
Disentangling the Implementation of Local-to-Global
Transformations in a Rewrite Rule Transformation System ∗

Thomas Cleenewerck
Vrije Universiteit Brussel

Brussel, Belgium

tcleenew@vub.ac.be

Theo D’Hondt
Vrije Universiteit Brussel

Brussel, Belgium

tjdhondt@vub.ac.be

ABSTRACT
Transformation rules are often used to implement compilers
for domain-specific languages. In an ideal situation, each
transformation rule is a modular unit transforming one in-
put element of the source program into a new element of
the output program. However, in practice, transformation
rules must be written which take one input element and
produce several new elements belonging to various locations
in the output program, the so-called local-to-global trans-
formations. The implementation of such transformations
is very complex and tightly coupled which imposes severe
constraints on maintenance and evolvability. In this paper,
we propose a transformation architecture on top of rewrite
rules to loosen this coupling. The resulting transformation
system combines the simplicity and modularity properties of
rewrite rules with a new semi-automatic composition system
that enables the implementation of local-to-global transfor-
mations without hampering maintenance and future evolu-
tions.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: Program transforma-
tion; D.3.2 [Language Classifications]: Specialized appli-
cation languages

Keywords
Maintainability, Evolvability, Rewrite rules, Program Trans-
formations

1. INTRODUCTION
A domain-specific language (DSL) raises the abstraction

level of a programming language to the domain level. The

∗This research is partially performed in the context of the e-
VRT Advanced Media project (funded by the Flemish Gov-
ernment) which consists of a joint collaboration between
VRT, VUB, UG, and IMEC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/003 ...$5.00.

compiler for a DSL is often implemented using a general
transformation system. Such a DSL compiler transforms a
source program into a target program by means of trans-
formation rules that implement a mapping of the abstract
syntax tree (AST) from the source to the target language.

The most dominating kind of transformations used today
are rewrite rules [6, 15, 8]. A rewrite rule specifies a substi-
tution of a part of the source AST by a part of the target
AST. This means that a rewrite rule is only concerned with
transforming a part of the tree, without context information.
However, implementing DSLs merely by means of such ’in
place’ transformations is hardly ever possible. Quite often,
a single transformation must exert some output on other
parts of the target AST. In the survey of Jonne van Wijn-
gaarden et. al. [14] these kinds of transformations are called
local-to-global transformations.

The implementation of local-to-global transformations solely
by means of rewrite rules is very complex and tangled. Ex-
tensions of transformation systems to the rewrite rule para-
digm with various data acquisition techniques like queries
and tree traversals [13] did not reduce the tangling. Be-
sides other problems like reusability which we do not address
in this paper, maintenance and evolution of DSL compilers
consisting of such transformations are quite a nightmare.

We present a mechanism to complement rewrite rules such
that they can implement local-to-global transformations with-
out sacrificing maintainability and evolvability. This is achie-
ved by providing a semi-automatic process that will treat the
outputs which cannot be handled by the currently available
’in-place’ substitution mechanism.

In the following section 2, we investigate the fundamen-
tal problem that forces a developer to write non-modular
rewrite rules. Section 3 introduces our solution architec-
ture, which explains the architecture in more detail. In sec-
tion 4 the architecture is evaluated and the implications of
the approach are discussed. The related work is discussed
in section 5 and the paper concludes in section 6.

2. LOCAL-TO-GLOBAL
TRANSFORMATIONS

We conceived a small DSL language to illustrate the prob-
lems with the implementation of local-to-global transforma-
tion with rewrite rules.

2.1 Motivating Example
The small DSL language we use as an example is called

the WIZ language. It was designed to describe installation

W wizard((
P page (
I inputfield("appname" defvalue("T"))

I inputfield("appdir"
D defvalue(stats((return(+(+(
K (key(programpath) "/") appname)))))))

)))

Figure 1: The source AST of installation program
written in WIZ. The prefixes W, P, I, D, K corre-
spond to the wizard, page, inputfield, defvalue and
key transformations that take these nodes as input.

wizards. A program written in WIZ is transformed into
a Java program on top of a framework. The purpose of
WIZ is to hide the developers from tedious glue code and
encapsulate the best practices to instantiate the underlying
framework. The surface syntax of WIZ is of no importance
for this paper, instead we describe how one uses the language
and how the transformations on the AST implement the
translation to Java.

The example WIZ program of figure 1 describes a wizard
consisting of one page. The page contains an inputfield for
the application name (appname) and an inputfield for the
installation directory (appdir). The default value of the
installation directory is the result of the concatenation of
the registry key programpath (holding the default location
for applications) and the application name (appname). When
the application name is changed, the default value for the
programpath (which depends on it) is recomputed. The
desired result after transforming this specification is shown
in figure 2.

The implementation of the compiler for the WIZ language
is divided in 5 transformations. Each of the transformations
corresponds to the translation of one source AST node to
its Java counter parts. The source AST nodes are wizard,
page, inputfield, defvalue and key which are respectively
translated by the W, P, I, D, K transformations. In figure 1
the nodes are prefixed by the transformation that takes the
prefixed node as input. The result nodes produced by those
transformations are shown in figure 2 and are also prefixed
using the same prefix. This clearly shows that the target
ast nodes of produced by the transformations are scattered
in the desired target program. This scattering is not an ac-
cidental situation, but rather a structural problem between
the two languages. The resulting nodes of one transforma-
tion may not all substitute the source node. Only results of
a particular type may be substituted with the source node,
to insure the resulting AST is type correct. The results that
do not fit must be put in other places in the tree. For exam-
ple, the source key node is part of an expression, therefore
the results the key transformation produces must be an ex-
pression in order to yield a correct target program. The
nonlocal datamember and the statement must consequently
be put in other locations of the target program. Besides
typing problems, some result nodes belong to a different
part in the target program due to grammatical constraints
or to particular semantical constraints imposed by the DSL
developer.

2.2 Implementation using rewrite rules
Rewrite rules essentially describe ’in-place’ substitutions,

the results produced by the rewrite rule must all fit into

1 W class (datamember("Wizard" "wizard")
2 I datamember("Inputfield" "appname")
3 I datamember("Inputfield" "appdir")
4 K datamember("Key" "programpath"))
5 W method("main" (...) (stats (
6 K assign(var("programpath") new("Key"))

7 W assign(var("wizard") new("Wizard"))
8 P assign(var("page") new("Page"))

9 I assign(var("appname") new("InputField"))
10 I assign(var("appdir") new("InputField"))

11 I mcall(var("appname") setListener
12 I (... mcall(() "appdirdefvalue" ()) ...))

13 I mcall(var("appname") setValue ("T"))
14 I mcall(var("appdir") setValue
15 D (mcall(() "defvalue" ())))

16 P mcall(var("page") "add" (
17 I var("appname")))
18 P mcall(var("page") "add" (
19 I var("appdir")))

20 W mcall(var("wizard") "add" (
21 P var("page")))
22 W)))
23 D method("defvalue" () (stats (
24 D return(+(+(mcall(
25 K var("programpath") "getValue" ()) "/")
26 D mcall(var("appname") "getValue" ())))
27 D)))

Figure 2: The target AST obtained after transform-
ing the sample installation program (figure 1). The
prefixes W, P, I, D, K correspond to the wizard,
page, inputfield, defvalue and key transformations
which produce these nodes.

the location of the node under transformation, which we
will refer to as the local results. In order to deal with the
other results that do not fit in the location, the so called
non-local results, we need a workaround. One can think of
several workarounds but they all boil down to the follow-
ing strategy. Because most of the rewrite rule systems have
been extended with some kind of traversal mechanism [13],
we will only consider such systems in the discussion of the
workaround. A local-to-global transformation is broken up
into several rewrite rules and traversals, each one responsible
for a single result. The idea is to write for each transforma-
tion a primary rewrite rule that produces both local and
non-local results contained in a cons cell, and for each non-
local result a secondary traversal to collect the non-local and
feed it into a secondary rewrite rule that matches the cor-
rect target location in order to relocate the non-local to the
desired location.

The evolutions and maintainability problems of this strat-
egy are caused by these latter rewrite rules and traversals.
They operate on a tree that has been fully rewritten into
target nodes, consequently the matching clauses of these
rewrite rules and traversals are entirely expressed in terms of
target nodes. This raises 3 problems: the secondary traver-
sals and rewrite rules (1) heavily depend on the outcome of
the primary rewrite rules and their interactions, (2) must be
carefully scheduled in order not to violate the context condi-
tions of other secondary traversals and rewrite rules and (3)
depend on the exact properties of the AST at a certain stage
during transformation. A full description and explanation

1 class (datamember("Wizard" "wizard")
2 datamember("Inputfield" "appname")
3 method("main" (...) (stats (

4 assign(var("wizard") new("Wizard"))
5 assign(var("page") new("Page"))

6 assign(var("appname") new("InputField"))

7 mcall(var("appname") setValue ("T"))

8 mcall(var("page") "add" (var("appname")))
9 mcall(var("page") "add" (
10 CONS(LOCAL(var("appdir")
11 (NONLOCAL(
12 assign(var("appdir") new("InputField"))
13 mcall(var("appname") setListener
14 (... mcall(() "appdirdefvalue" ()) ...))
15 mcall(var("appdir") setValue
16 CONS(LOCAL(mcall(() "defvalue" ()))
17 (NONLOCAL(
18 method("defvalue" () (stats (
19 return(+(+(CONS(
20 (LOCAL(mcall(var("programpath") "getValue" ()) "/"))
21 (NONLOCAL(datamember("Key" "programpath")))
22 NONLOCAL(assign(var("programpath") new("Key")))))
23 mcall(var("appname") "getValue" ())))
24)))
25))
26)))
27 NONLOCAL(datamember("Inputfield" "appdir")))))))

28 mcall(var("wizard") "add" (var("page")))
29))))

Figure 3: The state of the target AST right before
the relocation and integration of the nonlocals pro-
duced by the inputfield transformation is initiated.

of those problems can be found in [5].
Any small change in the grammar of the source language

or in the implementation of the transformations easily breaks
most of the above assumptions made in the implementation
of the secondary traversals and rewrite rules.

3. RESOLUTION OF NON-LOCAL TARGET
NODES

After analyzing local-to-global transformations more care-
fully, we identified three different responsibilities: (1) pro-
ducing the target AST nodes, (2) navigating through the
target AST to find the location of the non-local nodes and
(3) adding the produced target AST nodes in that location.
In contrast to the existing manual and functional (stating
rather how than what) approaches, in our approach these
last two responsibilities are handled by a composition sys-
tem that is driven by a declarative specification stating the
target location of each non-local and the integration of the
non-locals into the tree. Moreover we will show that part
of the required specifications can be automatically derived
from the target language grammar, which yields a semi-
automatic composition system.

In our solution architecture, a modular rewrite rule pro-
duces both local and non-local target nodes. Afterwards, the
non-local target nodes are relocated to the position where
the non-locals can be integrated in the target tree by means
of separate relocation paths and subsequently integrated by
means of integration policies. The relocation step merely
moves the non-locals to the position in the target tree where
they can be integrated. The integration step further inte-

grates the non-local in this subtree. In the following subsec-
tions, we describe each of the steps. Due to the page limit,
we are not able to discuss them in great detail.

3.1 Generation Step
Because rewrite rules are inherently ’in place’ transfor-

mations, the target nodes described by the rewrite rules are
the local target nodes. In order to include the non-local tar-
get nodes and distinguish them from the local target nodes,
the rewrite rules attach the non-local nodes to a special
NONLOCALS(...) node, which is in turn, together with the
local target nodes, part of a cons cell:

KEY(NAME) =
CONS(LOCAL(mcall(var(NAME) "getValue" ()))

NONLOCAL("datamember" datamember("Key" NAME)))

We deliberately chose not to introduce a special notion for
attaching and distinguishing non-locals for simplicity rea-
sons. A crucial part of the system is that non-locals can
cary any kind of information, in the above example the non-
local is tagged with a name. This is heavily exploited by
the semi-automatic composition system to identify the non-
locals and to guide the integration process of the non-local.

3.2 Relocation Step
The relocation step is executed after the execution of all

modular rewrite rules. In this step, the non-local target
AST nodes are moved to their proper location in the tar-
get AST. The correct location for the non-local AST nodes
is determined by (1) the grammar of the target language
and (2) custom target program specific semantics. The re-
location for non-locals, which correct location is based the
grammar of the target language, is driven by the target lan-
guage grammar and can even be automated. The relocation
for non-locals, which correct location is based on custom
semantics, needs to be written manually.

3.2.1 Automatic Relocation
The automatic relocation of a non-local target node tries

to move the node to a location in the target tree where it can
be integrated. In general, a non-local NL can be integrated in
a node E if NL can be a child of E according to the grammar
of the target language. The following relocation algorithm
is executed for each non-local target node:

For each non-local target node NL, attached to a target
node E, we first check if NL has a custom relocation path.
If so, the non-local is moved to the position pointed to by
the path. If there is no custom relocation path, we move
the non-local NL upward in the target AST. The non-local
NL, now becomes a non-local of the parent E’ of E. If the
non-local NL can be integrated in E’ or in one of the indirect
children of E’, the relocation process moves the NL to the
correct child. The correct child is determined by a depth-
first, left-to-right strategy. Otherwise, we keep on moving
upward in the target AST until the root is reached.

Let us illustrate how this automatic relocation process
works for the inputfield transformation. The state of the
parse tree at that time is shown in figure 3. The inputfield
transformation produced a couple of non-local statements
and a non-local datamember. The automatic relocation pro-
cess for the datamember will move the datamember upward
in the tree until it finds a node which, according to the
grammar of Java, can contain other datamembers. The first

node which is capable of doing so, is the class node (line
1). Similarly, the automatic relocation process for the state-
ments will yield, the stats node (line 3) (i.e. a node that
holds several statements) of the main method node (line 3).
The actual integration of the non-local nodes will be per-
formed by the integration step explained in the following
section.

Automatic relocation only works in cases where the loca-
tion of the non-locals can be determined unambiguously or
in cases when there is a simple satisfying strategy to disam-
biguate. Automatic relocation is very well suited for other
domain specific languages and general purpose languages
for constructs like classes, datamembers and methods. The
location of expressions and statements cannot be unambigu-
ously determined but the nearest possible location is often
the desired one. However, automatic resolution fails for most
types of non-locals in languages, like for example HTML,
where most language constructs may be used in every other
language construct. For these language constructs custom
relocation must be used.

3.2.2 Custom Relocation
In case automatic relocation fails or the relocation is de-

pendent on the particular semantics of the target program,
the custom relocation must be defined by the user. Let us
immediately explain the technique with an example.

Consider the non-local statement produced by the key

transformation. The non-local statement (line 22 in figure
3), initializes the non-local datamember that was produced
by the same transformation. The proper place of the initial-
ization statement is at the beginning of the main method.
The automatic relocation of the statement would lift the
statement to the enclosing defvalue method body (line 18)
instead of the main method body. Therefore, the following
custom relocation path must be provided.

NONLOCAL(INITIALIZE, NODE) OF KEY =
NONLOCAL(INITIALIZE, RELOCATE(NODE, //wizard))

The above rule will substitute the initialize non-local node
(denoted by NONLOCAL(INITIALIZE, NODE) produced by trans-
forming the key source AST node) into a non-local with
holding the relocation path. The path //wizard points to
the main method target AST node obtained by transforming
the source AST ancestor wizard.

Custom relocation paths are attached to a non-local tar-
get node by means of a ’special’ rewrite rule. In contrast to
a normal rewrite rule, this ’special’ rule is expressed in terms
of the source language and refers to the name of the non-
local and the original source node that got rewritten. The
relocation paths are also expressed in terms of the source
AST. As a consequence, the relocation paths express that
the non-local node should be relocated to the top level tar-
get AST node, which is the result of transforming the source
AST node pointed to by the custom relocation paths, and
not the exact location in the top level target AST node.
The further integration into the top level node is be accom-
plished by means of integration policies, which are discussed
in the next section. The language to express the path is the
XPath [1].

Expressing and attaching the relocation paths in terms
of the source language does not suffer from the problems
of the workaround (section 2.2). The advantages are three-
fold: increased expressiveness and robustness, and reduced

complexity. The expressiveness of the paths benefits from
the expressiveness of the source language. The paths are
also more robust to changes to the produced target AST.
No detailed knowledge is required to further integrate the
non-locals into the produced top level node AST node, it is
captured in separate integration policies.

All the non-local nodes of the local-to-global transforma-
tions of the WIZ language (except one non-local of the key
transformation) can be relocated using the automatic relo-
cation process. No hard to specify traversals and rewrite
rules had to be written and no scheduling puzzles had to be
disentangled. Even the specification of the location of the
non-local statement (of the example above) only involved
source language concepts instead of the former workaround’s
match and conditions clauses which heavily depended on the
produced target nodes.

3.3 Integration Step
Now that the correct location of the non-locals in the parse

tree has been found, the non-locals must be integrated in
the target AST node on this location. Integration is neces-
sary to ensure that the non-locals do not violate language
constraints and obey the semantics of a particular integra-
tion policy. For example, the integration of the non-local
statements, produced by the inputfield transformation, into
the main method body must obey the specific user-defined
order of the different statements (first creation of all in-
putfields, followed by the attachment of listeners and finally
their initialization with default values). Also the integration
of the non-local datamember, produced by the same trans-
formation, into the main class must enforce the uniqueness
constraint of the datamembers within a class.

During the integration of a non-local into a target AST
node, the correspondence of the non-local with the already
existing children is checked. If a correspondence is found,
the two non-locals are combined with one another. The
correspondence check facilitates many necessary and inter-
esting mechanisms. The two most important mechanisms
are the combination of partial results and the enforcement
of uniqueness constraints [5].

Integration is a close interplay of three different policies:
integration, correspondence and combination. The integra-
tion policy is called for each non-local that was relocated to
an AST node. Its task is to integrate the non-local in the
AST node itself or in one of its children. The correspon-
dence policy is used by the integration policy to check if
nodes in the AST need to be combined with the non-local.
The correspondence policy is more like a predicate defined
on nodes to check if they correspond. The combination pol-
icy performs the combination between nodes.

In our present solution, policies are implemented as nor-
mal rewrite rules.

Integration is specified by a triple of an integration,
correspondence and combination node containing the name
of the policy and if necessary some additional information.
Similar to the custom relocation paths, the policies are at-
tached to the non-local by means of the ’special’ rewrite rule
(cfr previous section).

The advantage of this schema is that the different policies
can be effectively reused for all non-locals of the same type
and can be specialized for particular non-locals. But the
separation of the integration process in these three policies
has also other advantages. Firstly, the three different poli-

cies are nicely separated in different concerns. Secondly, a
default integration policy of the integration process can be
automatically generated provided that the other policies are
defined (see the example below).

The developer only needs to write correspondence and
combination policies for the kind of non-locals that are pro-
duced by the rewrite rules. And given the reusability of
the policies, the effort needed to perform the integration is
reduced to a minimum.

Let us illustrate how the integration process for the non-
local datamember node produced by the key transformation
works.

NONLOCAL(DATAMEMBER , NODE) OF KEY = NONLOCAL(DATAMEMBER ,
((INTEGRATION(DEFAULT),

CORRESPONDENCE(DEFAULT),
COMBINATION(DEFAULT)) ,NODE))

The above ’special’ rewrite rule attaches the default poli-
cies to the nonlocal named datamember produced by the key
transformation, by rewriting the matched nonlocal NODE in
a triple.

The default correspondence policy for datamembers stat-
ing that two datamembers correspond when their names and
types are equal, is captured by the following correspond
rewrite rule.

CORRESPOND(DEFAULT,
DATAMEMBER(NAME,TYPE), DATAMEMBER(NAME,TYPE)) = TRUE

Subsequently the integration policy must be defined to
integrate the datamember node into the class node. Below
the standard and automatically generated integration policy
is given for child nodes of a class target node. When the
correspond rewrite rule succeeds (line 1-2), the two corre-
sponding nodes NODE2 and NODE are combined together (line
8), otherwise the non-local NODE is just appended to the con-
tents of the class node (line 12). The latter append action
is the actual default strategy to integrate a non-local into a
another structure.

(1) NODE* = NODE1* NODE2 NODE2*
(2) CORRESPOND(POLICY2, NODE2 , NODE) = TRUE
(3) ===============>
(4) INTEGRATE(DEFAULT,CLASS(NODE*),
(5) NONLOCAL(NAME, ((INTEGRATION(DEFAULT),
(6) CORRESPONDENCE(POLICY2),
(7) COMBINATION(POLICY3)) ,NODE))
(8) = CLASS(NODE1* COMBINE(POLICY3, NODE2, NODE) NODE2*)

(9) INTEGRATE(DEFAULT,CLASS(NODE*), NONLOCAL(NAME ,
(10) ((INTEGRATION(DEFAULT),
(11) CORRESPONDENCE(POLICY2),
(12) COMBINATION(POLICY3)) ,NODE))) = CLASS(NODE* NODE)

4. DISCUSSION
The process of handling non-locals is divided into a num-

ber of separated modules: the generation, the automatic
relocation, the custom relocation, and the three integration,
combination and correspondence policies. The division into
these modules has several advantages (1) the complex imple-
mentation of local-to-global transformations is disentangled
in to manageable modules, (2) the impact of maintenance
and future evolutions of one transformation is localized to
the implementation parts of the modules of that transfor-
mation, and (3) each of the modules can be reused and even
some of them can be automated.

For the above WIZ language only one custom relocation
was needed, the rest of the relocation process was performed

automatically. Also for other general purpose languages like
Visual Basic and C++ experiments showed that the reloca-
tion significantly reduced the complexities involved with the
implementation of local-to-global transformations. The au-
tomatic relocation process is not beneficial for languages like
HTML where most language constructs can be composed
with most of the other language constructs: the automatic
relocation of those language constructs always yields their
parents.

The automatic relocation process is now entirely driven
by the grammar of the target language. We are currently
looking into the idea, to guide the relocation process with
other information and declarations instead of merely using
the types of the nonlocals. As such, the developer may spec-
ify extra places in the target AST where a non-local can
integrate, besides those already defined by the grammar.
One possible approach is to use the correspondence rules of
the integration phase. Another possibility would be to cre-
ate extra declarations about the kind of node in the AST a
particular kind of non-local node may integrate with. This
would allow a far more fine grained and sophisticated relo-
cation process. One possible extension would be to guide
the automatic relocation of the variable declarations based
on their use sites.

The integration of non-locals is incremental. Incremental
integration is very flexible, since the parts that need to be
integrated with one another must not be all available before
the integration can start. The downside of this flexibility is
that some integration strategies are much harder to write in
an incremental way.

The validation of our approach is based on early experi-
ments including the implementation of the compiler for the
WIZ language used in this paper. Future work definitely
includes a report on a complete industrial case study con-
sisting of multiple evolved versions to further validate our
approach.

The mechanisms proposed in this paper were implemented
on top of the linglet transformation system (LTS) (previ-
ously known as the keyword based programming toolkit [4]).
According to the component based DSL development philos-
ophy of LTS, the linglets (language components) are stand-
alone and modular components that do not depend on other
linglets or engines to produce their results. Nor can a lin-
glet access the whole target tree to do some computations.
In other words, in contrast with rewrite rule systems, im-
plementing tangled linglets and linglets that highly depend
on the produced results of other linglets is not allowed in
LTS. The modularity of the system immediately acted as
additional validation mechanism, testing whether the im-
plementation of our semi-automatic mechanism obeyed this.
Since modularity reduces the dependencies, this modularity
is a key enabler for a better maintainable and evolvable lan-
guage implementation.

5. RELATED WORK
In the survey of Jonne van Wijngaarden et. al. [14] cur-

rent day transformation systems are compared and classi-
fied according to three transformation mechanics i.e. scope,
direction and stage. Transformations with a wide target
scope and a single node source scope are called local-to-
global transformations. The survey explored whether the
basic mechanisms like querying and traversing the parse tree
are available in current day transformation systems in order

to implement local-to-global transformations.
In this paper we went a step further and investigated the

repercussions of those mechanisms on the complexity, main-
tainability and evolvability of DSL implementations. We
found that those mechanisms easily result into over-complex
implementations and severely constrain maintainability and
evolvability.

ASF+SDF [12] , Stratego [15], XSLT [3] provide a very
powerful traversal system but the traversals to locate, col-
lect, and redistribute the non-locals must be written against
an intermediate parse tree consisting only of target nodes.
Consequently the implementation easily results in a tangled
web of traversals and rewrite rules as was discussed in sec-
tion 2.2. Attribute grammars [7] and similar systems like
intentional programming [10, 11] have an implicit query sys-
tem using inherited and synthesized attributes. The draw-
back of this mechanism is the lack of control over the source
of the information, a feature which is vital for custom re-
location strategies and for the specific integration of a non-
local. Furthermore to prevent cylces, the implicit scheduling
mechanism for the computations of attributes would require
to decouple the production of the local from the non-local
results. This decoupling has some drawbacks which were
discussed and tackled in [15].

Also in contrast to our approach none of the current day
systems exploit the grammar to provide a semi-automatic
relocation and composition system, and none of the systems
provide an adaptable and modular integration mechanism
that is driven declaratively.

Nevertheless, the solutions presented in this paper are
complementary to the above transformation systems and
can be implemented on most of them, provided that they
support the basic traversal and query mechanisms. We were
able to successfully implement this architecture on top of the
linglet transformation system [4]. The architecture could
even be implemented on top of those systems which are not
based on rewrite rules e.g. Jostraca [9] and JTS [2].

6. CONCLUSION
Transformation systems, in particular rewrite rule sys-

tems, fail to deal with local-to-global transformations with-
out corrupting maintainability and future evolvability. Our
solution architecture enables the use of modular and simple
rewrite rules to implement local-to-global transformations
hereby avoiding complex, tangled traversals and rewrite rules
and scheduling nightmares. The non-local target nodes are
moved to their correct position using a semi-automatic relo-
cation mechanism and subsequently integrated by integra-
tion policies in the tree. The result is a general mechanism
on top of the rewrite rule paradigm to deal with the non-
local results of transformation systems where the above de-
pendencies are reduced to a strict minimum. This has a
positive impact on the maintainability and future evolvabil-
ity of the implementation. The disentangling of the com-
plex implementation of local-to-global transformations (1)
localized the impact of maintenance and future evolutions
of one transformation to the implementation parts of that
same transformation i.e. generation, relocation and integra-
tion and (2) limited the impact of maintenance and future
evolutions is to specific modules and (3) enables great reuse
potential.

7. ACKNOWLEDGMENTS
We would like to thank Johan Brichau, Tom Tourwe, Jo-

han Fabry and Kris Gybels for comments on this paper.

8. REFERENCES
[1] S. B. Anders Berglund. Xml path language (xpath)

2.0 w3c working draft 15 november 2002, 2002.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools
for implementing domain-specific languages. In
Proceedings Fifth International Conference on
Software Reuse, pages 143–153, Victoria, BC, Canada,
2–5 1998. IEEE.

[3] J. Clark. Xsl transformations (xslt) version 1.0 w3c
recommendation 16 november 1999, 1999.

[4] T. Cleenewerck. Component-based dsl development.
In Proceedings of GPCE’03 Conference, Lecture Notes
in Computer Science 2830, pages 245–264.
Springer-Verlag, 2003.

[5] T. Cleenewerck. A semi-automatic composition system
for local-to-global transformations. Technical Report
PRG-RR-01-21, Programming Technology Lab
(PROG), Vrije Universiteit Brussel, 2004.

[6] J. Cordy, T. Dean, A. Malton, and K. Schneider.
Software engineering by source transformation -
experience with txl. SCAM’01 - IEEE 1nd
International Workshop on Source Code Analysis and
Manipulation, pages 168–178, November 2001.

[7] D. E. Knuth. Semantics of context-free languages. In
Mathematical Systems Theory, pages 168–178, 1968.

[8] N. J. M. The draco approach to constructing software
from reusable components. In C. Rich and R. C.
Waters, editors, Artificial Intelligence and Software
Engineering, pages 525–535, 1986.

[9] R. J. Rodger. Jostraca: a template engine for
generative programming. position paper for the
ecoop2002 workshop on generative programming,
2002.

[10] C. Simonyi. The death of computer languages, the
birth of intentional programming, 1995.

[11] C. Simonyi. Intentional programming - innovation in
the legacy age, 1996.

[12] M. van den Brand and P. Klint. ASF+SDF
Meta-Environment User Manual. Centrum voor
Wiskunde en Informatica (CWI), Kruislaan 413, 1098
SJ Amsterdam, The Netherlands, July 2002.

[13] M. G. J. Van Den Brand, P. Klint, and J. J. Vinju.
Term rewriting with traversal functions. ACM Trans.
Softw. Eng. Methodol., 12(2):152–190, 2003.

[14] J. van Wijngaarden and E. Visser. Program
transformation mechanics. a classification of
mechanisms for program transformation with a survey
of existing transformation systems. Technical Report
UU-CS-2003-048, Universiteit Utrecht, 2003.

[15] E. Visser. Stratego: A language for program
transformation based on rewriting strategies. System
description of Stratego 0.5. In A. Middeldorp, editor,
Rewriting Techniques and Applications (RTA’01),
volume 2051 of Lecture Notes in Computer Science,
pages 357–361. Springer-Verlag, May 2001.

