’ implementation for the update method. The second and fourth rule im-
plement the case where the method is involved in a unite integration relation. Mind
that in both rules, it is verified if the method has the desired signature, i.e. a single
parameter and two parameters respectively. This is done using the singleKeyword
and doubleKeyword predicates that verify if a Smalltalk selector consists of one or
two keywords respectively®. Otherwise, the generated program would be inconsistent
with the desired features and a call from the changed method would result in an error.

The generative program for the changed method is included in figure 7.13. The

3In Smalltalk, the number of arguments of a method corresponds to the number of keywords in
its selector (in case of a keyword message).



188 CHAPTER 7. A LIBRARY OF GENERATORS

update (method(7class,{update:},{update: anAspect ...},<>)) if
not (feature(Parameter)),
in(update,?,class(?class,?)).

update (method(7class, ?selector,?body,?i)) if
not (feature(Parameter)),
in(update,?,class(?class,?)),
unite(update,?,method(?,?selector,?body,?i)),
singleKeyword(7selector).

update (method(?class, {update:from:},{update:asp from:anObservable...},<>)) if
feature(Parameter),
in(update,?,class(?class,?)).

update (method(?class,?selector,?body,?i)) if
feature (Parameter),
in(update,?,class(?class,?)),
unite(update,?,method(?,?selector,?body,?i)),
doubleKeyword(?selector) .

Figure 7.12: The Generative Logic Metaprogram for the Update method part.

first rule implements the actual generation of the method. It automatically anticipates
an integration in another class. If no integrative composition is made, the in predicate
will return the class definition provided by the Observable class part, because the
changed method part is involved in an in dependency relation with it. However, if
an in integration relation is applied to the changed method part, then this predicate
will return an alternative implementation for the class definition, i.e. the class defined
by the part with which it is involved in this integration relation. Consequently, the
changed method will automatically return an alternative implementation that fulfills
the integration relation. Furthermore, the Observable class part is automatically
integrated using a unite integration relation with the appropriate program part by
the integration relation propagation mechanism. The generative program also auto-
matically anticipates a different variable name for the observers variable part that
contains the observers list. This is because a call to the refers/3 predicate will sub-
sequently result in alternative implementations for the variable. This also results in
a different generated implementation for the changed method such that it fulfills the
refers dependency relation with the observers part.

Finally, this generative program does not implement an anticipation to a unite
integration or a name conflict. In the event of such a conflict or integration relation,
it is the other program part (with which it conflicts or integrates) that is required to



7.4. USER INTERFACE GENERATOR 189

adapt. Mind that it would not be difficult to change the rule such that it anticipates
name conflicts and unite integration relations. We merely illustrate here that it is not
always required to do so, with the possible drawback that if the other generator does
not anticipate a conflict or integration relation either, that the integrative composition
will most likely fail.

changed(method(?class, {changed: },{changed:anAspect 7observers do:
[:observer | observer 7updateMessagel},
<7observers,7updateMessage>)) if
in(changed,?,class(?class,?)),
refers(changed,observers,var(?class,7observers)),
calls(changed,update,method(?,7updateSelector,?,7)),
updateMessage (?updateSelector, PupdateMessage) .

updateMessage (?updateSelector,{7updateSelector anAspect}) if
not (feature(parameter)) .

updateMessage (7updateSelector, 7updateMessage) if
feature (parameter),
makeMessage (7updateSelector, <anAspect,self>,7updateMessage)

Figure 7.13: The Generative Logic Metaprogram for the Changed method part.

7.4 User Interface Generator

The User Interface generator produces a class that implements all behavior of a
user-interface (UI). The use of a dedicated user-interface modeling language is desir-
able and even necessary for an integration of separately generated user-interfaces. An
integration of generated user interfaces at the Smalltalk level would be almost impos-
sible to achieve without profound knowledge on the internal implementation of the
generated user-interface implementations. For the purpose of this dissertation, we did
not implement an entire user-interface modeling language, neither did we implement
a complete user-interface generator. Instead, we implemented this generator on top of
the existing user-interface generator in the Smalltalk Visualworks environment. The
implementation of the generator thus boils down to the definition of a domain-specific
user-interface language (defined on top of the Smalltalk UI generator). This language
allows the modeling of windows, tabs, forms, textfields and menus. Of course, many
more items could be included in a specification of an entire user interface. However,
this is out of the scope of this dissertation. An overview of the UI language in its



190 CHAPTER 7. A LIBRARY OF GENERATORS

representational mapping in GLMP is included in table 7.1. These specifications are
typically produced by a visual tool. Mind that we keep the specifications really simple
here. We only include the necessary representation details useful for our examples.

Ul Program Parts

Each of the possible Ul specification parts contains an identifier that uniquely identifies
the UI element (in 7id). A window program part further contains the window title,
the horizontal and vertical sizes and a ?parentWindow identifier. If the window is a
toplevel window, the identifier System must be used. A menu declares which window
it is a menu for and a menuIltem declares a name and an action which is a message that
is sent when the menu is clicked. A menuItem also contains the identifier of the menu
it is part of (?menulId). All following program parts are Ul elements that are placed
inside a window canvas. All of these program parts must include the coordinates of
an upper-left corner (7x1,?y1) and a lower-right corner (x2,y2). These coordinates
are the relative coordinates to the upper-left corner of the window canvas. There are
three such UI elements: tab windows, input forms and text fields. The tab program
part represents a tab window. An inputForm fact represents input forms and declares
an accessor method, to be implemented on the generated Ul class, which returns the
value entered in the form. The ?changeEvent must contain the name of message that
is sent when the user of the editor changes the contents of the input form. Finally,
a textField describes a name for the accessor that can be invoked to retrieve its
contents. An example specification of a concrete user-interface is shown in figure 7.14.

Ul specification part

window(7id,7title,?horSize, ?vertSize, ?parentWindowId)

menu(7id, ?parentWindowId)

menultem(?id, ?name, ?action, ?menuld)

tab(?id,?x1,7y1,7x2,7y2, 7parentWindowId)

inputForm(?7id, 7accessor, ?changeEvent, 7x1,7yl,7x2,7y2, ?parentWindowId)

textField(7id, 7accessor,?x1,7yl,7x2,7y2, ?parentWindowId)

Table 7.1: The UI specification language.

The generator (depicted in figure 7.15) produces a class containing the neces-
sary methods that are invoked by the Smalltalk system to open a user-interface (i.e.
viewSpec and open). An appropriate set of instance variables together with accessors
and mutators is included in this class for each of the values that can be displayed
and/or edited in the UL. We will use this generator in the following section to specify
domain-specific integrative compositions in the Ul language. For that purpose, the



7.4. USER INTERFACE GENERATOR 191

window(editWindow,{The Forms Editor},100,200,System) .
inputForm(subjectForm,subject,subjectChanged,5,5,100,45,editWindow) .
inputForm(authorForm, ,author,authorChanged,5,55,100,95,editWindow) .
inputForm(accountForm, ,account,accountChanged,5,105,100,150, editWindow) .
inputForm(detailsForm,details,detailsChanged,5,155,100,195, editWindow).

Figure 7.14: An example user-interface specification.

initialize
method

Actions
<method>
refers

<method>

refers

!

UlModel
list
text
viewSpec
open
selectAction

Figure 7.15: The User Interface Generator with a sample generated program



192 CHAPTER 7. A LIBRARY OF GENERATORS

UI language is equiped with the integration and dependency relations that are de-
scribed in table 7.2. All relations can be used as integration relations, but only the
in, of,left and above relations can be used as dependency relations. More complex
integration relations were not considered and require more research about desirable
user-interface integrations. There is also one integration relation propagation rule,
depicted in figure 7.16. The propagation rule implements that menu’s need to be
united if one of their menu-items is united.

Relation ‘ Description
in(7element,?window) The 7element program part is integrated
in the ?window. This means that the element
becomes embedded in the ?window
of (?menultem, ?menu) The ?menultem part is included
as an menu item of the ?menu.
left(?itemA, ?itemB) The ?itemA needs to be
placed left of ?itemB.
above(?7itemA,?itemB) The ?itemA needs to be
placed above 7itemB.
unite (?menul, ?menuB) The ?menuA part is united with
?menuB. Their menu items are grouped.
unite(?menultemA, ?menultemB) The ?menultemA part is
united with ?menultemB.

Table 7.2: User-interface integration relations.

Figure 7.16: User-interface integration propagation rules.



7.5. COMPOSED GENERATORS 193

Composition Conflicts

The most important composition conflicts that we deal with in the Ul language are
overlapping UI elements. Therefore, the Ul language implements a constraint that
is automatically imposed between all Ul elements placed in the same window. This
constraint verifies if the coordinates defined by the UI element program parts do not
result in overlapping Ul elements. Other composition conflicts of the Ul language are
about inconsistent Ul descriptions, such as multiple systemwindows, identical menu
item names, ....

7.5 Composed Generators

Until now, we have described some atomic generators that are included in the library
of program generators. We will now discuss some composed generators and generators
that produce an implementation that needs to integrate with the generated programs
of other generators.

7.5.1 Consistent Data Containers

The use of multiple instances of a data container in an application can require that
their contents remain consistent. This is specifically the case when two different kinds
of data containers need to contain the same elements. For example one data container
may be a plain set containing objects, while the other data container is a dictionary
that stores key-value pairs. In this way, the same data is available in different data
containers that are each appropriate for a particular kind of use. For example, search-
ing for particular objects, given a key, is much faster in a dictionary than in a set.
Conversely, a set offers a quick iteration over all contained objects. Consequently,
in a single software application, two different kinds of generated data containers can
exist while their contents need to be the same. The implementation of the consistency
mechanism, that keeps the contents of the data containers consistent, is produced by
a separate generator that is composed with the data container generators. The im-
plementation of a separate consistency generator is necessary because it produces a
collaboration between two generated data containers and a data container generator
produces only a single data container.

Implementation

The generator produces an implementation that is able to synchronize multiple in-
stances of both kinds of data containers. The consistency generator and a sample
generated program are shown in figure 7.17. The generated program consists of ad-
ditional methods and variables that need to be added to the data container classes.



194 CHAPTER 7. A LIBRARY OF GENERATORS

Each data container implementation class needs to be extended with a syncWith:
method. This method can be invoked on a data container instance to keep it consis-
tent with another data container instance (which is given as argument). Each data
container also needs to keep a reference to all other instances that need to be kept
consistent with it. Therefore a containers instance variable is introduced on each
data container class. The actual consistency-keeping behavior is implemented in the
appropriate generated methods that need to be combined with the addition and re-
moval methods of the data container implementation. In the figure, these methods
are shown in italic (e.g. sendAdd: and sendRemove:). This is because they need
to be combined with the actual addition and removal methods produced by the data
container generators. Furthermore, to prevent an infinite loop in the update mecha-
nism, the block variable is used to keep the state of the consistency implementation:
i.e. busy updating or not.

The consistency generator requires the featural descriptions of the data containers
that need to be integrated. It also accepts a specification on how to convert values
of one container into values of the other container. This specification consists of
messages that can be sent to the values to convert them. An example specification
that declares that the messages asB and asA need to be sent to the values to convert
them from a value for one container to a value for the other container is shown below.
It also includes the specification of a message that can be sent to retrieve a key from
a value. This is required because the generated consistency implementation can keep
the contents of data containers that are configured with a different Indexing feature
(e.g. plain and keyvalue) consistent. Therefore, the consistency generator requires
that its input specification specifies the message that can be sent to a value object to
calculate its key.

convertAtoB({asB}). convertBtoA({asA}). retrieve({asKey})

As shown in figure 7.17, the generator that produces the consistency book-keeping
code is built as a translation composition of two generators. The bottom generator
produces the actual Smalltalk code. The top generator is situated at the feature
description level and produces a featural description of the code that needs to be
generated. This description simply consists of the featural descriptions of the data
containers involved in the consistency implementation. In an integrative composition,
the consistency generator does not only require integration relations to operate on its
Smalltalk program parts but also on the featural descriptions. This is necessary for two
reasons. First of all, the generated consistency implementation must differ depending
on the featural descriptions of the data containers. For example, depending on the
chosen feature for Size, the consistency implementation must or must not contain
a check to verify if a data container is full or not. The second reason is that the



7.5. COMPOSED GENERATORS

-~~~ requires(uniqueness,uniqueness) ,-~~~

195

, N\

4
| featA

h \
#~/ featB

\ features /

N -

N !
> features K

- requires(duplicates,duplicates) AN

~ -

- -

’ \\ ’ N\
/ addA | | addB
\ method ;|\ method
N L/ N L/

method

refers refers

/ContainA
\

1
class .
\ ,’( in
-

N

blockA
variable

blockB
variable

- 7 N

, N\ .
\ \-
/removeA\ /removeB!
1 1
', method , ', method ,
N // \\ //

calls

| &//,- N
in .
ContainB\

1
class ,'

U

ContainA
syncVarA

blockA
sendAddNr “ContainA_ |
Fomes====== 15

ContainB

syncVarB
blockB

,Synes ¢ H
sendRemove 1 ) block
~A 1 sendAdd

1

©

SyncA 1 sendRemove |
Tl 1 syncWith: T

sendAddB
; L CS - -—l-ﬁndRemoveB
T SendATT 1 LA SyncB
L sendRemove 1 g "
TLsyncWith: "

Figure 7.17: The implementation of the Consistency Generator and a sample gener-

ated program.



196 CHAPTER 7. A LIBRARY OF GENERATORS

consistency generator can only produce a consistency-keeping implementation if the
featural descriptions of both data containers are compatible with respect to data
management and indexing. This is because it is impossible to keep data containers
with duplicates consistent with a data container without duplicates. The complete
implementation of the consistency generator is included in appendix C.

Integrative Composition

An integrative composition of two data container generators and the consistency gen-
erator is illustrated in figure 7.18. The necessary integration relations are drawn and
the data container implementation is automatically adapted to accommodate the in-
tegration of the consistency implementation. This involves both an integration at the
Smalltalk level and at the FDL level. At the Smalltalk level, we need to integrate
the required program parts of the consistency generator with the appropriate parts
of the data container generators using unite relations. We also need to declare the
includeAfter integration relation between the addition and removal methods of the
program generators. At the FDL level, we simply need to provide the consistency gen-
erator with the featural descriptions of both data containers. This merely requires an
integration with the required FDL program parts using a unite. In the composition,
the consistency generator enforces the dependency relations that are shown between
the featural descriptions of both generators. If these dependencies are violated, the
composition cannot occur.

Integrative Composability

The Consistency generator can integrate two different data containers but still puts
some requirements on the featural descriptions of both data containers. If these re-
quirements are not met, then the consistency generator cannot produce an implemen-
tation and the integrative composition fails. However, if there are alternative feat-
ural descriptions for the data containers, then the integrative composition can work
through the (automatic) selection of such an alternative. There can exist alternative
featural descriptions if the featural descriptions are produced by another generator
and thus, if the data container generator is in fact part of a composed generator.
Such an example is described in the next subsection.

7.5.2 Document Editor Generator

A document editor is one of the tools produced by the company. Clients have a variety
of requirements when they order a document editor. These requirements relate to
features such as lay out of a document, syntax coloring, user-interface, storage of the
document, etc.... Since the company produces different document editors for many



7.5. COMPOSED GENERATORS 197

- =~ _requires(uniqueness,uniqueness) . --.
N 7 N dataFeat
features

dataFeat
features

4 N

| featA ' featB 9

\ features . ! features
>

“~._--"  requires(duplicatesduplicates) ~~ -~~~

" \\‘ RN
‘ContainA [ContainB
\class [/ \ class
\ , \

Remove includeAfter
method | | s \‘
unite /removeA:

|

includeAfter

i N\ g unite

/removeB;

\ method \ method

N p . L

unite \‘-’/——-\\ RN -

" addA 7 addB unite

\ method /! \ method ,/

N / N / ;
includeAfter S~ Seo-7 includeAfter

ClientA [ ClientB |
data data
DataA DataB
contents contents
max max
sync sync
block block
add: atput:
remove: remove:
do: do:
syncWith: syncWith:

Figure 7.18: Composition of the Data Container and Consistency generators.



198 CHAPTER 7. A LIBRARY OF GENERATORS

different clients, it pays off to develop a program generator for document editors that
represents a product-line of document editors that vary in the aforementioned features.
The developers alleviate the development of this generator by reusing the generators
of the library we have introduced above. Consequently, the developers implement
the document editor generator as an integrative and translation composition of other
generators. We do not elaborate on a feature diagram and possible input specifications
for this generator. Instead, we focus on the use of integrative composition to construct
this generator.

Figure 7.19 illustrates the composition of generators in the implementation of the
document editor generator. The client’s requirements are expressed using a featu-
ral description in the Document Editor FDL. These descriptions are accepted by the
DocEditComp generator. This generator translates these Document Editor FDL feat-
ural descriptions into Data Container FDL featural descriptions and Ul specs for the
Data Container and User Interface generators respectively. Furthermore, it also
produces a specification for the SubDocEdit generator. Both the SubDocEdit and
DocEditComp generators are specific to the implementation of the Document Editor
generator.

DocEditComp Generator

The DocEditComp generator produces a consistent set of input specifications for the
SubDocEdit,User Interface and Data Container generators. This means that it
produces an input specification for each of the other program generators in the compo-
sition such that they can interoperate. In essence, the DocEditComp generator encodes
the dependencies between the featural descriptions of each of the generated program
parts. A part of this is shown in figure 7.20. This figure shows the DocEditComp gen-
erator and visualizes the dependencies between the featural description of the data
container structure and the featural description that is accepted by the SubDocEdit
generator. It shows two possible alternative featural descriptions for each program
part. The dependency states that when the featural description of the data container
contains the Duplicates feature, then the autoDuplicates feature is required in
the featural description provided to the SubDocEdit generator. This is because the
code of the generated document editor needs to be different when a data container
can contain duplicates or not. The DocEditComp generator produces two alterna-
tive configurations for a data container because it anticipates a composition problem
when the data container is integrated with another data container (e.g. through the
Consistency generator, which is explained later on).



7.5. COMPOSED GENERATORS 199

Document Editor
Spec

ocument Editor
@ FD-Language

DocEdit-
Comp
Generator

DocEditor Editor DataCont.
UISpec Spec Spec
T

ul
Generator

SubDocEdit
Generator

DataCont.
Generator

1 1
1 I
1 1
I ]
I 1
— |
! ! DataContainer
Ul Language ! ! FD-Language
i i
I 1
| ]
1 1
1 |

Editor
Smalltalk Language Implementation
Ul Data Container
Implementation Implementation

Figure 7.19: Schematic overview of the compositions in the Document Editor Gener-
ator.



200 CHAPTER 7. A LIBRARY OF GENERATORS

dataContainer(features(dc,<plain,reference,
duplicates,growable>)).

dataContainer(features(dc,<plain,reference,
uniqueness,growable>)).

requires(uniqueness,selfDuplicates)
Data-

Container
features

réijtﬁre§(dupIicates,autoDupIicates)

DocEdit
features

docEdit(features(edit,<autoDuplicates>)).

docEdit(features(edit,<selfDuplicates>))

Figure 7.20: Partial DocEditComp Generator.

SubDocEdit Generator

The SubDocEdit generator produces the Smalltalk implementation of the document
editor that integrates with the generated data container and the generated user-
interface. In this experiment, we did not completely implement this generator. We
only implemented those parts that were necessary to validate the integrative compo-
sition technique. In essence, this consists of a class with the methods that need to
interact with the generated user-interface and data container implementations. Its
integrative composition interface is described in the context of the integrative compo-
sition in the following paragraph.

Integrative Composition

The integrative compositions required to construct the Document Editor generator
are simple because they are not invasive. The integrative composition is shown in
figure 7.21. The UI generator produces a class with methods that are called by the
generated document editor implementation. Similarly, the document editor imple-
mentation calls the methods of the generated data container. The only interactions
between the generated implementations are method calls. Therefore, the integration
simply requires that the SubDocEdit generator is supplied with the names of the
classes and methods that need to be called. This is achieved through unite integra-
tion relations between the necessary program parts. The SubDocEdit generator is



7.5. COMPOSED GENERATORS 201

specifically built for an integrative composition with the Data Container and User
Interface generators and consequently exposes the necessary required program parts
in its composition interface.

unite
Open
method

unite

Mutators ‘
<method> unite

Accessors
<method>

7N

\
7 Ulopen
\, method

unite

. N

L
Lontainer
\ class )

TS
,remove
\container)

/
I
- '
\ dass > v method
ST DocEdit ST
class

Lo
/ add ™\
{container)

\ method €

unite

Remove
method

Add
method
Iterator
method

Initialize
Data method
<variable>

e N
\
Ulmutaton
|

‘\fmelhodi ;

unite

SN
/iter Ty
\container;
\ method

, N
\
[ Ulacces

‘\<me|hod>,’ unite

unite

Figure 7.21: The integrative composition of the User Interface generator (left), the
SubDocEdit generator (center) and the Data Container generator (right).

7.5.3 Forms Editor Generator

The Forms Editor generator produces a tool that is similar to the document editor.
However, the forms editor has a user-interface that consists of forms that need to
be filled in. Given these forms, it produces a document. In other words, the forms
editor provides a limited view on a document, while the document editor allows full
word processing abilities. The composition structure of the Forms Editor generator
is identical to the composition structure of the Document Editor generator. It also
contains the a Data Container and User Interface generators that are composed
with a specific generator that produces the functionality of the forms editor as well as
a generator that translates the featural description of the forms editor into a consistent
set of featural descriptions of the data container, user-interface and forms editor.

7.5.4 Integrated Document Editor Generator

The Integrated Document Editor generator is built as a composition of the previ-
ous two generators: the Forms Editor generator and the Document Editor generator.
The composition scheme to build this generator is shown in figure 7.22. Since both
generators are composed generators, the composition interface not only consists of the
generated Smalltalk program parts but also of the intermediate generated programs.



202 CHAPTER 7. A LIBRARY OF GENERATORS

These intermediate programs are the featural descriptions and input specifications
for, amongst others, the Data Container and User Interface generators. The in-
tegrative composition of the Document Editor and Forms Editor generators is ex-
pressed in terms of the user-interface specification and includes the composition of the
Consistency generator. We describe these two aspects of the integrative composition:
the integrative composition of the user-interfaces and the integrative composition of
the data containers using the consistency generator.

Integrated Editor
FD-Language

Document Editor
FD-Language

FormsEditor
FD-Language

ﬂ Smalltalk Language

Forms Editor Document Editor
Implementation Implementation
DataContainer ul DataContainer
Implementation Implementation Implementation

Figure 7.22: Schematic overview of the composition to create the Integrated Document
Editor.

Consistency Generator Composition

We first consider the integrative composition of the data containers using the Consistency
generator. The Document Editor generator produces a data container that can con-
tain duplicates, while the Form Editor generator produces a data container that does
not contain duplicates. However, both need to be kept consistent through the code
produced by the Consistency generator. This would normally lead to a composition
conflict. Fortunately, the developer of the Document Editor generator anticipated



7.5. COMPOSED GENERATORS 203

the possible composition conflicts that can occur with the featural description of the
data container and provided an alternative implementation that allows the use of a
datacontainer without duplicates. This composition conflict can consequently be au-
tomatically resolved by the generative system. The essential part of the integrative
composition is shown in figure 7.23. The details of this integrative composition are
identical to the integrative composition visualized earlier on, in figure 7.18.

FormEdit- Consist. DocEdit-
FDL Comp
Generator, Generator

DataCont. Consist. DataCont. SubDocEdit
Generator Generator Generator Generator

Figure 7.23: Focus on the composition of the Consistency Generator in the
Integrated Document Editor generator.

UI Composition

The following integrative composition is the domain-specific integrative composition
of the user interfaces. An integrated document editor is an application that integrates
the forms editor and document editor applications in a single application. Conse-
quently, the user-interfaces need to be integrated. However, these user-interfaces are
produced by separate generators (the DocEditComp and FormEditComp generators).
We can specify an integration at the Ul-specification level because the integrative com-
position interfaces of the Document Editor and Forms Editor generators expose the
generated program parts of the UI specification. Table 7.3 shows the program parts
and the generative programs for the forms editor Ul specification in the FormEditComp
generator. Likewise, table 7.4 shows those of the document editor UI specification,
implemented in the DocEditComp generator. They show how the specification of the
windows can adapt to the different integration relations that can be applied to them.
We will clarify them in the description of two different Ul integrations:

Tabwindow We can integrate both windows in a common user-interface by placing



204 CHAPTER 7. A LIBRARY OF GENERATORS

the separate windows in a tabwindow. Therefore, the Integrated Editor gen-
erator produces a specification of a user-interface that consists of a single tab
window. Next, we specify the integrative composition of these three generators
(shown below). The composed generator produces a single Ul specification in
which both the document and forms editor windows are integrated into a tab-
window. In tables 7.3 and 7.4, we can see that the generative programs for the
formsEditWindow and docEditWindow program parts anticipate the possible in-
tegration in a tabwindow. If they are integrated in a tabwindow, the title and
sizes of the window are adapted. In a tabwindow, the titles of the tabs are the
titles of the windows that are integrated in them. The integration relations for
this integrative composition are:

in(docEditWindow, integratedTabWindow) .
in(formsEditWindow, integratedTabWindow) .
unite (formsMenu,documentMenu) .

Merge Another integrative composition can be specified that results in the merge
of both the document and forms editor windows in a single window. This re-
quires that the individual Ul elements produced by the different generators are
correctly placed (i.e. not overlapping) in the single window. This is ensured by
the composition conflict detection mechanism and is anticipated in the imple-
mentation of both generators. The textField program part either occupies the
entire window or it occupies only half of the window. Next, the forms program
listpart invokes a separately defined predicate that provides many alternative
distributions of the forms over the entire surface. If possible, a distribution of
the forms that still allows the placement of the text field will be found and the
integration will succeed. Of course, this second integrative composition requires
a different implementation of the Integrated Editor generator (i.e. where the
tab window is left out). The integration relations for this integrative composition
are:

unite(docEditWindow, formsEditWindow).
unite(docEditWindow, integratedWindow) .

Figure 7.24 schematically illustrates the required composition of all generators in-
volved (except for the consistency generator). It shows how the generative system



7.5. COMPOSED GENERATORS

205

[ Program Part

[ Generative Program

formsEdit- formsEditWindow(window(formsEditWindow,{The Forms Editor},200,200,System)) .
Window formsEditWindow(window(formsEditWindow,{Input Forms Tab},?xSize,?ySize,?id)) if
in(formsEditWindow,?,tab(?7id, 7x1,?y1,7x2,7y2,7)),
minus(?7x2,7x1,7xSize),
minus (?7y2,%7y1,?ySize) .
formsEditWindow(?window) if
unite(formsEditWindow,?,?window) .
formsEdit- formsEditMenu(menu(formsEditMenu,?id)) if
Menu of (formsEditMenu,?,7id) .
forms forms(7forms) if

in(forms,?,window(?id,?,?xSize, ?ySize,?)),

distributeForms(?xSize,?ySize,
<inputForm(subjectForm,subject,subjectChanged,?id),
inputForm(authorForm,author,authorChanged, ?id) ,
inputForm(accountForm,account,accountChanged, ?7id),
inputForm(detailsForm,details,detailsChanged, 7id) >,
?forms) .

Table 7.3: Forms Editor generator implementation

[ Program Part

[ Generative Program

docEdit- formsEditWindow(window(docEditWindow, {The Document Editor},200,200,System)) .

Window docEditWindow(window(docEditWindow, {Document Tab},?xSize,?ySize,?id)) if
in(docEditWindow,?,tab(?id, ?x1,7y1,7x2,?y2,7)),
minus(?7x2,?7x1,?xSize),
minus (?y2,%7y1,?ySize) .

docEditWindow(?window) if

unite(docEditWindow,?, ?window) .

docEdit- docEditMenu(menu(docEditWindow,?id)) if

Menu of (docEditMenu, docEditWindow,window(?id,?,7?)).
docEditText docEditText (textField(docEditText,text,1,1,7xSize,?ySize,?id)) if

in(docEditText,?,window(?id,?,?xSize, ?ySize,?)).
docEditText (textField(docEditText,text,1,yl,?7xSize,?7y2,7id)) if
in(docEditText, docEditWindow,window(?7id,?,?xSize,?ySize,?)),
quotient(?ySize,2,?yHalf),

interval(?y1l,1,7yHalf),

interval (?y2,?yHalf,?ySize) .

Table 7.4: Document Editor generator implementation

[ Program Part

[ Generative Program

integrated- integratedWindow(window(integratedWindow,{The Integrated Editor},300,300,System)).
‘Window

integrated- integratedTabWindow(tab(integratedTabWindow,1,1,7xSize,?ySize,?id)) if

Tabwindow in(integratedTabWindow, integratedWindow,window(?id,?,?xSize,?ySize,?))

Table 7.5: Integrated Editor generator (UI generation part).




206 CHAPTER 7. A LIBRARY OF GENERATORS

composes the generators of both the Document Editor and Forms Editor genera-
tors. For clarity, it does not illustrate the integrative composition of the consistency
generator with the data container generators.

7.6 Discussion

The set of experiments presented in this chapter has shown that the GLMP tech-
nique provides a powerful integrative composition technique. We have explicitly de-
scribed how atomic generators (e.g. the Observer and Data Container generators)
can be involved in several different integrative compositions. The experiment with
the Observer generator demonstrated specifically how a generated program can be
integrated with another generated program in many different ways. None of these
integrative compositions has to be anticipated as a whole. Instead, the developer of
the generator needs to design the set of program parts and anticipate the integration
relations that can be applied to each program part.

The integration of the Data Container and Consistency generators has shown
how the FDL approach is useful to detect high-level composition conflicts without the
need for defining a separate domain-specific language to detect them. The generated
consistency-keeping implementation is also an example of crosscutting code. Cross-
cutting code requires an integrative composition technique to integrate it correctly
with other generated programs. We described the integrative composition of the Data
Container and Consistency generators in detail and afterwards we described their
composition as a part of the Integrated Document Editor generator. In this final
experiment, we demonstrated the ability to detect and resolve high-level composition
conflicts in both the FDL and User-Interface languages. This experiment has specif-
ically shown the appropriateness of domain-specific integrative compositions. We have
shown how Ul-specifications can be integrated and how the domain-specific conflict
of overlapping UI elements can be detected and resolved.

The design and implementation of integrative composable generators also has an
impact on other characteristics of program generators. We discuss some of these issues
here.

Commonalities and Variabilities

The implementation technique for integrative composable generators impacts the com-
monalities and variabilities of the generated programs. All generated programs of a
generator consist of the program parts defined by the generator. Furthermore, these
program parts are always related by the dependency relations defined by the genera-
tor. Consequently, the commonalities of all generated programs of a single program
generator are the program parts and their dependencies. The variabilities are in the



7.6. DISCUSSION 207

FormsEditor
FD-Language

Document Editor
FD-Language

- Forms+Doc
Data Container FormEdit Editor Editor Data Container
FD-Language Spec Ul-Spec Spec FD-Language

DataCont.
Spec

I

[}

|

I

'.

]

! DataCont.
! Spec
|

]

1

|

]

1

I8

U

abenbueT N

DataCont.
Generator

DataCont.
Generator

Forms Editor Document Editor
Implementation Implementation
DataContainer ul DataContainer || Smalltalk Language
Implementation Implementation Implementation

Figure 7.24: Detailed overview of the composition that creates the Integrated Docu-
ment Editor.



208 CHAPTER 7. A LIBRARY OF GENERATORS

implementation of each generated program part and in the integrations with other
programs.

Scalability

Program generators are a scalable implementation for efficient and configurable reusable
software artifacts. Although the implementation of a program generator is inherently

more complex than the programs it generates, a generator pays off because its imple-

mentation represents an entire family of generated programs. Integrative composable

generators even enhance the scalability because they represent an entire family of

generated programs and each of these generated programs can adapt to particular

integrations with other (generated) programs. In other words, the number of possible

generated programs is increased because each generated program can also be adapted

in the context of an integrative composition.

Of course, this improved scalability has an impact on the implementation complex-
ity of the generator because the developer of the generator also needs to implement
the integrative variabilities. In this dissertation, we have provided support to deal
with these integrative variabilities through separate program parts, dependency rela-
tions and alternative generated programs. The complexity of each generative program
grows with the number of dependencies and integration relations it can be involved in.
Consequently, the more integrative compositions that are allowed by the program gen-
erators (i.e. the more public program parts), the more complex the implementation.
GLMP allows to tackle this complexity because each generative program only deals
with the generation of its own program part and thus has to focus only on the adapta-
tions of its own program part. Furthermore, each generative program is automatically
provided with all possible adaptations to the program parts it depends on via the de-
pendency relations and the associated parameterization mechanism. The constraint
checker automatically enforces that a correct set of adaptations for all program parts
are chosen such that the generated program is correct.

Performance of Generation and Generated Programs

The intention of program generation is the production of an efficient implementation
for a software artifact. This efficiency primarily stems from the fact that all statically
configurable adaptations to the generated program are executed at generation-time,
preventing unnecessary performance overhead at runtime. Our approach does not
invalidate this goal. One could argue that the generated program often has to be
structured such that integrative compositions are possible. This structure can conflict
with a more efficient implementation of the generated program. This is true but
although we did not investigate these issues, we expect these to be of minor importance



7.7. CONCLUSION 209

with respect to the performance gained because of the program generation itself.

Furthermore, the performance of the GLMP system itself was also not an issue in
this dissertation. Although the prototype implementation can be improved consider-
ably, the execution of logic programs and the solving of constraint networks remains
a slow compilation technique. Nevertheless, the generation of a program has to occur
only during the development process.

7.7 Conclusion

We have validated the GLMP technique that is proposed in this dissertation by im-
plementing several integrative composable program generators. For a number of these
generators, we have shown how the generator can be involved in many different inte-
grative compositions, that result in different integrations of their generated programs.
We have specifically shown this for the observer-observable generator. For one par-
ticular generator (the Ul generator), we defined a simple domain-specific modeling
language such that integrations can be specified at the domain-specific level. Further-
more, we have detected domain-specific composition conflicts and we have shown how
the implementation can anticipate and resolve them. However, because identifying,
implementing and correctly using domain-specific modeling languages in the imple-
mentation of generators is a complex and tedious task, we have also used a modeling
language (FDL) that can be used by all generators. We have shown how program
generators that use this common modeling language are composed and how this al-
lows to prevent high-level composition conflicts between generators implemented in a
single library.



210 CHAPTER 7. A LIBRARY OF GENERATORS



Chapter 8

Conclusion and Future Work

In this dissertation, we have supported the thesis that integrative composition of pro-
gram generators is necessary for the modular implementation of program generators
as a composition of other generators. In this chapter, we conclude the dissertation and
summarize the major contributions. We also discuss the limitations of the proposed
technique and mention future research directions.

8.1 Summary

In this dissertation, we have identified the need for integrative composition of program
generators. An integrative composition of program generators results in a composed
generator that produces an (invasive) integration of the programs generated by its
constituents. Building program generators as an integrative composition of other
generators provides us with the opportunity to modularize the implementation of a
program generator according to the concerns that need to be generated. In essence,
an integrative composition allows to compose generators, that each generate the im-
plementation of a single concern, into a composed generator that produces a program
that implements all concerns. However, the need for integrative composition conflicts
with the encapsulation and black-box property of the generated programs. First of
all, to specify an integrative composition, we need knowledge on some of the internal
implementation details of the generated programs. Furthermore, many interferences
might occur in an integration, which require manual adaptation of either the generator
or the generated programs, which is most undesirable. To reconcile the advantages
of black-box generated programs with the need for integrative composition, we have
described a number of requirements that an integrative composition mechanism must
adhere to. Summarized, these requirements state that integrative composable genera-
tors need to provide controlled access to parts of their generated program such that an

211



212 CHAPTER 8. CONCLUSION AND FUTURE WORK

unanticipated integration of their generated programs can be specified. Furthermore,
the integrative composition mechanism needs to prevent inadvertent interferences in
the integration of the generated programs by means of a conflict detection and reso-
lution mechanism.

We introduced a generative programming technique that allows the building of
integrative composable generators and that adheres to requirements that we set forth.
We first introduced the main concepts of our technique, which are independently of
a particular implementation technology. Afterwards, we provided a prototype im-
plementation of the technique using generative logic metaprogramming. We demon-
strated the building of integrative composable generators, as well as their integrative
composition, using a number of example generators. We have shown how generators
are equipped with an integrative composition interface that exposes parts of their
generated programs. An actual integrative composition is specified by means of inte-
gration relations that are defined between the exposed parts in different composition
interfaces. The integration relations do not only enforce a particular integration of
the generated program parts, they also influence the generative programs to achieve
the desired integration. Attention was drawn to the fact that the possible integration
relations and kinds of parts that can be exposed in a composition interface are defined
for each possible output language of a generator. This means that all program gener-
ators that produce a program in the same language can be involved in an integrative
composition. Furthermore, we have shown how integrative composable generators are
designed and implemented for integrative composition by a mechanism of dependency
relations between program parts and alternative generative programs for each program
part. These mechanisms allow the developer of a generator to deal with integrative
variabilities which are necessary to anticipate and resolve the possible interferences
that might occur in an integrative composition. The possible interferences themselves
are declared for each language and are automatically detected in each integrative
composition. We also described how the combination of translation composition and
integrative composition provides opportunities to specify an integration at higher lev-
els of abstraction, i.e. in domain-specific (modeling) languages. We argued that such
domain-specific integrative compositions are more appropriate since they can specify
the integration in more domain-specific terms and can be checked for domain-specific
composition conflicts. We have presented examples of such domain-specific integrative
compositions in the Tree and User Interface languages.

Although the design of appropriate domain-specific languages provides the op-
portunity for domain-specific integrative compositions, the identification, design and
implementation of these domain-specific modeling languages and their use in the de-
velopment of all generators is a tedious and difficult task. Moreover, their definition
and consistent use is even impossible in an open environment. To enable the detection
and resolution of domain-specific interferences without the need to develop a domain-



8.2. CONCLUSION 213

specific modeling language, we have also presented a featural description language
and demonstrated its use in the development of a library of integrative composable
program generators. We have shown that an integrative composition of these program
generators can lead to an alternative selection of features and the adaptation of the
generated low-level programs according to those features.

8.2 Conclusion

Program generation is at the heart of recent software development paradigms such
as generative programming [Cza98|, product-line engineering [BJMvH02, BLHM02]
and model-driven architectures (MDA) [Gro]. In these paradigms, program genera-
tors are used as a scalable implementation technique for an entire family of reusable
program parts. A generator accepts a high-level description of the desired program
part and generates a corresponding low-level implementation for it. Although pro-
gram generation is a powerful implementation technique for reusable program parts,
program generators themselves are hardly reusable in the implementation of other
generators. This is because program generators are considered in isolation and are
not designed nor implemented for integrative composition. Using contemporary gen-
erative programming techniques, an integration of the generated programs needs to
be performed manually and often requires adaptations to the program generators or
generated programs. These adaptations are necessary to achieve a correct invasive in-
tegration of the generated programs and to prevent undesired interferences that break
the functionality of the generated programs. The need for such manual adaptations
renders the modular reuse of contemporary program generators impossible.

In this dissertation, we proposed and implemented an integrative composition
technique in which the required adaptations to the generated programs are performed
by the program generators themselves. This is possible because we can anticipate the
possible integrative variabilities during the implementation of a program generator
and implement them appropriately. The implementation of these integrative variabil-
ities must deal with the necessary adaptations caused by the possible integrations and
interferences in the generated program, which are defined for a given implementation
language. The integrative composition mechanism enforces the generators to produce
an integrated program that adheres to the integration specification and does not con-
tain defined undesired interferences. The technique of generative logic metaprogram-
ming proved to be a powerful implementation technique for integrative composable
generators. This is because the logic language provides appropriate linguistic support
for the implementation of the integrative variabilities.

Integrative composable generators allow us to apply the principle of separation
of concerns in the context of a modular implementation of program generators. We



214 CHAPTER 8. CONCLUSION AND FUTURE WORK

can structure the implementation of a program generator according to the concerns
that need to implemented in the generated program. The generation of each concern
can be encapsulated in an individual program generator and a composition of program
generators produces a program that contains the (invasive) integration of all concerns.
The implementation of each concern is appropriately adapted to implement the desired
interactions and to prevent the undesired interferences.

8.2.1 Contributions

In this section, we summarize the major contributions of this thesis.

Modular Integrative Composition We have identified the need for integrative
composition of program generators for the modular implementation of program
generators as a composition of other generators. The presented mechanism for
integrative composition establishes a correct integration of the generated pro-
grams without the need for extensive knowledge on the internal implementation
of the generated programs. To perform an integrative composition of program
generators, only the implementation details that are exposed through the inte-
grative composition interface are required. The integrative composition mecha-
nism ensures that the individual generated programs are integrated as specified
without the defined and detectable interferences.

Dealing with Integrative Variabilities An integrative composition can only oc-
cur if the generators involved in the composition are able to integrate their gen-
erated programs. This means that the generated programs need to be adapted to
achieve an (invasive) integration and to resolve possible interferences. We have
identified these adaptations for integrative composition of the generated pro-
grams as integrative variabilities. The generative technique that was developed
in this dissertation allows to explicitly deal with these integrative variabilities
in the implementation of a program generator. The fundamental mechanism
for this is the generation of alternative implementations for individual program
parts of the generated program. This allows to tackle the integrative variabilities
through alternative implementations only where they are needed. The mecha-
nism of dependency relations and integration relation propagation ensures that
the entire generated program is consistent with the chosen alternative imple-
mentation of a particular part. In other words, the dependency relations and
integration propagations ensure that the entire generated program is adapted
accordingly because of an adaptation to a single program part. The choice of an
alternative implementation is driven by the possible interferences and the possi-
ble integrations that can be specified in the output language of the generator (the
integrative variabilities). The integrative composition mechanism automatically



8.2. CONCLUSION 215

selects the appropriate alternatives. Since the possible integrations and inter-
ferences are known and defined for each language, a developer of an integrative
composable generator can anticipate these integrative variabilities.

Domain-specific Integrative Composition The presented integrative composition
mechanism is independent of a particular implementation language for gener-
ated programs. An integrative composition can be specified in various languages,
including domain-specific (modeling) languages. A domain-specific integrative
composition offers the opportunity to specify an integration of generated pro-
grams at a higher-level of abstraction. In such domain-specific integrative com-
positions, domain-specific interferences can be detected and resolved whenever
possible. A domain-specific integrative composition also ensures that no lower-
level composition conflicts exist because the integrated domain-specific program
is entirely translated by a single program generator into an executable program.
We have also described the use of the Feature Description Language (FDL) as
a domain-specific language to express feature configurations. The FDL can be
used by all generators in the implementation of a library of generators. It allows
to detect and prevent high-level (semantic) conflicts in integrative compositions
without the need to define an entire domain-specific language.

Generative Logic Metaprogramming Logic metaprogramming was already iden-
tified as a metalanguage that can be used to generate programs [Vol98]. We ar-
gue that the logic metaprogramming language is a suitable implementation lan-
guage for integrative composable program generators. The logic language offers
appropriate linguistic support for the implementation of generative programs
to handle integrative variabilities. More specifically, the multiple subsequent
results that are associated with the invocation of a logic query are a key to the
implementation of alternative generative programs. In a single generative logic
metaprogram, we can specify multiple alternative declarations that each imple-
ment the generation of an alternative generated program part. Each of these
alternative declarations can be parameterized with the possible integration and
dependence relations imposed on the generated program part. Each declaration
can thus implement one or more integrative variabilities. The logic evaluator au-
tomatically invokes all alternative declarations until a correct generated program
is found. This correctness is checked by a constraint checker, which verifies the
dependency and integration relations imposed between all program parts. Gen-
erative Logic Metaprogramming is thus a combination of a logic metalanguage
and a constraint checking system. This combination proves to be a suitable
generative implementation technique to handle integrative variabilities in the
implementation of integrative composable generators.



216 CHAPTER 8. CONCLUSION AND FUTURE WORK

8.3 Future Work

Now that we have presented what we have achieved, it is time to mention what we
did not do. We present a number of directions for future research and opportunities
for improvements.

8.3.1 Future Research
Unanticipated and Automatic Adaptations

Although the implementation of a generator does not have to implement all possible
integrative compositions, the generation of each program part must anticipate the
possible integrations for that program part. As a result, an integrative composable
generator can only compose if its implementation has anticipated to this and imple-
ments the required adaptation. Furthermore, the implementation of many adaptations
is identical or similar in many program generators. For example, the implementation
that adapts a method program part for the integration in another class is identical
in almost any program generator. Although it remains desirable that the implemen-
tation of a program generator offers full control over the possible adaptations (and
integrations), it makes sense to provide a standard adaptation that can occur auto-
matically. The same is true for adaptations that circumvent the composition conflicts.
The renaming of private instance variables, for example, is an adaptation that you
would want to occur automatically. Such automatic adaptations can be included in
the language definition.

The implementation of automatic adaptations can be even more powerful if the
adaptation strategy is not fixed but can be driven by the generators involved in an
integrative composition. The adaptation mechanism can then consider information
provided by both generators to resolve a composition conflict or to adapt the program
for a correct integration. For example, consider the experiment presented in the
previous chapter of the domain-specific integrative composition of user interfaces.
Each generator provided an adaptation in the specification of the coordinates of the
separate Ul elements. This allowed that windows merged and that the UI elements
did not overlap. However, the adaptations were driven with only ‘local’ knowledge:
i.e. each generator did not know about the desired positions of the UI elements of
the other generator. As a result, the adaptations are guesses that try to prevent the
composition conflict of overlapping UI elements. If the adaptation mechanism would
be provided with more information (of all coordinates), it can find a more optimal
solution. However, it requires a language in which each generator can specify its
desires, such that the adaptation mechanism can find a solution automatically.



8.3. FUTURE WORK 217

Application to Composable Aspect Weavers

A particular application of composable program generators is the building of com-
posable aspect weavers. Composable aspect weavers for domain-specific aspect lan-
guages reconciles the advantages of domain-specific aspect languages with the ability
of implementing multiple kinds of aspects in a single application. We can build new
aspect weavers for each domain-specific aspect language and we can compose them
into a composed weaver that can accept aspects of multiple domain-specific aspect
languages. We have already experimented with building composable aspect weavers
using LMP in [BMVO02]. The technique presented in this dissertation to implement
integrative composable generators can also be used to implement composable aspects
weavers. However, at the moment, we still need a low-level general purpose aspect
language to achieve this. In essence, we can already build composable aspect weavers
that translate their program into a single general-purpose aspect language. This is a
rather straightforward application of the technique presented in this dissertation onto
the experiments presented in [BMV02].

To implement integrative composable generators as ‘complete’ aspect weavers, we
need to extend the concept of integration relations with the concept of crosscuts.
Instead of integration relations that can be imposed between two program parts only,
we need integration relations that can operate on multiple program parts. We envision
that such integration relations are not expressed as single facts in LMP but will rather
use logic rules. The logic rule can then express a pointcut. We have also experimented
with the use of logic rules to express crosscuts in [GB03]. We envision that both
approaches can be combined for the implementation of composable aspect weavers.

Application to Model-driven Architectures

Generative programming techniques are a likely approach for the implementation of
model transformations in Model-Driven Architectures (MDA). MDA proposes that
platform-independent models (PIMs) are automatically mapped into more platform-
specific models (PSMs) and eventually into executable code.

In our opinion, MDA benefits from the implementation of integrative composable
generators to implement these mappings. This is because MDA implicitly envisions
separate generators (and even separate PIMs) in the mapping from the PIM to the
PSM. This is specifically illustrated in the transformation of pervasive services (e.g.
transaction, security, etc):

MDA will provide common, platform independent models of pervasive ser-
vices. It will provide mappings for transforming models, which draw on
these pervasive service PIMs, to platform specific models using the services
as provided by a particular platform.



218 CHAPTER 8. CONCLUSION AND FUTURE WORK

The implementation of these mappings for each pervasive service is best modularized
in a separate generator. The generators must, however, produce a common PSM
where the pervasive services are integrated. Furthermore, MDA explicitly mentions
the combination of mappings into a combined mapping. They distinguish between
sequential and concurrent combination, which correspond to our translation and in-
tegrative composition.

Application to other Generative Technologies

We have mentioned that the implementation of integrative composable generators
is independent of GLMP. In essence, we could extend any generative programming
technology with the concepts of integrative composition interfaces, program parts,
integration relations, etc.... However, it remains to be researched how feasible and
how adequate the result of such an extension would be. This application presents
an opportunity for an interesting additional validation of our approach and will most
certainly raise new issues that need to be dealt with. Therefore, it remains to be
researched how well our approach can integrate in well-established generative pro-
gramming techniques.

Output Languages

We have consistently used the Smalltalk language as the final output language of all
generators in this dissertation. Nevertheless, the GLMP system does not impose the
use of the Smalltalk language as the final implementation language of all generated
programs. The simplicity of the syntactic structure of Smalltalk was both an advan-
tage and a drawback. On the one hand, Smalltalk programs can be easily represented
and not many different program parts are required. On the other hand, the lack
of syntactic details in a Smalltalk program severely limits the possible composition
conflicts that can be detected and resolved. For example, we have added optional
typing information to the representation of variables to detect typing conflicts in the
integration of variables.

The application of the GLMP approach to the implementation of program gen-
erators with other output languages and especially with output languages in other
paradigms (functional, prototype-based, logic, etc) represents an interesting set of fu-
ture experiments. Moreover, it would be interesting to investigate how the change of
final output language would impact the languages used at higher-levels of abstraction.
In essence, given a particular domain-specific modeling language, can we replace the
generation to Smalltalk with the generation to Java? What is the impact on the
possible integrative variabilities?



8.3. FUTURE WORK 219

8.3.2 Improvements
Integrators

An integration specification always consisted out of single relations (implemented with
logic facts). Furthermore, an integration specification always occurred in terms of
the output programs. Conversely, we did identify useful sets of integration relations
that performed particular integrative compositions. For example, for the observer-
observable generator, we identified framework composition, aspectual integration,
etc.... It would be useful to group sets of integration relations into an integrator.
An integrator is merely an integration specification that was determined beforehand.
Furthermore, we could implement integrators such that they perform a particular in-
tegration, based on an input specification. Therefore, the integration relations would
be expressed as rules instead of facts. These rules will derive the actual integration
specification from the input specification of the integrators. The implementation of
such integrators is most useful in a library of program generators where the possible
integrative compositions between the program generators are known. For each possi-
ble integrative composition, a separate integrator can be written. The integrators and
generators can the be used by a developer to compose program generators without
requiring knowledge on the integrative composition interfaces. Furthermore, integra-
tors can implement a crosscut language in the context of composable aspect weavers
(mentioned earlier).

Integrative Composition Adapters

An integrative composition requires that the generators anticipate possible integra-
tions of their program parts with other program parts. In doing so, a generator always
poses restrictions on the possible integrations. For example, a generator can require
the integration of a required part with a method part that has a particular method
signature. An example of such a composition was illustrated in the integrative compo-
sition of the tree generator and the traversal generator (section 5.7.2). This integrative
composition required that the traversal generator is able to ‘use’ the iterator provided
by the tree generator. Although the tree generator provided two possible methods for
iterating over the child nodes, it still means that the tree generator cannot compose
with a traversal generator that expects that a variable program part contains the
child nodes. This mismatch of the composition interfaces reflects that the generated
programs of both generators cannot be integrated. To achieve an integration of the
generated programs, some additional glue code needs to be generated. For exam-
ple, the previous example could be solved by generating an additional variable that
can be used by the traversal code. Of course, this variable also needs to contain the
child nodes. Therefore, an additional method needs to be generated that populates



220 CHAPTER 8. CONCLUSION AND FUTURE WORK

the variable with the child nodes through the use of the iterator generated by the
tree generator. This additional method also needs to be executed before the traversal
code. Essentially, this requires the inclusion of an additional generator that produces
glue-code. Consequently, this solution does not require fundamental changes to our
approach. Such a generator can be considered as an integrative composition adapter.
Its integrative composition interface needs to match the integrative composition in-
terfaces of the generators whose interface mismatch it tries to solve. To a certain
extent, the consistency generator (introduced in section 7.5.1) can be seen as a special
case of such an integrative composition adapter. The consistency generator produces
additional functionality, while an integrative composition adapter would only produce
glue-code to allow an integrative composition.

Automatic Application of Dependency and Integration Relations

Our approach requires that each generative program explicitly deals with the de-
pendency and integration relations that are imposed on its generated program part.
Therefore, each generative logic metaprogram needs to explicitly call the appropriate
predicate associated with the relation. For integration relations this mechanism is
required because it is desirable that the generative program itself has control over the
program parts to integrate with. However, many integration relations are applied in
the same way. For example, all in and subclass integration relations are handled in
the same way in all generative programs implemented in this dissertation. Moreover,
in the case of dependency relations, the explicit control of the generative program
over the dependency is not required because the dependency is implemented by the
generator developer himself. As a result, there is a lot of repetition in the implemen-
tation of all generative programs. This could be improved by including standard rules
for the application of integration relations and dependency relations in the language
definition. The rules are then automatically applied to the program parts. For exam-
ple, in the case of and in dependency or integration relation, the generative program
would not explicitly ‘call’ this relation using the in/3 predicate to retrieve the class
name. Instead, it would leave the class name open in its generated program part,
which will be filled in by the standard application rules for the integration relations.

Circular Dependencies Analysis and Resolution

The current implementation of GLMP does not automatically detect circular depen-
dencies in the implementation and composition of program generators. It merely pre-
vents infinite loops through a cut-off depth of the logic evaluator stack. Nevertheless,
because all dependencies and integrations are explicitly defined in the implementation
and composition of program generators, the system can analyze the dependencies and



8.3. FUTURE WORK 221

detect circularities. If a circularity is found, we can decide that the composition fails
or we can try to use partial evaluation to resolve the circularity. We have already
proposed a ‘manual’ implementation of such a partial evaluation through the defini-
tion of an alternative logic declaration that produces a partial implementation for a
program part. This can be used to resolve circularity conflicts manually. However,
such a manual approach is not possible (or at least not practically feasible) if circular
dependencies arise in an integrative composition. The application of partial evalua-
tion techniques to logic programs could provide a resolution in some cases of circular
dependencies.

Composition Language

We do not have a separate composition language that can easily describe the com-
position of program generators. In the prototype implementation of GLMP, we use
Smalltalk as a composition language. The composition of individual program gener-
ators and their integration specifications need to be written as Smalltalk expressions.
To allow an easy use of the GLMP technique, an appropriate composition language
is most desirable.

Beyond a Prototype Implementation

To validate our approach in this dissertation, we have developed a prototype imple-
mentation of the GLMP system and a prototype development interface. In essence, a
simple constraint checking system was implemented on top of the Soul system together
with an appropriate user interface to specify program parts, generative programs, re-
lations and constraints. The use of this GLMP system requires solid knowledge about
the Soul language and has no real development support (such as debugging). In the
context of the research performed within the European Network of Excellence on
AOSD, we will expand our prototype tool. Besides the technical issues in this expan-
sion, we can typically research the application of more advanced constraint-solving
techniques.



222 CHAPTER 8. CONCLUSION AND FUTURE WORK



Appendix A

Language Definitions

A.1 Smalltalk Language

A.1.1 Program Parts

’ Smalltalk Element ‘ Logic Representation ‘
class class(?name,?superClassName)
variable var(?className,?name,?Optionaltype)
method method(?className,?methodName,?methodBody, ?info)

A.1.2 Dependency and Integration Relations

’ Integration Relation ‘ Logic Declaration ‘ ConstraintPredicate ‘
subclass subclass(?partA,?partB) constraintSubclass/4
in in(7partA,?partB) constraintVarInClass /4
in in(7partA,?partB) constraintMethodInClass/4
overrides overrides(?partA,?partB) constraintOverrides/4
unite unite(?partA,?partB) constraintUnite/4
includeBefore includeBefore(?partA,?partB) | constraintIncludeBefore/4
includeAfter includeAfter(?partA,?partB) constraintIncludeAfter/4
Dependency Relation Logic Declaration ‘ ConstraintPredicate ‘
refers refers(?partA,?partB) constraintRefers/4
contains contains(?partA,?partB)
self-calls selfcalls(?partA,?partB) constraintSelfcalls/4
calls calls(?partA,?partB) constraintCalls/4

223



224 APPENDIX A. LANGUAGE DEFINITIONS

A.1.3 Dependency Relation Enforcement

constraintCalls(?mil, ?m2,method(?classl,?methodl,?,?info),
method(7class2,?method2,?,?)) if
member (?method2, ?info)

constraintIn(?m,7c,method(?class,?,?,?),class(?class,?))
constraintIn(?v,?c,var(?class,?,?),class(?class,?))

constraintOverrides(?ml,?m2,method(?classi, ?method,?,?) ,method(?class2, 7method,?,?))

constraintRefers(?m,?v,method(?,7,7,7info) ,var(?,?var,7type)) if
member (var (?var, 7type) ,?info)

constraintRefers(?m,?v,method(?,7,?7,7info) ,var(?,?var,?type)) if
member (?var, 7info)

constraintRefers(?m,7?c,method(?,?,7,?info) ,class(?name,?)) if
member (?name, ?info)

constraintSelfcalls(?ml,?m2,method(?classl, ?methodl,?,?info),
method(7class2,?method2,?,?)) if
member (?method2, ?info)

constraintSubclass(?cl,?c2,class(?classl,?class?),class(?class2,7)).

constraintContains(?v,?c,var(?,?,7type) ,class(7type,?)).
A.1.4 Integration Relation Enforcement

constraintUnite(?pl,7p2,7val,?val)

constraintIncludeAfter(7ml, 7m2,method(?class, ?methodl,?bodyl,7infol),
method(?class, 7method2, ?body2,7info2)) if
or (unarySelector (?method2) ,sameSignature(?methodl, ?method2)),
includedAfter(?bodyl, ?body2),
foreach(member (?7x,7info2) ,member (?x,7infol))

A.1.5 Composition Conflict Detection

classConstraint (?namel, 7nameB, class(7classA, ?superA),class(?classB, 7superB)) if
not (or (unite(?nameA, 7nameB) ,unite(?nameB, 7namel))),
not (equals(?classA,?classB))

classConstraint (?namel, ?nameB, class(7classA, ?superA) ,class(?classB, ?superB)) if



A.1. SMALLTALK LANGUAGE 225

or (unite(?namel, ?nameB) ,unite(?nameB, ?namel))

methodOverridesConstraint (?namel, 7nameB,method(7classA, TmethodA, 7bodyA,7infol),
method(?classB, PmethodB, ?bodyB, 7infoB)) if
not (overrides (?namel, 7nameB)) ,
not (and (inSameHierarchy(?classA,7classB) ,equals(?methodA, TmethodB)))
methodOverridesConstraint (?namel, 7nameB,method (?classA, ?method, 7bodyA, 7infol),
method(?classB, ?method, ?bodyB, 7infoB)) if
or (overrides(?7nameA, 7nameB) ,overrides (?nameB, 7namel))

varShadowsConstraint (?nameA, ?nameB,var(?classA,?varA,?),var(?classB,?varB,?)) if
not (and (inSameHierarchy(?classA,7classB) ,equals(?7varA,?varB)))

methodUnitesConstraint (?namel, ?nameB,method(?classA, PmethodA, 7bodyA, 7infod),
method(?classB, PmethodB, ?bodyB, ?infoB)) if
not (or (unite(?nameA, ?nameB) ,unite (?nameB, 7nameld))),
not (and (equals(?classA,?classB) ,equals(?7methodA, ?methodB)))
methodUnitesConstraint (?namel, ?7nameB,method(?classA, TmethodA,?,7),
method(?classB, ?methodB,?,7)) if
or (unite(?namel, 7nameB) ,unite(?nameB, ?namel))

varUnitesConstraint (?nameA, ?nameB,var(?classA,?varA,?typel) ,var(?classB, ?varB,7typeB)) if
not (or (unite(?nameA, ?nameB) ,unite (?nameB, 7namel))),
not (and (equals(?classA,?classB) ,equals(?varA,?varB)))
varUnitesConstraint (?nameA, ?nameB,?,7) if
or (unite(?namel, 7nameB) ,unite(?nameB, ?namel))

A.1.6 Integration Relation Propagation

sub(?c,?d) if
overrides(?a,?b),
?genA->in(?7a,?c),
?genB->in(7b, 7d)

unite(?c,?b) if
sub(?a,?b),
?7genA->sub(?a,?c)

unite(?c,?b) if
in(?7a,?b),

?genA->in(7a,?c)

unite(?c,?d) if



226 APPENDIX A. LANGUAGE DEFINITIONS

unite(+7a,+7b),
?genA->in(?7a,?c),
?7genB->in(7b,7d)

unite(?c,?d) if
unite(+7a,+7b),
?genA->sub(?a,?c),
?7genB->sub(7b, 7d)

A.1.7 Additional Metaprograms

Some of the additional metaprograms use the symbiosis of Soul with Smalltalk. They
consequently are partially implemented in Smalltalk.

doubleKeyword(?x) if
equals([?x occurrences0f: $:1,2)

makeMethodHeader (7selector, 7args, 7header) if
equals(?selColl, [newSelector := WriteStream on: String new.
selectorColl := OrderedCollection new.
?selector asString do:[:char | newSelector nextPut: char.
char = §: ifTrue:[ selectorColl add: (newSelector contents).
newSelector := WriteStream on: String new]].
selectorColl]),
listAsCollection(?args,7argsColl),
equals(7header, [ header := String new.
?selColl with:7argsColl do:[:sel:arg|header:=header,sel,’ ’,arg,’ ’].header]).

sameSignature (?messagel, 7messageB) if
equals([?messageA occurrencesOf: $:],[7messageB occurrences0f: $:])

singleKeyword(?x) if
equals([?x occurrencesOf: $:],1)

unaryMessage (7x) if
equals([?x occurrences0f: $:1,0)

inSameHierarchy(?classNameA,?classNameB) if
generated(class,class(?classNamel, ?superd)),
generated(class,class(?classNameB, ?superB)),
or (inSameHierarchySub(class(?classNameA, ?superA),
class(?classNameB, ?superB)),
inSameHierarchySub(class(?classNameB, ?superB) ,class(7classNameA, ?superl)))



A.2. FEATURE DESCRIPTION LANGUAGE 227

inSameHierarchySub(class(?classA,?classC),?classB) if
generated(class,class(?classC,?classD)),
inSameHierarchySub(class(?classC,?classD),7classB)

inSameHierarchySub(class(?classA,?classB),class(7classB,?))

includedAfter (?body,7includeBody) if
argumentList (?body, 7Targuments) ,
convertAndStripHeader (?includeBody, 7arguments, ?convertedBody) ,
[(ParseTreeSearcher treeMatching: ’ ‘@.Statements. 7convertedBody’ in:
(RBParser parseMethod: 7body)) nil ]

A.2 Feature Description Language

A.2.1 Program Parts

’ FDL Element ‘ Logic Representation ‘

’ featural description ‘ features(?name,?featureNameList) ‘

A.2.2 Dependency and Integration Relations

’ Integration Relation ‘ Logic Declaration ‘ ConstraintPredicate ‘
compatible(7x) compatible(?partA,?partB,?x) | constraintCompatible/4
unite unite(?partA,?partB) constraintUnite /4
’ Dependency Relation ‘ Logic Declaration ‘ ConstraintPredicate ‘
requires(7x,7y) requires(?partA,7partB,?x,7y) constraintRequires/4
excludes(7x,?y) excludes(?partA,?partB) constraintExcludes/4

A.2.3 Dependency Relation Enforcement

constraintExcludes (?namel, ?nameB, features(?,?featuresA) ,features(?,?featuresB)) if
forall (and(excludes(?nameA, ?nameB, ?fA,?fB),
member (7fA,?featuresA)) ,not (member (?£fB, 7featuresB))) .

constraintRequires(?namel, 7nameB, features(?7,?featuresA) ,features(?,?featuresB)) if
forall(and(requires(7nameA, 7nameB, 7fA,7fB) ,member (?fA,?featuresi)),
member (7£fB, 7featuresB))



228 APPENDIX A. LANGUAGE DEFINITIONS

A.2.4 Integration Relation Enforcement

constraintUnite(7nameA, ?nameB, features(?,?featuresA) ,features(?,?featuresB)) if
sameElements (?featuresA, ?featuresB).

A.2.5 Additional Metaprograms

valid(features(?,?features)) if
completeFeatures(7features),
forall (and (member (7f,7features) ,excludes(?f,?g)) ,not (member(?g,?features))),
forall (and (member (7f,7?features) ,requires(?f,?g)) ,member(?7g,?features)) .

completeFeatures(7feature,?l) if
oneOf (?feature,?list),
member (7f,71list),
completeFeatures(7f,71).

completeFeatures(7?feature,?completelist) if
all(?feature,?list),
findall(?solutions,and(member(?f,?list),
findall(?7sol,completeFeatures(?7f,?sol),?solutions)),
7allSolutions),
map(7aSolution,?allSolutions,member),
flatten(7aSolution,?completelist) .

completeFeatures(7f,<?7f>) if
not (or (one0f (?£,7) ,more0f (?£,7) ,all(?f,?))).

completeFeatures(7feature, 7completelist) if
all(?feature,?list),
findall(?solutions,
and (member (7f,71list) ,not (optional(?f)),findall(?s,completeFeatures(?f,?s),?solutions)),
7allSolutions),
map(7aSolution,?allSolutions,member),
flatten(?7aSolution,?completelist).

completeFeatures(7feature,?completelist) if

more0f (?feature,?list),

sublistO0f (?sublist,?1list),

not (equals(?sublist,<>)),

findall(?solutions,
and (member (7f,?sublist) ,findall(?sol, completeFeatures(?f,?sol),?solutions)),
7allSolutions),

map(?7aSolution,?allSolutions,member),



A.2. FEATURE DESCRIPTION LANGUAGE 229

flatten(?7aSolution,?completelist)



230 APPENDIX A. LANGUAGE DEFINITIONS



Appendix B

Observer-observable Generator

B.1 Generative Programs

B.1.1 AddObserver Part

addObserver (method (?class,{add0Observer:},{addObserver: anObserver
7observers add:anObserver},<var(7observers,?type)>)) if
in(addObserver,Observable,class(?class,?)),
refers(addObserver,observers,var(?, 7observers, 7type) ),
observersType(7type) .

addObserver (method (?class,{add0Observer:},{addObserver: anObserver
(7observers includes: anObserver)
ifFalse: [?7observer add: anObserver]},
<var(7observers,7type) >)) if
in(addObserver,Observable,class(?class,?)),
refers (addObserver,observers,var(?, 7observers,OrderedCollection)),
observersType(Set)

B.1.2 Changed Part

changed (method (?class, {changed: },{changed:anAspect
7observers do:[:observer | observer ?updateMessagel},
<?observers, ?updateSelector>)) if
in(changed,?,class(?class,?)),
refers(changed,observers,var(?class, 7observers,?)),
calls(changed,update,method(?, 7updateSelector,?,7)),
updateMessage (?updateSelector, 7updateMessage) .

231



232 APPENDIX B. OBSERVER-OBSERVABLE GENERATOR

B.1.3 Initializer Part
initializer(method(?class,initialize,{initialize 7observers:= 7type new},
<var(7observers,7type)>)) if
observersType(?type),

in(initializer,Observable,class(?class,?)),
refers(initializer,observers,var(?class,7observers,7type)).

B.1.4 Observable Part
Observable(class(Observable,Object)).

Observable(class(7name, ?super)) if
unite(Observable,?,class(?name, ?super)) .

Observable(class(?7name, ?super)) if
sub(Observable,?,class(?super,?))

B.1.5 ObservableVar Part

observableVar (<var(7class,observable,nil)>) if
feature(instancevariable),
in(observableVar,Observer,class(?class,?)).

observable (<?var>) if
unite(<?var>),

not (feature(instancevariable)).

observableVar(<>) if
not (feature(instancevariable)).

B.1.6 Observer Part
Observer (class(Observer,Object)) .

Observer(class(?name, 7super)) if
unite(Observer,?,class(7name, 7super)) .

Observer(class(Observer, ?super)) if
sub(Observer,?,class(?super,?)).



B.1. GENERATIVE PROGRAMS 233

B.1.7 Observers Part

observers(var(?class, ?name, 7type)) if
in(observers,Observable,class(?class,?)),
observersName (?name) ,
observersType(7type) .

observers(var(?class, 7name, 7type)) if
in(observers,Observable,class(?class,?)),
unite(observers,?,var(?class, 7name, 7type)) .

B.1.8 Update Part

update (method(?class, {update: },{update: anAspect },<>)) if
not (feature(parameter)),
in(update,?,class(?class,?)).

update (method(7class, ?selector,?body, ?info)) if
not (feature(parameter)),
in(update,?,class(?class,?)),
unite(update,?,method(?,?selector,?body,?info)),
singleKeyword(7selector).

update (method(?class,{update:from: },{update:anAspect from:anObservable
~ self subclassResponsability},<>)) if
feature(parameter),
in(update,?,class(?class,?)).

update (method(?class,?selector,?body,?i)) if
feature(parameter) ,in(update,?,class(7class,?)),
unite(update,?,method(?,?selector,?body,?i)),
doubleKeyword(?selector) .

B.1.9 Additional Programs

observersName (observers) .

observersName (observersList) .

observersType(Set) if feature(single).

observersType (OrderedCollection) if feature(multi).
outputLanguage ([GenLogica.SmalltalkLanguagel) .

updateMessage (?updateSelector,{?updateSelector anAspect}) if



234 APPENDIX B. OBSERVER-OBSERVABLE GENERATOR

not (feature(parameter)).
updateMessage (?updateSelector, 7updateMessage) if
feature(parameter),
makeMethodHeader (?updateSelector, <anAspect,self>,7updateMessage)

B.2 Dependency Relations

calls(changed,update) .
in(initializer,Observable).
in(changed,Observable) .
in(update,Observer) .
in(observableVar,Observer) .
in(addObserver,0Observable) .
in(delObserver,Observable).
in(observers,Observable) .
refers(addObserver,observers) .
refers(delObserver,observers) .
refers(initializer,observers).
refers(changed,observers) .

B.3 Integrative Compositions

B.3.1 Framework Specialization

overrides(updateB,update) .
overrides (updateA,update) .
sub(ObserverA,Observer) .
sub(ObserverB,0Observer) .
sub (MyModel,Observable) .
unite(publish,changed).
unite(model,observableVar).

B.3.2 Aspectual Integration

unite(publish,changed) .
unite(model,observable).
unite(update,updatel) .
unite (Observer,ObserverA).



B.3. INTEGRATIVE COMPOSITIONS 235

unite(Observable,MyModel) .



236 APPENDIX B. OBSERVER-OBSERVABLE GENERATOR



Appendix C

Data Container and Consistency
Generators

C.1 Data Container Generator

C.1.1 Generative Programs

Initialize Method Part

initialize(method(?class,?selector,?body,<7contents,?index>)) if
in(initialize,DataContainer,class(?class,?)),
refers(initialize,Index,var(?,?index,?)),
refers(initialize,Contents,var(?,?contents,?)),
initializeMethod(7contentsVar,?indexVar, ?selector, 7args, ?body)

Add Method Part

Add(method(?class,?selector,{?header ?temporaries 7includeBefore 7body 7includeAfter },
<7?contents,?index>)) if

in(Add,DataContainer,class(?class,?)),
refers(Add,Contents,var(?,7contents,?)),
refers(Add, Index,var(?,?index,?)),
addMethod(?contents, 7index, 7selector, 7args, ?body, 7tempsList),
includeBefore (Add, ?selector,7args, 7includeBefore, 7includeBeforeInfo),
includeAfter (Add, 7selector, ?args,7includeAfter,?includeAfterInfo),
makeMethodHeader (?selector, 7args, ?header) ,
makeTemporariesList(7tempsList,7temporaries)

237



238 APPENDIX C. DATA CONTAINER AND CONSISTENCY GENERATORS

Remove Method Part

Remove (method(?class,{remove:},{remove:anEl ?7temporaries ?includeBefore ?body ?includeAfter },
<7?contents,?index>)) if
in(Remove,DataContainer,class(?class,?)),
refers(Remove,Contents,var(?,?contents,?)),
refers(Remove,Index,var(?,7index,?)),
removeMethod(?contents, 7index,anEl, ?body, 7tempsList),
includeBefore(Remove,{remove:},<anEl>,?includeBefore,?includeBeforeInfo),
includeAfter (Remove, {remove:},<anEl>,args,?includeAfter,?includeAfterInfo),
makeTemporariesList (?tempsList, 7temporaries)

Iterator Method Part

Iterator (method(?class,{do:},{do:aBlock 1 to:?indexVar-1 do:[:index|aBlock

value: ((?contents at:2) at:index] },<?contents,?indexVar>)) if
in(Iterator,DataContainer,class(?class,?)),
refers(Iterator,Contents,var(?,?contents,?)),
refers(Iterator,IndexVar,var(?,?indexVar,?)),
feature(fixed).

Iterator(method(?class,{do:},{do:aBlock |current| current:=7contents.[(current key=nil)]
whileFalse: [aBlock value:current key. current:=current valuel.},
<?contents,7indexVar>)) if

in(Iterator,DataContainer,class(?class,?)),
refers(Iterator,Contents,var(?,?contents,?)),
refers(Iterator,IndexVar,var(?,7?indexVar,?)),
feature(plain)

Contents Variable Part

Contents(var(?class,contents,<>)) if
in(Contents,DataContainer,class(?class,?)).

Contents(var(?class,collection,<>)) if
in(Contents,DataContainer,class(?class,?))

Index Variable Part

Index(var(?class,index,<>)) if
in(Index,DataContainer,class(?class,?)).

Index(var(?class,thelndex,<>)) if
in(Index,DataContainer,class(?class,?))



C.1. DATA CONTAINER GENERATOR 239

DataContainer Class Part

DataContainer(class(?name,Object)) if
containerName (?name) .

DataContainer(class(7name, ?superclass)) if
sub(DataContainer,?,class(?superclass,?)),
containerName (7name) .

DataContainer(?class) if
unite(DataContainer,?,7class)

Additional Logic Programs

addBodyKeyValue(?contentsVar,?indexVar,?keyVar,?elVar,{
(?contentsVar at: 1) doWithIndex:[:key:index|key=7keyVar ifTrue: [setIndex:=index]].
setIndex = nil ifTrue:[(7indexVar > (7contentsVar at: 1) size)
ifTrue: [self error:’overflow’].
setIndex := 7indexVar. 7?indexVar := 7indexVar + 1].
(?contentsVar at: 1) at: setIndex put: T7keyVar.
(?contentsVar at: 2) at: setIndex put: ?elVarExpression},<setIndex>) if
feature(fixed),
addElement (7elVar, 7elVarExpression) .
addBodyKeyValue(?contentsVar,?indexVar,?keyVar,?elVar,{

current := 7contentsVar.
[(current key = nil) (current key = 7keyVar)]
whileFalse: [current := current value].

current key key: T7keyVar.

current key value: 7elVarExpression.

current value = nil ifTrue:[current value: (nil->nil)]l},<current>) if
feature(growable),
addElement (7elVar, 7elVarExpression) .

addBodyPlain(?contentsVar,?indeXVar,?elVar,{ (7indexVar > ?contentsVar size)
ifTrue: [self error:’overflow’].
?contentsVar at: 7indexVar put: ?elVarExpression.
7indexVar := ?7indexVar + 1.},<>) if
feature(fixed),
addElement (7elVar, 7elVarExpression) .

addBodyPlain(?contentsVar,?indexVar,?elVar,{ current := 7contentsVar.
currentIndex := 1.
[currentIndex = 7posVar]
whileFalse: [ currentIndex := currentIndex + 1.

(current value = nil)
ifTrue: [current value: (nil->nil)].



240 APPENDIX C. DATA CONTAINER AND CONSISTENCY GENERATORS

current := current value].
current key: 7elVarExpression.
?indexVar := 7indexVar + 1},<current,currentIndex>) if

feature(growable),
addElement (7elVar, 7elVarExpression) .

addElement (?elVar,{?elVar copy}) if
feature(copy) .

addElement (7elVar,{?elVar}) if
feature(reference).

addMethod (?contentsVar, ?indexVar,{add: },<anEl>,?addBody, 7temps) if
feature(plain),
addBodyPlain(?contentsVar,?indexVar,anEl,?addBody,?temps).

addMethod(?contentsVar,?indexVar,{at:put:},<aKey,anE1>,?addBody,?temps) if
feature(keyvalue),
addBodyKeyValue(?contentsVar,?7indexVar,aKey,anEl, 7addBody, 7temps) .

containerName (DataContainer) .
containerName (Container) .

initializeMethod(?7contentsVar,?indexVar,{initialize:},<aMax>,{initialize: aMax
?contentsVar := Array new: aMax. 7?indexVar := 1.}) if
feature(fixed),
feature(plain).
initializeMethod(?contentsVar,?indexVar,{initialize},<>,
{initialize 7contentsVar := (nil -> nil). <?indexVar := 0.}) if
feature(growable) .
initializeMethod(?contentsVar,?indexVar,{initialize:},<aMax>,{initialize: aMax
?contentsVar := Array new: 2.
?contentsVar at: 1 put: (Array new: aMax).
?contentsVar at: 2 put: (Array new: aMax).
?indexVar := 1.}) if
feature(fixed),
feature (keyvalue) .

removeBody (?contentsVar, 7elVar,{?contentsVar remove: ?7elVar}) if
feature(plain).

removeBody (?contentsVar, 7keyVar,{?contentsVar removeKey: 7keyVar}) if
feature (keyvalue) .

sizeExpression(?contentsVar, 7indexVar,{?contentsVar size}) if
feature(fixed),
feature(plain).
sizeExpression(?contentsVar,?indexVar,{(?contentsVar at: 1) size}) if



C.2. CONSISTENCY GENERATOR 241

feature(fixed),

feature (keyvalue) .
sizeExpression(?contentsVar,?indexVar,{?indexVar}) if

feature(growable)

C.2 Consistency Generator

C.2.1 Generative Programs
C.2.2 Required Parts

All required parts are implemented with a similar rule. We show the ContainA re-
quired part as an example.

ContainA(?class) if
unite(ContainA,?,7class)

C.2.3 LockA variable part

The implementation of LockB is identical.

lockA(var(?class,sema,<>)) if
in(lockA,ContainA,class(?class,?)).

lockA(var(?class,semaphore,<>)) if
in(lockA,ContainA,class(?class,?)).

lockA(var(?class,semaVariable,<>)) if
in(lockA,ContainA,class(?class,?))

C.2.4 SyncVarA variable part

The implementation of SyncVarB is identical.

syncVarA(var(?class,datacontainers,<>)) if
in(syncVarA,ContainA,class(?class,?)).

syncVarA(var(?class,containers,<>)) if
in(syncVarA,ContainA,class(?class,?)).



242  APPENDIX C. DATA CONTAINER AND CONSISTENCY GENERATORS

syncVarA(var(?class,syncContainers,<>)) if
in(syncVarA,ContainA,class(?class,?))

C.2.5 SendAddA method part

The implementation of SendAddB is identical.

SendAddA(method(?class,?selector,{?header sema ifFalse:[ 7sema := true.

(?syncVar at: 7class) do: [:c c 7sendContainAMessage].
(?syncVar at: “?containB) do: [:c c¢ 7sendContainBMessage].
?sema := false] },<7selectorA,?selectorB,?sema,?syncVar,?containB>)) if

in(SendAddA,ContainA,class(?class,?)),

refers(SendAddA,ContainB,class(?containB,?)),

refers(SendAddA,syncVarA,var(?,?syncVar,?)),

refers(SendAddA,lockA,var(?,?sema,?)),

calls(SendAddA,addA,method(?,7selectorA,?,?)),

calls(SendAddA,addB,method(?,?selectorB,?,7)),

sendAddHeader (featA,7selector, 7args, 7header) ,

sendAdd (featA,featA,?args, 7sendContainAMessage),

sendAdd (featA,featB, 7args, 7sendContainBMessage) .

C.2.6 SendRemoveA method part

The implementation of SendRemoveB is identical.

SendRemoveA (method (?class,{sendRemove: },{sendRemove: anEl

7sema ifFalse:[7sema := true.

(?syncVar at: “?class) do: [:c c 7selectorA anEl].

(?syncVar at: “?containB) do: [:c c 7?selectorB anEl].

?sema := false] },<7selectorA,?selectorB,?sema,?syncVar,?containB>)) if
in(SendRemoveA,ContainA,class(?class,?)),
refers(SendRemoveA,ContainB,class(?containB,?)),
refers(SendRemoveA,syncVarA,var(?,?syncVar,?)),
refers(SendRemoveA,lockA,var(?,7sema,?)),
calls(SendRemoveA,removeA,method(?,?selectorA,?,?)),
calls(SendRemoveA,removeB,method(?,?selectorB,?,7)).

C.2.7 SyncA method part

The implementation of SyncB is identical.



C.3. DEPENDENCY RELATIONS 243

SyncA(method(?class,{syncWith:},{syncWith: aCont

?sync = nil ifTrue:[?sync := Dictionary new.

?sync at: ?class put: Collection new.

?sync at: 7containB put: Collection new.]

(?sync at: aCont class) add: aCont},<7sync,?containB>)) if
in(SyncA,?,class(%7class,?)),
refers(SyncA,ContainB,class(?containB,?)),
refers(SyncA,SyncVarA,var(?,?sync,?)).

C.2.8 Additional Programs

sendAddHeader (?feat,{sendAdd: } ,<anEl>,?header) if
feature(7feat,plain).
sendAddHeader (?feat, {sendAt:put:},<aKey,anEl>,?header) if
feature(7feat,keyvalue).
sendAdd(?featFrom, ?featTo, ?selectorTo,<7anElVar>,?message) if
feature(?featFrom,plain),
feature(7featTo,keyvalue),
makeMethodHeader (?selectorTo,<{(?anElVar asKey)},?anElVar>,?message) .
sendAdd(?featFrom,?featTo,?selectorTo,?args,?message) if
feature(?featFrom,plain),
feature(7featTo,plain),
makeMethodHeader (?selectorTo, 7args, Tmessage) .
sendAdd (7featFrom, 7featTo, 7args,?selectorTo, ?message) if
feature(?featFrom,keyvalue),
feature(?featTo,keyvalue),
makeMethodHeader (7selectorTo, 7args, 7message) .
sendAdd (7featFrom, 7featTo,<?,7anElVar>,?selectorTo, ?message) if
feature(7featFrom,keyvalue),
feature(?7featTo,plain),
makeMethodHeader (?selectorTo, <7anElVar>, ?message)

C.3 Dependency Relations

calls(SendAddA,addB) .
calls(SendAddA,addA) .
calls(SendRemoveA,removed) .
calls(SendRemoveA,removeB) .
calls(SendRemoveB,removel) .
calls(SendRemoveB,removeB) .
in(SyncA,ContainA) .
in(SyncB,ContainB) .
in(SendAddA,ContainA) .



244 APPENDIX C. DATA CONTAINER AND CONSISTENCY GENERATORS

in(SendAddB,ContainB) .
in(SendRemoveA,ContainA) .
in(SendRemoveB,ContainB) .
refers(SendAddA,ContainB) .
refers(SendAddA,lockA) .
refers(SendAddB,lockB).
refers(SendAddB,addA) .
refers(SendAddB,addB) .
refers(SyncA,ContainB).
refers(SyncA,syncVarA) .
refers(SyncB,ContainA) .
refers(SyncB,syncVarB) .
refers(SendAddA,syncVarA) .
refers(SendAddB, syncVarB) .
refers(SendRemoveA,lockA) .
refers(SendRemoveA,syncVarA) .
refers(SendRemoveB,Containl) .
refers (SendRemoveB,lockB) .
refers(SendRemoveB, syncVarB)



Bibliography

[ADK*98]

[Ass04]
[ASUS86]

[Bes99]

[BGY7]

[BGW02]

[Big94]

[Big98]

[Big00]
[BIMvHO02]

William Aitken, Brian Dickens, Paul Kwiatkowski, Oege de Moor, David
Richter, and Charles Simonyi. Transformation in Intentional Program-
ming. In Proceedings of the 5th Int. Conf. on SoftwareReuse. IEEE, 1998.

Uwe Assman. Invasive Software Composition. Springer-Verlag, 2004.

Aho, Sethi, and Ullman. Compilers: Principles Techniques and Tools.
Addison-Wesley, 1986.

C. Bessiere. Non-Binary Constraints. In Proceedings of Principles and
Practice of Constraint Programming, 1999.

Don Batory and Bart J. Geraci. Composition Validation and Subjectivity
in GenVoca Generators. IEEFE Transactions on Software Engineering,
23(2):67-82, 1997.

Johan Brichau, Kris Gybels, and Roel Wuyts. Towards linguistic sym-
biosis of an object-oriented and a logic programming language. In Pro-
ceedings of Workshop on Multi-paradigm Programming in OO at ECOOP
2002, 2002.

T. J. Biggerstaff. The library scaling problem and the limits of concrete
component reuse. In W. B. Frakes, editor, 3rd International Conference
on Software Reusability, pages 102-109. IEEE Press, 1994.

T.J. Biggerstaff. A perspective of generative reuse. Annals of Software
Engineering, 5:169-226, 1998.

T. J. Biggerstaff. Reuse technologies and niches, June 2000.

Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder.
Achieving Extensibility Through Product-Lines and Domain-Specific
Languages: A Case Study. ACM Transactions on Software Engineer-
ing and Methodology, 11(2):191-214, April 2002.

245



246

[BLHMO2]

[BMV02]

[BSST93]

[BST*94a)

[BST+94b)

[CHO3]

[Chi95)]

[Cle88|

[Cza]

BIBLIOGRAPHY

Don Batory, Roberto E. Lopez-Herrejon, and Jean-Philippe Martin. Gen-
erating product-lines of product-families. In Automated Software Engi-
neering Conference, pages 81-92, 2002.

Johan Brichau, Kim Mens, and Kris De Volder. Building composable
aspect-specific languages using logic metaprogramming. In D. Batory,
C. Consel, and W. Taha, editors, Proceedings of GPCE Conference, vol-
ume 2487 of LNCS, pages 110-127. Springer-Verlag, 2002.

Grady Booch. Software Components with Ada. Benjamin/Cummings,
1987.

John Brant and Don Roberts. Smalltalk compiler compiler.
http://www.refactory.com/Software/SmaCC/.

D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling Step-wise Re-
finement. In International Conference on Software Engineering (ICSE),
2003.

D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable software
libraries. ACM SIGSOFT 93: Symposium on the Foundations of Software
Engineering, December 1993.

Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and
Marty Sirkin. Achieving reuse with software system generators. IFEFE
Software, September 1994.

Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci,
and Marty Sirkin. The GenVoca Model of Software-System Generators.
IEEE Softw., 11(5):89-94, 1994.

Krzysztof Czarnecki and Simon Helsen. Classification of Model Transfor-
mation Approaches. In 2008 Workshop on Generative Techniques in the
Context of Model-Driven Architectures, 2003.

Shigeru Chiba. A Metaobject Protocol for C+4. In Proceedings of the
OOPSLA Conference, pages 285-299, 1995.

J. Craig Cleaveland. Building application generators. IEEFE Software,
July 1988.

Krzysztof Czarnecki. GCSE working group. http://www-ia.tu-
ilmenau.de/ czarn/generate/engl.html.



BIBLIOGRAPHY 247

[Cza98]

[DD02]

[DGJO04]

[Dij76]

[DVMWO00]

[ea90]

[Fil02]

[Fla94]

[Fow99]

[FS00]

[GB03]

Krzysztof Czarnecki. Generative Programming: Principles and Tech-
niques of Software Engineering Based on Automated Configuration and
Fragment-based Component Models. PhD thesis, Technical University of
Ilmenau, 1998.

Maja D’Hondt and Theo D’Hondt. The tyranny of the dominant model
decomposition. In Workshop on Generative Techniques in the Context of
MDA, 2002.

Maja D’Hondt, Kris Gybels, and Viviane Jonckers. Seamless integration
of rule-based knowledge and object-oriented functionality with linguistic
symbiosis. In Proceedings of the 19th Annual ACM Symposium on Applied
Computing (SAC 2004), Special track on Object-Oriented Programming,
Languages and Systems. ACM, March 2004.

Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

Theo D’Hondt, Kris De Volder, Kim Mens, and Roel Wuyts. Co-evolution
of Object-Oriented Software Design and Implementation. In Proceedings
of the International Symposium on Software Architectures and Compo-
nent Technology 2000, 2000.

Kang et al. Feature-oriented Domain Analysis (FODA) Feasibility Study.
Technical report, Software Engineering Institute, Carnegie Mellon Uni-
versity, 1990.

Robert E. Filman. What is Aspect-oriented Programming, Revisited. In
Workshop on Advanced Separation of Concerns, ECOOP 2001, Budapest,
2002.

Peter Flach. Simply Logical: Intelligent Reasoning by Example. Wiley &
Sons, 1994.

M. Fowler. Refactoring: Improving the Design of Fxisting Code. Addison-
Wesley, 1999. FOW m 01:1 1.Ex.

Martin Fowler and Kendall Scott. UML Distilled. ot. Addison-Wesley, 2
edition, 2000.

Kris Gybels and Johan Brichau. Arranging language features for more
robust pattern-based crosscuts. In Proceedings of AOSD 2005. ACM
Press, 2003.



248

[GHJV95]

[GRS3]

[Gro|

[Has]

[HO93]

[JCC]

[JFSS]

[JGJ97]

[JohT9]

[KCR9S]

[KHH'01]

[KLM*97]

BIBLIOGRAPHY

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of reusable Object-Oriented software. Addison-
Wesley, 1995.

Adele Goldberg and Dave Robson. Smalltalk-80: the language. Addison-
Wesley, 1983.

Object  Management  Group. Model-driven  architecture.
http://www.omg.org/mda/.

Haskell. http://www.haskell.org/.

William Harrison and Harold Ossher. Subject-oriented programming - a
critique of pure objects. In Proceedings of 1993 Conference on Object-
Oriented Programming Systems, Languages, and Applications. ACM,
1993.

Java  Compiler Compiler - The Java Parser Generator.
http://javacc.dev.java.net /.

Ralph Johnson and Brian Foote. Designing reusable classes. Journal of
Object-Oriented Programming, 1988.

1. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley, 1997.

Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX
Programmer’s Manual, volume 2, pages 353—-387. Holt, Rinehart, and
Winston, New York, NY, USA, 1979.

Richard Kelsey, William Clinger, and Jonathan Rees. Revised(5) report
on the algorithmic language scheme. Higher-Order and Symbolic Com-
putation, 11(1), August 1998.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. Lecture Notes in
Computer Science, 2072:327-355, 2001.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), number 1241 in LNCS.
Springer-Verlag, June 1997.



BIBLIOGRAPHY 249

[LHJ95]

[LMB]

[Lop97]

[Mic]
IMKLO7]

[MMWO02]

[MPGO3]

[MSvWO01]

[Nei80]

[Nei89)]

[New]

[OKK96]

Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers and
Modular Interpreters. In ACM, editor, Conference record of POPL 95,
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages: San Francisco, California, January 22-25, 1995, pages
333-343, New York, NY, USA, 1995. ACM Press.

John R. Levine, Tony Mason, and Doug Brown. Lex & Yacc. O’Reilly.

Cristina Isabel Videira Lopes. D: A Language Framework for Distributed
Programming. PhD thesis, Northeastern University, nov 1997.

Microsoft. Using the codedom, in the .net framework developer’s guide.

Anurag Mendhekar, Gregor Kiczales, and John Lamping. RG: A case
study for Aspect-oriented Programming. Technical Report SPL.97-009
P9710044, Xerox Palo Alto Research Center, 1997.

Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting Software Devel-
opment through Declaratively Codified Programming Patterns. Elsevier
Journal on Expert Systems with Applications, pages 405—431, November
2002.

Kim Mens, Bernard Poll, and Sebastian Gonzales. Using intentional
source-code views to aid software maintenance. In Proceedings of the
International Conference on Software Maintenance (ICSM 2003), pages
169-178. IEEE Computer Society, 2003.

Oege De Moor, Ganesh Sittampalam, and Eric van Wyk. Intentional
programming: a host of language features. Technical report, Oxford
University Computing Laboratory, 2001.

James Neighbors. Software Construction using Components. PhD thesis,
University of California, Irvine, 1980.

J. M. Neighbors. Draco: a method for engineering reusable software
systems. Software reusability: wvol. 1, concepts and models, pages 295—
319, 1989.

Jeft Newbern. All about Monads.
http://www.nomaware.com/monads/html/.

H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying
subject-oriented composition. Theory and Practice of Object Systems,
2(3), 1996.



250

[0T99)

[Pre97]

[Riv96]

[SB97]

[SBOS]

[SB00]

SJ95]

[Smi90]

[Sou]

[Ste94]

[SZDOO0]

[Szy98]

BIBLIOGRAPHY

Harold Ossher and Peri Tarr. Multi-dimensional separation of concerns
in hyperspace. Technical report, IBM T.J. Watson research center, apr
1999.

Christian Prehofer. Feature-oriented Programming: A Fresh Look at
Objects. Lecture Notes in Computer Science, 1241, 1997.

Fred Rivard. Smalltalk: A Reflective Language. In Reflection’96, 1996.

Yannis Smaragdakis and Don Batory. DiSTiL: A Transformation Library
for Data Structures. In Domain-Specific Languages (DSL) Conference,
pages 257-270, 1997.

Yannis Smaragdakis and Don Batory. Implementing Layered Designs
with Mixin Layers. In Proceedings of the Furopean Conference on Object-
Oriented Programming (ECOOP), pages 550-570. Springer-Verlag LNCS
1445, 1998.

Yannis Smaragdakis and Don Batory. Application Generators. Encyclo-
pedia of Electrical and FElectronics Engineering, 2000.

Yellamraju V. Srinivas and Richard Jullig. Specware: Formal Support
for Composing Software. In Mathematics of Program Construction, pages
399-422, 1995.

Douglas R. Smith. KIDS: A Semiautomatic Program Development Sys-
tem. IEEE Transactions on Software Engineering, 16(9):1024-1043, 1990.

The Smalltalk Open Unification Language (SOUL).
http://prog.vub.ac.be/research/DMP /soul /soul2.html.

Guy L. Steele, Jr. Building Interpreters by Composing Monads. In ACM,
editor, Conference record of POPL 94, 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages: Portland, Oregon,
January 17-21, 1994, pages 472-492, New York, NY, USA, 1994. ACM
Press.

V. Stuikys, G. Ziberkas, and R. Damasevicius. The Language-centric
Program Generator Models: 3L Paradigm. INFORMATICA, 11(3):325—
348, 2000.

C. Szyperski. Component Software - Beyond Object-Oriented Program-
ming. Addison-Wesley / ACM Press, 1998.



BIBLIOGRAPHY 251

[TBKG04]

[TCKI00]

[Tid01]

[TOHJ99)]

[Unk]

[VDYS]

[vDKO02]

[VKV00]

[Voe]

[Vol]

[Vol98]

[VWV03]

Tom Tourwe, Johan Brichau, Andy Kellens, and Kris Gybels. Induced
Intentional Software Views. Special Edition of Elsevier’s Computer Lan-
guages, Systems € Structures Journal, 30(1-2), 2004.

Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier Killijian, and Kozo
Itano. OpenJava: A Class-based Macro System for Java. In Walter
Cazzola, Robert J. Stroud, and Francesco Tisato, editors, Reflection and
Software Engineering, pages 117-133. Springer-Verlag, 2000.

Doug Tidwell. XSLT. O’Reilly, 2001.

Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sut-
ton Jr. N Degrees of Separation: Multi-Dimensional Separation of Con-
cerns. In International Conference on Software Engineering, pages 107—
119, 1999.

Unknown.  Program Transformation Wiki.  http://www.program-
transformation.org.

Kris De Volder and Theo D’Hondt. Aspect-oriented Logic Metaprogram-
ming. In Proceedings of Reflection 1998, 1998.

A. van Deursen and P. Klint. Domain-specific Language Design Requires
Feature Descriptions. Journal of Computing and Information Technology,
10(1):1-17, 2002.

Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific Lan-
guages: an annotated bibliography. SIGPLAN Not., 35(6):26-36, 2000.

Markus Voelter. Program Generation: a Survey of Techniques and Tools.
http://www.voelter.de/conferences/tutorials.html.

Kris De Volder. TyRuBa. http://tyruba.sourceforge.net/.

Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis,
Vrije Universiteit Brussel, 1998.

Jonne van Wijngaarden and Eelco Visser. Program Transformation Me-
chanics. A Classification of Mechanisms for Program Transformation with
a Survey of Existing Transformation Systems. Technical Report UU-
(CS-2003-048, Institute of Information and Computing Sciences, Utrecht
University, 2003.



252 BIBLIOGRAPHY

[Wad90] P. L. Wadler. Comprehending Monads. In Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, Nice, pages 61-78,
New York, NY, 1990. ACM.

[Wuy98] Roel Wuyts. Declarative Reasoning about the Structure of Object-
Oriented Systems. In Proceedings of TOOLS USA, pages 112-124, 1998.

[Wuy01] Roel Wuyts. A Logic Meta Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
Vrije Universiteit Brussel, 2001.





