A Meta-level Architecture for Ambient-aware Objects

Tom Van Cutserh, Jessie DedeckerStijn Mostinckx*, and Wolfgang De Meuter

Programming Technology Laboratory
Vrije Universiteit Brussel
Department of Computer Science
Pleinlaan 2 - 1050 Brussels - Belgium
{tvcutsem,jededeck,smostinc,wdmeuter }@vub.ac.be

Abstract. Programs written to be deployed in pervasive wireless ad hoc net-
works are notoriously difficult to program. We focus on programming languages
specially tailored to writing such programs, in order to mitigate the technical con-
straints imposed by the ambient hardware. We describe the ramifications of the
hardware properties on the software and argue in favour of a language distribution
model that is aware of these effects. We conjecture thajpam implementation

of the language is necessary: a proper meta-level architecture that allows for cus-
tomisation of the language to adapt it to changes in the hardware environment.

1 Introduction

Looking back at the past few decades, we observe that hardware has evolved from ter-
minals connected to large mainframes towards ever smaller computing devices, grad-
ually making Weiser’s vision of ubiquitous computing [Wei91] and the IST Advisory
Group’s Aml scenarios [Gro03] feel less and less utopian. Today, developers have to
weather a hardware climate of pocket-size PDAs, smartphones or cell phones, inter-
connected via ad hoc wireless networking technology (such as Bluetooth and WiFi) or
large-scale infrastructure (such as the Global System for Mobile Communications).

Up to this day, such hardware is still programmed with languages that are inade-
quate for the problem domain, such as C. Even more modern languages such as Java
and C# are not inherently equipped with a vocabulary geared towards distributed sys-
tems. To compensate for thigjiddlewarein the form of libraries, preprocessors or
component systems are the typical answer. We conjecture that distributed applications
would be far easier to develop, understand and maintain if they were written in an in-
herently concurrent, distributed programming language. We take a bottom-up approach
in designing and engineering such a language: from a characterisation of the hardware
environment in which Aml programs will typically run, we distill an object-oriented
distribution model with properties which we feel are fundamental to the paradigm.

Research in middleware for mobile computing has already revealed the need for
application-specific customisations to the middleware. The raiséinedfor such cus-
tomisations is directly related to the high dynamism of the “hardware cloud”; variations

* Research Assistant of the Fund for Scientific Research Flanders, Belgium (F.W.0O.)
** Author funded by a doctoral scholarship of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)

in resource availability, network connectivity and idiosyncratic computing platforms
can greatly impact the performance and behaviour of applications. This has lead to the
development of so-calledflective middlewarfK CBC02, CBM™02]. We pursue this

idea in a language-oriented setting by opening up the implementation of the distribution
model in the form of a meta-level architecture.

We argue that there is need for an open, extensible distribution model suitable for
pervasive mobile computing hardware. Therefore, we first describe the properties exhib-
ited by the hardware in section 2, propose a programming language distribution model
in section 3 and a suitable meta-level architecture in section 4.

2 Hardware Characteristics

We conceive a pervasive hardware constellation as consisting of a wireless network of
interconnected devices, which could range from ordinary desktop computers over PDAs
to embedded computers in intelligent refrigerators or wristwatches. Some of these de-
vices are mobile and are constantly carried around by users, engendering what is known
asmobile computingCar99, MCEOZ2]. This hardware environment is characterised by
the following properties:

Volatile Connections Wireless connections are inherently less stable than their wired
counterparts. This is even more so when considering mobile devices, which can
roam freely and thus directly influence the quality of the network connection. Com-
municating programs can more easily and frequently become disconnected. Be-
cause of the prevalence of broken connections, standard exception handling tech-
nigues are no longer adequate: disconnections have become commonplace, they are
no longer exceptions and should as such not be treated as one.

Ambient ResourcesEvery device in the environment encodes its functionality in a
number of components, some of which are made available as services to remote
parties. To a mobile device, the availability of a service usually depends on its con-
text (including e.g. its physical location). For example, a PDA may detect a printing
service only when in close proximity to a printer. As the context changes, so will
the available resources. Addressing these resources becomes more difficult. In con-
trast to closed stationary networks, it is usually not known beforehand which device
hosts which particular service. An appropriate context-aware addressing scheme is
required.

No Presumed Infrastructure Computing devices in an ambient context often func-
tion autonomously. In order to uphold their autonomy, devices should be able to
directly communicate with one another, without reliance on an intermediary server.
Dependencies upon servers must be minimised, as they increase vulnerability to
network failures. If a client-server architecture were used, client devices would be
unable to collaborate once the server has become unreachable, even though they are
still in communication range. Hence, communication between devices in a wireless
network should be supported by a peer-to-peer infrastructure.

These hardware phenomena have a profound effect on software written for ubiqui-
tous hardware. They cannot in general be hidden from the application by a program-
ming language. A language can, however, foresee these issues and offer the programmer

a specialised metaphorical toolbox with which he can build the necessary abstractions.
The following section describes one such experimental toolbox.

3 An Ambient-aware Distribution Model

We consider a distribution model tailored to the construction of ambient programs. This
model forms the basis of an experimental programming language we have designed,
called AmbientTalk. The model is based on an extension of Hewitt and Agha’s actor
model of computation [Agh86], called the ambient actor model [DV04]. This model
acts as the base level for the meta-level architecture described in the following section.

The unit of distribution in our model is an “ambient-aware object”. We model such
objects to be close relatives to actors. The actor model is a natural concurrent extension
to object-orientation and has been recurrently employed in the past as the foundation for
object-oriented concurrent and distributed languages. Examples are ABCL/1 [YBS86],
ACT1 [Lie87] and Salsa [VAO1]. An actor can be concisely described as an object with
its own computing capabilities, able to send asynchronous messages to other actors.
To support such asynchrony, an actor encapsulates an incoming and outgoing message
queue. For the purposes of this paper, we will regard an ambient-aware object as a basic
actor plus some additional properties, which will be introduced when appropriate.

We cover two aspects of the distribution model in a nutshell. In order for two
ambient-aware objects on different devices to communicate, they first need to get ac-
quainted, which requires an appropriate service discovery mechanism. Once they have
a reference to one another, they can communicate given the proper communication
primitives offered by the model. Other aspects of the model, such as conditional syn-
chronisation, exception handling, etc. are outside the scope of this paper.

3.1 Context-aware Service Discovery

As already mentioned in section 2, ambient resources require the use of a sophisti-
cated, context-aware addressing scheme. Moreover, such a scheme should not depend
on predetermined name servers, as peer-to-peer communication should not be ruled out
a priori. Instead of making one actor get acquainted with other actors through actor
addresses, we propose language features that allow actors to “advertise” themselves us-
ing a more intensional description of the services they provide. In our model, actors can
export aprovidedinterface to the ambient. Actors can discover one another by announc-
ing arequiredinterface description. The process of finding acquaintances is left to the
language runtime, raising the process of service discovery to a more declarative level.
Consider an example adapted from [KB02] where a printing service exports a certain
provided interface:

printer {
properties: { dpi = 600; pageSize = "A4"; ... };
services:
print(document,settings); }

An actor that wants to address (i.e. get a reference to) a printing service can an-
nounce that it requires a service matching a certain interface:

discover printer where printer.pageSize = "A4";

When the system detects a match between the required and provided interfaces, the
requiring actor is notified and passed a reference to the actor providing the requested
service. Whenever the system detects that a provider is no longer available, it also no-
tifies the depending actor. Using such a discovery mechanism, the actor can acquire a
local view on the environment, being able to track status changes of only those services
in which it is interested.

3.2 Asynchronous Communication

Because the connections between devices are volatile and relatively slow, we have cho-
sen the model's communication primitives to be asynchronous and non-blocking. This
also benefits the autonomy of devices: when a communication partner is temporarily
unavailable, a device does not block waiting for the communication to be restored, al-
lowing it to continue providing its services to other devices. Blocking communication
would jeopardise the responsiveness of the system [MCEOQ2].

Asynchronous communication has very distinct advantages in pervasive wireless
networks. First, an asynchronous send primitive allows the sender of a message to
overlap computation with message transmission, better hiding network latency. Sec-
ond, when outgoing messages are queued (i.e. a send operation is not obliged to deliver
the message instantly), sender and receiver are decoupled in time: the receiver of the
message does not have to be on-line at the time the sender sends it. The message can be
properly transmitted at some later point in time, when a connection is available [DV04].

Many a distributed language or middleware platform uses an asynchronous send
operation, but the corresponding receive operation is usually blocking. This is the case
in e.g. languages making use of futures such as Multilisp [Hal85] or Argus [Lis88], or
in tuple space-based middleware [MCEOQ2]. In order to maximise the availability of ser-
vices and device autonomy, our model only introduces non-blocking receive operations.
In fact, the receive operation is implicit. It is implemented by selecting messages from
the incoming message queue for which a method is specified in the actor’s behaviour.

4 An Ambient-aware Meta-level Architecture

We now turn to the description of an open implementation of the model concisely de-
scribed above. Recall from the introduction that a reflective language is desirable be-
cause of the many dynamic changes exhibited by the hardware constellation.

A birds-eye view of the meta-level architecture is presented in figure 1. We will
detail each of the meta-level components and describe the benefits of reifying them.

/,—”H’e,livery DGC discovery ==
_,/”/ \“\\,/‘//arr;blent\
message |nb0x - betiaviour - requirements Strustural
Meta Level -

OO o.amb

ViS|ons

Base Level:-

ocess

Fig. 1. Meta-level Architecture for an Ambient-aware Language

Structural Meta-level At the structural meta-level, the structure of messages and ac-
tors is reified into first-class values. An actor is decomposed into a number of objects,
each responsible for different aspects of the actor's behaviour. This decomposition of
one base-level value into a number of interacting meta-level values is based on similar
decompositions in other meta-level architectures such as CodA [McA95] and AL-1/D
[O1T92].

Inbox and Outbox The inbox and outbox represent the incoming and outgoing mes-
sage queue of an actor. The reification of message queues as metaobjects allows a
programmer to add messages to and remove messages from both message queues.
One can also iterate over the content of the queue and register observers which are
notified of state changes in the queue. This allows an actor to intervene when e.g.
messages arrive in the incoming or outgoing message queue. For example, an actor
can inspect messages in its inbox and discard some even before processing them. It
may for example only want to process messages sent by a particular other actor. It
also becomes possible to influence the order of the message queue. Rather than the
default queue’s FIFO order, messages can be rearranged according to some priority
metric. Monitoring the outbox for messages to be sent is also useful. It allows an
actor to transparently attach meta-information to outbound messages, such as net-
work statistics or authentication information for messages sent to an actor requiring
the necessary credentials.

Address and Behaviour The address is a reification of the identity of an actor. The be-
haviour is a dictionary of methods used to process the incoming messages. Reifying

this behaviour allows for typical introspection (e.g. inspecting an actor's methods
and fields) and intercession (e.g. intervening in state updates or method invoca-
tions).

Requirements and ProvisionsThe ambient requirements and provisions are struc-
tural reifications of the provided interface of the actor and the required interfaces of
actors to be discovered in the ambient. These metaobjects are used by the service
discovery protocol.

MessagesA message reifies its receiver, its selector and its arguments. Moreover, a
message can conta@ittachmentswhich is metadata or -code that is piggybacked
along with the message during transmission. Attachments can influence the way
the message is processed by the receiving actor.

As a concrete example, consider future-type message passing where an asynchron-
ous message send returns a future, a handle to the result to be computed. The default
evaluation of an asynchronous send retwosl , so default messages have no
knowledge of a “future address” or “reply destination” to which to return a value.
The meta-architecture easily allows the extension of the language with future-type
message passing, by adapting the message delivery protocol and attaching to a mes-
sage a reference to the future it has to fulfill.

Behavioural Meta-levelThe behavioural meta-level depicts theetaobject protocols
[KRB91] used by the language runtime to effectuate the computation. These proto-
cols “crosscut” the structural meta-level: a protocol is executed through an orchestrated
chain of message sends between structural metalevel objects. It can be adapted by over-
riding methods on metaobjects.

Message DeliveryThe language runtime delivers messages by transferring them from
the outbox of the sender to the inbox of the receiver. By providing an open imple-
mentation of the message delivery protocol, different quality of service constraints
can be attributed to the delivery guarantees. The default policy of the language is to
always try and deliver messages. Hence, messages are kept in the outgoing queue
until they can be transmitted. On resource-constrained devices or for certain kinds
of messages, such as repeatedly broadcast status update messages, such guarantees
may be too resource-consuming. Because the delivery algorithm is opened up via a
metaobject protocol, it becomes possible to change the default delivery policy.

An adapted policy may e.g. attach a timeout period to a message. A modified deliv-
ery algorithm could then discard the message when the timeout period has passed,
possibly notifying the actor who sent the message of the failed delivery. Another
example is the redirection of messages from one receiver to another. Consider a
message sent to an actor offering a particular service. If this service is currently
offline, but it is detected that other actors are online which also offer the required
service, the delivery algorithm can be enhanced to change the receiver address of
the message waiting for delivery in the outbox, such that it is transparently rerouted.

Service Discovery The language runtime is responsible for matching required with
provided interfaces of the different actors present in the environment. To this end,
it needs to keep track of which interfaces are available on which devices. It then
tests the provided interfaces against the required interfaces for which a discovery

request was issued by one of the local actors. The open discovery protocol allows
actors to intervene in this matching process by providing their own comparator
functions.

Custom comparators can be useful for resolving interface versioning problems.
When different versions of an interface exist, an actor may fail to find another actor
in the network which provides a different version of the required interface. By plug-
ging in a comparator with knowledge of the different versions, the interfaces could
still be matched successfully. Note that in this case, the discovery algorithm must
also be adapted to not hand the requiring actor a reference to the real provider,
as this actor does not provide the presumed interface version. Rather, it must be
handed a proxy which implements the required interface version and which con-
verts this interface into the provided interface version.

Another aspect of the discovery protocol is the detection of services that have be-
come unavailable, such that actors depending on that service can be notified. To
detect unavailability of devices in general, a heuristic based on timeouts is used.
An application may, however, define more suitable application-specific heuristics.
The protocol can e.g. be adapted to signal the unavailability of services located on
remote devices, even when these devices remain online. Some programs may e.g.
explicitly want to make services unavailable to save battery power or due to load
balancing issues. Conversely, one may want to inhibit the protocol from notifying
actors of the unavailability of a device. If the same service is offered by different
devices in the environment and one of them disconnects, it would be more appropri-
ate for the discovery protocol to transparently reconnect actors depending on that
service to a similar service on another device, rather than signalling them that the
service is unavailable.

Distributed Garbage Collection Distributed garbage collection of actors in open net-
works is notoriously difficult to automate. Wireless networks surrounding mobile
devices easily become partitioned and actors may acquire references to remote ac-
tors which move out of range and are never encountered again. The problem stems
from the fact that broken references are not necessarily treated as exceptions. A
garbage collector cannot detect whether a broken remote reference will be mended
at some point in the future, making itimpossible to perform fully automatic garbage
collection. On the other hand, we want to stay clear from manual memory manage-
ment, as it would introduce an extra concern for the application programmer.

Our proposed solution is to allow the programmer to “guide” the garbage collector
by hinting at which references may be collected. Leasing protocols, where remote
references expire unless they are explicitly renewed, are one abstraction mechanism
which suits this approach. By referencing a remote object through such a “lease”,
the programmer allows the reference to be collected if the lease is not renewed
before time.

Our experimental language AmbientTalk, which implements the distribution model
outlined in section 3, partially implements the above meta-level architecture and al-
lows access to message queues, actor behaviour and required and provided interfaces.
The protocols described above are currently only implemented implicitly and are inac-
cessible to the programmer. We plan to open up the implementation further such that

the language extensions described above become possible to implement. Future work
also entails using more principled reification mechanisms, such as mirrors [BU0O4], to
represent metaobjects and to effect the shift from base to meta-level.

5 Position Statement

We approach Ambient Intelligence from the point of view of wireless, pervasive net-
works inhabited by mobile devices. Having pinpointed the harsh characteristics of the
hardware, we find that present-day programming languages have no inherent language
features to comfortably abstract from them. We do not consider intricate assemblies
of if andtry-catch statements hidden underneath thin library or middleware in-
terfaces to be comfortable abstractions. Neither are we proponents of a distribution-
transparent approach, where the nature of abstractions is such that the programmer is
no longer aware of the dangers of distributed programming, viz. partial failures and
synchronisation. Some issues must inevitably percolate into the application layer.

We take a language-oriented path and conjecture that a language with an innate
knowledge of concurrency and distribution issues eases development. We have pro-
posed a model where this knowledge is embodied in actor-actor and actor-ambient
communication primitives. Moreover, the concept of an open implementation is critical
to distributed programming languages targeted at dynamic hardware constellations. It
allows the programmer to deal with unforeseen situations without having to adapt his
entire program. Using a metaobject protocol, the programmer can change the concepts
of the language to better suit the application, rather than having to change the applica-
tion to better suit the imposed language concepts.

References

[Agh86] Gul Agha. Actors: a Model of Concurrent Computation in Distributed Systems
MIT Press, 1986.

[BUO4] Gilad Bracha and David Ungar. Mirrors: Design principles for meta-level facilities
of object-oriented programming languagesPhceedings of the 19th annual Con-
ference on Object-Oriented Programming, Systems, Languages and Applications
pages 331-343, 2004.

[Car99] Luca Cardelli. Abstractions for mobile computationsShkture Internet program-
ming: security issues for mobile and distributed objep@ges 51-94. Springer-
Verlag, London, UK, 1999.

[CBM102] Licia Capra, Gordon S. Blair, Cecilia Mascolo, Wolfgang Emmerich, and Paul
Grace. Exploiting reflection in mobile computing middlewa®GMOBILE Mob.
Comput. Commun. Re®(4):34—-44, 2002.

[DV04] J. Dedecker and W. Van Belle. Actors for Mobile Ad-hoc Networks. In L. Yang,
M. Guo, G. Gao, and N. Jha, editotsfernational Conference on Embedded and
Ubiquitous Computing EUC20040olume 3207 of_ecture Notes in Computer Sci-
ence pages 482—494. Springer-Verlag, August 2004.

[Gro03] IST Advisory Group. Ambient intelligence: from vision to reality, September 2003.
Draft consolidated report.
[Hal85] Robert H. Halstead, Jr. Multilisp: a language for concurrent symbolic computation.

ACM Trans. Program. Lang. Syst(4):501-538, 1985.

[KBO2]

[KCBCO2]
[KRBO1]

[Lie87]

[Lis88]

[McA95]

[MCEO2]

[0IT92]

[VAO1]

[Wei91]

[YBS86]

Alan Kaminsky and Hans-Peter Bischof. Many-to-many invocation: a new object
oriented paradigm for ad hoc collaborative systemsO@PSLA '02: Companion

of the 17th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applicatippages 72—73, New York, NY, USA, 2002.
ACM Press.

Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case for reflec-
tive middleware . Commun. ACM45(6):33—-38, 2002.

Gregor Kiczales, Jim Des Rivieres, and Daniel G. Bobrdhe Art of the Metaob-
ject Protocol MIT Press, Cambridge, MA, USA, 1991.

Henry Lieberman. Concurrent object-oriented programming in ACT 1. In
A. Yonezawa and M. Tokoro, editor®bject-Oriented Concurrent Programming
pages 9-36. MIT Press, 1987.

Barbara Liskov. Distributed programming in Arg@ommunications Of The ACM
31(3):300-312, 1988.

Jeff McAffer. Meta-level programming with coda. BECOOP '95: Proceedings of

the 9th European Conference on Object-Oriented Programnpages 190-214,
London, UK, 1995. Springer-Verlag.

Cecilia Mascolo, Licia Capra, and Wolfgang Emmerich. Mobile Computing Mid-
dleware. InAdvanced lectures on networkinmages 20-58. Springer-Verlag New
York, Inc., 2002.

H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A distributed programming
system with multi-model reflection framework. Rtoceedings of the Workshop on
New Models for Software Architectufdovember 1992.

Carlos Varela and Gul Agha. Programming dynamically reconfigurable open sys-
tems with salsaSIGPLAN Not.36(12):20-34, 2001.

M. Weiser. The computer for the twenty-first centuBcientific Americanpages
94-100, september 1991.

Akinori Yonezawa, Jean-Pierre Briot, and Etsuya Shibayama. Object-oriented con-
current programming in ABCL/1. I€onference proceedings on Object-oriented
programming systems, languages and applicatigages 258-268. ACM Press,
1986.

