Conversations for Ambient Intelligence

Stijn Mostinckx*, Jessie Dedecker**, Tom Van Cutsem**, and
Wolfgang De Meuter
{smostinc, jededeck, tvcutsem, wdmeuter}@vub.ac.be

Programming Technology Lab
Department of Computer Science
Vrije Universiteit Brussel

Abstract. The development of programs for mobile devices inhabiting
Ambient Intelligent network constellations is notoriously difficult. These
difficulties stem from the fact that the limitations imposed by the hard-
ware need to be dealt with in an ad hoc fashion. In this paper we advocate
the use of conversations as a general programming model to develop
applications for Ambient Intelligence. We illustrate how conversations
tackle the different concerns of ambient-oriented software development.

1 Introduction

The past few years Ambient Intelligence (Aml) has begun to seep into soci-
ety. Whereas the vision as a whole remains futuristic, the introduction of ever
cheaper, smaller and more powerful mobile devices — such as cellular phones
and PDAs — cannot go unnoticed. These devices also harbour the necessary
wireless network provisions that allow them to escape their isolation and col-
laborate in open, highly dynamic network settings. Whereas technically feasible,
collaboration between different devices remains cumbersome due to the sheer
complexity of the software that governs such collaborations. One particularly
challenging problem consists of finding abstraction mechanisms for the collabo-
ration between different mobile devices, with respect to the different hardware
limitations overshadowing the interaction.

This paper advocates the use of conversations [Ran75] — a well-known ex-
ception handling technique — as a programming model for developing AmlI ap-
plications. Upon conducting a careful examination of the hardware limitations
imposed by mobile devices, we identify the main concerns to be addressed in
ambient-oriented software. Subsequently we investigate how conversations can
be employed to address these concerns and which extensions and modifications
are needed to obtain a full-fledged programming model for ambient-oriented
applications.

* Funded by a doctoral scholarship of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen), Belgium.
** Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.O.)

2 DMotivation

This section will highlight the main differences between traditional distributed
systems and the Aml setting of collaborating devices investigated in this paper.
These differences will provide us with a means to evaluate the applicability
of conversations in an Aml environment. At present, mobile devices are often
characterised by scarce resources such as lower CPU speed, available memory
and battery lifespan. However, given the rapid evolution of these devices and
their growing resemblance to full-blown computers such as laptops, we consider
these issues not to be fundamental characteristics of Aml devices.

The characteristics that we do consider to be fundamental are directly related
to the peculiarities of the wireless networks that allow the mobile devices to con-
nect with one another. These wireless networks come in two distinct flavours:
nomadic and ad hoc networks. The former network type implies that mobile
devices roam while remaining connected through the use of dependable infras-
tructure. Ad hoc networks on the other hand can be characterised by the abso-
lute lack of central infrastructure to support the interaction. To both network
constellations the following observations can be applied:

Volatile Connections A first important difference between traditional dis-
tributed systems and an Aml setting of collaborating devices is that the
latter can no longer rely on stable network connections. For ad hoc networks
with no infrastructure available, connectivity is limited by the range of the
wireless facilities. Thus connections may be broken as users move about.
When infrastructure is available, roaming users in a nomadic network may
still choose to use network facilities periodically, for example to minimise the
cost! or the battery consumption of upholding a network link.

Ambient Resources In contrast to their counterparts in stationary networks,
ambient-oriented applications should not rely on explicit knowledge of the
available resources. Instead the availability of resources needs to be dis-
covered dynamically, as the open network dynamically evolves due to the
unheralded joining and leaving of devices (which provide specific services).

No Presumed Infrastructure Whereas servers — reliable nodes providing a
fixed set of services for their clients — are commonplace in traditional dis-
tributed systems, ambient-oriented applications should be able to function
without them. Of course, one cannot prohibit software developers to make
use of servers in their applications, but the underlying network layer of a
programming model for ambient-oriented software should rely only on peer-
to-peer networks to accommodate ad hoc network constellations.

Natural Concurrency The need for concurrency naturally arises in a setting
populated by mobile devices. It is inconceivable to consider applications
that use the dynamics of a network of these devices as a single-threaded
application. If this were the case, the disconnection of whatever device that
currently holds the running thread would freeze an entire network of devices.

! Typically, access to reliable network infrastructure — such as a GPRS-network for
SmartPhones — requires payment based on the time one remains connected.

‘We have explored these hardware characteristics in previous work, to isolate some
characteristic features of an ambient-oriented programming language [DVM™05].
A result of this experiment was the development of AmbientTalk?, a minimal,
yet realistic3, programming language kernel for developing ambient-oriented pro-
grams. AmbientTalk introduces actors [Agh86] to encode processes which com-
municate with one another using asynchronous messages. Such asynchronous
communication limits the effects of failing communication links. AmbientTalk
additionally provides a basic service discovery mechanism that is based unifica-
tion of patterns published by the providers and potential users of a service. A
thorough introduction of the language is clearly outside the scope of this position
paper and can be found in the aforementioned article [DVM*05]. The Ambient
Actor model, which is the formal basis for AmbientTalk is detailed in [DV04].

While developing some examples in AmbientTalk, we have come across four
concerns that programmers encounter during the development of an ambient-
oriented application. The first two concerns are directly related to the exchange
of messages between different parties, whereas the latter two are related to the
particular network constellations under consideration.

Synchronisation In response to the hardware phenomena described above,
ambient-oriented languages require the use of asynchronous, non-blocking
communication primitives. However these primitives place a cognitive burden
on the programmer, who has to manually encode the synchronisation points
in his application using call-backs. This style of programming is akin to
continuation-passing style, which is traditionally considered cumbersome to
program in. Therefore an important aspect of an ambient-oriented model is
the ease with which one can express synchronisation points in the software.

Exception Handling Present-day applications typically use exceptions exten-
sively as a means to signal exceptional events. The need for exception han-
dling becomes obvious in distributed systems, where failing network connec-
tions are signalled through the use of exceptions as well. Given the dynamic
networks we are investigating, such network exceptions will occur frequently.
The well-known try-catch block cannot be aligned with asynchronous mes-
sage passing, since exceptions may be signalled to the calling device, long
after the try-catch block was exited. Because ambient-oriented programming
languages are obliged to use asynchronous communication, new means for
exception handling need to be explored.

Decentralised Distribution Since one can in principle not rely on the avail-
ability of any infrastructure whatsoever, it is important that none of the
protocols relies on the use of a reliable server infrastructure. In particular
the protocols that facilitate the synchronisation and exception handling is-
sues detailed above, should avoid being dependant on a designated leader.
Such decentralisation avoids upheaval when the leader becomes unreachable.

2 More information on the language as well as access to the experimental virtual ma-
chine is available at: http://prog.vub.ac.be/~jededeck/research/ambienttalk/

3 The AmbientTalk virtual machine is developed in pure Java and is currently deployed
on QTek 9090 SmartPhones.

Service Discovery Since ambient-oriented applications inhabit inherently dy-
namic open networks, one cannot encode general explicit knowledge that
describes where an object may encounter available services. Similarly, the
requirement for decentralised distribution also prohibits the use of a name
server-based architecture. Thus, when developing an ambient-oriented pro-
gram, the ability to “sense” services in one’s environment is crucial.

The concerns mentioned above will be recapitulated in section 4 to analyse
the suitability of the conversation model as a programming model for ambient-
oriented software. First, the next section provides a basic introduction to the
original conversation model and its more recent offspring the Coordinated Atomic
Action model.

3 The Art of Conversation

Conversations were introduced by Randell as an abstraction to control concur-
rency and communication between collaborating processes [Ran75]. He observed
that dependencies are created between processes as they exchange information
with one another. Consequently, the effect of a software failure in a single process
easily spreads over all dependent processes, since to restart the faulty process,
all dependent processes need to be restarted as well. To alleviate this problem,
conversations isolate a group of processes, as illustrated in figure 1.

Role / >
N/

Fig. 1. A traditional conversation isolates its participants from external processes

Figure 1 shows that processes may become participants of a conversation by trig-
gering a role of the conversation. This role prescribes the behaviour exhibited
by the process while it is confined in the conversation’s borders. Upon triggering
a role — and crossing the left-most barrier or recovery line — the conversation
creates a checkpoint of the participant’s state. Throughout the conversation,
participants may freely communicate with one another, but not with external
processes. Such information smuggling is prevented to avoid the creation of de-
pendent processes outside of the control of the conversation. Finally, the right-
most barrier or test line is used to detect faulty participants. If needed, the
conversation restores the checkpoints and restarts itself.

3.1 Coordinated Actomic Actions

Coordinated atomic actions (CA actions) are an object-oriented extension of
the traditional conversations described above [XRRT95]. Whereas a thorough
discussion of all aspects of the CA action model will lead us too far, we do
highlight some of the additional concepts the model introduces.

Forward Error Recovery Whereas traditional conversations respond to errors
uniformly by retrying the conversation, the CA action model allows the pro-
grammer to specify handlers for exceptions raised by its participants. Upon
successfully completing a handler, the CA action terminates normally. Since
exceptions may be raised concurrently by different participants, a CA action in-
troduces the notion of a resolution graph which maps combinations of exceptions
to a corresponding handler. Gathering the different raised exceptions and deter-
mining the handler to be triggered by the participants is performed at run-time
by the action manager.

External Objects Participants of CA actions may communicate with external
objects, provided that these objects can guarantee transactional semantics. In
particular, such external objects should prevent information smuggling, by en-
suring that the effects of the conversation can be rolled back if necessary. In
other words, external objects “must be atomic and individually responsible for
their own integrity” [VGOO].

4 Conversations for Ambient Intelligence

The CAA model described in the previous section has already been applied
to a variety of real-world problems [XRRT99,BRR*00,VGR00,ZPR03]. These
examples clearly illustrate that conversations are a powerful means of abstraction
to structure distributed systems. This section will evaluate conversations with
respect to the four concerns of ambient-oriented programming we have identified
in section 2. To make this analysis more concrete we outline a minimal Aml
scenario to illustrate the different concerns.

Alan pulls up in front of the restaurant where he has booked a table. As
Alan switches off the engine — by retracting his eKey from his dashboard
computer to his PDA — a valet approaches offering to park Alan’s car.
Through his PDA, the valet offers a certificate, which is both a proof
that he is employed by the restaurant and a ticket to reclaim the car
after the meal. When Alan’s PDA validates the certificate, it hands over
the car’s eKey to the valet.

This scenario, albeit minimal, bears many of the essential characteristics of
ambient-oriented software. First of all, the scenario features mobile devices,
which connect with one another in an ad hoc fashion. Second, the car parking
service offered by the valet is an ambient resource — it becomes available when

Alan pulls up outside the restaurant — which needs to be discovered. Third, the
scenario is also interesting since the protocol of interaction between the PDAs of
Alan and the valet can be automated. In the remainder of this section, we will
illustrate how conversations can be adapted to make this typical AmI scenario
possible. Finally, we present some pseudo-code for the resulting conversation.

4.1 Synchronisation

The car parking scenario has two points where the two processes need to syn-
chronise and exchange information, respectively the certificate and the eKey.
Conversations provide an apt mechanism to synchronise collaborating processes,
since the conversation typically only starts when all roles are attributed to par-
ticipants. Semantically, this is a very useful property, especially if a participant
may supply data, which can be used inside the conversation by all participants,
such as the certificate supplied by the valet role?:

role valet(certificate) {
// Role body
}

Whereas semantically, synchronisation at the start of a conversation is a useful
feature, one must take into consideration that technically the actual start of a
conversation is determined by the availability of resources. Since an Aml setting
is characterised by its dynamic open network settings in which the availability of
resources cannot be predicted, the conversation may start an indefinite amount
of time after the process has signalled it wants to participate. Since concurrency
is a natural phenomenon of our setting, we propose to ensure that the process
will only be confined to the boundaries of the conversation once it effectively
starts executing its role. As such, the process may still answer asynchronous
requests while the other participants are not available yet.

4.2 Exception Handling

The car parking scenario exemplifies the use of exceptions to report on unex-
pected events, i.c. someone may pose as a valet, and present a false certificate
to steal Alan’s car. Conversations were explicitly designed to handle exceptions
in distributed systems, so it should not be surprising that conversations perform
this task adequately for ambient-oriented programs as well.

Unlike when using try-catch, it is impossible that an exception is signalled
when the context in which it was to be handled is already abandoned. This
behaviour is due to the fact that processes may not leave a conversation until
all participants have completed their role. This logical synchronisation at the
end of a conversation can be upheld equally well in an Aml setting. However,
since in ambient-oriented software network connections are inherently volatile,
blocking participants at the end of a conversation renders the conversations

4 Other role bodies may access the certificate using valet.certificate

fragile. Therefore, non-functional exceptions [CG03]- e.g. signalling that another
participant is no longer reachable — should not be handled automatically by the
virtual machine, but rather be propagated to the conversation which can then
incorporate them in its resolution.

4.3 Decentralised Distribution

Since conversations have been widely used to tackle exception handling in dis-
tributed systems, different possibilities to distribute a conversation have already
been explored [RZ97]. Whereas Romanouvsky and Zorzo suggest that both the
roles and the action manager of a conversation can be distributed, the solutions
discussed in their paper only support distribution of roles. The COALA frame-
work implements distribution of action managers, but still enforces the use of
a leader manager for coordination. Such a higher authority cannot be recon-
ciled with the AmlI criterion that imposes no presumed infrastructure. Currently
we are exploring different possibilities to relax the reliance on a single leader
manager to alert all participants of raised exceptions.

Apart from finding a reliable peer-to-peer protocol to notify all parties of
failures, we are also concerned with how the distribution of a conversation-based
ambient-oriented program is achieved. We envision the development of such ap-
plications as follows: All relevant entities in the program are defined as (ambient)
actors. Subsequently, conversations are used to express the collaborations that
may occur between these exemplar actors. In the car parking scenario, the role
of a valet could thus be specified as follows:

role valet(certificate) @ CPEmployeeActor {
// Role body
}

The @ syntax shown in the above example confines the participants who
wish to take on the role of a valet to the CPEmployeeActor, an exemplar actor
representing an employee of the car parking service. The exemplar actor is then
cloned to instantiate multiple employees, which can all perform the task of a
valet. These clones can then be distributed to the PDA of each employee, which
is able to trigger the conversation, if it meets a customer.

In general this mechanism implies that after specifying the different conver-
sations which the exemplar actors may participate in, copies of these exemplar
actors can be distributed to all relevant devices. When distributing these cloned
actors, one should not be aware of the possible conversations these actors may en-
gage in. The distribution model that we hint at in this section holds the promise
of being able to substantiate this vision, without requiring centralised support.

This seemingly oblivious way to obtain distributed conversations, is achieved
by introducing role slots to represent the roles a conversation attributes to the
exemplar actors®. These role slots are then used to embody the relation between

5 The use of role slots is inspired by Slate which introduces them to inform objects of
their roles in multimethod invocations [RS05].

actors and the conversations they can participate in. Copies of the exemplar
actors contain copies of these role slots to ensure that they can engage in precisely
the same conversations as their original.

When distributing ambient actors, the marshalling algorithm will use the
role slots to ensure that all conversations in which the actor can participate are
made available at the destination node. As such the marshalling algorithm of
the language is used to ensure that both the roles and action managers of a
conversation are distributed across all nodes that may host participants.

4.4 Service Discovery

Conversations are traditionally not regarded as a means to perform service dis-
covery, yet in the scenario two people meet, exactly because they may interact
in a meaningful way. Generalising from this example, we identify conversations
as a means to perform participant discovery. This implies that processes signal
their interest in performing a particular task by participating in a conversation.
The conversation is thus conceived as a go-between which brings the process in
contact with other potential participants.

Due to the distribution model outlined above, actors are co-located at all
times with the different conversations they can participate in. Consequently,
participating processes are handled locally without using central infrastructure.
Nevertheless, the system should be aware of processes wanting to collaborate.
The service discovery system sketched below can be used to fulfil this role.

At the level of the AmbientTalk virtual machine, every device periodically
broadcasts its presence, allowing other devices to discover its availability. The
service discovery algorithm we propose, reacts to such a notification of presence
by transmitting the device’s list of active conversations — conversations with
at least one role filled in. When receiving such a list of active conversations,
the service discovery algorithm will attempt to unify the provided conversations
with the ones it hosts on it’s own device. Such a unification may produce three
different results :

— MATCH : The unification succeeded and all the conversation’s roles have
been assigned to participants. Upon encountering a match, the conversation
is started.

— UNDERSPECIFIED : The unification succeeded, yet some roles are not filled
in. The service discovery algorithm will query all reachable devices, to check
whether they can contribute in the conversation. This is necessary to allow
for conversations spanning more that two devices. If the conversation, cannot
be completed, no matching occurs. No intermediate matching is performed to
avoid problems should the partner become unreachable before the remaining
roles are filled in.

— OVERSPECIFIED : The unification failed, for example because both devices
filled in the same role. Neither conversation can be started.

Concretely in the scenario, both Alan and the valet will fulfil one role in the
conversation: respectively customer and valet. When Alan then pulls up in front

18

19

20

21

of the restaurant, the ranges of both PDAs intersect, triggering the service dis-
covery algorithm. This unification will indicate a MATCH, and thus initiate the
interaction between the devices.

4.5 Scenario revisited

We have analysed how conversations could be conceived as a programming model
for ambient-oriented software. Conversations currently do not address all the
concerns we have identified as crucial to ambient-oriented software development.
However, the ideas we have presented to tackle these problems only involve the
support for conversations provided by the underlying virtual machine. Given
that the proposed changes are largely invisible to the programmer, we conclude
that conversations provide a potent programming model for ambient-oriented
applications.

In conclusion of this section, we return to the scenario that has guided our
analysis. The entire interaction between Alan and the valet may be captured in
a single conversation, which is outlined below. The CarParkService conversation
essentially establishes the first synchronisation point between the valet and the
customer roles.

conversation CarParkService {
exception InvalidCertificate();

method validate(certificate) throws InvalidCertificate{
/I check the certificate
}

role valet(certificate) @CPEmployeeActor {
Parking.valet(certificate);
}

role customer()@PersonActor {
validate(valet.certificate);
Parking.customer(self.car, self.carkeys)

}

As can be witnessed the valet at this point makes a certificate available to all par-
ticipants of the conversation (line 9). While executing its role, the customer will
attempt to validate the provided certificate (line 14). Provided that this valida-
tion does not throw an exception, another synchronisation point is established
between both processes when they join the nested Parking conversation.

conversation Parking {

role valet(certificate) @CPEmployeeActor {
self.park(customer.car, customer.eKey);
self.store("CarRetrieveService”, certificate, customer.eKey);

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

}

role customer(car, eKey)@PersonActor {
self.store("CarRetrieveService”, valet.certificate, eKey);
}

}

In the nested Parking conversation, the customer hands over his car and eKey to
the valet (line 24), which uses them to park the car (line 20). Furthermore, both
participants record the relation between the certificate and the eKey (lines 21 and
25) so that the customer can retrieve his car later on.

resolve(exceptions) {
case :
exceptions.contains(InvalidCertificate @customer):
abort();
exceptions.contains(TimedOut) :
retry();

Finally, the resolve function is called by the local action managers after all
roles have terminated and when at least one role has raised an exception. The
exceptions parameter contains all raised exceptions in a collection which can be
subsequently queried. Also note the use of the @ syntax which allows one to
distinguish exceptions based on the role of the participant that raised them.

For this particular example, we have employed default exception handlers.
Clearly, the programmer should be permitted to implement his own handler
functions to incorporate different application-specific exception handling.

5 Position Statement

This paper first identified the main differences between traditional distributed
systems and the new emerging field of Ambient Intelligence. These differences
are all related to the essentially different characteristics of the network constel-
lations encountered by ambient-oriented software. First of all, ambient-oriented
programs are targeted towards networks populated by mobile devices, between
which only wvolatile connections can exist. Furthermore the dynamic nature of
such networks, implies that the availability of resources cannot be provided up
front, such that the program is required to discover available resources. Finally,
the dynamic networks under consideration may be formed entirely ad hoc, which
implies that an ambient-oriented programming language should assume no in-
frastructure.

The impact of these criteria on the development of software is profound. In
this paper we have conjectured that — given an appropriate programming lan-
guage for ambient-oriented programming — the main concerns when developing
an ambient-oriented application are :

1. Expressing synchronisation points between the different processes involved.

2. Consequently handle exceptions raised by either the processes themselves,
or the non-functional exceptions (e.g. to signal disconnection of a partner
process) raised by the distribution layer.

3. How easy is it to deploy the application on a network of mobile devices.

4. How the application can become aware of its dynamic environment.

Based on this conjecture, we have proposed the introduction of conversations
as a programming model for ambient-oriented software development. Through
the use of a simple scenario we have analysed how conversations can address the
different concerns outlined above. On the other hand, this analysis also indicated
room for improvement of the model. In particular, we explored possible ways to
tackle both the scattering of conversations over the available devices, as well
as a service discovery mechanism, which allows the scattered conversations to
reconnect. Since these improvements only involve the level of the virtual machine,
we claim that conversations should be considered as a viable programming model
for ambient-oriented software.

References

[Agh86] Gul Agha. Actors: a Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, 1986.

[BRRT00] D. M. Beder, A. Romanovsky, B. Randell, C. R. Snow, and R. J. Stroud.
An application of fault tolerance patterns and coordinated atomic actions
to a problem in railway scheduling. SIGOPS Oper. Syst. Rev., 34(4):21-31,
2000.

[CGO03] Denis Caromel and Alexandre Genoud. Non-functional exceptions for dis-
tributed and mobile objects. In Workshop on Ezception Handling in Object-
Oriented Systems (ECOOP 2003), 2003.

[DV04] Jessie Dedecker and Werner Van Belle. Actors for mobile ad-hoc networks.
In L. Yang, M. Guo, J. Gao, and N. Jha, editors, Embedded and Ubiquitous
Computing, volume 3207 of Lecture Notes in Computer Science, pages 482—
494. Springer-Verlag, August 2004.

[DVM*05] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Wolfgang De Meuter,
and Theo D’Hondt. Ambienttalk : A small reflective kernel for programming
mobile network applications. Technical report, Vrije Universiteit Brussel,

2005.
[Ran75] B. Randell. System structure for software fault tolerance. In Proceedings of
the international conference on Reliable software, pages 437-449, 1975.
[RSO05] Brian T. Rice and Lee Salzman. The Slate programmer’s reference manual,
2005.

[RZ97] A. Romanovsky and A. F. Zorzo. On distribution of coordinated atomic
actions. SIGOPS Oper. Syst. Rev., 31(4):63-71, 1997.

[VGO0O] Julie Vachon and Nicolas Guelfi. Coala: a design language for reliable
distributed system engineering. In Proceedings of the Workshop on Soft-
ware Engineering and Petri Nets, Dep. Of Computer Science, University of
Aarhus, Denmark, June 2000. 135-154, DAIMI.

[VGROO]

[XRR195]

[XRR 199

[ZPRO3]

Julie Vachon, Nicolas Guelfi, and Alexander B. Romanovsky. Using coala to
develop a distributed object-based application. In International Symposium
on Distributed Objects and Applications (DOA), pages 195-208, September
2000.

Jie Xu, Brian Randell, Alexander B. Romanovsky, Cecilia M. F. Rubira,
Robert J. Stroud, and Zhixue Wu. Fault tolerance in concurrent object-
oriented software through coordinated error recovery. In FTCS, pages 499—
508, 1995.

J. Xu, B. Randell, A. Romanovsky, R. J. Stroud, A. F. Zorzo, E. Canver,
and F. von Henke. Rigorous development of a safety-critical system based on
coordinated atomic actions. In FTCS ’99: Proceedings of the Twenty-Ninth
Annual International Symposium on Fault-Tolerant Computing, page 68,
Washington, DC, USA, 1999. IEEE Computer Society.

A.F. Zorzo, P. Periorellis, and A. Romanovsky. Using coordinated atomic
actions for building complex web applications: a learning experience. In
Proceedings of the 8th IEEE International Workshop on Object-Oriented
Real-time Dependable Systems (WORDS 2003), pages 288-295. Guadela-
jara, Mexico, 2003.

