
Ambient-Oriented Programming

Jessie Dedecker∗ Tom Van Cutsem∗

Stijn Mostinckx† Wolfgang De Meuter Theo D’Hondt
Programming Technology Laboratory

Department of Computer Science
Vrije Universiteit Brussel, Belgium

jededeck | tvcutsem | smostinc | wdmeuter | tjdhondt@vub.ac.be

ABSTRACT
A new field in distributed computing, called Ambient In-
telligence, has emerged as a consequence of the increasing
availability of wireless devices and the mobile networks they
induce. Developing software for such mobile networks is
extremely hard in conventional programming languages be-
cause the network is dynamically defined. This hardware
phenomenon leads us to postulate a suite of characteris-
tics of future Ambient-Oriented Programming languages. A
simple reflective programming language kernel, called Am-
bientTalk, that meets these characteristics is subsequently
presented. The power of the reflective kernel is illustrated
by using it to conceive a collection of high level tentative
ambient-oriented programming language features.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—distributed languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks

General Terms
Design, Languages

Keywords
ambient intelligence, mobile networks, actors, language ker-
nel

1. INTRODUCTION
Applications for mobile devices are given a new meaning
with the advent of mobile networks. Mobile networks sur-
round a mobile device with wireless technology and are de-
marcated dynamically as users move about. Mobile net-
works turn the applications running on mobile devices from

∗Research Assistant of the Fund for Scientific Research Flan-
ders, Belgium (F.W.O.)
†Author funded by a doctoral scholarship of the “Institute
for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT Vlaanderen”

mere isolated programs into smart applications that can co-
operate with their environment. As such, mobile networks
take us one step closer to the world of ubiquitous computing
envisioned by Weiser [48]; a world where (wireless) technol-
ogy is gracefully integrated into the everyday lives of its
users. Recently, this vision has been termed Ambient In-
telligence (AmI for short) by the European Council’s IST
Advisory Group [27].

Mobile networks that surround a device have several prop-
erties that distinguish them from other types of networks.
The most important ones are that connections are volatile
(because the communication range of the wireless technol-
ogy is limited) and that the network is open (because de-
vices can appear and disappear unheraldedly). This puts
extra burden on software developers. Although low-level
system software and networking libraries that provide uni-
form interfaces to these wireless technologies (such as JXTA
[23] and M2MI [31]) have matured in the last couple of
years, developing application software for mobile networks
still remains difficult. One of the main reasons for this is
that current-day programming languages lack abstractions
to deal with the mobile hardware characteristics. Indeed, in
traditional programming languages failing remote commu-
nication is usually dealt with using the classical exception
handling mechanism. However, solutions based on classical
exception handling do not suffice anymore because poten-
tial mobile network failures are the rule rather than the ex-
ception. This results in the entire application code being
polluted with exception handling code. This observation
justifies the need for a new Ambient-Oriented Programming
(AmOP for short) paradigm that consists of programming
languages that explicitly incorporate potential network fail-
ures in the very heart of their basic computational steps.

One of the problems is that the AmOP language paradigm
forms a moving target because the field is relatively new
and only few applications have been developed that start to
explore the potentials of mobile networks. Therefore, our
research has focussed on the hardware phenomena that dis-
tinguish mobile networks from existing stationary networks,
in order to distill a number of fundamental programming
language characteristics that define the AmOP paradigm.
These characteristics were used to define a reflective AmOP
language kernel called AmbientTalk. AmbientTalk is pre-
sented as an improvement on the classical actor model in
the sense that it meets the characteristics prescribed by the
AmOP paradigm whereas the classical actor model does not.

AmbientTalk as a kernel is too rudimentary to be used as a
practicable programming language, but its building blocks
have been designed in a way that it can be used to further ex-
plore the language design space opened up by the described
hardware evolution. We show this by using the reflection
operators of the language in order to build a collection of
tentative high level AmOP language features that facilitate
programming for mobile networks.

The discourse of this paper is organised as follows. In the
next section we begin by listing the fundamental hardware
phenomena that distinguish mobile networks from existing
technology. We also situate our research in the field of ex-
isting programming languages and middleware in order to
motivate AmOP. From these phenomena, section 3 derives
a collection of programming language characteristics we will
use to define the AmOP paradigm. Based hereupon, the re-
flective AmbientTalk kernel language is presented in section
4. Finally, in section 5 we show how AmbientTalk enables
the exploration of the AmOP programming language design
space by presenting a set of language constructs aimed at
high level application development for mobile networks.

2. MOTIVATION
In the context of mobile networks, one sometimes makes
a distinction between nomadic and ad hoc distributed sys-
tems depending on whether a shared infrastructure is used to
support the mobile communication. Nomadic systems use
such an infrastructure (e.g. cellular phones hopping from
one cell to another) whereas ad hoc ones do not (e.g. two
PDA’s that encounter each other). Figure 1 depicts a sce-
nario where multiple mobile devices are communicating us-
ing contemporary infrastructure for mobile communication.
The infrastructure is typically used to extend the commu-
nication range of mobile devices. Both types of distributed
systems have different requirements with respect to their
behaviour in isolation and to the scalability [36], but many
characteristics are shared.

The technical hardware properties of the devices which con-
stitute ad hoc and nomadic distributed systems engender a
number of phenomena that have to be dealt with by the soft-
ware support (i.e. middleware and/or distributed language
processors) that one uses for application programming on
the devices. We summarize these hardware phenomena in
section 2.1 and describe how existing support under the form
of both programming languages and middleware fail to deal
with them in sections 2.2 and 2.3. This forms the main
motivation for our work.

2.1 Hardware Phenomena
With the current state of commercial technology, mobile
devices are often characterised by scarcer resources (such
as lower CPU speed, smaller memory and limited battery)
than traditional hardware. However, we cannot help but
notice that in the last couple of years, mobile computing
devices and “real computers” like laptops are blending more
and more. That is why we do not consider these restrictions
as fundamental to the AmOP paradigm as we consider the
following considerations to be:

• Connection Volatility

Two processes that perform a meaningful task together
on two cooperating devices cannot assume a stable
connection. The limited communication range of the
wireless technology combined with the fact that users
can move out of range can result in a broken connec-
tions. However, upon restoring a broken connection,
users typically expect the task to resume. In other
words, they expect the task to be performed in the
presence of a volatile connection.

• Ambient Resources
If the user moves with his mobile device remote re-
sources become dynamically (un)available in the en-
vironment because the availability of a resource may
depend on the location of the device. This is in con-
trast with stationary networks in which references to
remote resources are obtained based on the explicit
knowledge of the availability of the resource. We say
that the available resources are now ambient.

• Autonomicity
Most distributed applications today are developed us-
ing the client-server approach. The server often plays
the role of a “higher authority” which coordinates in-
teractions between the clients. In mobile networks,
and especially in mobile ad hoc networks, a connec-
tion to such a “higher authority” is not always possi-
ble. Every device acts as an autonomous computing
unit.

• Natural Concurrency
In theory, distribution and concurrency are two differ-
ent phenomena. For instance in a client-server setup,
a client might wait for the results of a request to the
server in order to resume its computation. Hence,
in theory a distributed system is not necessarily a
concurrent one. However, even in the extreme case
where both parties of communicating mobile devices
run a single threaded program, the autonomicity im-
plies that the resulting task is a concurrent one. More-
over, the trend of software getting ever more multi-
threaded will also manifestate itself on mobile devices.
As a result, concurrency is a natural phenomenon in
software running on mobile networks.

2.2 Languages
To the best of our knowledge no distributed language has
been specifically designed to meet the harsh characteristics
of mobile computing just described. The distributed lan-
guages that have been proposed in the past can be cate-
gorized as languages designed for local area networks and
languages that have been designed for open networks, such
as the internet.

2.2.1 Languages for Local Area Networks
A number of distributed languages have been proposed, which
target local area networks. Some of them are based on syn-
chronous (hence blocking) communication primitives, such
as Emerald [29] and Obliq [10], while others, like the ABCL/f
[44] and Argus [33] promote an intermediate form based on
futures. These communication mechanisms are feasible for
reliable networks, where failures are the exception, but harm
the autonomicity when used in high latency networks, such
as mobile networks.

Internet

A

C D

E

F
G

B

Mobile device
equipped
with Bluetooth/WiFi

Bluetooth/WiFi
communication
range

GSM Connection
Point

Wireless GSM
Communication

Fixed
Communication

WiFi Base Station

Legend:

Figure 1: Communication Infrastructure. A com-
municates with C through GPRS. C and D form an
ad hoc network via Bluetooth. B is isolated. E and
G communicate with each other via F.

2.2.2 Languages for Open Networks
Some distributed languages, such as Janus [30], Salsa [46]
and E [39], are based on the actor model. The actor model
is based on pure asynchronous communication, which pre-
serves the autonomicity of devices in the context of high
latency and failures. However, these languages offer no sup-
port to discover ambient resources or to deal with consis-
tency issues found in partitioned networks.

2.3 Middleware
An alternative to distributed languages is middleware. Over
the past few years a lot of research has been invested in
middleware for nomadic and ad hoc distributed systems [36].
This bulk of research can be categorized into several groups.

2.3.1 RPC-Based Middleware
Alice [24] and DOLMEN [41] are attempts to make CORBA
feasible for supporting nomadic distributed systems. These
attempts focussed mainly on making heavyweight ORBs
suitable for the lightweight devices and on improving the
resilience of the IIOP protocol to failing communication.
Other approaches adapt the RPC protocol by supporting
queuing of RPCs [28] or enabling rebinding of resources [43].
These approaches work well when connections are lost for
a short time, but do not address disconnections over longer
periods of time.

2.3.2 Publish-Subscribe Middleware
Another, more recent, branch of middleware for mobile com-
puting is based on the adaptation of the publish-subscribe
paradigm [20] to cope with the characteristics of mobile
computing [13, 9, 14]. Such middleware allows to express
context-aware communication, but has the disadvantage that
communication has to be done via callbacks. Such callbacks
clutter the code and make the program less understandable.

2.3.3 Tuple Space Based Middleware
In the past few years middleware has been proposed [40,
15, 35, 21] for mobile computing based on tuple spaces [22].
A tuple space is used as an intermediary data structure to

coordinate communication between processes. This inter-
mediary data structure enables communication that is un-
coupled in both time and space. These two properties of
communication are interesting in the context of mobile com-
puting. Time uncoupling enables communication when two
processes are not available at the same time (for example,
when a party is not connected or when it is processing data).
The uncoupling in space enables undirected communication
between processes, which is also important in the context
of mobile computing as a means to discover communication
partners in the ambient. Most of the research done so far
on tuple spaces in the context of mobile computing can be
categorized as efforts to distribute the tuple space over a set
of devices.

Although tuple spaces are an interesting communication paradigm
for mobile computing, the paradigm does not integrate well
with the object-oriented paradigm because communication
is achieved by placing data in a tuple-space as opposed to
sending messages to objects. Also, most tuple space based
middleware do not provide the means for expressing failure
semantics.

2.3.4 Data Sharing-Oriented Middleware
Another branch of middleware tries to maximize the auto-
nomicity of mobile devices. In most approaches, such as
Coda [42], Bayou, [45], Rover [28] and XMiddle [49], this
is achieved by introducing weak replica management facil-
ities in the middleware. Due to the connection volatility
replica’s are not always synchronized. This can lead to a
series of conflicts, which are often application specific and
must be resolved depending on the application.

2.4 Summary
The current state of the art in middleware does not address
all the important characteristics that are encountered when
developing a nomadic or ad hoc distributed system. Re-
garding distributed languages there have been a number of
proposals suitable for open distributed networks, but they
have not yet been applied in the context of mobile com-
puting and do not consider characteristics such as service
discovery and limited resources.

3. AMBIENT-ORIENTED PROGRAMMING
In the same way that referential transparency can be re-
garded as a defining property for pure functional program-
ming, this section presents a collection of language design
characteristics that define the boundaries of the ambient-
oriented programming paradigm. These characteristics are
directly derived from the hardware phenomena we summa-
rized in section 2.1. Until now, it seems that the object-
oriented paradigm is the most successful one w.r.t. dealing
with distribution and its induced concurrency because it suc-
cessfully aligns encapsulated objects with concurrently run-
ning distributed software entities [6]. Therefore, our most
basic assumption is that ambient-oriented programming lan-
guages necessarily are concurrent distributed object-oriented
programming languages. However, ambient-oriented pro-
gramming languages differ from other distributed concur-
rent object-oriented programming languages in the following
ways:

3.1 Non-Blocking Communication Primitives
The fact that every hardware device is an autonomous com-
putational entity (inducing natural concurrency) combined
with the fact that connections are volatile, implies the ne-
cessity for non-blocking communication primitives. Block-
ing communication is a source of (distributed) deadlocks
[47]. Deadlocks and distributed deadlocks in local networks
are not considered to be that harmful, since the cause of
the deadlock can be easily debugged with contemporary
remote debugging environments. However, in mobile net-
works, not all parties are necessarily available for communi-
cation and this makes the resolution of deadlocks extremely
hard in such networks. Another, more important considera-
tion when designing a concurrency model for a language that
is to run on mobile networks, is that the mechanism should
minimize the duration resources are locked. This is very im-
portant, because the extremely high latency of communica-
tion (over volatile connections) in mobile networks would di-
minish the availability of resources. Indeed, having blocking
communication primitives would imply a program or device
to block upon encountering unstable connections or tempo-
rary unavailability of another device. This has previously
been remarked on several occasions [36, 14, 40]. We thus
conclude that an ambient-oriented concurrency model is a
concurrency model without blocking communication primi-
tives.

Quite often, the issue of non-blocking communication is con-
fused with asynchronous communication. It is important
to see that asynchronous message sending is only one half
of non-blocking communication. Asynchronous communica-
tion implies that the send operation is non-blocking. How-
ever, asynchronous communication tells us nothing about
the receive operation (which might be implicitly present). A
typical example of asynchronous send operations combined
with blocking receive operations is found in the tuple-space
based middleware (discussed in section 2.3.3), which provide
explicit, blocking receive operations on the tuple-space .

3.2 Reified Communication Traces
Non-blocking communication (both send and receive) com-
bined with the autonomicity of the communicating devices
implies that they will have to foresee some form of hand-
shaking given the fact that these devices are performing a
meaningful task together. Since the communication is non-
blocking, both senders and receivers will continue their exe-
cution irrespective of what happened after a message send.
This means that the parties might end up in a state that
is not consistent with the semantics of whatever the task it
is that they are solving. Whenever such an inconsistency is
detected, the parties must be able to restore their state to
whatever previous consistent state they were in, such that
they can decide what to do based on the final consistent
state they agreed upon. Examples of the latter could be
overruling one of the two computations or deciding together
on a new state with which both parties can resume their
computation. Therefore, a programming language in the
ambient-oriented paradigm will have to provide us with re-
versibility provisions giving programmers a way to manipu-
late their execution state based on an explicit representation
(i.e. a reification) of the communication details that led to
the inconsistent state. The explicit representation will allow
them to take the appropriate actions to reverse (part of) the

computation. Notice that any implicit way to prevent the
communicating parties from ending up in an inconsistent
state implies that communication primitives are blocking,
which was precluded above. Having an explicit reified rep-
resentation of whatever communication that happened, al-
lows a device to properly recover from an inconsistency by
reversing part of its computation.

Several degrees of message delivery guarantees can be asso-
ciated with non-blocking communication. For example, in
the many-to-many invocations library [31], where all com-
munication occurs via asynchronous messages, there are no
delivery guarantees. When a message is sent and there is
no process listening for messages, the message is lost. Such
communication paradigm is light-weight with respect to the
usage of resources and is suitable when no delivery guaran-
tees are to be met. On the other end of the spectrum there is
the actor model, where all asynchronous messages that are
sent must eventually be received [1]. Such an approach is
perhaps feasible when there are abundant resources, but in
the context of mobile computing, where devices have scarce
resources, it is clear that such an approach is not practi-
cable. This shows that there is no single “right” message
delivery guarantee policy because a tradeoff will have to be
made based on the requirements of the application and on
the available resources. Programming languages belonging
to the ambient oriented paradigm should make this tradeoff
possible instead of imposing a single strategy. Explicit con-
trol over the communication traces allows one to make the
tradeoff between different delivery guarantees.

3.3 Ambient Acquaintance Management
The fact that hardware devices are autonomous, combined
with the fact that resources are dynamically detected as
the devices are roaming means that all devices potentially
have the same capabilities to interact with each other di-
rectly without relying on a third party. This is in contrast
to client-server communication models where clients usu-
ally interact through the mediation of a server (such as is
the case with chat servers or white boards). The fact that
communicating parties do not need to have an explicit ref-
erence to each other (whether directly or indirectly through
a server) requires what is known as distributed naming [22].
For example, in tuple-space based middleware this prop-
erty is achieved, because a process can publish data in a
tuple space, which can then be consulted by the other pro-
cesses based on a pattern matching basis. Another example
is many-to-many invocations [31], where broadcasts to all
objects implementing a certain interface can be expressed.
Distributed naming is especially important in the context
of ad hoc distributed systems, because it provides a mech-
anism to communicate when the addresses of the processes
are not known beforehand.

We are not arguing that all ambient-oriented applications
must be based on distributed naming. It is perfectly pos-
sible that a programmer (or even a suite of running pro-
cesses) sets up a server for the purposes of a certain applica-
tion. However, an ambient-oriented programming language
should allow applications to rely on distributed naming if it
is required. In other words, the acquaintances of an object
must be dynamically manageable).

3.4 Discussion
The three characteristics introduced above define ambient-
oriented programming languages. It is hard to prove that
these three characteristics for future languages are necessary
and sufficient to support future ambient applications. Since
the characteristics were derived from the hardware phenom-
ena presented in section 2.1, they are clearly necessary. The
fact that they are probably also sufficient is motivated by
the fact that in order to send a message, one must a) estab-
lish an acquaintance relation between communicating par-
ties, b) have primitives to exchange the message, and c) have
primitives to manipulate the message. These aspects are all
covered by the above considerations.

The current state of the art in distributed languages does
not conform to the characteristics of AmOP. On the one
hand, languages for local area networks do not meet the non-
blocking communication characteristic. On the other hand,
languages for open networks usually satisfy the non-blocking
communication characteristic, but do not allow for ambient
acquaintance management and do not provide reversibility
provisions.

Cardelli and Gordon have proposed a formal model, named
mobile ambients, which was designed to make an abstraction
of mobile computations and mobile computing [11]. Our ap-
proach is more pragmatic, as it deals with the issues directly
at the programming language level.

4. THE AMBIENTTALK KERNEL
Now that we have established the characteristics of the am-
bient paradigm, the stage is set for the introduction of the
kernel language AmbientTalk, which enables language de-
signers to explore the realm of language features that fa-
cilitate ambient-oriented programming. Before explaining
the essential characteristics of the object system of the lan-
guage, we introduce the ambient actor model, which lies at
the heart of the kernel language. Afterwards we discuss the
specific language features and reflective operators of Ambi-
entTalk that enable language extensions.

4.1 The Ambient Actor Model
The ambient actor model [19] is an extension of the actor
model, which was first proposed by Hewitt [26] and fur-
ther developed by Agha [2]. The actor model behaves well
with regard to the non-blocking communication character-
istic of the paradigm. This is because all communication
between actors (the unit of concurrency and distribution) is
asynchronous and the model does not introduce an explicit
receive operation. However, the model has some limitations
with regard to the other two characteristics.

• Ambient Acquaintance Management: The model
does not support the Ambient Acquaintance Manage-
ment characteristic of the ambient paradigm, because
an actor relies on other actors to gain new acquain-
tances. The ActorSpace model [8], an extension to the
actor model, enables distributed naming by introduc-
ing an actor grouping mechanism, named spaces. How-
ever, these spaces are managed by centralized authori-
ties, which is infeasible in a mobile computing setting.
Furthermore, it is not specified how the ActorSpace

model behaves if an authority manipulates the space
if the network is partitioned, which is a common occu-
rance in mobile networks.

• Reified Communication Traces: Actors and Ac-
torSpaces do not support reified communication traces,
because the model guarantees eventual delivery. As
a consequence, it is e.g. impossible to introduce lan-
guage constructs which retract messages that were sent,
but not yet transmitted. This kind of flexibility is
sometimes needed to resolve conflicts in the case of
network partitions as argued in section 3.2.

The Ambient Actor Model [19] alleviates these restrictions
with the introduction of explicit mailboxes. The use of such
mailboxes is twofold: making the communication state of an
actor explicit and allowing for ambient acquaintance man-
agement. Both uses are detailed below.

4.1.1 Communication State
The ambient actor model provides explicit control over the
communication state of an actor. When scrutinising the
communication structure of the actor model, we can dis-
tinguish between four types of messages. The first type of
messages are those an actor received but still needs to pro-
cess. A second type of messages are those the actor has sent
but that have not yet been transmitted. Third, there are
messages that an actor has received and processed. Finally,
there are the messages that an actor has sent and trans-
mitted. Together, these four types of messages describe the
complete communication trace of an actor over time.

In contrast to the regular actor model, where every actor
merely has an implicit message queue for accumulating in-
coming and outgoing messages, the ambient actor model
allows clear distinction of these four types of messages by
introducing four explicit mailboxes. The messages of the
first type are put in the mailbox in, the second type of mes-
sages are put in the mailbox out. If an actor receives a
message, then that message will be put in the mailbox in,
waiting to be processed by that actor. When a message is
sent by an actor it is put in its mailbox out, waiting to be
transmitted to the recipient of that message. Both mail-
boxes in and out are implicitly present in the actor model
and enable non-blocking communication primitives, which
are a necessary characteristic for the ambient-oriented pro-
gramming paradigm as argued in section 3.1.

In addition to the mailboxes in and out there are two more
mailboxes, rcv and sent, for the third and fourth type of
messages respectively. In the ambient actor model, when a
message is processed it is moved from the mailbox in to the
mailbox rcv and when a message is actually transmitted to
another actor, then the message is moved from the mailbox
out to the mailbox sent. Conceptually, the mailboxes rcv

and sent allow one to have a peek in the past of the com-
munication history of an actor. Note that the mailboxes
in and out of the actor represent its continuation, because
these two mailboxes contain the messages it will process and
transmit in the future. Hence, through the introduction of
these four explicit mailboxes we have a gate to the past and
the future of the actor’s state of communication, which en-
ables the reified communication traces that were argued in

section 3.2.

Apart from the four mailboxes that control the state of com-
munication, every actor can create custom mailboxes. Mes-
sages can reside in multiple mailboxes at the same time. The
status of the delivery of a message can be monitored and al-
tered by accessing the appropriate mailbox. For example,
by removing a message from the mailbox out we can stop
the message from being delivered. Hence, by giving access
to the mailboxes, first-class continuations are attained. The
mailboxes in and out not only allow one to have a peek
in the future computation and communication of the actor,
but even to manipulate it. For example, we could remove
a message from the mailbox in and thereby prevent it from
being processed by the actor.

4.1.2 Ambient Acquaintance Management
In section 3.3 we argued that a form of distributed naming
should be possible in ambient-oriented programming lan-
guages. In the AAM, distributed naming is available via a
pattern-based lookup mechanism. A pattern is an abstract
description of a set of actors and is specified by a commu-
nicable value. An actor that wants to search for certain
other actors in its ambient places a corresponding pattern
in its mailbox required. Conversely, when an actor wants
to make itself available for other actors it places a pattern
with a description of itself in its mailbox provided. In the
former case the actor is said to require a pattern, while in
the latter case the actor is said to provide a pattern. Mul-
tiple patterns can be added to a mailbox so that an actor
can require or provide multiple patterns simultaneously. A
pattern can also be removed from either mailboxes at any
time when the actor no longer requires or provides a certain
pattern.

When two or more actors enter one another’s communication
range and have a corresponding pattern in their mailboxes,
the mailbox joined of the actor that required the pattern
is updated with a resolution. Such a resolution is a pair
consisting of the pattern and a reference to the actor who
provided the pattern. Conversely, when two actors with
a corresponding pattern in their mailboxes are pulled out
of communication range, the resolution is moved from the
mailbox joined to the mailbox disjoined. This mechanism
allows actors not only to detect new resources in its ambi-
ent, but also to detect when actors have disappeared from
the ambient. Through this mechanism an actor can man-
age the acquaintances it encounters in its ambient, which is
a characteristic required for ambient-oriented programming
languages as discussed in section 3.3

4.1.3 Mailbox Properties
The operational semantics of the ambient actor model [19]
exhibits two mailbox properties which are important to avoid
race conditions on the mailboxes of an actor.

1. Mailbox Privacy
Each mailbox has a unique name within an actor. A
mailbox is associated with exactly one actor and an ac-
tor cannot communicate a reference to one of its mail-
boxes 1. Hence, mailboxes are never shared among

1However, it is possible to communicate the name of a mail-

multiple actors. This is called the mailbox privacy
property.

2. Serial Mailbox Access
In the ambient actor model a mailbox is manipulated
by two different entities: the actor owning the mail-
box and the actor system which updates the mailbox
when certain low-level events occur, for example when
a message is transmitted. The operational semantics
of the ambient actor model is defined in such a way
that the manipulation of mailboxes by these two enti-
ties cannot occur concurrently. Hence, while an actor
processes a message its mailboxes can only be changed
by itself, not by the actor system. Messages that the
actor system cannot send at that time remain in the
out mailboxes of the corresponding actors until they
can be transmitted. The characteristic that only one
entity can manipulate a mailbox at a time is called the
serial mailbox access property.

Both the mailbox privacy and the serial mailbox access prop-
erties are important, because they preserve the encapsula-
tion of the actors and avoid race conditions on mailboxes.

4.2 The Object System
The object model of AmbientTalk is based on the object
model of Pic% [17] (pronounced as Pic-oh-oh), which is a
small multi-paradigm (functional and object-oriented) pro-
gramming language. The language is dynamically typed,
based on prototype objects and was designed following the
principles of little languages [5]. The code below shows the
implementation of the prototypical boolean objects:

true: object({
new()::{ this() };
ifTrue(code())::{ code() };
not()::{ false };
and(exp())::{ exp() };
or(exp())::{ this() }

});

false: object({
new()::{ this() };
ifTrue(code())::{ void };
not()::{ true };
and(exp())::{ this() };
or(exp())::{ exp() }

});

test: random(true, false);
test.ifTrue({

display("The value is true.", eoln)
})

Methods are invoked using the dot-operator. Names are de-
clared using either : or ::. The former declares variables,
while the latter declares constants. These two types of dec-
larations are also aligned with the scoping rules of the slots
in an object [17], but the details for this would lead us too
far for the purpose of this paper.

One of the key features that makes AmbientTalk an exten-
sible language is its special call-by-name parameter pass-
ing technique [18]. This mechanism is used later in the

box.

paper to introduce some of the language constructs. The
call-by-name mechanism allows one to specify which ac-
tual parameters should be evaluated lazily. The unevalu-
ated expression, which is provided as an actual parameter,
is bound to the call-by-name formal parameter and forms
a first-class function. In the example, the implementation
of the method ifTrue has a formal call-by-name parameter
code(). When an object calls the method ifTrue, with the
expression {display("The value is true.", eoln)} as its
argument, then the expression is evaluated to a first-class
function code() having that expression as its body. This
process of thunkification occurs automatically when the for-
mal parameter of the method has an arguments list2. In-
voking code() in the body of the method ifTrue (such as
in the version of the true object) evaluates the expression
that was provided as the actual parameter of the method.

4.3 Integrating the Actor Model
In order to create an actor-based language there is a need for
three basic ingredients: a construct to create new actors, an-
other construct for message sending and finally a construct
to change the state and behavior of the actor. These three
constructs are briefly discussed using the following subsec-
tions. They are explained throughout the following example:

counter: object({
n: void;
new(aNumber)::{ copy(n:=aNumber) };
increment()::{ become(counter.new(n+1)) };
decrement()::{ become(counter.new(n-1)) };
get(customer):: { customer<-result(n) };
init()::{ display("initialized as actor") }

});

mycounter: actor(counter.new(5));
mycounter<-increment();
mycounter<-decrement()

4.3.1 Creating new actors
In AmbientTalk a new actor is created with the actor prim-
itive. This primitive takes one argument, that of an object
and returns a reference to the newly created actor with the
object as its behaviour. After the actor has been created
a message init is sent to that actor, which can be used to
initialize it. The object provided to the primitive actor is
passed by copy to ensure that no data is shared by two ac-
tors. For example, the expression actor(counter.new(5))

wraps a clone of the counter object in an actor entity.

4.3.2 Message sends
Messages can be sent to an actor by using the <- opera-
tor. The expression mycounter<-increment() sends an asyn-
chronous message increment to the actor referred to by the
variable mycounter. The return value of the asynchronous
message is void. The arguments of a message are passed
by copy in the case of regular objects and primitive values
except for actors which are passed as a reference.

4.3.3 Changing the State and Behavior
2This is as opposed to manual thunkification in languages
such as Smalltalk or Self, where the expressions that are to
be lazily evaluated have to be placed in a block at the site
of the caller.

In AmbientTalk the state and behavior of the actor can be
changed with the statement become. The become takes one
argument, an object that will process future messages. The
argument is passed by copy to prevent data sharing. In
the example above, the state of the counter is updated us-
ing the become primitive after an increment or decrement

message with a clone of the counter object containing the
updated state. An alternative to alter the state of an actor
in AmbientTalk is to use assignments in the increment and
decrement methods (e.g. increment()::{n:=n+1}).

The become primitive3 can also be used to change the be-
havior of an actor at run-time by providing an object with
other behavior as an argument. When a message is sent
to an actor and that actor currently does not have any be-
havior to process that message then that message is kept in
the mailbox in of the actor. When the behavior is changed
into a new behavior that contains behavior for that message,
then it gets processed.

4.4 Reflection
Now that we have introduced the basic actor operations in
the language a metaobject protocol [38, 37, 12] on top of the
AAM is introduced to reify communication between actors.

The default reflective operators presented in this section re-
side in the root object, which all objects stem from. The
reflective operators can be redefined by overriding them in
the same root object or in a more specific object. In the for-
mer case the redefined reflective operators will change the
behaviour of all actors in the system. In the latter case the
redefined reflective operators will only affect the actors de-
fined with the specific object as their behaviour. Details on
the object-based inheritance model can be found in [17].

4.4.1 Messages
Similar to the ambient actor model messages are represented
as first-class entities. A message has four required attributes:
the source, which is a reference to the actor that sends the
message, the target, which refers to the receiver of the mes-
sage, the name of the method, which should be invoked when
the message is processed and finally the arguments for that
method. Optionally, it is also possible to attach additional
information to the message. The attachments are used to
pass information to the meta-level interfaces of other actors.
Their use becomes clear in the examples in the next section.
The function createMessage is used to create new messages
and takes a minimum of four arguments:

createMessage(src, dest, name, args, att1, ..., attN)

The attached information can be retrieved with the func-
tion attachment that takes a message and a number as an
argument.

A message can also be created using field selection with the
expression anActor<-msgName. The expression results in a
first-class message with name msgName targeted to anActor.
If the variable msg refers to such a message, then evaluat-
ing msg(arg1, ..., argN) will send the message with the

3To preserve an actors encapsulation, an actor can only be-
come behaviour that the actor itself has defined [3].

arguments arg1 to argN to anActor.

4.4.2 Mailboxes
In the AmbientTalk language mailboxes behave as described
in the ambient actor model, discussed in section 4.1. These
mailboxes are represented as clones of the prototype mailbox.
A mailbox has methods to add, remove and retrieve its con-
tents. The eight mailboxes that give control over the com-
munication state and actor lookup can be accessed in the
context of an actor using their designated identifiers4.

It is possible to observe changes that are made to the mail-
boxes by registering listener messages, e.g. aMailbox.addListener(aMessage).
If aMailbox is altered then these registered listener messages
are placed in the outbox of the actor to which the mailbox
belongs with the element that was changed in the mailbox
as an argument.

Suppose that the messages in and rcv are respectively sub-
sribed as listeners for additions to the inbox and rcvbox,
then the following declarations:

in(msg)::{ display("received ", msgName(msg), eoln) };
rcv(msg)::{ display("processed ", msgName(msg), eoln) }

allow us to write metaprograms based on events of the com-
munication between actors. The notification of changes in
the mailboxes occurs in an asynchronous fashion so that this
mechanism can be used to write event-based asynchronous
metaprograms in the language as illustrated above.

The use of mailbox observers averts the introduction of a
blocking accept5 and transmission operator at the meta-
level. The introduction of these operators would allow a
developer to design blocking communication abstractions.
Hence, through the use of mailbox observers one can still
intervene in the communication process at the meta-level,
while precluding the implementation of blocking communi-
cation constructs via the meta-level interface.

4.4.3 Communication
The kernel can also be used to specify synchronous be-
haviour to extend the semantics of message sending and
message processing between actor entities.

Message Sending
The default behaviour of message sending between actors is
defined by the following method defined in the root object:

send(target, msgName, args)::{
msg: createMessage(thisActor(),target,msgName,args);
outbox.add(msg);
void

}

An expression of the form anActor<-msg(arg1, ..., argN) is
mere syntax for a call to the meta-level method send. For ex-

4The identifiers are inbox, outbox, sentbox, rcvbox,
required, provided, joined and disjoined.
5Such an accept was introduced in CodA [38] to intervene
in the object synchronization at the meta-level.

ample, the expression mycounter<-increment() is translated
to the call send(mycounter, ”increment”, []).

As illustrated below, it is possible to override the default be-
haviour by redefining the method send with new behaviour.
The example above displays “before send” and “after send”,
respectively before and after sending the message.

send(target, msgName, args)::{
display("before send", eoln);
super().send(target, msgName, args);
display("after send", eoln)

}

Message Processing
The default behaviour of an actor for processing a message
is defined with the following method:

process(message)::{
execute(message)

}

The native execute method invokes the method associated
with the name of the message in the behaviour of the actor.
The process method can be overridden just like the send

method.

Note that all the reflective operators in the language (namely,
overriding send and process and the explicit manipulation of
mailboxes based on listeners) are aligned with the commu-
nication mechanisms of the AAM. The send and process are
realized through the use of the mailboxes outbox and inbox

respectively. In a similar way mailbox observers are invoked
via these communication mechanisms. This is important in
the context of the preservation of the non-blocking charac-
teristic of the AmOP paradigm, which is discussed in the
next section.

4.5 Discussion
There is one characteristic from the ambient-oriented pro-
gramming paradigm that needs to be preserved, namely the
non-blocking communication operators (section 3.1). We
illustrate how the kernel language preserves this character-
istic. We rely on two prerequisites: First, the implementa-
tion of AmbientTalk does not allow remote communication
other than through the mechanisms described in section 4.1.
Remember from section 4.4.2 that intervening in the com-
munication process occurs through the use of the mailbox
observers. Hence, we cannot introduce other communica-
tion constructs. Second, there is the prerequisite that the
only data shared among actors are actor references.

It is impossible to construct blocking communication in Am-
bientTalk. Below is an informal reductio ad absurdum proof
for a blocking send operation. Suppose we were able to con-
struct a blocking send operation, which blocks until an ac-
knowledgement message is found in the inbox, via the code
below:

syncsend(target, msgName, args)::{
outbox.add(createMessage(thisActor(), target, msgName, args);
while(not(hasReceivedAcknowledgement(msgName, inbox)),void)

}

The code places the message that needs to be sent in the
outbox. Subsequently, the while-code continuously checks
the inbox to see if an acknowledgement has arrived via the
function hasReceivedAcknowledgement. At first sight, the
code seems to implement a blocking send. However, the
code above is not correct. It implies that the mailboxes can
be changed by an entity other than the actor during the
execution of a method. This conflicts with the operational
semantics of the ambient actor model, because it violates the
serial mailbox access property we explained in section 4.1.3.
Hence, the actor will never receive the acknowledgement
while it is iterating over the inbox and therefore the blocking
send cannot be realized.

Other blocking send operations would have to be constructed
in a similar way, because communication based on mail-
boxes is the only communication featured by AmbientTalk.
Therefore other blocking communication constructs would
also break the serial mailbox access property. Hence, it is
impossible to construct blocking communication in the lan-
guage.

5. LANGUAGE FEATURES FOR THE AM-
BIENT PARADIGM

In order to show its practicability we extend AmbientTalk
with a number of language constructs originating from dif-
ferent distributed languages and middleware that have proven
their merits. The customized reflective operators we will
present in this section are redefined in the root object so that
they are available to all actors as explained in section 4.4.

5.1 Futures
Asynchronous message passing in the actor model necessi-
tates extensive use of callback methods to process the result
of sent messages. This is illustrated by the example intro-
duced in section 4.3: when the method get is invoked, a
callback result message is sent along to return the result
to the caller. The use of callbacks complicates the structure
of the software a lot and it is a source for race conditions
[7].

To resolve these problems we can enrich the language with
futures [4, 25, 34] (also called promises). Futures are place-
holders for the eventual result of an asynchronous call. They
are a proxy for the result to be computed in the future. Once
the result is computed the future is said to be resolved and it
forwards the messages to the result. With futures programs
can be written that use asynchronous communication but
that still resemble the control flow of synchronous commu-
nication:

result: aQueue<-pop();
...
result<-print()

In the past, many languages based on futures have been
introduced [32, 44, 46, 39, 16]. In these languages the
semantics of futures varies. For instance, what happens
if the print message is sent to the future represented by
the result variable before that future has been resolved.
In some languages this expression blocks until the future

has been resolved with the result of the pop. Other lan-
guages provide a construct to explicitly wait for the result
to be computed. These future semantics are in conflict with
the non-blocking communication primitives characteristic of
ambient-oriented programming languages that we advocated
in section 3. Hence, although one can write what appears
to be sequential programs, they are in fact a hidden source
for (distributed) deadlocks.

The concept of futures we integrated in the language is based
on the contemporary distributed language E [39]. This type
of futures was explicitly designed to support non-blocking
communication. Its implementation is given below.

future::object({
resolved: void;

init()::{
inbox.addListener(thisActor()<-in)

};

resolve(content)::{
resolved:=content;
inbox.iterate({

msg: el;
inbox.delete(msg);
forward(msg)

})
};

forward(msg):
if(is_actor(resolved),

outbox.add(setMsgTarget(copyMsg(msg),
resolved)));

in(msg)::{
if(not(is_void(resolved)), {

inbox.delete(msg);
forward(msg)

})
}

});

An execution trace of the queue example from above with
non-blocking futures is shown in figure 2. A future is cre-
ated before a message is sent and is attached to the message
that is sent. After that message is executed by the target
actor a resolve message is sent to the future with the re-
sult of the execution as its argument. The future object has
a resolve method that iterates6 over the inbox and for-
wards its messages to the result. The listener method in

forwards incoming messages to the result after the future
was resolved. The future is subsequently integrated in the
message sending process of the language by adapting the
metaobject protocol:

send(target, name, args)::{
aFuture: actor(future.new());
outbox.add(createMessage(thisActor(), target, name, args,

aFuture));
aFuture

};

6The iterate method is defined with a call-by-name argu-
ment (discussed in section 4.2) that is parameterized with
el. The expression provided as an argument is executed by
the iterate method for each element in the mailbox, with
el bound to that element.

With each message sent, a new future actor aFuture is cre-
ated. This future actor is attached to the message that has
to be sent and is placed in the outbox. Finally, this future
actor is returned. The process method is redefined so that
the method associated with the message is invoked and its
return value is used to send the resolve message to the
future actor.

process(message)::{
value: super().process(message);
aFuture: getFuture(message);
aFuture<-resolve(value));
value

};

aClient aQueue

create
aFuture

pop(<<aFuture>>)

print(<<aFuture2>>) aResultcreate

resolve(aResult)

print(<<aFuture2>>)

Legend:

<<item>> : attachment
 : async msg

aFuture2

create

resolve(aResult2)

aQueue<--pop()

result<--print()

Figure 2: Behavior of Non-Blocking Futures

Sometimes we need to express that certain code is executed
only when the future has been resolved. For example, sup-
pose we want to write the following:

aFuture: aQueue<-pop();
...
if(aFuture = 1, doSomething())

The conditional expression can only be evaluated when aFuture

has been resolved. To support such expressions we used re-
flection to integrate a language construct based on the when-
catch construct that is available in the language E [39]. This
construct allows one to specify what code should be exe-
cuted after the given future has been resolved. Note that
the when construct does not block, it will execute its code
block asynchronously when the future is resolved. With the
when construct the above code can be written as follows:

aFuture: aQueue<-pop();
...
when(aFuture, if(result = 1, doSomething()))

The when construct is implemented by adding the observer
pattern to the future object we introduced above. Observers
are notified when the future receives a resolve message7.
7The changes we made to integrate the observer pattern in
the future object are standard and therefore we did not list
the changed code.

Below is the code for the prototype observer of the future
object that is used to support the when construct:

futureObserver: object({
code: void;
new(customCode)::{ copy(code:=customCode) };
notify(result)::{ code(result) }

});

The futureObserver object is initialized with a block of
code. Upon notification the block of code is executed with a
new variable result bound to the resolved future value. The
when construct is implemented with the following function:

when(aFuture, code(result))::{
aFuture<-subscribe(

actor(futureObserver.new(code)))
}

The first parameter takes a reference to a future actor. The
second parameter is a call-by-name argument, as explained
in section 4.2 and is used to initialize the futureObserver

actor. That actor is then used as an argument to add the
listener to the future actor.

5.2 Application-Specific Routing
Some applications can benefit from application-specific con-
text information to enhance routing of messages in a mobile
ad hoc network [35]. For example, suppose that we have
a group of four people A, B, C and D who form an inter-
mittently connected ad hoc network (their mobile devices
can only communicate when they are in one another’s com-
munication range). The mobile device of A wants to send
a message to the mobile device carried by D. Since the ex-
pected concrete movements of those people are unknown we
do not know when and if A will eventually move in com-
munication range of D so that their devices can communi-
cate directly. For example, it is possible that A and D only
meet each other each couple of months, while B and C often
meet with either A or D. Hence, we can increase chances of
communication between the mobile devices of A and D by
relying on the fact that A moves frequently in the commu-
nication range of B or C and B or C frequently moves in the
communication range of D. Thus, the mobile devices of B
and C can be used as a middle man. It is clear that such
information can only be deduced from application-specific
context information, such as an agenda application, or an
application that keeps track of human social networks.

A construct via can be added to the language to construct
a reference that performs such application-specific routing.
The example above can be written as:

via(targetOnD, [routerOnB, routerOnC])<-msg()

When the device of A sends this message to the device of
D it will send the message not only to D, but also to B
and C. The router actors must be explicitly provided in the
via-construct, because they rely on the social network of
the user. In this example routerOnB and routerOnC run

on mobile devices carried by persons B and C respectively.
The construct via is supported by the object routedRef that
implements the redundant message passing mechanism:

via(target, routers)::{
actor(routedRef.new(target, routers))

};

routedRef::object({
target : void;
routers: void;
new(aTarget, routersTbl)::{

copy({ target:=aTarget; routers:=vector.new(routersTbl) })
};
init()::{

inbox.addListener(thisActor()<-in)
};
in(msg)::{

routers.iterate(el.route(msg));
outbox.add(msg)

}
});

The object routedRef has a method in that acts as a mail-
box listener on the inbox. When a message is added to the
inbox that message is passed to the router actors8 running
on the mobile devices of B and C. When the mobile device
of B or C enter the communication range of the mobile de-
vice carried by D then the message is communicated by the
router actor.

Since the message can possibly arrive at its destination mul-
tiple times, the receiver has to filter these messages to ensure
that the message is processed at most once. This is achieved
by overriding the process method to check the rcvbox to
see if the message has already been processed by the actor.
If this is the case, it is removed from the inbox otherwise
the message is processed.

process(msg)::{
if(rcvbox.contains(msg)),

inbox.remove(msg),
super().process(msg))

}

5.3 Group Communication
In a peer-to-peer environment a peer often needs to com-
municate directly with multiple peers, because interactions
often occur with multiple small objects rather than one ob-
ject that acts as a server, for instance when a peer-to-peer
meeting scheduler wants to query multiple agendas to know
if they have a free time-slot. In most current distributed
languages a loop must be used to run over the set of remote
objects we need to communicate with in order to achieve
group communication. When group communication is fre-
quently used these loops start to clutter the code. We ex-
tended the language with a set of references based on the
many-to-many invocations (M2MI) library [31].

M2MI provides two types of handles that do group com-
munication: first, there are multihandles to express one-to-
many communication. The handle is created via the enu-
meration of the set of references that are involved in the

8The code of the router actor does nothing more than place
the incoming messages in its outbox and is therefore not
listed.

group communication. Sending a message to the multihan-
dle results in a message sent to all the references that were
enumerated. Second, there are omnihandles that are used
to express many-to-many communication, which is commu-
nication with all objects in the communication range that
implement a certain interface.

Both multihandles and omnihandles can be expressed using
the reflective operators, but we focus on the latter in this
example. The construct omnihandle allows many-to-many
communication based on the pattern-based lookup mecha-
nism from the AAM, discussed in section 4.1.2. The example
below shows how a reservation request could be sent to the
agendas of members of the programming technology labora-
tory and the software engineering laboratory, that enter the
communication range of the sending device.

agendas: omnihandle("agenda:proglab", "agenda:selab");
agendas<-reserve(time.tomorrow().at(17), "Inter-lab meeting")

The omnihandle construct is implemented as an omnihandleRef

object:

omnihandleRef::object({
patterns: void;
new(aPatternTbl)::copy({patterns:=aPatternTbl});

init()::{
required.addAll(patterns);
joined.addListener(thisActor()<-joined)

};

disable()::{ required.deleteAll(patterns) };

joined(aResolution)::
inbox.iterate({

outbox.add(setMsgTarget(copyMsg(el), provider(aResolution)))
})

});

omnihandle@patterns::actor(omnihandleRef.new(patterns))

The function omnihandle takes a variable number of ac-
tual arguments (denoted using the @-syntax) to be bound
in a table called patterns. The omnihandleRef actor is ini-
tialized by putting that table with patterns in the mailbox
required. The omnihandleRef object has a listener method
joined on the mailbox with the same name. Each time an
actor is in the communication range of another actor that
provides the required patterns, the messages from the inbox
of the omnihandle actor are forwarded to the provider.

5.4 Discussion
As discussed in section 5.1, the low-level communication
constructs in the AAM heavily rely on call backs which ren-
ders applications written in it very complex.

In this section, we have put AmbientTalks reflection oper-
ators discussed in section 4.4 (namely, overriding send and
process and the explicit manipulation of mailboxes based on
listeners) to work by showing how they can be used to im-
plement a number of high-level communication constructs
incorporated in other contemporary distributed languages
and middleware.

We are not claiming that these language constructs are the
best choice for all applications for mobile networks. It was
rather our intention to show how AmbientTalk can be used
as a language lab for experimenting with language constructs
designed for mobile (ad hoc) networks.

6. CONCLUSION AND FUTURE WORK
In this paper we have defined the ambient-oriented pro-
gramming (AmOP) paradigm, a set of characteristics for
programming languages, which address the hardware phe-
nomena encountered when developing applications for mo-
bile computing. The current state of the art of neither dis-
tributed languages nor middleware addresses all the conse-
quences of these hardware phenomena.

We introduced a kernel language named AmbientTalk, ad-
hering to the characteristics of the AmOP paradigm. This
kernel can be extended with language features that address
coordination and communication issues in mobile comput-
ing. We implemented a number of language features to il-
lustrate the extensibility of the kernel language. Our goal
was not to show that these language features are the best
choice for all applications for mobile computing. It was
rather our intention to show how AmbientTalk can serve
as a language lab for experimenting with AmOP language
features. Future work encompasses additional experimenta-
tion with advanced language features. A brief description of
each follows:

• A necessary condition of the proposed solution is that
the metaobject protocol of all interacting actors must
contain the code for their communication abstractions.
We are planning experiments with a mobile meta ob-
ject protocol, where the needed adaptation is attached
to the message.

• We are looking into language constructs to deal with
inconsistencies in partitioned mobile network environ-
ments. One way of resolving such inconsistencies is
through the use of rollback mechanisms. We expect
that the system of mailboxes are appropriate to model
them, because of the explicit access to the computa-
tional and communicational state of an actor via the
reified communication traces.

• There is a need for new distributed garbage collec-
tion algorithms, because most current algorithms are
not intended for use in partially connected networks.
Moreover, it is possible that part of the network never
becomes available again. For example, when a user
never returns to a certain place. We believe that, in
some cases, language constructs will need to be pro-
vided to guide the garbage collector in cleaning up lost
network references.

It is clear that a lot of the territory pertaining to language
feature design for AmOP remains uncovered. With this pa-
per we hope to promote a new branch of distributed lan-
guages, which address the problems of mobile computing
from the ground up.

Acknowledgements
Thanks to Kris Gybels and Sebastián González for proof-
reading this paper and providing us with useful comments.

7. REFERENCES
[1] Agha, G. Actors—A Model of Concurrent

Computation for Distributed Systems. MIT Press,
1986.

[2] Agha, G., and Hewitt, C. Concurrent
programming using actors. In Object-Oriented
Concurrent Programming, A. Yonezawa and
M. Tokoro, Eds., Computer Systems Series. The MIT
Press: Cambridge, MA, USA, 1988, pp. 37–53.

[3] Agha, G., Mason, I. A., Smith, S. F., and
Talcott, C. L. A foundation for actor computation.
Journal of Functional Programming 7, 1 (1997), 1–72.

[4] Baker Jr., H. G., and Hewitt, C. The incremental
garbage collection of processes. In Proceedings of
Symposium on AI and Programming Languages
(1977), vol. 8 of ACM Sigplan Notices, pp. 55–59.

[5] Bentley, J. Programming pearls: little languages.
Commun. ACM 29, 8 (1986), 711–721.

[6] Briot, J.-P., Guerraoui, R., and Löhr, K.-P.
Concurrency and distribution in object-oriented
programming. ACM Computing Surveys 30, 3
(September 1998), 291–329.

[7] Briot, J.-P., and Yonezawa, A. Inheritance and
synchronization in concurrent oop. In European
conference on object-oriented programming on
ECOOP ’87 (1987), Springer-Verlag, pp. 32–40.

[8] Callsen, C. J., and Agha, G. Open heterogeneous
computing in actorspace. J. Parallel Distrib. Comput.
21, 3 (1994), 289–300.

[9] Caporuscio, M., Carzaniga, A., and Wolf, A. L.
Design and evaluation of a support service for mobile,
wireless publish/subscribe applications. IEEE Trans.
Software Engineering 29, 12 (dec 2003), 1059–1071.

[10] Cardelli, L. A language with distributed scope. In
Conference Record of POPL ’95: 22nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Francisco, Calif. (New
York, NY, 1995), pp. 286–297.

[11] Cardelli, L., and Gordon, A. D. Mobile ambients.
In Electronic Notes in Theoretical Computer Science
(2000), A. Gordon, A. Pitts, and C. Talcott, Eds.,
vol. 10, Elsevier.

[12] Chiba, S., and Masuda, T. Designing an extensible
distributed language with a meta-level architecture. In
ECOOP ’93: Proceedings of the 7th European
Conference on Object-Oriented Programming (1993),
Springer-Verlag, pp. 482–501.

[13] Cugola, G., and Jacobsen, H.-A. Using
publish/subscribe middleware for mobile systems.
SIGMOBILE Mob. Comput. Commun. Rev. 6, 4
(2002), 25–33.

[14] Cugola, G., Nitto, E. D., and Pico, G. P.
Content-based dispatching in a mobile environment.
In Proceedings of WSDAAL (2000), ACM Press.

[15] Davies, N., Friday, A., Wade, S. P., and Blair,
G. S. An asynchronous distributed systems platform
for heterogeneous environments. In Proceedings of the
8th ACM SIGOPS European workshop on Support for
composing distributed applications (1998), ACM Press,
pp. 66–73.

[16] De Meuter, W. Move Considered Harmful: A
Language Design Approach to Mobility and
Distribution for Open Networks. PhD thesis, Vrije
Universiteit Brussel, September 2004.

[17] De Meuter, W., D’Hondt, T., and Dedecker, J.
Intersecting classes and prototypes. In Ershov
Memorial Conference (2003), M. Broy and A. V.
Zamulin, Eds., vol. 2890 of Lecture Notes in Computer
Science, Springer. Perspectives of Systems
Informatics, 5th International Andrei Ershov
Memorial Conference, PSI 2003, Akademgorodok,
Novosibirsk, Russia, July 9-12, 2003.

[18] De Meuter, W., D’Hondt, T., and Dedecker, J.
Pico: Scheme for mere mortals. In 1st European Lisp
and Scheme Workshop, Oslo, Norway (2004).

[19] Dedecker, J., and Van Belle, W. Actors for
mobile ad-hoc networks. In Embedded and Ubiquitous
Computing (2004), L. Yang, M. Guo, G. Gao, and
N. Jha, Eds., vol. 3207 of Lecture Notes in Computer
Science, Springer, pp. 482–494. Embedded and
Ubiquitous Computing, International Conference EUC
2004, Aizu-Wakamatsu City, Japan, August 25-27,
2004.

[20] Eugster, P. T., Felber, P. A., Guerraoui, R.,
and Kermarrec, A.-M. The many faces of
publish/subscribe. ACM Comput. Surv. 35, 2 (2003),
114–131.

[21] Fjellheim, T., Milliner, S., Dumas, M., and
Elms, K. The 3dma middleware for mobile
applications. In Embedded and Ubiquitous Computing
(2004), L. Yang, M. Guo, G. Gao, and N. Jha, Eds.,
vol. 3207 of Lecture Notes in Computer Science,
Springer, pp. 312–323. Embedded and Ubiquitous
Computing, International Conference EUC 2004,
Aizu-Wakamatsu City, Japan, August 25-27, 2004.

[22] Gelernter, D. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems 7, 1 (Jan. 1985), 80–112.

[23] Gong, L. JXTA for J2ME extending the reach of
wireless with JXTA technology. Tech. rep., SUN
Microsystems,
http://www.jxta.org/project/www/docs/JXTA4J2ME.pdf,
2002.

[24] Haahr, M., Cunningham, R., and Cahill, V.
Supporting CORBA applications in a mobile
environment. In Proceedings of the Fifth Annual
ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom-99) (N.Y.,
Aug. 15–20 1999), ACM Press, pp. 36–47.

[25] Halstead, Jr., R. H. Multilisp: a language for
concurrent symbolic computation. ACM Trans.
Program. Lang. Syst. 7, 4 (1985), 501–538.

[26] Hewitt, C. E. Viewing control structures as pattern
of passing messages. Artificial Intelligence: An
International Journal 8, 3 (June 1977), 323–364.

[27] ISTAG. Ambient intelligence: from vision to reality,
September 2003. Draft report.

[28] Joseph, A., Tauber, J., and Kaashoek, F. Mobile
computing with the rover toolkit. IEEE Transactions
on Computers 46, 3 (Mar. 1997), 337–352.

[29] Jul, E., Levy, H., Hutchinson, N., and Black, A.
Fine-grained mobility in the emerald system. ACM
Transactions on Computer Systems 6, 1 (February
1988), 109–133.

[30] Kahn, K. M., and Saraswat, V. A. Actors as a
special case of concurrent constraint programming. In
Proc. of the OOPSLA/ECOOP-90: Conference on
Object-Oriented Programming: Systems (Languages,
and Applications / European Conference on
Object-Oriented Programming, Ottawa, Canada,
1990), pp. 57–66.

[31] Kaminsky, A., and Bischof, H.-P. Many-to-many
invocation: A new object oriented paradigm for ad
hoc collaborative systems. 17th Annual ACM
Conference on Object Oriented Programming Systems,
Languages, and Applications (OOPSLA 2002) (2002).

[32] Karaorman, M., and Bruno, J. A concurrency
mechanism for sequential eiffel. In Proceedings of the
eighth international conference on Technology of object
oriented languages and systems (1992), Prentice-Hall,
Inc., pp. 63–77.

[33] Liskov, B. Distributed programming in argus. In
Distributed Computing Systems: Concepts and
Structures, A. L. Ananda and B. Srinivasan, Eds.
IEEE Computer Society Press, Los Alamos, CA, 1992,
pp. 370–382.

[34] Liskov, B., and Shrira, L. Promises: linguistic
support for efficient asynchronous procedure calls in
distributed systems. In Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language
design and Implementation (1988), ACM Press,
pp. 260–267.

[35] Mamei, M., and Zambonelli, F. Programming
pervasive and mobile computing applications with
tota middleware. In Embedded and Ubiquitous
Computing (2004), IEEE, pp. 263–??? Second IEEE
International Conference on Pervasive Computing and
Communications (PerCom’04), Orlando (FL), U.S.A.,
March, 2004.

[36] Mascolo, C., Capra, L., and Emmerich, W.
Mobile computing middleware. In Advanced lectures
on networking, vol. 2497. Springer-Verlag New York,
Inc., 2002, pp. 20–58.

[37] Masuhara, H., Matsuoka, S., and Yonezawa, A.
Implementing parallel language constructs using a
reflective objectoriented language. In Proceedings of
Reflection Symposium’96 (Apr. 1996), pp. 79–91.

[38] McAffer, J. Meta level programming with CodA. In
Proceedings of ECOOP’95, Aarhus, Denmark,
W. Olthoff, Ed., Lecture Notes in Computer Science
952. Springer-Verlag, Berlin, 1995, pp. 190–214.

[39] Miller, M. The E programming language, the secure
distributed pure-object platform and p2p scripting
language for writing capability-based smart contracts.
http://www.erights.org.

[40] Murphy, A. L., Picco, G. P., and Roman, G.-C.
Lime: A middleware for physical and logical mobility.
In Proceedings of the The 21st International
Conference on Distributed Computing Systems (2001),
IEEE Computer Society, p. 524.

[41] Reynolds, P., and Brangeon, R. DOLMEN -
service machine development for an open long-term
mobile and fixed network environment, Feb. 19 1999.

[42] Satyanarayanan, M., Kistler, J. J., Kumar, P.,
Okasaki, M. E., Siegel, E. H., and Steere, D. C.
Coda: A highly available file system for a distributed
workstation environment. IEEE Trans. Comput. 39, 4
(1990), 447–459.

[43] Schill, A., Bellmann, B., Bohmak, W., and
Kummel, S. System support for mobile distributed
applications. In SDNE ’95: Proceedings of the 2nd
International Workshop on Services in Distributed and
Networked Environments (1995), IEEE Computer
Society, p. 124.

[44] Taura, K., Matsuoka, S., and Yonezawa, A.
ABCL/f: A future-based polymorphic typed
concurrent object-oriented language - its design and
implementation. In Proceedings of DIMACS ’94
Workshop (1994), G. E. Blelloch, K. M. Chandy, and
S. Jagannathan, Eds., vol. 18. Specification of Parallel
Algorithms of Series in Discrete Mathematics and
Theoretical Computer Science, American
Mathematical Society, pp. 275–291.

[45] Terry, D. B., Petersen, K., Spreitzer, M. J.,
and Theimer, M. M. The case for non-transparent
replication: Examples from Bayou. IEEE Data
Engineering Bulletin 21, 4 (dec 1998), 12–20.

[46] Varela, C., and Agha, G. Programming
dynamically reconfigurable open systems with salsa.
ACM SIGPLAN Notices 36, 12 (2001), 20–34.

[47] Varela, C. A., and Agha, G. A. What after java?
from objects to actors. In WWW7: Proceedings of the
seventh international conference on World Wide Web
7 (1998), Elsevier Science Publishers B. V.,
pp. 573–577.

[48] Weiser, M. The computer for the 21st century.
Scientific American 265, 3 (1991), 66–75.

[49] Zachariadis, S., Capra, L., Mascolo, C., and
Emmerich, W. XMIDDLE: information sharing
middleware for a mobile environment. In Proceedings
of the 24th International Conference on Software
Engineering (ICSE-02) (New York, May 19–25 2002),
ACM Press, pp. 712–712.

