
LDTA 2005 Preliminary Version

An Invasive Composition System for
Local-to-Global Transformations

Thomas Cleenewerck 1,2

PROG
Vrije Universiteit Brussel

Brussels, Belgium

Johan Brichau 3

PROG
Vrije Universiteit Brussel

Brussels, Belgium

Abstract

Transformation systems are particularly well suited to implement modular rules,
transforming one language feature of the source language into a single or a compo-
sition of language features of the target language. However, in practice, transfor-
mation rules must be written which take one language feature and transform them
into several language features belonging to various locations in the output pro-
gram. The implementation of these so-called local-to-global transformations with
rewrite rules is very complex and tightly coupled which imposes severe constraints
on maintenance and evolvability. The four main coupling problems of the current-
day implementations are presented and we indicate how these can be eliminated
and reduced by our extension of the rewrite rule system. Furthermore we show how
complex invasive compositions can be solved by abstract, reusable algorithms and
mechanisms, rendering the implementation of local-to-global transformations into
a semi-automatic process.

Key words: Maintainability, Evolvability, Rewrite rules, Program
Transformations, Invasive Composition

1 This research is partially performed in the context of the e-VRT Advanced Media project
(funded by the Flemish Government) which consists of a joint collaboration between VRT,
VUB, UG, and IMEC.
2 Email: tcleenew@vub.ac.be
3 Email: jbrichau@vub.ac.be

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Cleenewerck

1 Introduction

The most dominating kind of transformations used today are rewrite rules
[6,16,9]. They are very successful because of the simplicity of specifying a rule
and the power of the underlying transformation system which already solves
such complexities as scheduling [12] and provides adequate control structures
such as pattern matching [15]. A rewrite rule specifies a substitution of a part
of the source abstract syntax tree (AST) by a part of the target AST. Con-
sequently, rewrite rules are modular with respect to the grammar of both the
target and source language and with respect to other rules. This means that
a rewrite rule is only concerned with transforming a part of the tree, without
context information. It can consequently be reused in other implementations
where the context of a source AST might differ. However, implementations
consisting merely of such ’in place’ transformations are hardly ever express-
ible. Quite often, a single transformation must exert some output on other
parts of the target AST. In the survey of Jonne van Wijngaarden et. al. [15]
these kinds of transformations are called local-to-global transformations.

The implementation of local-to-global transformations solely by means of
rewrite rules is very complex and tangled. Extensions of transformation sys-
tems to the rewrite rule paradigm with various data acquisition techniques
like queries and tree traversals [14] did not reduce the tangling. We found
that, similar to other software development techniques, this tangling severely
jeopardizes future maintenance and evolution.

In earlier work [4] we proposed an extension to rewrite rules system which
disentangles the implementation. This was achieved by providing a semi-
automatic process that treats the outputs which cannot be handled by the
currently available ’in-place’ substitution mechanism. In this paper, we iden-
tified the 4 main coupling problems of the current-day implementations and
show how these can be amended by our approach. Furthermore we show
how complex invasive compositions can be solved by abstract and reusable
integration strategies.

In the following section, we investigate the fundamental problem that
forces a developer to write tangled rewrite rules. Section 3 introduces our
solution architecture, which explains the architecture in more detail. In sec-
tion 4 the architecture is evaluated and the implications of the approach are
discussed. The related work is discussed in section 5 and the paper concludes
in section 6.

2 Local-to-Global Transformations

We conceived a small domain specific language (DSL) to illustrate the prob-
lems with the implementation of local-to-global transformation with rewrite
rules. Afterwards we generalize these specific examples and distill the funda-
mental causes which cripple maintainability and evolvability.

2

Cleenewerck

W wizard((

P page (

I inputfield("appname" defvalue("T"))

I inputfield("appdir"

D defvalue(stats((return(+(+(

K (key(programpath) "/") appname)))))))

)))

Fig. 1. The source AST of installation program written in WIZ.

2.1 Motivating Example

The small DSL we use as an example is called the WIZ language. It was
designed to describe installation wizards. A program written in WIZ is trans-
formed into a Java program on top of a framework. The purpose of WIZ is to
hide the developers from tedious glue code and to encapsulate the best prac-
tices to instantiate the underlying framework. The surface syntax of WIZ is of
no importance for this paper, instead we describe how one uses the language
and how the transformations on the AST implement the translation to Java.

The example WIZ program of figure 1 describes a wizard consisting of one
page. The page contains an inputfield for the application name (appname)
and an inputfield for the installation directory (appdir). The default value
of the installation directory is the result of the concatenation of the registry
key programpath (holding the default location for applications) and the ap-
plication name (appname). When the application name is changed, the default
value for the programpath (which depends on it) is recomputed. The desired
result after transforming this specification is shown in figure 2A.

The implementation of the WIZ compiler is divided in 5 transformations.
Each of the transformations corresponds to the translation of one source AST
node to its Java counter parts. The source AST nodes are wizard, page,
inputfield, defvalue and key which are respectively translated by the W,
P, I, D, K transformations. In figure 1 the nodes are prefixed by the trans-
formation that takes the prefixed node as input. The result nodes produced
by those transformations are shown in figure 2A and are also prefixed using
the same prefix. The figure 2A clearly shows that the target AST nodes,
produced by the transformations, are scattered in the desired target program.
This scattering is not an accidental situation, but rather a structural problem
between the two languages. The resulting nodes of one transformation may
not all substitute the source node. Only results of a particular type may be
substituted with the source node, to ensure the resulting AST is type cor-
rect. The results that do not fit must be put in other places in the tree. For
example, the source key node is part of an expression, therefore the results
the key transformation produces must be an expression in order to yield a
correct target program. Its other results, the datamember and the statement,
must consequently be put in other locations of the target program. Besides
typing problems, some result nodes belong to a different part in the target pro-
gram due to grammatical constraints or to particular semantical constraints

3

Cleenewerck

1 class (datamember("Wizard" "wizard")
2 datamember("Inputfield" "appname")
3 method("main" (...) (stats (

4 assign(var("wizard") new("Wizard"))
5 assign(var("page") new("Page"))

6 assign(var("appname") new("InputField"))

7 mcall(var("appname") setValue ("T"))

8 mcall(var("page") "add" (var("appname")))
9 mcall(var("page") "add" (
10 CONS(LOCAL(var("appdir")
11 (NONLOCAL(
12 assign(var("appdir") new("InputField"))
13 mcall(var("appname") setListener
14 (... mcall(() "appdirdefvalue" ()) ...))
15 mcall(var("appdir") setValue
16 CONS(LOCAL(mcall(() "defvalue" ()))
17 (NONLOCAL(
18 method("defvalue" () (stats (
19 return(+(+(CONS(
20 (LOCAL(mcall(var("programpath") "getValue" ()) "/"))
21 (NONLOCAL(datamember("Key" "programpath")))
22 NONLOCAL(assign(var("programpath") new("Key")))))
23 mcall(var("appname") "getValue" ())))
24)))
25))
26)))
27 NONLOCAL(datamember("Inputfield" "appdir")))))))

28 mcall(var("wizard") "add" (var("page")))
29))))

1 W class (datamember("Wizard" "wizard")
2 I datamember("Inputfield" "appname")
3 I datamember("Inputfield" "appdir")
4 K datamember("Key" "programpath"))
5 W method("main" (...) (stats (
6 K assign(var("programpath") new("Key"))

7 W assign(var("wizard") new("Wizard"))
8 P assign(var("page") new("Page"))

9 I assign(var("appname") new("InputField"))
10 I assign(var("appdir") new("InputField"))
11 I mcall(var("appname") setListener
12 I (... mcall(() "appdirdefvalue" ()) ...))
13 I mcall(var("appname") setValue ("T"))
14 I mcall(var("appdir") setValue
15 D (mcall(() "defvalue" ())))

16 P mcall(var("page") "add" (
17 I var("appname")))
18 P mcall(var("page") "add" (
19 I var("appdir")))

20 W mcall(var("wizard") "add" (
21 P var("page")))
22 W)))
23 D method("defvalue" () (stats (
24 D return(+(+(mcall(
25 K var("programpath") "getValue" ()) "/")
26 D mcall(var("appname") "getValue" ())))
27 D)))

Fig. 2. (A) The left part of the figure shows the target AST obtained after trans-
forming the sample installation program (figure 1). (B) The right part shows the
state of the target AST right before the relocation and integration of the nonlocals
produced by the inputfield transformation is initiated.

imposed by the DSL developer.

2.2 Implementation using rewrite rules

Rewrite rules describe ’in-place’ substitutions, the results produced by the
rewrite rule must all fit into the location of the node under transformation,
which we will refer to as the local results. In order to deal with the other
results that do not fit in the location, the so called non-local results, we need a
workaround. One can think of several workarounds but they all boil down to
the following strategy. Because most of the rewrite rule systems have been ex-
tended with some kind of traversal mechanism [14], we will only consider such
systems in the discussion of the workaround. A local-to-global transformation
is broken up into several rewrite rules and traversals, each one responsible for
a single result. The implementation of each transformation takes three steps.
First, a primary rewrite rule must be written that produces both local and
non-local results. The results are contained in a tuple (CONS(... , ...)

cells. Second, for each non-local result write a secondary traversal that col-
lects the non-local. Third, the collected non-local must be fed into a secondary
rewrite rule that matches the correct target location where the non-local must
be integrated.

Although the primary rewrite rules are modular, they construct an inter-

4

Cleenewerck

mediate representation (IR) which is an new structures that must be addition-
ally maintained whenever the language evolves. Consequently this solution
only increases the maintenance efforts. Experiments with such an approach
showed that the transformation from Cobol to Java required about 70 IRs
[CDMS02], introducing enormous maintenance efforts. Moreover, the problem
has merely been shifted to the transformations that create the intermediate
structure, and therefore no real solution has been created.

2.3 Coupling and tangling

In various software development methodologies one of the most common ap-
proaches to facilitate evolution and maintenance is by minimizing the tangling
and coupling within an implementation. By doing so, the components of an
implementation can be more easily replaced by another one and can be reused
in other implementations. Since the implementation of a set of transformations
can be regarded as a normal software artifact, the reduction of the tangling
and coupling hold the same premises. In the reminder of this section the
coupling and tangling issues of the workaround strategy are discussed.

The source of the tangling and coupling problems of this strategy are the
dependencies of the secondary traversals and rewrite rules with the rest of the
rewrite rules. We distinguish the following 4 coupling problems:

(i) The mechanisms of the workaround are interwoven with the concrete
implementation of the local-to-global transformations to the extent that
they are hard to distinguish within their implementation. Furthermore,
their implementations are manual and are degraded to a more functional
(stating rather how than what) approach.

(ii) The coupling of the secondary traversals and rewrite rules and the out-
come of the primary rewrite rules.

(iii) The scheduling problems of the secondary traversals and rewrite rules in
order not to violate the context conditions of other secondary traversals
and rewrite rules.

(iv) The tight coupling of the secondary traversals and rewrite rules on the
exact properties of the AST at a certain stage during transformation.

The underlying problem causing these 3 later dependencies is that the sec-
ondary rewrite rules and traversals all operate on a tree that has been fully
rewritten into target nodes. As a consequence, their matching clauses are en-
tirely expressed in terms of target nodes. Therefore any small change in the
grammar of the source language or in the implementation of the transforma-
tions due to evolution or maintenance easily breaks most of the dependencies
made in the implementation of the secondary traversals and rewrite rules. Let
us further discuss each of those dependencies in more detail using the figure
2B .

The first problem is the tight coupling of the secondary traversals and

5

Cleenewerck

rewrite rules and the outcome of the primary rewrite rules. Consider the
secondary traversals and rewrite rules to collect and move the non-locals of
the inputfield transformation: the two non-local statements (an assignment
(line 12) and two method calls (lines 13 and 15)) of the topmost cons cell (line
10). These two nonlocals must be moved to the enclosing method node. Writ-
ing such a traversal heavily depends on the context node (line 9) produced by
the page transformation and the non-locals of the inputfield transformation
(line 12-15), in order to make sure that the correct non-locals are matched.
Like the traversals, the left hand side, the triggering condition and the right
hand of the secondary rewrite rule that integrates the nonlocal on the correct
location, is also expressed in terms of target nodes, which results in the same
deficiencies.

The second problem is the scheduling problems of the secondary traversals
and rewrite rules in order not to violate the context conditions of other sec-
ondary traversals and rewrite rules. Let us take a look at the scheduling of the
secondary traversal and rewrite rule of the inputfield transformation and those
of the default value transformation and the key transformation. The latter
handle the non-locals in the nested cons cells of the cons cell (line 10, pro-
duced by the inputfield transformation). The correct location of the non-local
statement (line 22) produced by the key transformation is in the beginning of
the main method. However, depending on the strategy to deal with the cons
cells the non-locals might end up in different locations. A breadth-first (top-
down) strategy, places the non-local statement (line 22) inside its enclosing
method defvalue. But a depth-first (bottom-up) strategy to deal with cons
cells, places the non-local statement (line 22) inside the main method. The
implementation of these secondary traversals and rewrite rules thus depend
on the chosen scheduling and vice-versa.

The third problem is the tight coupling of the secondary traversals and
rewrite rules on the exact properties of the AST at a certain stage during
transformation. Since the secondary traversals and rewrite rules continuously
change the tree, their specifications depend on a particular stage during trans-
formation. Consider for example the integration of the different non-local
statements produced by the inputfield transformation: assigning and creating
the new field (line 12), attaching listeners to other dependent inputfields (lines
13) and initializing the inputfield with a default value (line 15). Although
those statements are in the right order from one single inputfield viewpoint,
when there are two or more inputfields these statements need to be regrouped.
It is obvious that first all the inputfields must be created before initializing
or configuring them, that secondly all the listeners must be attached to each
inputfield so that thirdly when the inputfields are initialized all dependent
inputfields get properly initialized. The implementation of the regrouping is
not simple and heavily relies on the contents of the main method. The state-
ments of the main method body are almost exactly matched by the rewrite
rule in order to determine the correct position where to integrate the creation

6

Cleenewerck

of the new inputfields, the attachement of the listeners and the initialliza-
tion of the inputfields. Moreover, since the contents of the main method is
constantly changing by moving and integrating non-local statements, the in-
tegration rewrite rule only works on a particular point the transformation
process.

3 Resolution of Non-local Target Nodes

Our solution architecture modularizes the three responsibilities of local-to-
global transformations in 3 steps: (1) a generation step that produces both
local and non-local target nodes, (2) a relocation step which navigates through
the target AST to find the location of the non-local nodes, (3) an integration
step to add the produced target AST nodes in that location.

The last two responsibilities are handled by a composition system that is
driven by a declarative specification stating the target location of each non-
local and the integration of the non-locals into the tree. Some parts of the
required declarative specifications can be automatically derived from the tar-
get language grammar, hence yielding a semi-automatic composition system.
In the following subsections, we describe each of the steps in detail. As the
architecture is considered an extension of existing systems, the large amount
of existing systems and their various natures rapidely complicates a discussion
of its implementation. Therefore, a full discussion of the implementation of
this architecture falls outside the scope of this paper. However each subsection
clearly states the mechanisms that are required to implement the architecture.

3.1 Generation Step

To distinguish the non-local target nodes from the local target nodes in the
rewrite rule, the non-local nodes are attached to a special NONLOCALS(...)
node, which is in turn, together with the local target nodes, part of a cons cell.
The example code below shows how the key transformation can be written as
a normal rewrite rule.
KEY(NAME) --> CONS(LOCAL(mcall(var(NAME) "getValue" ()))

NONLOCAL(("datamember", datamember("Key" NAME))

("initialize", assign(var(NAME) new("Key"))))

A crucial part of the system and difference between the workaround is
that non-locals can carry any kind of information. This is heavily exploited
by the semi-automatic composition system to identify the non-locals and to
guide the integration process of the non-local (see section 3.3.2). To ease and
standardize the identification of the nonlocal, nonlocals always have at least
a name or an identifier. In contrast to the common approaches dealing with
names and identifiers, these need not to be unique within a rewrite rule nor
amongst other rewrite rules. The advantage of this naming schema is that
the name or identifiers can be used as a grouping mechanism, abstracting the
actual number of nonlocals. The additional information can be used to select

7

Cleenewerck

subgroups adhering to certain criteria. In the above example, the name of the
first nonlocal is datamember, and the second nonlocal is initialize. No other
additional information is provided, since their names suffice to distinguish
between both of them.

3.2 Relocation Step

The relocation step is executed after the execution of all modular rewrite rules.
In this step, the non-local target AST nodes are moved to their correct location
in the target AST. The correct location for the non-local AST nodes is deter-
mined by (1) the grammar of the target language and (2) custom semantics
which is specific for the desired target program. The relocation for non-locals,
which correct location is based the grammar of the target language, is now
driven by the target language grammar and can even be automated. The re-
location for non-locals, which correct location is based on custom semantics,
needs to be written manually.

3.2.1 Automatic Relocation

In general, a non-local NL can be integrated in a node E if NL can be a child
of E according to the grammar of the target language. Each non-local target
node is lifted upwards in the AST until a node E is found where the nonlocal
NL can be integrated in E’ or in one of the indirect children of E’. The correct
child is determined by a depth-first, left-to-right strategy. More details of the
algorithm can be found in [4].

Let us illustrate how this automatic relocation process works for the in-
putfield transformation. The state of the parse tree at that time is shown in
figure 2B. The inputfield transformation produced a couple of non-local state-
ments and a non-local datamember. The automatic relocation process for the
datamember will move the datamember upward in the tree until it finds a
node which, according to the grammar of Java, can contain other datamem-
bers. The first node which is capable of doing so, is the class node (line 1).
Similarly, the automatic relocation process for the statements will yield, the
stats node (line 3) (i.e. a node that holds several statements) of the main

method node (line 3). The actual integration of the non-local nodes will be
performed by the integration step explained in the following section.

Automatic relocation only works in cases where the location of the non-
locals can be determined unambiguously or in cases when there is a simple sat-
isfying strategy to disambiguate. In case of domain specific languages (DSLs)
automatic relocation is very well suited. DSLs bear a lot of language con-
structs that may only be used in a certain context, so disambiguation is not
often needed. The technique is also useful for target languages which are gen-
eral purpose languages. Classes, datamembers, methods and statements are
typical language constructs that are only allowed in a specific context. If the
location of other language constructs like expressions and statements cannot

8

Cleenewerck

be unambiguously determined but the nearest possible location is often the
desired one. However, automatic resolution fails for most types of non-locals
in languages, like for example HTML, where most language constructs may be
used in every other language construct. For these languages custom relocation
must be used.

3.2.2 Custom Relocation

In case automatic relocation fails or the relocation is dependent on the particu-
lar semantics of the target program, the custom relocation must be defined by
the user. A custom relocation path for a non-local is not specified at the time
when the non-local is produced. Instead the path is attached to the non-local
afterwards, by means of a ’special’ rewrite rule of the following form:
NONLOCAL(_name of the nonlocal_ , NODE) OF _source ast node_

--> NONLOCAL(_name of the nonlocal_ , RELOCATE(NODE, _relocation path_))

The parts enclosed in underscores are merely place holders for the values
they denote. The non-local NODE produced by a certain source AST node
is referred to by its name and the source AST node. It is rewritten into a
non-local with a custom relocation path.

The relocation paths are also expressed in terms of the source AST. Con-
sequently, the relocation paths express that the non-local node should be
relocated to the top level target AST node, which is the result of transforming
the source AST node pointed to by the custom relocation path. The further
integration into the subtree of the top level target AST node is accomplished
by means of integration rules (next section).

Let us illustrate the above with an example. Consider the non-local state-
ment (line 22 in figure 2B) produced by the key transformation which initial-
izes the non-local datamember. Since the datamember must only be initialized
once, the proper place of the initialization statement is at the beginning of
the main method.
NONLOCAL(INITIALIZE, NODE) OF KEY --> NONLOCAL(INITIALIZE, RELOCATE(NODE, //wizard))

The above rule will substitute the initialize non-local node (denoted by
NONLOCAL(INITIALIZE, NODE)) produced by transforming the key source
AST node, into a non-local with the specification path attached to it. The
path //wizard points to the main method target AST node obtained by trans-
forming the source AST ancestor wizard. The language to express the path
is XPath [1].

3.2.3 Discussion

Instead of specifying the relocation in terms of the target nodes, we speci-
fying the relocation with ’special’ rewrite rules in terms of the source AST
node and the name of the nonlocal, which attaches the nonlocals after they
are produced. This decoupling between the relocation path and the non-local
prohibits a strong dependency between the rule that produces the non-local

9

Cleenewerck

and the rest of the language implementation. Hence, the dependencies, that
resulted from the second coupling (section 2.3), between the rewrite rules
that produce the non-locals with the other rewrite rules are eliminated. By
eliminating these dependencies, the changes to the rest of the language imple-
mentation (grammar and rewrite rules) will no longer invalidate the rewrite
rule producing the non-local but will only affect where the non-local result
must be relocated to, hence will only have an affect on the relocation path.
Naturally, in order to attach the relocation of a nonlocal, we need to establish
some kind of dependency. The ’special’ rewrite rule establishes only a depen-
dency on the AST source node and the name of the nonlocal. This is a weaker
dependency which only depends on the AST source node and on the fact that
a transformation of the source AST node produces a nonlocal identifiable by
a name. As a result the rule is more maintainable and more robust to future
evolutions of the language implementation i.e. changes to other rewrite rules,
results they produce, etc.

Paths on top of the source AST are more robust to changes to the pro-
duced target AST caused by modifications to the rewrite rules which produce
the target nodes, by the relocation phase and by the subsequent integration
phase (which is described next). Moreover there is no detailed knowledge re-
quired to further integrate the non-locals into the subtree of the produced top
level target node AST node. The actual integration is captured in separate
integration rules. This minimizes the dependencies between the rewrite rule
that relocates the non-local node and the rewrite rule that produces the top
level of AST node.

3.3 Integration Step

In the previous section we saw that the relocation moves the non-locals to
the top-level target AST nodes produced by the transformation of the source
AST node described in the relocation. In this final step the non-locals are
invasively integrated into that subtree (starting at the top-level target AST
node).

3.3.1 Approach

Integration ensures that the non-locals are correctly integrated in the subtree
pointed to by the relocation path according to the semantics of a particular
integration and to particular language constraints. For example, the integra-
tion of the non-local statements, produced by the inputfield transformation,
into the main method body must obey the user-defined order of the different
statements (first creation of all inputfields, followed by the attachment of lis-
teners and finally their initialization with default values). Another example is
the integration of the non-local datamember, produced by the same transfor-
mation, into the main class, which must enforce the uniqueness constraint of
the datamembers within a class.

10

Cleenewerck

Integration is a close interplay of three different policies: integration, corre-
spondence and combination. The integration policy is called for each non-local
that was relocated to an AST node. Its task is to integrate the non-local in the
AST node itself or in one of its children. The correspondence policy is used
by the integration policy to check if nodes in the AST need to be combined
with the non-local. The correspondence policy is more like a predicate defined
on nodes to check if they correspond. The combination policy performs the
combination between nodes.

An integration for a nonlocal is specified by a triple (see example below)
of an integration, correspondence and combination node containing the
name of the rule and if necessary some additional information.
(INTEGRATION(POLICY1), CORRESPONDENCE(POLICY2), COMBINATION(POLICY3))

Similar to the custom relocation paths, the specific integration rules to be
used are not specified at the time when the non-local is produced. Instead
the particular rules to be used are also attached to the non-local afterwards
by means of the ’special’ rewrite rules, rendering thus the same evolution and
maintainability benefits. The rules to be used are attached to the non-local
by means of a ’special’ rewrite rule of the following form:
NONLOCAL(_name of the nonlocal_ , NODE) OF _source ast node_

--> NONLOCAL(_name of the nonlocal_ ,

((INTEGRATION(POLICY1),

CORRESPONDENCE(POLICY2),

COMBINATION(POLICY3)) ,NODE))

3.3.2 Integration

We will start with the most simple case of an integration rule which are the
generic integration rules. Afterwards, the custom integration rules are ex-
plained by a more complicated example.

Although the integration depends on the particular non-local and the par-
ticular target subtree, our architecture provides a generic integration rule that
is instantiated for each kind of target AST node. Generic integration rules
alleviate the developer of tedious integration rules for example to traverse
intermediate structures. The generic integration strategy cannot be written
directly in rewrite rules and needs to be generated for every kind of target
AST node. The strategy for the an AST node NODE(NODE1*, NODE2*, ...,

NODEn*) first determines in which part NODEi* the non-local belongs starting
from the left most part. Second, a node NODEij of the NODEi1, ..., NODEim

corresponding with the non-local node is searched. When a corresponding
node has been found, the node and the non-local is combined. Otherwise the
non-local is appended to the part NODEi*.

The instantiation of the generic integration strategy for a class node is
shown below. The two rules integrate a non-local NODE with the default inte-
gration strategy (line 6) into the child nodes NODE* of the class node. When
one of the NODE* nodes corresponds using POLICY2, the non-local node NODE

is combined with it (line 8), otherwise the non-local is just added to the body

11

Cleenewerck

of the class (second rule, line 11).
(1) NODE* = NODE1* NODE2 NODE2*

(2) CORRESPOND(POLICY2, NODE2 , NODE) = TRUE

(3) ===============>

(4) INTEGRATE(DEFAULT,CLASS(NODE*),

(5) NONLOCAL(NAME ,

(6) ((INTEGRATION(DEFAULT),

(7) CORRESPONDENCE(POLICY2), COMBINATION(POLICY3)) ,NODE))

(8) = CLASS(NODE1* COMBINE(POLICY3, NODE2, NODE) NODE2*)

(9) INTEGRATE(DEFAULT,CLASS(NODE*), NONLOCAL(NAME ,

(10) ((INTEGRATION(DEFAULT), CORRESPONDENCE(POLICY2),

(11) COMBINATION(POLICY3)) ,NODE))) = CLASS(NODE* NODE)

Note that the generic integration rules are made possible because the in-
tegration is divided into a integration rule, a combination rule and a corre-
spondence rule which all three are implemented by a different set of rewrite
rules.

Naturally, custom integration rules can be provided as well. The integra-
tion for the non-local statements produced by the inputfield transformation
must regroup the statements so that firstly all the inputfields are created, sec-
ondly the listeners are installed and finally the inputfields are initialized with
a default value. We will exploit the openness of our system, in particular the
fact that each non-local can carry an arbitrary amount of information to guide
the integration process (see 3.1). By attaching to each non-local statement an
identifier, we can easily group during integration the statements. The order of
the groups can be specified by additional information which can be interpreted
by the integration rule.

Below the two rewrite rules that implement this integration rule are shown.
The non-local node NODE is annotated with the group (NAME) to which it
belongs, and a triplet specifying its integration. The integration contains
besides the name of the integration rule (GROUP) also the name of the group
of statements (NAME2) that must come before it. The first rule inserts the
non-local NODE into the list of statements (STATS) before the first statement
belonging to the same group (NAME) as the non-local does. When there is
no such statement, the second rule inserts the non-local right after the last
statement of the group of statements that must come before it.
(1) INTEGRATE(GROUP,

STATS(CONS1* CONS(NODE1,NAME) CONS2*),

NONLOCAL(NAME ,

((INTEGRATION(GROUP, NAME2),

CORRESPONDENCE(DEFAULT), COMBINATION(DEFAULT)) ,NODE)))

= STATS(CONS1* CONS(NODE,NAME) CONS(NODE1,NAME) CONS2*)

(1) INTEGRATE(GROUP,

STATS(CONS1* CONS(NODE1,NAME) CONS2*),

NONLOCAL(NAME ,

((INTEGRATION(GROUP, NAME2),

CORRESPONDENCE(DEFAULT), COMBINATION(DEFAULT)) ,NODE)))

= STATS(CONS1* CONS(NODE1,NAME) CONS(NODE,NAME2) CONS2*)

The implementation of the regrouping of the non-local statements by the
above set of integration rules is not a particular integration for a particular
transformation. The integration rules are abstracted from the particular re-

12

Cleenewerck

grouping required for the statements because they only implement a partial
ordering. The actual ordering is driven by the declarative information at-
tached to the non-locals. So, the integration rule can be reused for similar
cases where partial ordering is needed.

3.3.3 Correspondence

The integration of non-locals is bound by target language constraints and cus-
tom semantics. For example, a datamember can’t just simply be added to the
main class, because a Java class may not contain two datamembers sharing
the same name. So during the integration (see section 3.3.2) we needed to
compare the non-local datamember with the other datamembers to ensure
this constraint. Correspondence rules are declarative specifications stating
whether two nodes correspond. They are implemented as rules which trans-
form a CORRESPOND node, containing a name and the two nodes that need
to be compared, into a TRUE node when the two nodes do correspond. The
correspondence rule below, called DEFAULT states that two datamembers cor-
respond when both their name’s are the same.
CORRESPOND(DEFAULT, DATAMEMBER(NAME,TYPE), DATAMEMBER(NAME,TYPE2)) = TRUE

As you can see, correspondence rules are totally independent of the imple-
mentation of the WIZ language and only involve target language nodes.

3.3.4 Combination

Combination rules are declarative specifications that combine two AST nodes
together in one node. They are implemented with rewrite rules that operate
on a COMBINATION node. Like the CORRESPOND node, a COMBINATION node
contains three parts: a name, and the two nodes that need to be combined.
The first node is the non-local node and the second node is the node that is
part of the AST. The result of a combination is a new node.

We cannot illustrate the combination rules using the current implemen-
tation of the WIZ language because there are no combination rules needed.
However, if we use the an alternative implementation for the key transforma-
tion, a combination rule for methods is needed.
KEY(NAME) --> CONS(LOCAL(mcall(var(NAME) "getValue" ()))

NONLOCAL(("datamember", datamember("Key" NAME))

("initialize", method("main" () (stats (assign(var(NAME) new("Key"))))))))

Instead of producing a non-local assignment statement to initialize the
nonlocal datamember, the rewrite rule produces a nonlocal main method. The
relocation process lifts the main method node to the root node class, where
subsequently the main method node is integrated by the integration process.
Because a Java class cannot contain two methods with the same signature,
a correspondence between the two main method is found. Consequently, the
bodies of the two methods must be combined. There are of course various
ways of combining two method bodies. Each of them can be encoded in a
separate rewrite rule. In the ONTOP combination rule below for the two main

13

Cleenewerck

methods, the non-local method body is placed before the other method body.
COMBINATION(ONTOP,

METHOD(NAME, ARGS, STATS(STATEMENT*)),

METHOD(NAME, ARGS, STATS(STATEMENT*2)))

= METHOD(NAME, ARGS, STATS(STATEMENT* STATEMENT*2))

The above rule simply concatenates the method bodies without taking pos-
sible variable declaration clashes into account, or differences in the parameter
names of the methods. The later can be amended by proper reconciliation
of the deviating method body. The former can be amended by extending the
rule with a simple traversal and a condition (rule shown below). To avoid
duplicate variable declarations within the scope of the merged methods, the
intersection of the variable declarations of the two methods must be empty
(line 3). Calculating the set of variable declarations is done by a top-down
traversal of the bodies of the two methods where each variable declaration is
collected a set (line 1). The traversal breaks when other nodes are encountered
(line 2) to prohibit traversing into inner-scopes.
(1) VARDECLS(VARDECL(VAR,TYPE,EXP),VARDECL*) = VARDECL* VARDECL(VAR,TYPE,EXP)

(2) VARDECLS(NODE,VARDECL*) = VARDECL*

(3) intersection(VARDECLS(STATS(STATEMENT*, []),

(4) VARDECLS(STATS(STATEMENT*2, []))) = []

(5) ===

(6) COMBINATION(ONTOP,

METHOD(NAME, ARGS, STATS(STATEMENT*)),

METHOD(NAME, ARGS, STATS(STATEMENT*2)))

= METHOD(NAME, ARGS, STATS(STATEMENT* STATEMENT*2))

Like the correspondence rules, the combination rules are also stated in
separated rules and involve nothing more then the combination of two nodes.
The advantages those combination rules are thus also the same as the advan-
tages of the correspondence rules: modularity and reusability resulting in a
reduced implementation effort and a positive impact on the maintenance and
evolution of compiler implementations.

3.3.5 Discussion

The correspondence check facilitates many necessary and interesting mecha-
nisms. The two most important mechanisms are the combination of partial
results and the enforcement of uniqueness constraints. By establishing a corre-
spondence between the two partial main methods, these got combined together
into a complete method during the integration. By establishing a correspon-
dence among datamembers nodes (section 3.3.3), we were able to enforce that
datamembers within a class must be unique.

The separation of the integration process yields integration, correspon-
dence and combination rules which are nicely separated into different con-
cerns. The advantages of this separation are twofold: increased reusability
and maintainability. The following three arguments support this claim.
First, integration can be more easily customized and tailored by providing,
for each of the concerns, an arbitrary number of rules. These alternatives

14

Cleenewerck

work seamlessly together with the other already existing rules, enabling the
developer to reuse much of the already existing integration logic. One exam-
ple illustrating the advantage of this tailorization are the generic integration
rules. Because integration is captured in a separate concern, we were able
to provide automatically generated integration rules that could be configured
with custom specified correspondence and combination rules.
Second, the correspondence and combination rules only involve target lan-
guage nodes, rendering them reusable even across several implementations
which share the same target language. Even the integration rules can be ab-
stracted to the level of general integration strategies by driving them with
declarative information which is attached to the non-locals.
Third, the integration process of the non-locals does not depend on a certain
stage during the integration process. This is achieved by two properties: in-
crementability and declarativeness. First, the integration rules incrementally
integrate non-locals in the produced target AST. This way we can relax the
requirements of the integration on a particular state of the target AST. Sec-
ond, the integration rules are driven by information which is attached to the
non-locals. This allowed us to abstract the integration rule from the partic-
ular integration problem at hand to a more general rule. Hence, these two
properties reduce the dependencies, that resulted from the fourth coupling
(section 2.3), of an integration on the particular state and properties of the
AST in the transformation process.

3.4 Putting it all together

What follows is a summary of the steps involved and the development effort
required to implement local-to-global transformations. The inputfield trans-
formation is used as an example.

In the first step a rewrite rule transforms the inputfields (shown below) into
five target AST nodes: one local node and four nonlocals. The three nonlocal
statements are wrapped by a triplet containing their names, the integration
nodes and the nonlocal node itself. The order of the statements is specified
by the integration called GROUP and their partial order can be specified by
their group name (e.g. "link" for the second nonlocal) and the group name
that must precede it (e.g. "create" for the second nonlocal). Since ordering
is can be specified based on the implementation of the inputfield transforma-
tions only, the integration, correspondence and combination can already be
specified during generation. Hence there is no need to attach the integration,
correspondence and combination with the special rewrite rule 3.3. How the
code that produces the links (in the form of listeners) with the other inputfields
is generated, is a technical detail. We only included it for a full understanding
of the rewrite rule. The BUILDLISTENERS is a rewrite rule that traverses the
DEFVALUE source node (first argument) and collects the statements in its last
argument STATEMENTS*. The second argument FIELDNAME denotes the name
of the variable to attach the listeners to and the third argument (DEFVALUE)

15

Cleenewerck

will yield after transformation the appropriate code to reinitialize the variable.
INPUTFIELD(FIELDNAME DEFVALUE) =

CONS(LOCAL(var(FIELDNAME))

NONLOCAL("create" ,

((INTEGRATION(GROUP, ""),

CORRESPONDENCE(DEFAULT), COMBINATION(DEFAULT)) ,

assign(var("appdir") new("InputField"))))

NONLOCAL("link" ,

((INTEGRATION(GROUP, "create"),

CORRESPONDENCE(DEFAULT), COMBINATION(DEFAULT)) ,

BUILDLISTENERS(DEFVALUE, FIELDNAME, DEFVALUE, [])))

NONLOCAL("initialize" ,

((INTEGRATION(GROUP, "initialize"),

CORRESPONDENCE(DEFAULT), COMBINATION(DEFAULT)) ,

mcall(var("appdir") setValue DEFVALUE)))

NONLOCAL("datamember", datamember("Inputfield" "appdir")))

BUILDLISTENERS(VAR, FIELDNAME, DEFVALUE, STATEMENTS*) =

STATEMENTS* mcall(var(VAR) setListener (... DEFVALUE ...))

In the second step, the automatic relocation of the statements and datamem-
bers yields their correct position in the target tree. There is thus no need to
write a custom relation path.

In the third step the non-locals of the inputfield transformation must
be integrated into the AST nodes designated by the relocation step. For
statement and datamember node types we define a correspondence rule called
default stating that statements never correspond and datamembers correspond
when their names and types are equal (see 3.3.3).
CORRESPOND(DEFAULT, STATEMENT1, STATEMENT2) = FALSE

Subsequently the integration rules must be defined to integrate the state-
ments, the datamembers and the methods. As the architecture provides a
generic strategy for integration rules for each target AST node, consequently
only integration rules that deviate from the generic strategy need to be writ-
ten. For the inputfield transformation only an integrate rule for regrouping
the statements had to be written (see section 3.3.2). The integration of the
datamember is handled by the generic strategy.

4 Discussion

The process of handling non-locals is divided into a number of separated mod-
ules: the generation, the automatic relocation, the custom relocation, and the
three integration, combination and correspondence rules. Each part addresses
a tangible and separated concern of the implementation and captures its in-
tention in a clear declarative way. We can thus conclude that the first coupling
(section 2.3) between the mechanisms to implement local-to-global transfor-
mations and a particular implementation for a transformation, has been elim-
inated. The other couplings mentioned in the beginning of the paper have
been adressed and discussed in the previous sections 3.2.3, 3.3.5.

The decoupling and disentangling of the implementation relies on the cor-
rect use of names and the extra information attached to the nonlocals. The
names themselves do not contain any semantics. Hence it is up to the user to

16

Cleenewerck

properly use the names to guide himself in the implementation of the local-to-
global transformations. A specification language to express these semantics
would be more solid.

By reducing and eliminating the coupling in the implementation main-
tenance and evolution is facilitated. The impact of maintenance and future
evolutions is limited to specific modules. Changes to the source language have
only an impact on the custom relocation. Changes to the target language have
only an impact on the three rules (integration, correspondence and combina-
tion rules) and on the automatic relocation. Since the latter is an automated
process based on the target language, the changes to the target language are
automatically reflected in the automatic relocation. Finally changes to the
transformations of the source language to the target language are localized
to and affects only the implementation parts of that transformation i.e. gen-
eration, relocation and integration. During generation the rewrite rule may
produce all the results (both local and non-local) that are derivable from the
source node under transformation without taking other transformations into
account. If custom relocation was necessary, attaching the relocation path
and the path itself is only dependent on the fact that one transformation pro-
duces a result with a particular name, instead of all the transformations. The
integration rules are solely defined on top of the target language nodes which
yield them also independent of the other transformations.

However, other factors like complexity and comprehensibility also influence
maintainability and evolvability. Although the architecture is more complex,
it absorbed procedural aspects of the implementation leaving a greater con-
centration of declarative aspects in the implementation. But that does not
necessarily render implementations more comprehendible to the programmer.
The impact of this on maintainability and evolvability is difficult to deduct.
A case-study of several complete transformations sets comparing the different
contemporary approaches is required to clarify this issue.

There are a couple of limitations of our approach. First, the automatic
relocation process is limited to the grammar of the target language. Using
more information about the semantics of the target programming language
could improve the system. Second, the integration process is incremental.
This incrementability increases the complexity of the integration rules. A full
discussion of these issues can be found in [4].

The validation of our approach is based on early experiments including the
implementation of the compiler for the WIZ language used in this paper. We
are currently involved in several experiments to validate our technique: the
development of a DSL for quizzes with the flemish broadcasting company [5],
the development of a open set of language components for a family of DSLs
to describe advanced transaction models [7], and the development of modular
language features for developing EJB specifications. To implement these lan-
guages local-to-global transformations and other invasive composition mecha-
nisms are needed. These languages will be used as a case study and serve as an

17

Cleenewerck

empirical validation for our approach. The mechanisms proposed in this paper
were implemented on top of the linglet transformation system (LTS) (previ-
ously known as the keyword based programming toolkit [3]). The modularity
of the system immediately acted as additional validation mechanism, testing
whether the implementation of our semi-automatic mechanism obeyed this.
Since modularity reduces the dependencies, this modularity is a key enabler
for a better maintainable and evolvable language implementation.

5 Related work

In the survey of Jonne van Wijngaarden et. al. [15] current day transforma-
tion systems are compared and classified according to three transformation
mechanics i.e. scope, direction and stage. Transformations with a wide target
scope and a single node source scope are called local-to-global transformations.
The survey explored whether the basic mechanisms like querying and travers-
ing the parse tree are available in current day transformation systems in order
to implement local-to-global transformations. In this paper we went a step
further and investigated the repercussions of those mechanisms on the com-
plexity, maintainability and evolvability of their implementations. We found
that those mechanisms easily result into over-complex implementations and
severely constrain maintainability and evolvability.

ASF+SDF [13] , Stratego [16], TXL [6], XSLT [2] provide a very power-
ful traversal system but the traversals to locate, collect, and redistribute the
non-locals must be written against an intermediate parse tree consisting only
of target nodes. Consequently the implementation easily results in a tangled
web of traversals and rewrite rules as was discussed in section 2.2. The scoped
dynamic rewrite rules of Stratego allow for non-local effects but their scopes
are defined statically, in other words the scopes are determined at compile
time. In our approach the scope of the integration rules are resolved at trans-
formation time by the relocation process. Attribute grammars [8] and similar
systems like intentional programming [10,11] have an implicit query system
using inherited and synthesized attributes. The drawback of this mechanism
is the lack of control over the source of the information, a feature which is
vital for custom relocation strategies and for the specific integration of a non-
local. Furthermore to prevent cylces, the implicit scheduling mechanism for
the computations of attributes would require to decouple the production of the
local from the non-local results. This decoupling has some drawbacks which
were discussed and tackled in [16].

Although XSLT is equipped with a very powerful path language called
XPath [1], it cannot be used to relocate non-local results. In our approach
we are able to apply the XPath language for relocation, in a skinned and
customized version of the language to ensure structure shyness.

Transformations in target driven transformation systems implicitly per-
form the integration process: they retrieve the necessary source nodes and

18

Cleenewerck

use them to construct a target language construct. The source nodes are
transformed, and integrated with one another using implicit correspondence
and implicit combination rules between the generated parts. The approach
we took on the other hand, made the integration explicit through separate
integration rules which allowed the reuse and partial automation of rules and
limited the impact of changes on the whole implementation.

In contrast to our approach none of the current day systems exploit the
grammar to provide a semi-automatic relocation and composition system, and
none of the systems provide an adaptable and modular integration mechanism
that is driven declaratively.

6 Conclusion

Transformation systems, in particular rewrite rule systems, fail to deal with
local-to-global transformations without corrupting maintainability and future
evolvability. Our solution architecture enables the use of modular and sim-
ple rewrite rules to implement local-to-global transformations hereby avoiding
complex, tangled traversals and rewrite rules and scheduling problems. We
identified four identified coupling problems in current-day implementations.
All of these have been reduced and some have been eliminated by our ap-
proach. Furthermore no other undesired couplings were introduced in the
process. The impact of maintenance and future evolutions of one transfor-
mation to the implementation parts of that same transformation is localized
and limited to specific modules. The relocation mechanism and the reusable
integration, correspondence and combination rules across different implemen-
tations render the implementation of local-to-global transformation into a
semi-automatic process, hence significantly reducing the implementation ef-
fort. This has a positive impact on the maintainability and future evolvability
of the implementation.

References

[1] Anders Berglund, S. B., XML Path Language (XPath) 2.0 W3C Working Draft
15 November 2002 (2002).

[2] Clark, J., XSL Transformations (XSLT) Version 1.0 W3C Recommendation 16
November (1999).

[3] Cleenewerck, T., Component-based DSL Development, in: Proceedings of
GPCE’03 Conference, Lecture Notes in Computer Science 2830 (2003), pp.
245–264.

[4] Cleenewerck, T., Disentangling the Implementation of Local-to-Global
Transformations in a Rewrite Rule Transformation System, in: Proceedings of
the Symposium on Applied Computing Conference, 2005.

19

Cleenewerck

[5] Cleenewerck, T., D. Derrider, J. Brichau and T. D’Hondt, On the evolution
of iMedia implementations, in: Proceedings of the European Workshop on the
Integration of Knowledge, Semantics and Digital Media Technology, 2004, pp.
173–180.

[6] Cordy, J., T. Dean, A. Malton and K. Schneider, Software Engineering by Source
Transformation - Experience with TXL, SCAM’01 - Int. Workshop on Source
Code Analysis and Manipulation (2001), pp. 168–178.

[7] Fabry, J., But What if Things go Wrong? In Communication Abstractions For
Distributed Systems workshop at ECOOP 2004 (2004).

[8] Knuth, D. E., Semantics of context-free languages, in: Mathematical Systems
Theory, 1968, pp. 168–178.

[9] M., N. J., The draco approach to constructing software from reusable
components, in: C. Rich and R. C. Waters, editors, Artificial Intelligence and
Software Engineering, 1986, pp. 525–535.

[10] Simonyi, C., The death of computer languages, the birth of Intentional
Programming, in: The Future of Software, Proceedings of the Joint International
Computers Limited/University of Newcastle Seminar, University of Newcastle,
1995.

[11] Simonyi, C., Intentional Programming - Innovation in the Legacy Age, IFIP
WG 2.1 meeting, Microsoft Research (1996).

[12] Smaragdakis, Y. and D. Batory, Application Generators, Encyclopedia of
Electrical and Electronics Engineering (2000), j.G. Webster (ed.), John Wiley
and Sons.

[13] Van Den Brand, M. and P. Klint, “ASF+SDF Meta-Environment User
Manual,” Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, 1098
SJ Amsterdam, The Netherlands (2002).

[14] Van Den Brand, M. G. J., P. Klint and J. J. Vinju, Term rewriting with traversal
functions, ACM Trans. Softw. Eng. Methodol. 12 (2003), pp. 152–190.

[15] Van Wijngaarden, J. and E. Visser, Program Transformation Mechanics,
Technical Report UU-CS-2003-048, Universiteit Utrecht (2003).

[16] Visser, E., Stratego: A Language for Program Transformation Based on
Rewriting Strategies, Lecture Notes in Computer Science 2051 (2001), pp. 357–
361.

20

	Introduction
	Local-to-Global Transformations
	Motivating Example
	Implementation using rewrite rules
	Coupling and tangling

	Resolution of Non-local Target Nodes
	Generation Step
	Relocation Step
	Integration Step
	Putting it all together

	Discussion
	Related work
	Conclusion
	References

