
Distributed Proxies as Delegation-based Descendants

Tom Van Cutsem∗ Stijn Mostinckx† Wolfgang De Meuter
Jessie Dedecker∗ Theo D’Hondt

Programming Technology Lab
Department of Computer Science

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussels - Belgium

{tvcutsem,smostinc,wdmeuter,jededeck,tjdhondt}@vub.ac.be

ABSTRACT
The contemporary object distribution spectrum consists of proxy-
based middleware solutions on the one hand and distributed pro-
gramming languages on the other hand. Middleware suffers from
numerous technical problems due to its inability to hide distribution
and current day languages fail precisely because they hide distribu-
tion too much. The paper presents a distributed programming lan-
guage feature that occupies middle ground by treating proxies as
delegation-based descendants in the prototype-based sense. Sev-
eral distribution idioms are shown to be elegantly expressible using
the proposed feature.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—dis-
tributed languages, prototype-based languages; D.3.3 [Programming
Languages]: Language Constructs and Features—delegation

General Terms
Design, Languages

Keywords
Distributed objects, proxies, prototypes, delegation

1. INTRODUCTION
In the past decade, the notion of mobile computing has made its
definitive entrance in society. Portable devices such as cellular
phones, smartphones, laptops and PDA’s are becoming ever cheaper,
smaller and more powerful. Moreover, in the past few years, these
devices have been equipped with fast and reliable wireless network-
ing hardware. One does not have to be a big prophet to foresee

∗Research Assistant of the Fund for Scientific Research Flanders,
Belgium (F.W.O.)
†Author funded by a doctoral scholarship of the Institute for the
Promotion of Innovation through Science and Technology in Flan-
ders (IWT-Vlaanderen)

a near future in which distributed software will run on dynami-
cally defined networks, the nodes of which consist of portable de-
vices. This new hardware constellation will almost certainly have
its repercussions on the software side as well. Developing dis-
tributed applications that can deal with this kind of dynamicity will
put ever higher demands on programming languages and library
support concerning flexibility and adaptability.

The contemporary technique for building distributed applications
consists of deploying a standard object-oriented programming lan-
guage (such as Java, Smalltalk or C#) in conjunction with a suite of
tools commonly referred to asmiddleware(such as CORBA [27],
SOAP-RPC [40], J2EE and Java RMI [31]). Middleware typically
consists of precompilers and libraries which programmers can use
to enhance their programming language with distributed objects,
name servers, remote message sending and other concepts related
to distributed object computing (DOC). A characteristic common to
state-of-the-art DOC middleware is its reliance on what is known
as remote object proxies. A proxy (also called astub) is a local
stand-in which forwards messages to an object located in a remote
object space. Typically, proxy code is synthesized by the middle-
ware’s tools and has the same interface as the object for which it is
a stand-in. The idea is to allow the application code to send mes-
sages to a proxy as if it were sending them directly to the object it
represents, because – from a modelling point of view – the object
and its proxy designate the same entity. However, from a technical
point of view, the object and the proxy are two idiosyncratic ob-
jects. In the paper we show that this discrepancy is a fundamental
problem of the middleware approach because it heavily interacts
with other object-oriented language features such as static typing,
reflection and object identity.

An approach to DOC that radically differs from the middleware ap-
proach is to incorporate the issues related to remote objects in the
programming language. Example languages are Argus [23], Emer-
ald [3, 16], Obliq [7], dSelf [33] and distributed objects in BETA
[4]. In the language-based approach, communicating parties send
messages to local objects which technicallyare the same object as
the remote objects they represent. In this approach, programmers
cannot distinguish between an object and a proxy. Unfortunately,
such full transparency has its problems too [37, 19, 13], as e.g.
supported by Guerraoui and Fayad in their CACM column:“be-
ing aware of the fundamental difference between distributed object
invocation and local object invocation has the merit of giving up
the myth of distribution transparency and the claim that an OO
concurrent language is enough because distribution is only an im-

plementation detail”[13]. Full transparency precludes developers
from exploiting their knowledge about a system in order to control
some of its non-functional aspects such as performance, fault toler-
ance and quality of service. Moreover, in the context of the current
paradigm shift from stationary networks towards mobile networks,
full transparency gets even more problematic because the presence
of distribution becomes even tangible at the application level [26].

This paper takes the stance that a new generation of programming
languages is required, situated in the middle of the distributed ob-
ject spectrum currently defined by the “handicraft” middleware and
the fully transparent programming language extremes. In this con-
text we present a novel distributed object model that conceives
proxies as delegation-based descendants of the objects they rep-
resent. In other words, proxies are objects that transparently del-
egate (in the original prototype-based sense proposed by Lieber-
man [21]) messages over the network to the objects they represent.
These ideas are embodied in an experimental distributed program-
ming language called ChitChat. ChitChat thus exploits the parent-
child delegation relationship between objects in a networked con-
text. The paper discusses the technical consequences of this idea
in great detail and presents a suite of programming idioms that el-
egantly show the expressivity of distributed proxies as delegation-
based descendants.

2. MOTIVATION
At the heart of both DOC approaches outlined above is arefer-
encingmechanism (consisting of explicit proxies or implicit dis-
tributed object references) that allows an object in one object space
to refer to an object in another object space. The object being re-
ferred to is called thesubjectof the remote reference. Upon receiv-
ing a message, it is the task of a remote reference to forward that
message to its subject after having established a network connec-
tion with the host of that subject. Hereby, actual arguments have
to bemarshalled, potential return values have to beunmarshalled
and synchronisation between the sender and the receiver may have
to be taken care of.

This section argues that both DOC approaches are problematic in
the way they tackle these issues. The problems with explicit prox-
ies of middleware solutions are discussed in section 2.1. The short-
comings of implicit references advocated by distributed program-
ming languages are discussed in section 2.2.

2.1 Problems with Proxies
The realisation of proxies in most programming languages, even
modern ones such as Java and C#, is a source of subtle problems.
Although the bulk of application development is done in statically
typed languages, we distinguish between problems that are related
to static typing and problems that have to do with object identity.
The latter are more fundamental and also manifest themselves in
dynamically typed languages.

2.1.1 Type-related problems
In order to illustrate the problems associated to proxies in a stati-
cally typed language, consider part of a typical1 implementation of
complex numbers in Java:

public class Complex {

1The use ofinstanceof is considered bad object-oriented pro-
gramming style, yet it is widely used in practice, especially in
methods likeequals .

private float re, im;
public Complex(float re, float im) {

this.re = re; this.im = im;
};
public boolean equals(Object o) {

if (o instanceof Complex) {
Complex c = (Complex) o;
return (this.re == c.re)&&(this.im == c.im);

} else
return false;

};
public Complex add(Complex c) {

return new Complex(this.re+c.re,this.im+c.im);
} }

Imagine an application that uses complex numbers on different net-
work nodes. Assume that, for reasons of simplicity and object state
consistency, objects are never copied or physically moved across
the network. This means that, upon passing back and forth argu-
ments and results associated to remote message sends, these objects
will be represented by proxies instead of being moved or copied.
If the Complex class is to be distributed under these assump-
tions, it will be paired with aComplexProxy class that repre-
sents its remote instances. Whether this proxy class is automati-
cally generated or not, depends on the specific DOC middleware
at hand. In Java RMI, to make its methods remotely invocable,
the Complex class needs to implement an interfaceComplexI
that extendsjava.rmi.Remote . Only the methods declared in
the ComplexI interface will be available to remote peers. The
Java RMI stub compiler will automatically create the proxy class
ComplexProxy 2 which also implementsComplexI . It is im-
portant to see that the middleware will have to replace references
to the originalComplex type by references toComplexI since
bothComplex andComplexProxy are valid complex numbers.
If this were not done, we would, for example, be unable to add
complex numbers that reside in different object spaces.

Given this setup with both local and remote complex numbers, the
code as specified above breaks in several ways. For example, one
might send theequals message to a local complex number and
pass along a proxy (i.e. aComplexProxy object) as a parameter.
Theinstanceof test then fails because the type of the formal pa-
rametero is ComplexProxy , notComplex . The proxy scheme
interferes with static typing unless all code involvingComplex
objects is re-typed with theComplexI interface. This requires in-
vasive changes to the application code. But these changes do not
solve all problems as shown by the binaryadd method. Replac-
ing the parameter type by the interface type makes the body of the
method access instance variables of an interface type; an impossi-
bility. The only way to solve this is to change the original class
with public methods to ‘get’ all instance variables that are read in
this way (which is essentially the technique behind C# properties).
Needless to say, this is a total bypass of encapsulation which is par-
ticularly problematic in dynamically defined networks where po-
tentially malicious nodes can join a network.

2.1.2 Identity Problems of Proxies
The fundamental problem in the above example is that a subject
and its proxies conceptually denote the same object but technically
are different objects. At the programming language level, both ob-
jects have their own object identity. Since the proxy’s object iden-
tity does not coincide with the subject’s identity, operators such
2In Java RMI, the generated class would actually be named
Complex Stub .

as pointer comparison (== in C++ and Java) and downcasts will
produce different results depending on whether they are applied to
the proxy or the subject. The problemcan be circumvented by
strictly adhering to message passing such that a proxy can forward
all operations (e.g. only usingequals instead of== in Java), but
mainstream languages do not enforce this.

Another language feature that severely interferes with proxies is
reflection. When a Java programmer explicitly names classes us-
ing strings (e.g.Class.forName("Complex")), there is no
way for middleware or libraries to ensure that proxies are inte-
grated consistently into the system. A bit less far-fetched, invoking
obj.class.getFields() returns different results depending
on whetherobj is a proxy or not. The problem is that the proxy
has no means of redirecting such accesses to the subject.

These issues with operators, identity and reflection are to be taken
seriously. Object identity is important for nearly any non-trivial
application, and many Java libraries and extensions employ Java’s
introspection API. Distributed applications, glued together using
proxies which introduce ambiguous object identities, will be more
difficult to understand, maintain and develop because the problems
outlined above lead to subtle bugs and result in tangling functional
code with proxy related code.

2.2 Problems with Transparent Distribution
An alternative to the middleware approach with explicit proxies
consists of distributed programming languages that advocate full
transparency of remote object references. Such languages defer all
non-functional aspects of distribution to the programming language
infrastructure. However, as already hinted at in the introduction, the
paradigmatic shift from closed stationary networks towards open
mobile networks renders full transparency ever less tenable. In-
deed, the complexity of such open mobile networks can no longer
be dealt with by a predefined language infrastructure [26]. Instead,
a developer will have to enhance the distributed behaviour of his
remote object references with extra knowledge. In the middleware
approach, such enhanced remote objects are known assmart prox-
ies[25]. Typically, they are introduced for the following reasons:

Caching Smart proxies can cache return values of remote oper-
ations when those values change infrequently or not at all.
This can reduce network traffic substantially.

Failure Handling A smart proxy can specify meaningful behaviour
to handle a failure of the network connection or the device
hosting the subject. The proxy can e.g. batch the messages
until the connection can be restored or discard the broken
connection and replace as much functionality of the subject
as possible.

Load Balancing and Fault Tolerance Smart proxies can be made
to represent multiple subjects and balance the number of re-
quests each subject has to handle. Likewise, the proxy can
use the fact that multiple subjects exist in order to provide
fault tolerance.

Security Smart proxies can be used to perform additional validity
checks or pass along extra arguments to the subject, such as
security certificates needed to authenticate the request.

State Sharing A subject may have several proxies in different ob-
ject spaces. Conceptually, all proxies share the subject’s state.

Technically, this might be realised by equipping smart prox-
ies with advanced replication machinery.

Because of the way middleware solutions make proxies explicit,
they can be adapted to incorporate this kind of behaviour. In CORBA,
for example, proxies are generated by the middleware. A smart
proxy can be created by inheriting from the generated proxy class,
overriding certain methods to achieve supplementary behaviour [38].
The drawback of CORBA’s smart proxies is that their customised
code must be present at the client site (because the client needs a
smart proxy at run-time) which requires the client to be modified
whenever changes are made to the server code (because it is the
server issuing the smart proxy code). In open networks where new
clients may appear unheraldedly, this is problematic.

Java’s DOC solution, Java RMI, also automatically generates prox-
ies using Java’s RMI stub compiler. Smart proxies can be created
in Java in much the same way as in CORBA, with the same draw-
backs. A better way to implement smart proxies in Java that avoids
these drawbacks is to exploit Java’s class loader to download new
proxy classes from a server at run-time [39]. A drawback with this
approach is that the application might have to substantially refac-
tor its class hierarchy in order to meet the class and interface re-
quirements for such smart proxies. Also, dynamic class loading is
not always allowed because of constraints imposed by the security
manager as exemplified by the applet sandbox model.

In spite of the technical problems associated with smart proxies in
Java RMI and CORBA-like middleware, smart proxies are a good
abstraction technique because they provide a convenient place to
encapsulate advanced functionality. This makes DOC applications
much easier to reason about. Unfortunately, in existing distributed
languages, remote object references are fully transparent which
precludes the creation of such smart proxies.

2.3 Summary
The problems revealed in this section seem to have locked us in
a stalemate. Either one chooses for a distributed object-oriented
programming language that deals with remote object references in
a transparent way, or one reverts to proxy-based middleware on
top of a standard object-oriented programming language. The for-
mer defers all distribution aspects to the programming language
infrastructure precluding developers to fully exploit their knowl-
edge. The latter is a source of numerous problems because the
discrepancy between proxies and their subjects interacts with basic
object-oriented language features such as static typing, reflection
and object identity.

In the remainder of the paper we show that there is a way out of
this apparent stalemate by conceiving proxies as delegation-based
descendants of their subjects. We solve the problem by making the
delegation feature of prototype-based languages applicable to ob-
jects that reside in distributed object spaces. We have explored this
language feature by incorporating it in an experimental distributed
toy language called ChitChat, which is the topic of the rest of the
paper.

3. LANGUAGE DESIGN ASSUMPTIONS FOR
OPEN NETWORKS

Before delving into the technical details of ChitChat, we first list
the fundamental assumptions that have shaped it. These assump-
tions are based on the properties of the dynamically formed net-

works we described in the introduction. Our most fundamental as-
sumption is that we have chosen our language to be object-oriented
and that the object is the basic unit of distribution such that com-
munication between distributed parties basically happens through
message sending. The additional considerations that have influ-
enced the design of ChitChat are:

Concurrency: Because the objects in a network typically reside
on different hardware devices, concurrency is a natural phe-
nomenon we have to deal with. One of the key decisions in
designing a concurrent object-oriented language is the choice
between synchronous and asynchronous message sending.
Synchronous message sends are associated with a thread-
based concurrency model such as that of Java. In synchronous
message sending, the sender is blocked until the execution
of the remote method finishes. This model is conceptually
easy to understand, yet extremely error-prone [20]. The epit-
ome of asynchronous message sending is the actor model [1].
Although extremely elegant, this model is, in its pure form,
considered to be unpracticable because of the lack of mutable
object state. The notion of anactive object, as e.g. present
in ABCL/1 [41], is considered a compromise between both
approaches. Active objects have their own thread and mes-
sage queue, just like actors, except that theydohave mutable
state. Active objects autonomously handle messages asyn-
chronously.

In an open dynamic network environment, asynchronous re-
mote message sends have advantages over synchronous ones.
The connections in such networks are often wireless and un-
stable: a connection between two devices can break easily.
If a device were in the process of handling a remote message
synchronously, this can render the sender blocked for a long
period of time, which is unacceptable. Moreover, asynchron-
ous messages decouple the sender and receiver of a message
in time, meaning that both do not necessarily have to be con-
nected to the network at the same time in order to communi-
cate [26]. Section 5.1 provides a more detailed discussion on
ChitChat’s active objects.

Flexible Object Graph Definition: Distributed object graphs glued
together by proxies can become very complex. This is even
more so in hardware constellations that consist of machines
that dynamically form networks and start sending messages
around in an object-graph the topology of which is not stat-
ically determined. This has led us to opt for adynamically
typed prototype-based language. First, in statically typed
languages, it is cumbersome to inject new types of objects
(i.e. new classes) at run-time. Even if it is possible (as
in a restricted form with CORBA’s Dynamic Invocation In-
terface or with Java classloaders) their static types will be
abstract (i.e.Object) since the concrete subtypes are un-
known at compile-time. This nullifies the benefits of static
typing and has led us to a dynamically typed language. Sec-
ond, in the given hardware context, classes are another source
of problems. The creation of objects requires a class which
inevitably leads to copying classes over the network. This
poses many problems related to the fact that classes share
their class-variables and methods among their instances. When
classes are copied over a network, the former lead to replica-
tion problems and the latter to versioning problems. Class-
less objects encapsulating their own methods and state have
proven to be more flexible in distributed applications. In-
deed, with the exception of Argus [23] – which was not de-

signed foropennetwork environments – most well-known
distributed programming languages such as Emerald [3, 16],
Obliq [7] and dSelf [33], are all classless.

Language Level Security: Security is an essential ingredient of
distribution. This is even more so if networks are defined
dynamically and potentially malicious nodes might enter the
network. As analyzed by Thorn [32], security is an issue that
affects all levels, varying from the operating system and net-
work layers up to the programming language in which one
writes distributed systems. Vitek [36] defines a secure sys-
tem as “[...] a programming system that prohibits insecure
programs”. This means that languages where the objects are
not de factoprotected from external encapsulation breaches
by the language are flawed right from the start. This is par-
ticularly important when designing a prototype-based lan-
guage. Indeed, Snyder [28] already showed that inheritance
in a class-based language is an encapsulation-breaching op-
eration because inheriting code necessarily “sees” more de-
tails of a superclass than client code. In [30] this was shown
to be a fundamental problem of prototype-based languages:
because inheritance is defined directly on objects, objects
are constantly vulnerable to breaches of encapsulation. As
shown below, ChitChat solves these issues by adhering to a
principle we callextreme encapsulation. The key idea is
that objects are fully encapsulated and are only subject to
message passing, excluding “operators” such as inheritance,
cloning, slot modification, parent assignment and so on. How
this extremely restricted object model still enables phenom-
ena such as inheritance, cloning and object creation, is de-
scribed in more detail in the following section.

4. CHITCHAT’S OBJECT MODEL
Before delving into distribution and concurrency in section 5, the
foundations of extremely encapsulated objects are introduced by
situating ChitChat in the realm of prototype-based languages.

4.1 Prototypes and Delegation
Along with Self [34] and ACT1 [22], ChitChat belongs to the dele-
gation-based branch of the prototype-based language family. Thus,
ChitChat object extensions can delegate messages at run-time to
their parent object [21]. Unlike Self, ChitChat features a more
rigid object inheritance scheme where each object has exactly one
parent. Furthermore, the delegation link between parent and child
is implicit and fixed at object creation time. When a message is
sent to an object but no corresponding method is found, it is im-
plicitly delegated to its parent. If an implementation is found in
a parent, self-sends will properly be sent to the original receiver,
a property referred to aslate binding of self. An important prop-
erty of delegation-based systems isparent sharingwhich means
that the same object can be a shared parent for two or more descen-
dants. Changes in the parent state made by one descendant are then
visible to other descendants too.

4.2 Extreme Encapsulation
As mentioned before, language operators such as cloning, object
extension, slot addition or deletion, etc. breach object encapsula-
tion because they allow one to bypass an object’s message sending
interface. This security concern has caused us to conceive ChitChat
as a prototype-based language that features message passing as the
only operator applicable to objects. Other language operators are
simulated by allowing objects to declare different kinds ofmethods.
Depending on the kind of a method, extra actions are undertaken

before and after its body is executed. The language distinguishes
between ordinary methods,viewmethods andcloningmethods. A
view (resp. cloning) method is declared by prefixing its method
name byview (resp. cloning). In the following code excerpt,
incr anddecr are ordinary methods,new is a cloning method
and makeCounter and makeProtected are view methods.
The entire expression is the declaration (denoted by::) of a view
method (denoted by the prefixview) calledmakeCounter .

view.makeCounter(n) :: {
incr(v) :: { n := n+v };
decr(v) :: { n := n-v };
cloning.new(x) :: { n := x };
view.makeProtected(limit) :: {

incr(v) :: {
if(n+v > limit,

error("overflow: limit reached"),
super.incr(v))

}
}

}

As can be expected, when method lookup determines that a mes-
sage sent to an object is implemented by an ordinary method, the
body of the method is simply executed.

Upon invoking a view method, before the method body is executed,
an extension of the receiver of the message is created. The exten-
sion is called aview, the original receiver is called the parent and
the delegation link established between them is fixed. The view
method’s body is subsequently executed in the scope of the view.
The return value of the method is the newly created view. Hence, it
is not far wrong to think of a view method as a constructor. In the
example above,makeCounter is a view method which spawns
extensions on the root object by sending e.g.root.makeCount-
er(3) . As can be read from the body of themakeCounter
view method, such newly created objects will contain a variable
n and will respond to four messages, to witincr , decr , new and
makeProtected . makeProtected can be used in its turn to
dynamically generate extensions of a counter object. Notice that a
protected counter overrides theincr method of its parent.

Executing a cloning method leads to the creation of a clone of the
receiver. The body of the cloning method is executed in the scope of
the clone, allowing for the internal state of the clone to be initialized
correctly. In the example, invokingc.new(5) on a previously
created counter objectc results in a clone whose instance variable
will be set to5.

With the special kinds of methods, ChitChat gives objects the ex-
plicit control over all critical operations because there are no ad-
ditional language operators defined on objects apart from message
passing. We say that objects are extremely encapsulated since they
can decide independently whether they can be extended or cloned.
Objects that do not contain view and/or cloning methods cannot
be tinkered with. Since an object provides the code of a view or
cloning method itself, it can also precisely prescribe how its de-
scendants or clones will behave. ChitChat adopts this extremely
encapsulated object model from Agora [29, 30] where view meth-
ods were originally termed mixin-methods. Section 7 further com-
ments on the implications of this model on software evolution.

5. DISTRIBUTED DELEGATION IN CHITCHAT

In section 3 we argued in favour of a secure concurrent prototype-
based language as the basis for distribution. The model based on
extremely encapsulated prototypes discussed in the previous sec-
tion covers the security requirement. We now enhance this model
with active objects, the basic unit of concurrency and distribution
in ChitChat. As explained in the introduction, the key insight of the
paper is that remote object proxies are nothing but delegation-based
descendants of their subjects. This is the topic of section 5.3. First
we explain how active objects behave and how they participate in
delegation hierarchies.

5.1 Active Objects
Active objects in ChitChat are largely based on those of ABCL/1
[41] and, as shown in section 3, occupy the middle ground between
the thread-based and actor-based extremes. They encapsulate a
message queue and a computational thread which perpetually pro-
cesses messages from that queue and executes the associated meth-
ods, one at a time. This excludes what is known as intra-object
concurrency [5] such that race conditions on the internal object
state are avoided. Messages sent to an active object are handled
asynchronously but immediately return a promise (a.k.a. a future
[2, 14, 24]). Such a promise acts as a placeholder for the result to
be computed. Accessing this placeholder before the result is known
will temporarily block the execution of the accessor. When the re-
sult is known, the promise is transparently replaced by its value
and the accessor continues its execution. This scheme maximizes
concurrency and ensures synchronous communication onlywhen
strictly necessary. Moreover, it has the advantage of allowing a
concurrent program to be read as if it were a sequential one.

The following example illustrates active objects. Analogous to the
way ordinary objects are created, active objects are spawned by ex-
ecuting anactiveview method (prefixed byaview). In the exam-
ple, invokingfib creates an active object that contains one single
methoddo whose body spawns concurrency by creating active ob-
jects and asynchronously sending themdo as well. The+ operator
blocks until both promises of the concurrent tree recursion have
been fulfilled.

aview.fib(n) :: {
do():: {

if(n<2,
1,
athis.fib(n-1).do()+athis.fib(n-2).do())}}

Because of the assumptions outlined in section 3, active objects are
the unit of distribution in ChitChat. This implies that only active
objects can be referred to over the network and that all network
traffic consists of asynchronous messages. The relation between
active objects and the ordinary objects of section 4 is that every
ordinary object is reachable by at most one active object. In other
words, every ordinary object is owned by exactly one active ob-
ject. This guarantees ordinary objects to be free of race conditions
because two different threads necessarily belong to two different
active objects and can therefore never enter the same ordinary ob-
ject. To satisfy this constraint that ordinary objects are never shared
by active ones, ChitChat’sobject passing rulesprescribe that ordi-
nary objects are copied every time they are used as arguments or
results in a message sent to an active object. Active objects, on the
contrary, can be safely passed by reference.

5.2 Active Objects vs. Delegation

As the method prefixaview (for active view) suggests, active ob-
jects can participate in delegation hierarchies in the same way or-
dinary objects do. Active objects have exactly one parent object
which has to be an active object in its turn3. Upon receiving a mes-
sage that it does not implement, an active object will delegate that
message to its parent. Since active objects are the unit of distribu-
tion, the method lookup algorithm may cross network boundaries
while traversing the active delegation chain. When an active ob-
ject is found that implements the method corresponding to the mes-
sage, the message is scheduled in the queue of this particular object.
Hence, when messages are delegated between active objects, it is
theproviderof the method that will eventually run the method. Ar-
guments for the method and (a promise for) its result follow the
object passing rules prescribed earlier. During the execution of
the method, messages sent to the pseudo-variableathis end up
in the queue of the original receiver which means that distributed
delegation satisfies late binding of self, even whenathis refers
to a remote descendant. As can be expected, messages sent to the
asuper pseudo-variable are explicitly delegated (asynchronously)
to the parent and also satisfy late binding ofathis .

Distributed delegation hierarchiesof active objects emerge when-
ever one invokes an active view method on a remote active ob-
ject. When this happens, the body of this method is dynamically
downloaded on the host of the sender. The method is subsequently
executed in the context of a newly spawned active object which re-
sides on the machine of the sender and whose parent is the original
receiver. Thus, messages sent to a remote active object that are
implemented by active view methods lead to the creation of local
active descendants. In conclusion, active views arealwayscreated
on the site of thesenderof the message that triggered the active
view method. If sender and receiver are located on different virtual
machines, an active view with a remote parent is created.

5.3 Distributed Proxies as Delegation-based De-
scendants

Active objects combined with distributed delegation form the ba-
sis for remote proxies in distributed applications. The key insight
is that a proxy in ChitChat is conceived as anempty viewon a re-
mote object. In accordance with the object passing rules of section
5.1, this empty active view is automatically created when an active
object is passed across network boundaries. The proxy automati-
cally delegates (in the original prototype-based sense of the word)
each request to its subject (read: parent) if it does not override that
request. This behaviour is exactly the one shown by conventional
proxies. But as argued below, the delegation-based approach has
many advantages over the aggregation-based proxies discussed in
section 2. Apart from the automatic message forwarding and the
overriding capabilities, the late binding of self principle between
a subjects and their proxies is respected. Applications hereof are
postponed to section 6.

Proxies as empty delegation-based descendants enable a number
of elegant DOC solutions. First, stub code that manually forwards
each method invocation across the network is no longer required
because this is the default behaviour of delegation. Second, it be-
comes trivial to augment proxies with dedicated behaviour, turning
them into what were called smart proxies in section 2.2. All one
has to do is to equip the subject with an active view method that

3We have experimented with hierarchies consisting of ordinary ob-
jects mixed with active ones. It turns out to be very hard to come
up with a comprehensible semantics for this.

overrides and/or adds certain methods in order to obtain that dedi-
cated behaviour. Once an initial (automatically created and empty)
proxy is obtained on the subject4, it can be sent a message that
invokes the active view method thereby spawning the proxy that
implements the dedicated behaviour. In other words, ChitChat al-
lows one to add methods in the proxy. Because these can override
methods in the subject, some operations can be handled differently
or locally (i.e. without delegating over the network). Figure 1 il-
lustrates how a reference to a remote counter object can be used to
spawn a local extension that applies these ideas. We will use the
technique in section 6.1 to devise smart proxies that display such
customised behaviour. First, we evaluate our approach in the light
of the analysis presented in section 2.

asuper

incr(v) method

protect aview

n 0

Subject

asuper

incr(v) method

limit 5

Smart Proxy

asuper

Proxy

Object Space A Object Space B

decr(v) method

new cloning

Figure 1: Modelling Remote Object Proxies as Delegation-
based Descendants

5.4 Evaluation
As summarised in section 2.3 current DOC approaches require a
programmer to choose between fully transparent distributed pro-
gramming languages (excluding advanced DOC techniques like smart
proxies), and the use of middleware technologies (whose proxies
heavily interfere with basic object-oriented language features).

The goal of middleware is that application code using proxies should
not be able to distinguish a proxy from its subject. However, mid-
dleware fails to conceal its proxies because language features be-
yond its control are able to reveal them. ChitChat avoids the dis-
crepancy between proxies and subjects due to dynamic typing and
extreme encapsulation which prescribes that all operations on an
object are funnelled to the object’s message sending interface. Hence,
the idiosyncratic behaviour of e.g. object identity operators (such
as==) is avoided, because ChitChat enforces the use of late-bound
messages (such asequals). In general, extreme encapsulation
allows a proxy to intercept any operation on its subject.

The pitfall of full transparency in other language-based approaches
lies in the fact that their proxies are not only transparent toclient
code, but also entirely oblivious to theprogrammerwho may wish
to enhance their behaviour. This impediment is alleviated by con-
ceiving proxies as (potentially empty) delegation-based descendants.
These allow one to encapsulate the non-functional aspects of dis-
tribution, yielding the smart proxies we introduced in section 2.2.
Concrete examples of such smart proxies in ChitChat are given in
section 6.1.

ChitChat’s dynamic download mechanism for active view code can
be regarded as an object-based variant of Java’s class loading mech-
anism. Both techniques achieve the incorporation of new behaviour

4ChitChat’s service discovery mechanism, albeit outside the scope
of the paper, allows one to obtain an initial empty view on a
primeval subject. Other references are subsequently obtained
through message sending.

at the client side at run-time. Hence, customized proxy code does
not have to be known to all client sides at compile-time, but is
downloaded just-in-time. This benefits the extensibility of a pro-
gram since clients will automatically download newer versions of
the proxy code if the subject is upgraded. Also, the addition of a
new method to a subject is gracefully handled by existing proxies,
since the default behaviour will delegate the new requests to the
subject. There is no need for the proxy to manually forward the
request unless specific proxy behaviour is required.

Compared to Java’s class loading mechanism, which can be heav-
ily restricted for security reasons, ChitChat does not constrain the
download mechanism of proxies. Due to extreme encapsulation,
the downloaded proxy can tamper with its subject only. This does
not introduce security breaches since the subject prescribes the pro-
xy’s behaviour, ruling out the creation of malicious descendants.

5.5 Parent Sharing and Scoping Rules
Before we present a number of ChitChat programming idioms re-
sulting from representing proxies as delegation-based descendants,
more technical insight in ChitChat’s delegation mechanism is re-
quired. As indicated in section 4.1, parent sharing is a natural
phenomenon of delegation-based languages. Parent sharing also
occurs when a subject has multiple proxies (possibly spawned by
one or more active view methods). However, delegation hierarchies
consisting of active objects easily lead to race conditions when two
active objects have access to the same parent [6]. In order to pre-
vent those race conditions, delegation hierarchies of active objects
require special scoping rules. In traditional delegation-based lan-
guages, descendants have privileged scoping in the sense that they
have direct access to their parent’s variables. This becomes prob-
lematic if two active objects concurrently read and write variables
in a shared active parent, as exemplified by the following code:

aview.makeParent(x) :: {
aview.makeChild() :: {

incr() :: { x := x + 1 }
}

}
p :: makeParent(0);
c1 :: p.makeChild();
c2 :: p.makeChild(); ‘c1 and c2 share p as a parent‘

If c1 andc2 concurrently handle anincr() message, race con-
ditions may occur:c1 might read the value forx and find it bound
to 0. Meanwhile,c2 reads outx , binding it to0 as well. Next,c1
writes1 back tox . Finally,c2 also stores1 in x .

ChitChat solves this problem by restricting the scope of active de-
scendants. An active descendant hasno direct access to the slots
of its parent. Rather, the scope of a descendant’s method is re-
stricted to the descendant itself and, of course, the local scope of
the method. Hence, a method can only manipulate local variables
of the method and of the descendant itself. In Java terminology,
parent variables in ChitChat are private instead of protected. To ac-
cess state in the parent, the scope must be widenedexplicitly using
thescope opening messageasuper(code) . The meaning of an
expression of the formasuper(code) is to request the parent
to execute the expressioncode in its scope. As such, descendants
can still read and modify parent variables. Reconsidering the above
example, the body ofincr is not valid ChitChat code sincex is
a variable belonging to the parent. The method must therefore be
implemented asasuper(x:=x+1) .

A characteristic of the scope opening messageasuper(code)
is that it actually schedules a request to execute the code in the
parent’s message queue. The absence of intra-object concurrency
in ChitChat implies that only one such request is served at a time.
This ensures that requests from multiple descendants are always ex-
ecuted serially such that race conditions in the parent are precluded.
The descendant-parent communication based on scope opening mes-
sages confirms the philosophy that active objects are autonomous:
even descendants cannotdirectlychange the state of another active
object. This is a key characteristic of delegation in ChitChat.

As with other messages sent to active objects, theasuper(code)
expression immediately returns a promise that will eventually be
replaced by the value ofcode once it has been executed by the
parent. Furthermore, the block of code sent to the parent respects
late binding of self such that occurrences ofathis in the block
refer to the descendant that sent the code. Analogous to the way
code is transmitted to the parent usingasuper(code) , the par-
ent can in turn send code back to the descendant using the scope
opening messageathis(code) . By nesting such scope opening
messages, children can access parent variables and vice versa. The
subtleties of the pseudo-variablesathis andasuper (explained
in section 5.2) and the scope opening messagesasuper(code)
andathis(code) are depicted in figure 2 and further exempli-
fied by the idioms of the following section.

Parent

Descendant

athis

asuper

athis

asuper(...)

athis(...)

Figure 2: Scope Opening Messages vs. Pseudo-variables

Notice that the dynamic code uploading mechanism introduced by
asuper(code) may at first seem to introduce security breaches
because code is injected by a descendant into its parent. However
the code that is uploaded this way was originally defined by that
parent because the descendant itself was spawned by that parent.
Thanks to extreme encapsulation, descendant objects can only be
created by (active) view methods and therefore a parent has full
control over its descendants.

6. CHITCHAT PROGRAMMING IDIOMS
We now illustrate how ChitChat’s unique features can be used to
implement a collection of quite complex DOC phenomena in an el-
egant and expressive way. We start by showing the ease with which
smart proxies are conceived. Section 6.2 shows how ChitChat gen-
eralizes Java’s popular applet technique in a secure way. Finally
section 6.3 sheds some light on how distributed delegation forms
the basis for a programming language with simple built-in transac-
tions.

6.1 Example Smart Proxies

In section 2.2, fully transparent approaches to DOC have been crit-
icised because they preclude programmers from using their knowl-
edge to fine tune the behaviour of their proxies. Smart proxies were
advocated to implement such tailor-made remote references. We
now illustrate how the network performance of an application can
be improved using smart proxies by means of two examples, to wit
caching and request batching.

6.1.1 Caching
We illustrate caching smart proxies using a simplistic stock ex-
change network service. The service is presented as a remotely ac-
cessible active object that encapsulates a database of stock quotes.
It might be created by invoking the active view method given in the
following code excerpt5.

aview.makeStockExchange(database) :: {
proxies : makeList();
requestStockPrice(symbol) :: {

database.find(symbol) };
updateStockPrice(symbol, price) :: {

database.update(symbol, price);
proxies.iterate({elt.refresh(symbol, price)})}

topStocksTradedToday() :: { ... };
aview.makeCachingProxy() :: {

cache : makeMap();
requestStockPrice(symbol) :: {

if (cache.contains(symbol),
cache.get(symbol),
{ price: asuper.requestStockPrice(symbol);

cache.put(symbol, price);
price }) };

refresh(symbol, price) :: {
if (cache.contains(symbol),

cache.set(symbol, price)) };
asuper(proxies.add(athis)) } }

The server spawned by this method is an active object that has two
private variables (database andproxies) and that implements
four methods (requestStockPrice , updateStockPrice ,
topStocksTradedToday andmakeCachingProxy). Other
active objects on the network will typically act as clients and use
ChitChat’s service discovery mechanism (which is outside the scope
of the paper) in order to obtain a network reference to the server.
Remember from section 5.3 that such a reference is nothing but
an empty descendant of the object. Messages sent to this empty
view (read: proxy) are automatically delegated to the parent (read:
subject). Examples of such messages arerequestStockPrice
which queries the server for a stock price given a ticker tape sym-
bol, andtopStocksTradedToday which returns today’s top
deals.

The focus of our attention is themakeCachingProxy active
view method. Upon invoking it, a descendant of the server is cre-
ated on the site of the sender of themakeCachingProxy mes-
sage. The new object contains a private variablecache , over-
rides therequestStockPrice method, inheritstopStocks-
TradedToday and adds therefresh method. This is the smart
proxy that implements the caching behaviour: instead of forward-
ing each request for a stock quote, it caches previous request results
in cache . In order for the proxy to be notified when a stock price
is updated, it registers itself with the stock service which happens
5Notice that ChitChat object slots are either public, immutable slots
(declared using::) or private, modifiable slots (declared using:).
The rationale behind this is unravelled in [12].

in the last expression of the active view method. In order to have
access to theproxies variable, this expression needs to be eval-
uated at the server site using theasuper scope opening message.
Becauseathis is late bound, it refers to the smart proxy.

Whenever the server is updated upon processing anupdateStock-
Price request, theiterate form is used to loop6 over thepro-
xies variable in order to notify all smart proxies by sending them
refresh . This will cause the smart proxies to update their cached
prices.

6.1.2 Request Batching
The second illustration of smart proxies that reduce network traf-
fic is known as request batching. The idea is that a smart proxy
accumulates a number of actions on a remote subject such that the
accumulated actions can be sent in bulk to the subject. The code
below shows the technique in the context of an oversimplified dis-
tributed drawing board application.

aview.makeDrawingBoard() {
draw(figure) :: { ... };
aview.makeBatchProxy() {

batchlist : makeList();
draw(figure) :: { batchlist.append(figure)};
flush() :: {

snapshot : batchlist.copy();
batchlist.clear();
asuper(

athis(snapshot).iterate({draw(elt)}))
} } }

A drawing board has adraw method which can be used by a client
to draw something on a centralized whiteboard. Clients can down-
load a batch proxy onto their machine by sendingmakeBatch-
Proxy to the drawing board which will buffer alldraw requests
until flush is invoked7. flush creates a snapshot of the buffered
requests such that the buffer can be cleared.asuper is used to in-
voke the buffered requests. The code contained withinasuper is
uploaded to and executed by the drawing board server. The server
then requests a copy of the snapshot and iterates over the list lo-
cally. Hence, instead of having to transmit each figure in a separate
remote method invocation, they are effectively transmitted in batch.

6.2 Connected Applets
Remember from section 5.2 that anaview ’s method body is dy-
namically downloaded if the sender and the provider of the method
are not co-located. This mechanism resembles the behaviour of
Java applets, whose code is dynamically downloaded from a server
and executed locally by the virtual machine in the client’s web
browser. In this setup it is very common that, after downloading
the applet code and starting the execution of the new applet, a con-
nection is established between the applet and its spawning server in
order to retrieve additional data. An extreme instance of this is the
popular Volano8chat server which spawns chat applets that imme-
diately establish a lifetime connection with their server. Thesecon-
nected appletsare trivially modeled in ChitChat by programming

6The iterate form takes an expression overelt and evaluates
that expression withelt bound to each element in the collection.
See [11] for more details.
7Typically, other methods of the smart proxy will invokeflush
thereby avoiding pollution of client code.
8http://www.volano.com

them as descendant objects of their server. The code of the server
and the applets can use theasuper and athis scope opening
messages to communicate. We illustrate the technique by present-
ing the framework for a distributed chat system written in ChitChat.

The chat application is modelled as an active server object that
spawns — upon request — remote active clients as distributed de-
legation-based descendants. The fact that the clients are conceived
as descendants of the server might seem awkward at first, but only
for those who associate the terms ‘client’ and ‘server’ with client-
functionality (e.g. opening connections to a server) and server-
functionality (e.g. polling or listening for requests). From a con-
ceptual point of view, the chat server merely contains the informa-
tion shared by the chat clients. In ChitChat it is therefore imple-
mented as a shared parent object of those clients. The local client
is literally a view on that shared state. We will get back to this in
the discussion of section 7.

The overall structure of the code is shown below. As explained, a
chat server is an active object (created by invokingmakeChat-
Server) that can spawn chat clients as delegation-based descen-
dants. This is accomplished by sendingregisterClient to a
remote chat server.

aview.makeChatServer(channelName) :: {
clients : makeList();
aview.registerClient(name) :: {

...
} };

The detailed implementation of theregisterClient method
is given below. Upon invoking it remotely, the method body is
downloaded and executed in the context of a newly created object
(at the site of the sender) that has the chat server as its parent. As
can be seen from the source text, executing the method body will
install methodsreceiveMsg andsendMsg (which is expanded
further on) in the client and will register that client in the server
using the same technique that was used to register the caching smart
proxies in the previous section. In the code this is resembled by
the fact that the server keeps track of its clients in theclients
variable. Updating this variable to register a new client is done with
theasuper scope opening message. It uploads and schedules the
registration code in the server’s message queue.

aview.registerClient(name) :: {
receiveMsg(from,msg) :: {print(from,": ",msg)};
sendMsg(msg) :: { ... };
asuper(clients.add(athis))

};

A client’s receiveMsg method will be invoked by the server
whenever another client has sent a message to the chat channel.
It will simply print the identification of that other client on its GUI
along with the message. The other way around, a GUI at a client’s
site is expected to sendsendMsg to its chat client object when-
ever the chatter types a line. The implementation ofsendMsg also
resides in the client object and broadcasts the message to all con-
nected clients. This is shown below. Upon receivingsendMsg ,
a client asks its parent to broadcast the message to all the clients
contained in theclients list using theasuper scope opening
message. The server, in turn, requires the name of the client that
sent the message. It is obtained by theathis(name) expression

yielding a promise which is used whenreceiveMsg is sent to all
connected clients. Because of asynchronous message sending, the
iteration will not wait for a result before entering its loop again.

sendMsg(msg) :: {
asuper({

from: athis(name);
clients.iterate({elt.receiveMsg(from,msg)})})};

The chat example presented here is not production code because
it lacks such things as a GUI and is not fault tolerant. Neverthe-
less, it clearly illustrates the expressiveness of ChitChat’s features:
the above 10 lines of code allowed us to effectively run the core
functionality of a distributed chat application in our prototype im-
plementation of ChitChat.

6.3 Serialized Transactions
A final idiom that illustrates the elegance and expressiveness of
ChitChat’s distributed delegation consists of expressing simple se-
rialized distributed transactions. As in section 6.1, a simplistic dis-
tributed drawing application in which clients share a remote white
board will be used as an example to illustrate the technique. Typi-
cally, some concurrently running client requests made to the white
board require mutually exclusive access. For example, a call to
drawLine may not proceed in parallel with a call togetBoard-
Content . In Java, this is accomplished by marking those methods
with thesynchronized modifier. In ChitChat, this is the default
behaviour because active objects exclude intra-object concurrency.

For the sake of the example consider a client that needs an opera-
tion to drawtwo lines on the white board atomically such that other
clients always see both lines rendered, or none at all. The solution
in a typical client-server architecture would be to add another syn-
chronized methoddraw2Lines to the server that does the job.
This illustrates that a synchronized method has to be added to the
server for every combination of requests that one wants to see han-
dled in an atomic way. For example, a client that wants a rectan-
gle (as four lines) without concurrent interference of other clients
will require the server to be extended with ad-hoc methods such
asdrawRectangle . This approach of extending the server with
every possible meaningful operation that might have to run atomi-
cally does not scale. The same phenomenon occurs in the context
of databases. Since the database designer cannot know beforehand
what operations (table insertions, deletions, queries) have to be per-
formed atomically, database management systems put the burden
of synchronisation with the clients by requiring them to manually
group their actions in transactions. This is precisely the vision en-
dorsed by ChitChat. The idea is that a client (read: descendant) can
ask a server (read: parent) to execute a chunk of code atomically
simply by uploading that code using theasuper(...) scope
opening message. This is exemplified by the following code ex-
cerpt which illustrates how a client might ask a server to accomplish
the same task that would require us to add a methoddraw2Lines
in other languages.

asuper({ drawLine(line1,color1);
drawLine(line2,color2) })

This kind of client-side synchronisation might also be achieved in
existing client-server applications by employing locks. Indeed, a

client could explicitly lock and unlock the server object and per-
form the necessary requests in between. However, this is quite
error-prone since the technique of manually managing locks puts
an extra cognitive burden on the programmer. Also, if a malicious
or erroneous client takes a lock on the server and does not release
it, the server could be rendered useless unless the server is provided
with sophisticated protection code. The transaction-based solution
of ChitChat does not suffer from this problem. It is the server (par-
ent) itself that executes the code contained in anasuper block.
The parent will automatically serve new requests when it finishes
executing the block. Furthermore, because the client that uses the
asuper(...) scope opening message was itself spawned by the
server, security is guaranteed.

7. DISCUSSION AND FUTURE WORK
This section contemplates the solutions presented in the paper and
discusses the possibilities for improvement and further research.

Delegation Versus Synchronisation
In one of the ‘classic’ papers on object concurrency, Briot and
Yonezawa [6] meticulously explain that concurrency in a delega-
tion-based language is a source of synchronisation problems. The
reason is that both variable access and variable assignment in their
delegation-based language under study is based on asynchronous
message passing. As such, variable access and update messages
can become intertwined causing race conditions when two expres-
sions of the formx:=x+1 are concurrently executed. In our work,
we were able to reconcile delegation with synchronisation by block-
ing the scope between parents and descendants. By introducing ex-
plicit scope opening messagesasuper andathis we still obtain
the desired scoping. Making the scope opening explicit gives the
virtual machine the ability to ensure atomic execution.

Delegation Semantics
The conventional semantics attributed to delegation and inheritance
is that of anis-a relationship between the descendant and its par-
ent. It is not wrong to think of a ChitChat (smart) proxy in the
same way: a proxy for a complex number is-a complex number,
albeit a remote one. However, as already explained briefly in sec-
tion 6.2, the distributed delegation relationship does not necessarily
adhere to that semantics. This is the case when distributed delega-
tion is combined with parent sharing which gives rise to ashares-a
semantics as exemplified by the chat server. In that case, the dis-
tributed descendants are literally conceived as local views on a re-
mote shared object.

Conditional Synchronisation
An important issue in concurrent object-oriented programming is
how to temporarily enable and disable methods of an object. An
example is to disable a ‘read’ operation on a empty buffer until a
‘write’ operation has occurred. Although this was not neglected in
ChitChat, a complete description of the mechanism is beyond the
scope of the paper. It basically consists of a reification of promises
such that objects can grab first class promises for future fulfillment.
For more information we refer to [10].

External Object Extensions
Because object creation in ChitChat is aligned with message pass-
ing (i.e. a view method needs to be invoked), it may seem that ob-
ject hierarchies require a lexical nesting of all potential extensions
in the code of the object. Clearly, from a software engineering point
of view, this hampers unanticipated code reuse. This problem has

been solved before [9]. Its solution basically consists of a code
quoting mechanism that allows one to inject code in an object (as
always, by sending it a message).

Implementation Issues
At the time of writing, ChitChat has been provided with a tail-
recursive interpreter written in Java. After an unsuccessful attempt
to implement the distributed aspects of the language using SOAP
technology [35], the current implementation uses plain Java RMI
for this purpose. In the current status of the implementation, our
entire focus of attention was getting the semantics of the language
right. Implementation issues such as efficiency were often neglected.
Investigating optimisation techniques for the language is an inter-
esting topic of future research. We expect to reuse a lot of the
low-level implementation technology that was developed to pro-
vide an efficient implementation of a (non-distributed) predecessor
of ChitChat [11]. For a more formal specification of ChitChat, we
refer to [10].

Future work encompasses more programming language support for
expressing distributed delegation patterns and the incorporation of
partial failure handling tailored to open ad-hoc networks.

Us
Many experiments conducted in ChitChat involve registering re-
mote descendants with the parent that has spawned them. This was
the case in the caching example of section 6.1 and in the chat exam-
ple of section 6.2. Managing these references manually obviously
has a number of drawbacks. We therefore plan to incorporate them
into the language such that a parent has hidden links to the descen-
dants it has spawned. This could form the basis for anus(code)
scope opening message that generalizes thethis(code) scope
opening message which would broadcast a message to all descen-
dants. It would allow one to notify all descendants of a shared
parent in one stroke. However, this requires more research.

Advanced Delegation Schemes
As explained in section 5.2, the single delegation link between two
active objects in ChitChat is fixed when creating the descendant.
This has its restrictions. Since ChitChat features only single inher-
itance, an active object cannot extend one object in theis-a sense
and another in theshares-asense. Another problem of single inher-
itance in ChitChat is that an object cannot share state with multiple
objects. Hence, ChitChat’s smart proxies cannot have more than
one subject. Also, since parent assignment is not allowed, smart
proxies cannot dynamically change their subject. Experimentation
already has revealed that adding parent assignment to the language
without violating the extreme encapsulation principle is not trivial.
A way out might be a grouping mechanism similar to theus con-
struction that allows one conceptual parent to embody several exist-
ing objects. Parent assignment then boils down to toggling between
the members of the group. These advanced delegation schemes are
required to enable some of the advanced roles attributed to smart
proxies in section 2.2.

Partial Failure Handling
A problem of DOC that our work does not address at all is the
problem of partial failure. From this perspective, losing objects
from a distributed active object graph in ChitChat is as problem-
atic as in any other DOC system. But notice that the extra structure
imposed by a delegation hierarchy might help to ease the problem

because more structural information is available for the virtual ma-
chine. E.g., the examples of section 6 where a subject explicitly
keeps a reference to all its descendants are more vulnerable than
if this would be accomplished implicitly with anus(code) con-
struction. The latter would simply not broadcast the message to
lost descendants. The other way around, lost parent pointers might
be dealt with by fully replicating the shared parent’s state to the
clients. Theus(code) construction would prove helpful to fa-
cilitate programming such advanced replication machinery in the
parent. However, the design of language features that give support
to deal with partial failures is future work.

8. RELATED WORK
Most related work concerned with inheritance andconcurrencyin-
volves class-based inheritance schemes and studies the inheritance
anomaly. In [18], reuse and sharing are clearly distinguished as
two different facets of inheritance. It is argued that inheritance is
more useful for reuse and maintenance, while delegation empha-
sizes flexibility in sharing. Class-based languages with active ob-
jects like ACT++ [17] and Eiffel// [8] lack parent sharing and are
therefore not confronted with race conditions following from hi-
erarchically structured active objects. In actor languages such as
ACT1 [22] and ACT3 [15] thatdo enable such hierarchies, par-
ent sharing has never been exploited for managing state shared by
different concurrent actors. Instead, these languages encapsulate
shared state in specialguardianor receptionistactors.

ChitChat builds upon prior work in the field ofdistributedobject-
oriented programming languages. ChitChat’s distinction between
active and passive objects resembles Argus’s [23] dichotomy be-
tween ordinary andguardianobjects. The languages Emerald [3,
16] and Obliq [7] both feature a prototype-based object model but
do not feature delegation, such that parent sharing is unattainable.
Active objects in ChitChat can widen their scope to that of a re-
mote parent. As such, they achieve scoping similar to Obliq’s
distributed lexical scope for closures. To the best of our knowl-
edge, the language dSelf [33] – a distributed version of Self – is the
only language achieving the same kind of distributed delegation as
ChitChat. Unfortunately, the language lacks a sound concurrency
model. Also, dSelf inherits Self’s object model in which object en-
capsulation is easily breached, impeding the construction of secure
distributed programs.

9. CONCLUSIONS
The paper identifies a number of problems exhibited by proxies
in contemporary middleware solutions. Some of these are quite
technical and directly relate to static typing. Others however, are
more fundamental and boil down to the fact that a proxy and a sub-
ject conceptually denote the same object but are technically rep-
resented by two idiosyncratic objects. The other extreme of the
DOC spectrum is formed by distributed programming languages
that completely hide the existence of proxies. This approach has
the drawback of prohibiting programmers to use their knowledge
in order to improve an application’s performance by incorporating
that knowledge in smart proxies.

The key insight of this paper is to align distributed proxies with
delegation-based descendants of active objects. Conventional prox-
ies are nothing but empty extensions that delegate every request to
their subject by default. Smart proxies are conceived as proxies
that override and/or add behaviour to the descendant. In ChitChat,
special scoping rules and scope opening messages manage the vis-
ibility and modifiability of state between the parent and its descen-

dants. These generalizations of prototype-based delegation to a
concurrent and distributed setting were shown to facilitate the con-
struction of a number of quite complex DOC programming prob-
lems such as expressing simple serialized transactions, serving shared
state amongst connected applets and the realisation of smart prox-
ies.

10. ACKNOWLEDGEMENTS
We would like to thank Pascal Costanza for his helpful comments
on earlier versions of the paper.

11. REFERENCES
[1] G. Agha.Actors: a Model of Concurrent Computation in

Distributed Systems. MIT Press, 1986.

[2] H. G. Baker Jr. and C. Hewitt. The incremental garbage
collection of processes. InProceedings of Symposium on AI
and Programming Languages, volume 8 ofACM Sigplan
Notices, pages 55–59, 1977.

[3] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object
structure in the Emerald system. InConference proceedings
on Object-oriented programming systems, languages and
applications, pages 78–86. ACM Press, 1986.

[4] S. Brandt and O. L. Madsen. Object-Oriented Distributed
Programming in BETA. InECOOP ’93: Proceedings of the
Workshop on Object-Based Distributed Programming, pages
185–212. Springer-Verlag, 1994.

[5] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and
distribution in object-oriented programming.ACM
Computing Surveys, 30(3):291–329, 1998.

[6] J.-P. Briot and A. Yonezawa. Inheritance and
Synchronization in Concurrent OOP. In J. Bézivin, J.-M.
Hullot, P. Cointe, and H. Lieberman, editors,Proceedings of
the ECOOP ’87 European Conference on Object-oriented
Programming, pages 32–40, Paris, France, 1987. Springer
Verlag.

[7] L. Cardelli. A language with distributed scope. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
286–297. ACM Press, 1995.

[8] D. Caromel. Towards a method of object-oriented concurrent
programming.Communications of the ACM, 36(9):90–102,
1993.

[9] W. De Meuter. Agora: The story of the simplest mop in the
world - or - the scheme of object orientation. In J. Noble,
I. Moore, and A. Taivalsaari, editors,Prototype-based
Programming. Springer-Verlag, 1998.

[10] W. De Meuter.Move Considered Harmful: A Language
Design Approach to Mobility and Distribution for Open
Networks. PhD thesis, Vrije Universiteit Brussel, 2004.

[11] W. De Meuter, T. D’Hondt, and J. Dedecker. Pico: Scheme
for mere mortals.1st European Lisp and Scheme Workshop,
Ecoop 2004, 2004.

[12] T. D’Hondt and W. De Meuter. On first-class methods and
dynamic scope.RSTI - Lobjet 9/ 2003. LMO 2003, pages
137–149, 2003.

[13] R. Guerraoui and M. E. Fayad. OO Distributed Programming
is Not Distributed OO Programming.Communications of the
ACM, 42(4):101–104, 1999.

[14] R. H. Halstead, Jr. Multilisp: a language for concurrent
symbolic computation.ACM Trans. Program. Lang. Syst.,
7(4):501–538, 1985.

[15] C. Hewitt, T. Reinhardt, G. Agha, and G. Attardi. Linguistic
support of receptionists for shared resources. InProc. of the
NSF/SERC Seminar on Concurrency, pages 330–359.
Springer-Verlag, 1984. also MIT AI Memo 781.

[16] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system.ACM Transactions on
Computer Systems, 6(1):109–133, February 1988.

[17] D. Kafura. Act++: building a concurrent C++ with actors.
Journal of Object-Oriented Programming, 3(1):25–37, 1990.

[18] D. G. Kafura and K. H. Lee. Inheritance in actor based
concurrent object-oriented languages.Comput. J.,
32(4):297–304, 1989.

[19] D. Lea. Design for Open Systems in Java. In
COORDINATION ’97: Proceedings of the Second
International Conference on Coordination Languages and
Models, pages 32–45. Springer-Verlag, 1997.

[20] D. Lea.Concurrent Programming in Java: Design Principles
and Patterns. Addison-Wesley, second edition, November
1999.

[21] H. Lieberman. Using prototypical objects to implement
shared behavior in object-oriented systems. InConference
proceedings on Object-oriented programming systems,
languages and applications, pages 214–223. ACM Press,
1986.

[22] H. Lieberman. Concurrent object-oriented programming in
ACT 1. In A. Yonezawa and M. Tokoro, editors,
Object-Oriented Concurrent Programming, pages 9–36. MIT
Press, 1987.

[23] B. Liskov. Distributed programming in Argus.
Communications Of The ACM, 31(3):300–312, 1988.

[24] B. Liskov and L. Shrira. Promises: linguistic support for
efficient asynchronous procedure calls in distributed systems.
In Proceedings of the ACM SIGPLAN 1988 conference on
Programming Language design and Implementation, pages
260–267. ACM Press, 1988.

[25] S. Maffeis. A flexible system design to support object-groups
and object-oriented distributed programming. InProceedings
of the ECOOP ’93 Workshop on Object-Based Distributed
Programming, pages 213–224. Springer-Verlag, 1994.

[26] C. Mascolo, L. Capra, and W. Emmerich. Mobile Computing
Middleware. InAdvanced lectures on networking, pages
20–58. Springer-Verlag New York, Inc., 2002.

[27] Object Management Group. Common Object Request
Broker Architecture: Core specification, 2002.
http://www.omg.org .

[28] A. Snyder. Encapsulation and Inheritance in Object-oriented
Programming Languages. InConference Proceedings on
Object-oriented Programming Systems, Languages and
Applications, pages 38–45. ACM Press, 1986.

[29] P. Steyaert, W. Codenie, T. D’hondt, K. De Hondt, C. Lucas,
and M. Van Limberghen. Nested mixin-methods in Agora. In
Proceedings of the European Conference on Object Oriented
Programming, volume 707 ofLecture Notes in Computer
Science, pages 197–213, 1993.

[30] P. Steyaert and W. De Meuter. A marriage of class- and
object-based inheritance without unwanted children. In
Proceedings of ECOOP ’95, volume 952 ofLecture Notes in
Computer Science, pages 127–144. Springer, August 1995.

[31] Sun Microsystems. Java RMI specification, 1998.
http://java.sun.com/j2se/1.4.2/docs/
guide/rmi/spec/rmiTOC.html .

[32] T. Thorn. Programming languages for mobile code.ACM
Computing Surveys, 29(3):213–239, 1997.

[33] R. Tolksdorf and K. Knubben. Programming distributed
systems with the delegation-based object-oriented language
dSelf. InProceedings of the 2002 ACM symposium on
Applied computing, pages 927–931. ACM Press, 2002.

[34] D. Ungar and R. B. Smith. Self: The power of simplicity. In
Conference proceedings on Object-oriented programming
systems, languages and applications, pages 227–242. ACM
Press, 1987.

[35] T. Van Cutsem, S. Mostinckx, W. De Meuter, J. Dedecker,
and T. D’Hondt. On the performance of soap in a non-trivial
peer-to-peer experiment. InProceedings of the 2nd
International Working Conference on Component
Deployment, Lecture Notes In Computer Science. Springer
Verlag, May 2004.

[36] J. Vitek, M. Serrano, and D. Thanos. Security and
Communication in Mobile Object Systems. InMobile Object
Systems: Towards the Programmable Internet, pages
177–200. Springer-Verlag: Heidelberg, Germany, 1997.

[37] J. Waldo, G. Wyant, A. Wollrath, and S. C. Kendall. A note
on distributed computing. InMOS ’96: Selected
Presentations and Invited Papers Second International
Workshop on Mobile Object Systems - Towards the
Programmable Internet, pages 49–64. Springer-Verlag, 1996.

[38] N. Wang, K. Parameswaran, and D. Schmidt. The design and
performance of metaprogramming mechanism for object
request broker middleware. InProceedings of the 6th
USENIX Conference on Object-Oriented Technologies and
Systems (COOTS’01), January 2001.

[39] J. Wilson. Get Smart with Proxies and RMI. InJavaworld,
November 2000.http://www.javaworld.com .

[40] World Wide Web Consortium. Simple Object Access
Protocol (SOAP) 1.2 W3C Recommendation, 2003.
http://www.w3.org/TR/soap12-part2/ .

[41] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented
concurrent programming in ABCL/1. InConference
proceedings on Object-oriented programming systems,
languages and applications, pages 258–268. ACM Press,
1986.

