Experiences with Identifying Aspects in Smalltalk Using "Unique
Methods’

Kris Gybels* and Andy Kellens'
Programming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2
Belgium
{kris.gybels, andy.kellens}@vub.ac.be

January 9, 2005

Abstract

Now that Aspect-Oriented Software Development
has matured, the techniques developed in this field
may be used to cleanly modularize the crosscutting
concerns in legacy applications. Due to the com-
plexity and size of these applications it is impor-
tant that the identification of crosscutting concerns
and the transformation into aspects is automated
as much as possible. In this paper we present a sim-
ple heuristic named Unique Methods which can be
used to detect crosscutting concerns in an applica-
tion. We demonstrate the use of this technique on
the code of an entire VisualWorks Smalltalk image
and discuss the benefits and disadvantages of our
approach.

1 Introduction

With Aspect-Oriented Software Development
(AOSD) becoming more and more mature, there is
a growing interest in application of its techniques
to the field of re-engineering legacy applications.
Even if such an application was modularized as
cleanly as possible using only pre-AOP techniques,
a number of concerns may remain scattered

*Research assistant of the Fund for Scientific Research -
Flanders, Belgium (F.W.0.)

T Author funded by a doctoral scholarship of the “Insti-
tute for the Promotion of Innovation through Science and
Technology in Flanders (IWT Vlaanderen)”

throughout the application. Using AOSD tech-
niques, these crosscutting concerns can be factored
out into aspects, thus improving the further main-
tainability of the application. This transformation
of pre-AOP code into AOP code involves two steps:
identifying crosscutting concerns in the source code
(aspect mining) and transforming these concerns
into aspects while preserving the application’s
behaviour (aspect refactoring). Because of the
typical size and complexity of legacy applications,
it is imperative for the success of aspect-oriented
re-engineering that automated support is provided
for performing the transformation. Our focus for
this paper is a particular heuristic which can be
used in supporting the aspect mining step.

In order to find heuristics for aspect mining, we
need to look at how a pre-AOP developer would
deal with concerns we now consider to be typical
aspects. For some concerns such as synchronization
of threads, it has already been observed that they
are often dealt with using just copy/paste reuse,
leading to scattered code duplication. Some exist-
ing techniques for supporting aspect mining have
hence been based on heuristics for finding such scat-
tered code duplication using pattern matching tech-
niques [6].

For other concerns, such as logging and state-
change updating, we can observe that the situa-
tion is usually less severe: crosscutting concerns
can also have been implemented as a single method
that is called from a wide-spread number of places
in the code. These implementations are thus not

public class BoundedBuffer {
/* definition of semaphore variables and
constructor to initialise semaphores */

public void put(Object o) {
putSem.P();
putExclusion.P();
array [putPtr] = o;
putPtr = (putPtr + 1) Y array.length;
putExclusion.V();
takeSem.V();
}

/* definition of method get, similar to
to put */
3

Figure 1: Example of tangled code for implemen-
tation of synchronisation concern in Java without
using built-in support for the concern (Example
adapted from PhD dissertation of Cristina Lopes

[90)-

characterized by multi-statement snippets of code
spread around in the implementation, and pattern
matching techniques may be less suited to identi-
fying these as aspects.

This paper is structured as follows: in section
we present the observation which lead to the heuris-
tic of unique methods. In section [3] we define the
unique methods heuristic. We applied our heuristic
to an entire Smalltalk image. The results of this
experiment are described in section [f] and extensi-
bly discussed in section Before concluding the
paper in section [7] we present some related work

(section [6]).

2 “Manual” Aspect Weaving

In pre-AOP languages, developers would have
found it difficult to avoid scattered and tangled
implementations of certain concerns. Nevertheless,
developers could have dealt with such concerns in
a number of different ways, essentially by ”manu-
ally” weaving them. One kind of concern for which
this has been extensively studied is the concern of
synchronisation of concurrent processes [9]. Fig-
ure [1| gives a typical example of an implementa-
tion based on explicit semaphores. What char-

Location B

Location A

call

Logging Class

log(aMessage)

call

Location C
Logging.log("doing C")

Figure 2: Logging as a central class providing log-
ging functionality

moveTo: newx and: newy
X = newx.
y := newy.
self changed: #x.
self changed: #y.

shiftSidewaysTo: newx
X = newx.
self changed: #x.

Figure 3: Example of tangled code for implemen-
tation of update concern in Smalltalk.

acterizes this implementation is that each of the
methods of the BoundedBuffer class starts and ends
with a similar pattern of manipulating the same
semaphores, which looks very much like it has been
simply copy/pasted.

In other cases developers need not have been
desperate enough to revert to copy/pasting. A
typical example in this case is a logging concern
which can be encapsulated well enough using clas-
sical techniques to at least avoid tangling, though
not scattering. A typical implementation for log-
ging is illustrated by figure a singleton class
is defined which encapsulates the management of
the logging file, the logging of only those mes-
sages which are of a certain ’verbosity level” etc.
The ’log’ method is then called from a number
of places in the code, where it is just a single-
line statement thus not being really tangled, nor a

good example of copy/paste code, though still scat-
tered. Another example of this kind of concern is
the implementation of the update notification con-
cern in Smalltalk for the observer protocol: a single
method 'changed:’ is defined on the root class Ob-
ject, which is called whenever update notifications
are to be sent as illustrated in figure Sends of
the ’changed:’ message are scattered throughout
the entire Smalltalk code base, but each message
itself is only a single statement and not part of a
larger pattern as with the synchronisation concern
implementation.

3 Identifying Aspects

In the previous section we have observed that cer-
tain typical implementations of 'manually woven’
concerns are characterized by both high degrees of
tangling and code duplication and high degrees of
scattering. It is hence no surprise that a number
of aspect identification techniques are based on ex-
ploiting existing techniques for code duplication .

But one question we have for discussion at the
workshop is: are these techniques also suitable
for detecting 'manually woven’ concerns which are
more (and only) characterized by a high degree of
scattering? As these consist of single lines of code,
techniques for detecting copy /pasted duplication of
larger blocks of code may not be suitable.

Another observation that can be made is that the
concerns of logging and updating were implemented
using a single central entity, particularly a unique
method:

Unique method:
“A method without a return value which
implements a message implemented by no
other method.”

Thus another point we would like to put up for
discussion at the workshop is that we hypothe-
size that 'unique methods’ can be used as a sim-
ple heuristic to identify candidate 'manually wo-
ven’ concerns of the logging and update type. We
have done some experiments in Smalltalk in order
to confirm this hypothesis, though with mixed re-
sults as reported in the next section.

The ’unique methods’ heuristic also ties in with
other research we are performing on automated

’ Class \ Selector
CodeComponent #startLoad
Locale #currentPolicy:
Menu #addltem:value:
ScheduledWindow | #updateEvent:
UIFinderVW2 #showClasses:
ComposedText #centered
UlIBuilder #wrapWith:
Text #emphasize AllWith:
Cursor #show
Image #pixelsDo:

Table 1: A few examples of unique methods

support for defining crosscuts for the refactoring
step of aspect mining [5]. The goal is to have a
refactoring tool which allows one to select a method
and turn all calls to it into an advice, while also
producing a crosscut for that advice which is not
simply an enumeration of all the places in the code
where all the original calls occurred. Limiting our-
selves in that research to refactoring unique meth-
ods avoids problems with polymorphism, and al-
lows us to concentrate on the crosscut generation
step. We conjecture that existing refactoring tech-
niques can be used in combination with the unique-
method-to-advice refactoring to turn non-unique
methods and highly-tangled concern implementa-
tions into unique methods first.

Note that in the definition of unique methods
we exclude methods with a return valudl since for
methods with a return value it doesn’t make sense
to apply a method-to-advice refactoring, they are
clearly part of the base functionality of the code.

4 Unique Methods in Practice

We took the following approach in performing
an ’aspect identification’ experiment based on
‘unique methods’ on a Smalltalk image: we selected
all unique methods in a standard VisualWorks
Smalltalk image containing 3400 classes which to-
gether implement a total of about 66,000 methods.
We found 6248 unique methods. We further filtered

1In Smalltalk all methods return a value which is by de-
fault ’self’; we exclude those methods that do not specify an
explicit return.

’ Class \ Selector \ Calls ‘
Parcel #markAsDirty 23
ParagraphEditor #reset Typeln 19
UTIPainterController | #broadcast PendingSelectionChange | 18
CodeRegenerator #pushPC 15
AbstractChangeList | #updateSelection: 15
PundleModel #updateAfterDo: 10

Table 2: Classes,selectors and number of times called of identified aspects

these down by pruning methods which are part of
the ’accessing’ protocol (these are clearly not as-
pects) and taking scattering into account. A good
approximation heuristic for scattering is the num-
ber of times the method is called. While this does
not take into account the actual spread of the calls
throughout the code, it can be used to weed out at
least auxiliary private method{’} We then manu-
ally browsed through this list of methods to identify
methods for which it would make sense to apply a
method-to-advice refactoring, thus those methods
implementing an aspect.

In the experiment we limited ourselves to unique
methods which were called at least five times. Com-
puting this list took about 2 minutesﬂ and resulted
in 228 methods, a number small enough to allow
us to manually inspect and identify possible aspect
candidates in a reasonable amount of time.

Table[I]shows a number of unique methods which
remained after filtering. When just looking at the
selectors of these methods, the inclusion of the
words "update” and ”event” make #updateEvent:
stand out as a very likely aspect candidate. Meth-
ods such as #addItem:value: on class Menu seem
less likely to implement aspects, as it more clearly
refers to adding items on a menu bar. We simi-
larly went through the list of the other methods
of which many are clearly accessors, mutators or
in other ways part of the base functionality of the
classes. We wound up identifying a remainder of
about 16 candidate aspects.

Table gives a few examples of aspects
we identified. The majority of the aspects

2Note that Smalltalk does not have any language con-
struct for declaring methods to be private, though this sta-
tus is commonly indicated by classifying them in a ’private’
protocol

30n a PowerBook G4 667 Mhz

we found, like for instance #updateAfterDo:,
#broadcastPendingSelectionChange and
#updateSelection: implement a state change
updating mechanism. The method #markAsDirty
is an example of a cache invalidation aspect.

Surprisingly in Smalltalk, we encountered a
memory management aspect in the library
for connecting with C programs, the method

#beGarbageCollectable.

Despite our success in identifying a number of as-
pects, our unique methods list did to our surprise
not include the #changed: method which imple-
ments the state change notification aspect. It turns
out there are two other methods which override the
central #changed: method of the Object class, in
both cases this appears to be an implementation
’hack’ to make the objects observe themselves, es-
sentially implementing an ’after’ advice on a num-
ber of methods.

As most aspect candidates we identified are
called ten times or more, we could have further
filtered down the list to unique methods that are
called more than 10 times, which leaves only 124
methods to be inspected. However, this would leave
at least 4 aspect candidates which are called no
more than 10 times undetected.

5 Discussion

The 'unique methods’ heuristic we presented above
is a light-weight approach for supporting the iden-
tification of aspect candidates in legacy code: it
limits the developer’s attention to a relativily small
number of methods which are more likely to be im-
plementations of aspects based on the observation
that the 'unique methods’ pattern is commonly ap-
plied in manually woven aspect implementations.

The heuristic obviously has its drawbacks as
clearly evidenced by the #changed: method case.
We expect there might be other cases of unique
methods which are not entirely unique: it is to
be expected that in the case of a 'logging aspect’
for example, there might be two alternative logging
classes, one for logging to disk and one for logging
to screen each with their own #log: method. It is
not clear however how the heuristic can be changed
to also detect these cases while not reporting every
single framework method as an aspect candidate.

Another obvious drawback of the approach is
that it is very light-weight and still involves the de-
veloper guessing at whether a unique method would
be better implemented as an advice. As indicated
in the previous section, we did this mostly on the
basis of certain keywords such as 'mark’, 'update’
etc. occuring in the names of methods. Thus an-
other topic we’d like to put up for discussion at the
workshop is whether it would be worthwhile to in-
corporate dictionaries or ontological techniques in
aspect identification techniques.

As there is currently no other report available
on applying an aspect identification technique to
the entire code base of a Smalltalk image , we can
give little comparison as to the relative success of
our heuristic. A comparison with techniques based
on detecting code duplication is necessary to see
whether the two are complementary as we hypoth-
esize.

6 Related Work

While the field of aspect identification is fairly
young, a number of approaches are already un-
der investigation. Omne group of approaches relies
purely on tools which aid a developer in manually
browsing the code while looking for crosscutting
concerns. Examples of such approaches are Con-
cern Graphs [I1], Aspect Browser [4], Aspect Min-
ing Tool [6] and JQuery [7]. Another group of ap-
proaches aim to automatically detect aspects. A
number of these are based on the idea of detecting
code duplication: Tourwé and Mens [14] apply the
technique of Formal Concept Analysis, Bruntink [2]
proposes the use of Clone Class metrics and Shep-
herd et al. [I2] use PDG-based clone detection.
Other approaches that aim for automation, as is
our own, are based on the idea of detecting scat-

tering: Marin et al. [I0] perform fan-in analysis
while Krinke [8] proposes the technique of control-
flow-graph-based aspect mining. Other techniques
like Greevy [3], Breu [I] and Tonella [13] consider
dynamic information in order to identify candidate
aspects. In practice full automatic detection of as-
pects is impossible, and the second group of ap-
proaches is used to complement the first by point-
ing out potential aspects or ”seeds” from where to
start browsing [10].

We've essentially used fan-in analysis [10] as our
approximate heuristic for measuring scattering. A
difference with the work of Marin et al. is that
we’ve applied the analysis only to unique meth-
ods, as our interest is mostly in identifying candi-
dates for applying a method-to-advice refactoring
[5], while Marin et al. use it for detecting good
7seeds” from where to start browsing which can
help find larger aspects such as support for undo op-
erations in a graphical editor which requires more
complex refactorings to extract.

7 Conclusion

In this paper we presented a light-weight heuris-
tic for identifying aspect candidates in legacy code.
We applied our heuristic to an entire Smalltalk
image and were able to detect a number of as-
pects. The heuristic is based on the observation
that in pre-AOP days certain crosscutting concerns
were implemented by ‘'manually weaving’ aspects as
method calls to a central entity.

The goal of this paper is two-fold: apart from
presenting an experience report about identifying
aspects in Smalltalk we also want to point out our
position and a number of interesting topics for dis-
cussion:

e Are ’'unique methods’ a good technique to
identify aspects which are implemented as calls
to a central entity?

e Are other techniques such as code duplication
techniques usable for detecting aspects imple-
mented as calls to a central entity? Or is our
‘unique methods’ heuristic complementary to
these?

e Would it be interesting to use techniques from
ontology research to help identify aspects?

Acknowledgments

We would like to thank Kim Mens (UCL) for proof-
reading this paper.

References

[1]

S. Breu. Towards hybrid aspect mining: Static
extensions to dynamic aspect mining. In
1st Workshop on Aspect Reverse Engineering,
2004.

M. Bruntink. Aspect mining using clone class
metrics. In 1st Workshop on Aspect Reverse
Engineering, 2004.

O. Greevy and S. Ducasse. Correlating fea-
tures and code using a compact two-sided
trace analysis approach. To appear in pro-
ceedings of the 9th Furopean Conference on
Software Maintenance and Reengineering.

W. Griswold, Y. Kato, and J. Yuan. As-
pect browser: Tool support for managing
dispersed aspects. In First Workshop on
Multi-Dimensional Separation of Concerns in
Object-oriented Systems - OOPSLA 99, 1999.

K. Gybels and A. Kellens. An experiment in
using inductive logic programming to uncover
pointcuts

an experiment in using inductive logic pro-
gramming to uncover pointcuts. In First Furo-
pean Interactive Workshop on Aspects in Soft-
ware, 2004.

J. Hannemann. Overcoming the prevalent de-
composition of legacy code. In Workshop on
Advanced Separation of Concerns at the Inter-
national Conference on Software Engineering
2001, 2001.

D. Janzen and K. De Volder. Navigating and
querying code without getting lost. In Interna-
tional Conference on Aspect Oriented Software
Development 2003, 2003.

J. Krinke and S. Breu. Control-flow-graph-
based aspect mining. In 1st Workshop on As-
pect Reverse Engineering, 2004.

[9]

[10]

[11]

[12]

C. 1. V. Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, North-
eastern University, nov 1997.

M. Marin, A. van Deursen, and L. Moonen.
Identifying aspects using fan-in analysis. In
Working Converence on Reverse Engineering

(WCRE), 2004.

M. Robillard and G. Murphy. Concern graphs:
Finding and describing concerns using struc-
tural program dependencies. In International
Conference On Software Engineering 2002,
2002.

D. Shepherd, E. Gibson, and L. Pollock. Au-
tomated mining of desirable aspects. In Inter-
national Conference on Software Engineering
Research and Practice, 2004.

P. Tonella and M. Ceccato. Aspect mining
through the formal concept analysis of execu-
tion traces. In 11th IEEE Working Conference
on Reverse Engineering, 2004.

T. Tourwé and K. Mens. Mining aspectual
views using formal concept analysis. In Source
Code Analysis and Manipulation Workshop
(SCAM), 2004.

	Introduction
	``Manual'' Aspect Weaving
	Identifying Aspects
	Unique Methods in Practice
	Discussion
	Related Work
	Conclusion

