
Issues in Performing and Automating

the “Extract Method Calls” Refactoring

Andy Kellens∗ and Kris Gybels†

Programming Technology Lab
Vrije Universiteit Brussel

{andy.kellens,kris.gybels}@vub.ac.be

January 24, 2005

1 Introduction

A large part of converting a pre-AOP application
into an aspect-oriented one consists, next to as-
pect mining, out of aspect refactoring. One such
aspect refactoring named “Extract Method Calls”
refactoring [11, 17] transforms certain crosscutting
concerns which are implemented by calls to a single
method into an aspect by turning the called method
into an advice and all the calls to that method into
a crosscut.

In this paper we present the Joinpoint Choice
Problem and the Flattened Expression Problem.
Both problems are inherent to the joinpoint mod-
els as used by current-day weavers and can have a
negative impact on the maintainability and evolv-
ability of the crosscuts resulting from performing
the “Extract Method Calls” refactoring either by
hand or automatically. As a solution to the Join-
point Choice Problem, we propose an algorithm for
calculating the appropriate crosscut. In order to
solve the Flattened Expression Problem, we intro-
duce a new language construct named the “state-
ment joinpoint”.

In section 2 we describe the “Extract Method
Calls” refactoring. Section 3 we present the Join-
point Choice Problem and Flattened Expression
Problem. We discuss solutions for these problems
in section 4. After presenting some related work
and research directions for the future (section 5),

∗Author funded by a doctoral scholarship of the “Insti-
tute for the Promotion of Innovation through Science and
Technology in Flanders (IWT Vlaanderen)”

†Research assistant of the Fund for Scientific Research -
Flanders, Belgium (F.W.O.)

we conclude this paper in section 6.

2 “Extract Method Calls”
Refactoring

In this section we follow the pattern established by
Fowler [2] to describe the “Extract Method Calls”
refactoring.

Typical Situation and Motivation

When not using AOP technologies, developers can
deal with certain crosscutting concerns by imple-
menting them as calls to a single “global” method.
We’ve dubbed such methods “unique methods” [6]
and examples of crosscutting concerns that are typ-
ically implemented using “unique methods” are
logging, observer updating, authorization check-
ing etc.: they can be implemented as a method
log:, update: or authorize: that is called be-
fore or after other messages as appropriate. The
concern may have been directly implemented in
this way, or the situation may have arisen through
subsequent applications of the “Extract Method”
refactoring [2], up to the point where non-aspect-
oriented refactorings can no longer improve the
code, leaving the calls to the method as evidence of
the concern’s tangling [17, 11].

To further improve the readability, maintainabil-
ity and other “-ilities” of the code, the method
should be turned into an advice. This requires that
all calls to the method are removed and turned into
the crosscut of the advice.

1

BankAccount>>withdraw: amount
TheLogger log: ’Client updates balance’.
self balance: self balance - amount.
TheLogger log: ’Client updated balance’.

BankAccount>>deposit: amount
TheLogger log: ’Client updates balance’.
self balance: self balance + amount.
TheLogger log: ’Client updated balance’.

Logger>>log: message
Transcript show: message

Figure 1: Example of a scattered logging call.

before ?jp matching {
?jp isReceptionOf: #withdraw: ||
?jp isReceptionOf: #deposit:
} do
TheLogger log: ’Client updates balance’.

after ?jp matching {
?jp isReceptionOf: #withdraw: ||
?jp isReceptionOf: #deposit:
} do:
TheLogger log: ’Client updated balance’.

Figure 2: Resulting advices for the example refac-
toring

Example

Figure 1 shows an example non-AOP way of imple-
menting logging1: a log: method is defined on the
object contained in the global variable TheLogger,
and called from both of the methods withdraw:
and deposit: right before and after a change is
made to the balance. The change is made using
accessor and mutator messages.

To refactor the logging, the calls to the log:
method can be turned into two advices as shown in
figure 2. In the first advice we’ve encapsulated the
logging of the balance being about to be changed,
while the second encapsulates the logging after the
change has happened. In the crosscuts of both of
the advices we’ve exploited the fact that the log-

1Examples are given in Smalltalk and the logic-language-
based crosscut language CARMA [4].

ging calls occur at the start and end of the meth-
ods respectively, thus by weaving before and after
the message reception joinpoints of withdraw: and
deposit: the logging is guaranteed to occur at the
exact same point in the execution of the code as
before, ensuring that the refactoring is behavior-
preserving.

Related Refactorings

The purpose of this refactoring is only to extract
the calls of a certain method, and put these in an
advice, while the method itself remains where it
is. This refactoring can be combined with “Move
Method” or “Inline Method” [2] to fully separate
both the calls and the method itself into an aspect.
Using “Inline Method” in the example would allow
us to remove the log: method altogether by chang-
ing the TheLogger log: messages in the advices
to Transcript show: messages. The combined
refactoring is a true “Method to Advice” refactor-
ing.

Preconditions

In order for this refactoring to be applicable, the
calls should not invoke a method that returns a
value, or in other words the calls should occur as
statements rather than be part of expressions. In
the latter case the method clearly implements a
part of the base functionality of the program, or
is part of a more tangled implementation of a con-
cern that should be cleaned up using the “Extract
Method” refactoring [2] first.

Though the typical situation for applying this
refactoring is the extraction of “unique methods”,
the existence of only one method that is the unique
implementer of the message sent by the extracted
calls is not an absolute requirement for this refac-
toring. However, in order for the “Inline Method”
refactoring to be applicable as well, the method
that is invoked by the calls should at least be stat-
ically identifiable [2], which is obviously the case
when the method is the sole implementer of the
message.

In previous work [17, 7] other preconditions were
taken into account that are a result of limitations
of the AspectJ language. If the calls to extract
rely for example on local variables, the crosscuts
should expose these variables to the advice, which

2

is not possible in AspectJ. Such preconditions are
however dependent on the aspect and crosscut lan-
guage used and should not be strongly featured in
a language-neutral description of this refactoring.

Mechanics

Our description of the mechanics of this refactor-
ing closely follows that of Laddad [11], who distin-
guished three major steps to perform this refactor-
ing manually:

Introduce a no-op refactoring aspect: in the
first step, a new aspect is introduced which has the
necessary crosscuts but with empty advices. To
avoid unwanted effects due to interception of the
wrong joinpoints, mechanisms such as wildcarding
should not be used to write the crosscut in this
step, the crosscut should rather simply enumerate
the locations of the to-be-extracted calls. In Lad-
dad’s work only calls occurring at the beginning or
end of methods were considered, in which case the
crosscut can be written by writing a reception join-
point condition for each of the methods and com-
bining these using the “or” operator, as done in the
logging example for the withdraw: and deposit:
methods. This gets more complex when the calls
can also occur at other locations in methods, as will
be discussed further on in this paper. After writing
the crosscut, one can and should use IDE support
[1] to check that the crosscut actually captures the
right joinpoints.

Introduce the crosscutting functionality:
this step consists of actually moving the calls to the
advice(s) and crosscut(s) introduced in the previ-
ous step. As indicated by Hanenberg et al. this
may require the addition of “context exposing”
conditions to the crosscuts [7], for example when
the calls rely on instance variables or the “self”
(= “this”) variable: suppose that in our example
the log: messages were sent to self instead of
TheLogger, moving these calls to an advice requires
the crosscuts to include a condition ?jp inObject:
?object, so that the advice can send the log: mes-
sage to the object in the ?object variable.

Make crosscuts pattern-based: while Laddad
indicates this as an optional step [11], it is in fact

critical to simplify the enumeration-based cross-
cuts from the previous steps to avoid the well-
known maintainability problems associated with
such crosscuts [4]: an enumeration-based cross-
cut is too tightly coupled to a specific version
of the base program and may require adaptation
whenever the base program is changed. To avoid
this problem, the crosscuts should be turned into
pattern-based ones: a pattern-based crosscut ex-
ploits “patterns” or “commonalities” in the join-
points that are to be crosscut, thus automatically
capturing new joinpoints that match this pattern
when the base program is changed.

Suppose that in our example, the withdraw: and
deposit: methods are implemented in a proto-
col2 “balance updating”. Further supposing that
these methods are the only ones in that protocol,
we could change the crosscuts to:

?jp isReceptionOf: ?msg &&
?msg isImplementedInProtocol:

"balance updating"

Doing so is a likely to be a good generalization
of why logging occurred in the two methods: new
methods added to the same protocol later on will
likely also require logging, with the above crosscut
this is done automatically.

3 Problems

In the previous section we’ve given an overview of
the “Extract Method Calls” refactoring for a simple
example. Current literature on this refactoring also
only takes simple examples into account [11, 17,
7, 13]. There are however a number of problems
that crop up with more complex examples, such
as when the calls to be refactored do not occur at
the beginning or end of methods. In this section
we discuss two complexities that can arise when
performing the mechanics of the refactoring.

These complexities arise both when the refactor-
ing is performed manually as well when it is to be
automated, though they more severely hinder the
automation of the refactoring.

2A method categorization mechanism provided by
Smalltalk systems, Java programmers can think of these as
annotations.

3

BankAccount>>withdraw: amount
self checkPositive: amount.
TheLogger log: ’Client updates balance’.
self balance: self balance - amount.

BankAccount>>deposit: amount
self checkPositive: amount.
TheLogger log: ’Client updates balance’.
self balance: self balance + amount.

BankAccount>>addInterests
self balance: (self balance +

self calculateInterests).

Figure 3: Example of a scattered logging call.

before ?jp matching {
?jp isSendOf: #balance: &&
(?jp isWithin: #deposit: ||

?jp isWithin: #withdraw:)
} do
TheLogger log: ’Client updates balance’.

Figure 4: Possible crosscut to log all updates to the
balance done by a client

1

2

send 'log:'

send message 'balance'

variable reference 'amount'

send message '-'

send message 'balance:'

3

4

5

After Refactoring

Figure 5: Joinpoint graph of example before and
after refactoring using crosscut from figure 4

Example

Figure 3 shows a more complex variation of the ex-
ample given in figure 1. The complexity arises be-
cause part of the logging now occurs mid-method
instead of at the beginning of a method. This in-
troduces problems in applying the mechanics of the
refactoring as will be discussed next.

BankAccount>>withdraw: amount
| newbalance |
self checkPositive: amount.
newbalance := self balance - amount.
TheLogger log: ’Client updates balance’.
self balance: newbalance.

Figure 6: Alternative implementation of logging in-
vocation

Mechanics: Flattened Expression
Problem

One might be tempted to write the crosscut in the
“introduce no-op aspect” step of the refactoring as
in figure 4. However, this does not actually result
in a behavior-preserving refactoring. In the exam-
ple the execution order of the messages - and thus
the joinpoints - starting from the log: message is
as depicted in figure 5: first the message log: is
sent, then the message balance is sent, the vari-
able amount is looked up, the message - is sent3

and finally the message balance: is sent. If we
were to apply the refactoring with the above cross-
cut however, the execution order of the messages
changes as also depicted in figure 5: the log: mes-
sage will be sent after the - message, right before
the before: message.

While it is reasonable to assume in this exam-
ple that moving the actual logging closer to the
execution of the balance: message makes no ob-
servable difference in the behavior of the program,
and is actually closer to what was really the in-
tention of the logging, this can not be generally
assumed, especially when the refactoring is auto-
mated. The problem lies in a difference between
the dynamic joinpoint model and the static one as
necessarily applied by programmers when not us-
ing AOP technology to implement crosscutting con-
cerns: while the logging should really occur right
before the balance: operation, this requires ei-
ther implementing a special logBalance: method
or writing code that computes the argument of
the balance: messsage to a temporary variable
first, then does the logging and only then sends the
balance: message as illustrated in figure 6. Either

3-, +, * etc. are really messages in Smalltalk, and not
special arithmetic operations as in some other languages,
thus they also lead to message joinpoints.

4

option only further increases the clutter caused by
the logging aspect, and the programmer might as
well resort to writing the log: statement right be-
fore the balance: statement.

The problem for the refactoring is however that
statements become flattened in current dynamic
joinpoint models as used by most crosscut lan-
guages, making it difficult to write a crosscut
that is both concise and ensures the behavior-
preserving of the refactoring. In the example, to
ensure that the refactoring is behavior-preserving,
meaning that the logging occurs in the exact
same execution order as before the refactoring,
the crosscut should in the deposit: method cap-
ture the balance message joinpoint: the first join-
point in the flattened list of joinpoints that re-
sult from the self balance: self balance +
amount statement. This on the other hand leads to
several problems with making the crosscut pattern-
based: there may be several other balance: state-
ments before which the same logging occurs, but
where the argument and thus the joinpoint to weave
on is completely different, and there may be no
common pattern in these. Even if there’s a pat-
tern there that can be used to make the crosscut
pattern-based, this pattern wouldn’t actually re-
flect the intended semantics of the original imple-
mentation of the concern.

Mechanics: Joinpoint Choice Prob-
lem

Another problem that becomes especially problem-
atic when automating the refactoring is that some-
thing like logging in our example (figure 1) can be
there because of what happens before it, or what
happens after it. For each log: message to be ex-
tracted, this gives two possible joinpoints to weave
on in combination with either a “before” or an “af-
ter” advice. In the example it is pretty clear to
a human reader that the logging has something to
do with the updating of the balance, and not with
the check that happens before it of the amount be-
ing positive, this is simply clearly suggested by the
string that is being logged. For an automated tool
that performs the refactoring, this would not be as
simple.

4 Solutions and Automation

The problems discussed in the previous section are
mostly problematic because they hinder the fur-
ther maintainability and evolvability of the result-
ing refactored aspect which might have a crosscut
that reinjects calls at the right points but is not
semantically an actual reflection of what was orig-
inally intended. This is especially a problem when
we consider the automation of the refactoring. A
possible solution we propose for the first problem
is comparatively simple and consists of adding a
“statement joinpoint” to the joinpoint model, the
proposed solution for the second problem ties in
with our approach to automating the “make cross-
cut pattern-based” step of the refactoring using In-
ductive Logic, which we will therefore discuss first,
followed by a discussion of the two solutions.

4.1 Automating the Refactoring

Introduce a no-op refactoring aspect & the
crosscutting functionality: The first two steps
of the refactoring are fairly easy to automate. The
moving of the calls to the advice in the second
step is a code transformation akin to the “Move
Method” refactoring [2]. The generation of a
purely enumerative crosscut in the first step is
straightforward as well, if we disregard the “join-
point choice” problem for a moment and just pick
any of the possible joinpoints for re-injecting each
extracted call: for any set of joinpoints, generat-
ing an enumerative crosscut simply consists of in-
cluding enough conditions in the crosscut to ensure
that exactly that set of joinpoints is picked out by
the crosscut. The latter can be done as illustrated
in figure 4 by generating a crosscut that ORs to-
gether conditions for each of the joinpoints that
exactly identify that joinpoint4. The condition for
each joinpoint should in turn simply be an AND of
crosscut conditions that draws on background data
that is known about the joinpoint: its type, name
of the message that is sent in case of message send
joinpoints, type of arguments, the joinpoint’s lexi-
cal extent etc.

4Exact identification is not really necessary, as long as
the final crosscut captures no joinpoints that should not be
captured.

5

1

2

Background info
type: message reception
message: withdraw:
inClass: BankAccount

type: message reception
message: deposit:
inClass: BankAccount

(?jp isReceptionOf: #withdraw: &
 ?jp isInClass: BankAccount) |
(?jp isReceptionOf: #deposit: &
 ?jp isInClass: BankAccount)

Figure 7: Illustration of generating an enumerative
crosscut

Additional background

#withdraw: inProtocol:
 'balance updating'

#deposit: inProtocol:
 'balance updating'

?jp isReceptionOf: ?msg &&
?msg isImplementInProcol:
 'balance updating' &&
?jp isInClass: BankAccount

Figure 8: Illustration of generating an intensional
crosscut

Make crosscuts pattern-based: The third
step consisting of making the crosscut pattern-
based is more difficult to automate, partly because
this step deals with making the crosscut better re-
flect the intended semantics of the aspect. Never-
theless, the purely technical mechanism of making
the crosscut more concise and pattern-based can
likely be dealt with using techniques from the field
of machine learning and data mining [12], which
provide techniques for finding patterns in sets of
data. We’ve previously already reported on initial
experiments using the Logic Induction algorithm
[5], but other techniques such as Concept Analysis
will likely be useful as well [3].

It is beyond the scope of this paper to give any-
thing but a brief overview of Logic Induction, but
we can informally explain the algorithm’s working
in our example. Reduced to its essence, the LI al-

1

2

send 'log:'

send message 'balance'

variable reference 'amount'

send message '-'

send message 'balance:'

3

4

5

a statement joinpoint

b statement joinpoint

Figure 9: Joinpoint graph as in figure 5 but includ-
ing statement joinpoints

gorithm introduces wildcards into the conditions of
a crosscut to make these more general. For exam-
ple in the crosscut from figure 4, it could generalise
the conditions ?jp isReceptionOf: #withdraw:
and ?jp isReceptionOf: #deposit: into a sin-
gle condition ?jp isReceptionOf: ?msg. Of
course this makes the crosscut too general, it would
capture joinpoints that it shouldn’t. But an im-
portant point to grasp about LI is that the wild-
cards it introduces are logic variables and that it
includes steps to restrain the crosscut again by
adding conditions that restrict the value of those
variables. The latter is done by drawing on addi-
tional background information on the background
information (!) for the joinpoints, as illustrated
in figure 4 where the information is provided that
#withdraw: and #deposit: are messages imple-
mented in the protocol ’balance updating’, since
these are the two values the variable ?msg was
substituted for the condition ?msg isInProtocol:
’balance updating’ can be added. Note that LI
follows steps similar to what we described in section
2 for manually making the crosscut pattern-based.

4.2 Statement Joinpoints

The simplest solution to bridge the gap between the
static and dynamic joinpoint model which causes
the flattened expression problem is to extend dy-
namic joinpoint models with statement execution
joinpoints. Such a statement joinpoint would best
be modeled as having a cflow-relationship with all
the joinpoints caused by its execution, e.g. in figure
5 joinpoint 1 would then be a joinpoint occuring in
the cflow of a statement joinpoint, and joinpoints
through 2 to 5 would all be in the cflow of another;

6

this is illustrated in figure 9.
There is however a question of what data should

be associated with a statement joinpoint and what
predicates to offer to specify conditions on state-
ment joinpoints in the crosscut language. For solv-
ing the “Flattened Expression” problem, it is only
necessary to allow crosscuts to capture statement
joinpoints based on the type and any other static
data associated with the last joinpoint in its cflow:
this is sufficient for expressing crosscuts as neces-
sary in our refactoring example where the log:
message needs to be injected before the statement
joinpoints which have a balance: message join-
point as the last joinpoint in their cflow.

An issue with associating only static data of the
last joinpoint with the statement joinpoint is how-
ever that it seems rather arbitrary from a language
design standpoint. It would be more appropriate
to design the crosscut predicates for statement join-
points such that the crosscut in the following advice
would be possible:

before ?jp matching {
?jp isStatementJoinpoint &
?jp hasInDirectCflow: ?jp2 &
?jp2 isSendOf: #foo: with: <10>
} do
TheLogger log: ’?’

Such a design would orthogonally integrate state-
ment joinpoints with the rest of the crosscut lan-
guage by adding only an isStatementJoinpoint
predicate and a hasInDirectCflow: predicate.
The latter predicate however introduces the prob-
lem of having to know about the dynamic future of
a joinpoint: for the example advice above, whether
it should be executed when a statement joinpoint
is reached depends on whether the last message
in the statement is foo: and whether the argu-
ment of that message is going to be 10, which is
an obvious problem for actually weaving the ad-
vice. It would be possible to simply associate only
statically-known information with joinpoints such
as ?jp2 in the example and report an error when
crosscut predicates that depend on knowing dy-
namic information are used on such joinpoints, but
this again breaks the orthogonality of the language
design. Properly providing support for statement
joinpoints, and the whole issue of predictive join-
points [10], may actually require a rethinking of
currently available crosscut languages.

Another issue with the statement joinpoints
is that their use may need to be discouraged
for any other use besides ensuring the behavior-
preservation of the “Extract Method Calls” refac-
toring. The whole underlying idea of using a dy-
namic rather than a static joinpoint model is to
make crosscuts less dependent on syntactical el-
ements and more on semantical events of a pro-
gram, so as to prevent maintainability and evolv-
ability problems. Whether statement joinpoints
would cause such problems and thus crosscuts using
them as a result of a refactoring should eventually
be ’cleaned up’, or whether statement joinpoints
are a more generally useful addition to dynamic
joinpoint models remains to be evaluated.

4.3 Uncovering Crosscuts

A potential solution for the joinpoint choice prob-
lem, that especially arises when fully automating
the refactoring, may be to rely on how well the dif-
ferent choices of joinpoints lead to pattern-based
crosscuts. This relies on the hypothesis that there
is typically a pattern to be found in the set of the
semantically “right” joinpoints and none or only
complicated ones in the set of the “wrong” ones:
for example, when our example financial applica-
tion logs all ’balance updating’ operations before
they are executed, there is definitely a pattern in
the set of statement joinpoints that follow a log-
ging message in that they invoke operations im-
plemented in a ’balance updating’ protocol for ex-
ample, while the statement joinpoints that precede
the message will likely be more “random”. Thus
it might be possible to generate an enumerative
crosscut for both the set of “before” and the set
of “after” joinpoints for the calls to be extracted,
and run both crosscuts through an algorithm for
making them pattern-based, after which the two
should be compared to see which of two has actu-
ally been made more pattern-based than the other.
The latter likely reflects the real semantics of why
the calls occurred at the place in the code they
originally did.

Of course this potential solution relies on a num-
ber of tentative hypotheses, not least of which is
that there is a way to compare crosscuts to see
which is “better”. More generally we can state that
there currently does not seem to be a good way
to evaluate crosscuts to help programmers decide

7

whether they might form a future maintainability
problem. There are only a few guidelines known
such as that crosscuts should not depend on specific
names of a program. This may thus form a good
topic of discussion for the SPLAT workshop: how
to evaluate the software-engineering properties not
of crosscut languages, but of crosscuts themselves?
How does one tell if a crosscut is more pattern-
based than another?

5 Future and Related Work

Despite the problems we’ve outlined here with un-
covering of pattern-based crosscuts for the “Extract
Method Calls” refactoring, a few early experiments
have indicated positive results for automating this
step of the refactoring using machine learning tech-
niques. In a previous paper on our logic crosscut
language, an example of a very strongly pattern-
based crosscut was given [4]: a crosscut using a
description of “state changing” methods based on
the pattern of variable assignments occuring in the
methods themselves or in the other methods they
invoke as needed for an “observer” aspect. We later
performed an experiment where a logic description
of such methods was automatically derived by us-
ing Logic Induction [15]: methods that were state
changing were used as input for a Logic Induction
algorithm, together with background information
on those methods such as their complete body as
well as the same information on methods that were
not state changing, the output of the algorithm
was a logic query describing those methods in a
pattern-based way similar to the manually written
crosscut. However more experiments need to be
performed on the practical scalability and applica-
bility to crosscut uncovering in large case studies.

The problem of capturing the intent of a cross-
cutting concern versus behavior-preservation of the
refactoring is also recognized by Hannemann et al.
[8]. In their approach this is resolved by relying on
interaction with the developer. As one of the ma-
jor cases where this problem arises is due to mis-
matches between the static and dynamic joinpoint
models we suggest adding new crosscut language
constructs such as the statement joinpoint.

Aspect-Oriented Programming of course intro-
duces a number of other possibilities for refactor-
ing besides the “Extract Method Calls” refactor-

ing and also necessitates a review of the object-
oriented refactorings to take aspects into account
[7, 9, 16, 13, 17, 14]. A number of the works we
cite here also describe the “Extract Method Calls”
refactoring though they do not all follow the pat-
tern for describing refactorings as established by
Fowler [2]; we’ve added onto the existing descrip-
tions of how to manually perform the refactoring
by identifying “unique methods” as a typical situ-
ation for applying it. The problems we discussed
that arise when generalizing the refactoring to calls
that do not necessarily occur at the start and end
of methods and our proposal for automating the
crosscut generation step of the refactoring are to
our knowledge not treated by other authors.

6 Conclusion

In this paper we took an in-depth look at the “Ex-
tract Method Calls” refactoring. The purpose of
this refactoring is to transform crosscutting con-
cerns implemented by scattered calls to a single
method into a corresponding crosscut and advice.
We identified two problems that occur when consid-
ering calls which are not necessarily implemented
at the start or end of methods and which compli-
cate the process of writing a crosscut that is both
behaviour-preserving and covers the intent of why
the original calls occurred: the flattened expression
problem and the joinpoint choice problem. These
problems become especially pronounced when we
consider automated application of the refactoring.
As the first problem is often due to a mismatch
between the “static joinpoint” model inherent to
non-AOP implementations of concerns and the dy-
namic joinpoint models currently employed in AOP
we propose the addition of the statement joinpoint
to bridge the mismatch. We’ve discussed our pro-
posal for using machine learning techniques for au-
tomating the step of the refactoring which involves
making crosscuts pattern-based, which may also
help solve the joinpoint choice problem by evalu-
ating how well the different choices of joinpoints
lead to pattern-based crosscuts. While further re-
search is needed to investigate the full applicability
of this proposal, early experiments have indicated
that automating the pattern-based crosscut uncov-
ering step of the “Extract Method Calls” refactor-
ing is feasible.

8

References

[1] A. Colyer, A. Clement, and M. Kersten.
Aspect-Oriented Programming with AJDT.
In Workshop on Analysis of Aspect-Oriented
Software, ECOOP2003, 2003.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the De-
sign of Existing Code. Addison-Wesley, 1999.

[3] B. Ganter and R. Wille. Formal Concept
Analysis: Mathematical Foundations. Spring-
Verlag, 1999.

[4] K. Gybels and J. Brichau. Arranging language
features for more robust pattern-based cross-
cuts. In Proceedings of the Second Interna-
tional Conference of Aspect-Oriented Software
Development, 2003.

[5] K. Gybels and A. Kellens. An experiment in
using inductive logic programming to uncover
pointcuts
an experiment in using inductive logic pro-
gramming to uncover pointcuts. In First Euro-
pean Interactive Workshop on Aspects in Soft-
ware, 2004.

[6] K. Gybels and A. Kellens. Experiences with
identifying aspects in smalltalk using ’unique
methods’. In Workshop on Linking Aspect
Technology and Evolution (submitted), 2005.

[7] S. Hanenberg, C. Oberschulte, and R. Un-
land. Refactoring of aspect-oriented software.
In 4th Annual International Conference on
Object-Oriented and Internet-based Technolo-
gies,Concepts, and Applications for a Net-
worked World, 2003.

[8] J. Hanneman, G. C. Murphy, and G. Kicza-
les. Role-based refactoring of crosscutting con-
cerns. In Fourth International Conference on
Aspect-Oriented Software Development, 2005.

[9] M. Iwamoto and J. Zhao. Refactoring aspect-
oriented programs. In Fourth AOSD Modeling
with UML Workshop, 2003.

[10] G. Kiczales. The fun has just begun. Keynote
at AOSD2003.

[11] R. Laddad. Aspect-oriented refactoring, dec
2003.

[12] T. Mitchell. Machine Learning. McGraw-Hill
International Editions, 1997.

[13] M. P. Monteiro. Catalogue of refactorings for
aspectj. Technical Report UM-DI-GECSD-
200401, Universidade Do Minho, 2004.

[14] S. Rura. Refactoring aspect-oriented soft-
ware. Master’s thesis, Williams College, Mas-
sachusetts, 2003.

[15] T. Tourwé, J. Brichau, A. Kellens, and K. Gy-
bels. Induced intentional software views. Sub-
mitted to European Smalltalk Users Group
conference 2003.

[16] T. Tourwé, A. Kellens, W. Vanderperren, and
F. Vannieuwenhuyse. Inductively generated
pointcuts to support refactoring to aspects. In
Workshop on Software Engineering Properties
of Languages for Aspect Technologies, 2004.

[17] F. Vannieuwenhuyse. Aspect-oriented refac-
toring. Licentiate’s thesis, Vrije Universiteit
Brussel, june 2004.

9

	Introduction
	``Extract Method Calls'' Refactoring
	Problems
	Solutions and Automation
	Automating the Refactoring
	Statement Joinpoints
	Uncovering Crosscuts

	Future and Related Work
	Conclusion

