Software Automation meets Interactive Media Development
by Dirk Deridder, Thomas Cleenewerck, Johan Brichau and Theo D'Hondt

Developing the software component of interactive media requires an advanced set of
development tools and enforces a different view on software development in
general. This is mainly due to the specific characteristics of the environment in
which this development takes place. We propose a combination of software
automation techniques to counter this effectively. Since the iMedia domain is in
continuous flux, and these technologies are mostly designed for stable domains, the
evolvability of the approach is guaranteed by rooting it into the heart of the system.

Media production companies, in particular media broadcasters, are being challenged
by their consumers to produce media in which the consumers can actively participate
and interact with TV shows and between peers. This new form of media, called
interactive media, is a combination of traditional media and a behavioral component
(software). Examples of such components are online games, quiz software, virtual
community worlds etc.

The challenge lies in the production of the behavioral component of the new form of
media within the broadcasting environment. The production cycle is constrained by
the imposition of extremely strict broadcasting times, the extremely short time-to-
market situation caused by last-minute changes, and the extreme deployment
prerequisites.

IMedia Software Generation System

IMedia development requires more advanced development tools. The approach we
propose combines existing research from the areas of generative programming,
transformation systems and domain engineering. This results in a system that is best
described as an iMedia Software Generation System (IMSGS; see Figure 1),
specialized for each product range. In an IMSGS, more autonomy and flexibility is
given to the media producer to adapt the iMedia software product. This is achieved
by generating different tailor-made ‘instances’ of the product range, given a high-
level specification. The tailoring of particular instances is managed by the media
producer (the domain expert).

Evolution of the IMSGS

Our research focuses on the evolvability problems of a system that is based on DSL
and generative programming technology. The system and the techniques used to
build the system were designed with evolution in mind: the impact of changes to the
system is limited to individual easily identifiable modules.

An IMSGS for a specific product range is divided into a set of program generators,
each targeted at a specific concern in the product (eg the application logic, the
graphical user interface etc). For each concern a domain model with CoBro is
constructed that defines the concepts in the domain and the relationships between
them. These models are then used to construct concise domain-specific languages
(DSLs) compliant with the definitions in the domain model. The DSL compilers are
program generators implemented in Linglet Transformation System (LTS), which
translate the DSL specifications into executable code in some generic language using
generic libraries and frameworks. Finally these program generators are composed
using Generative Logic Meta-Programming (GLMP) in order to integrate each of their
generated program parts into one application.



Media Producer |:'> Programmer

“I'want to create “Here is an IMSGS
Specification %V—Quizzes" containing a language
of his Quizzes 1 g to describe your
TV-Quizzes”

Quiz-IMedia
Software Generation
System

]
Generates

Quizing
Language
flow R1 {

- - - = Quiz
- - - ~ Generator Generator
Media | [TETER ™ « e s 1 PO
Consumer | § . i) ! s§§$:2¢r
_ —m . === TN | —
Domain Specific Languages . —
+ % ¥ i
i a
Generative Programming i . I S

Figure 1: Overview of the IMedia Software Generation System with the major evolution &’s in an IMSGS

The domain knowledge is described in CoBro. CoBro follows a concept-centric
approach in which we couple the domain concepts to their corresponding
implementations in the quiz language. In this way, one can start at the level of the
domain concepts to estimate which parts of the implementation (65 in Figure 1) will
be affected by the evolution (6, in Figure 1). Moreover, connecting the domain
knowledge to the implementation provides a valuable source of documentation of the
assumptions made by the original developers.

The DSLs are constructed using the Linglet Transformation System via a composition
of language components, which is expressed in a language specification. LTS
modularizes the language components by specifying the necessary communication
patterns among them in a separated language specification, through the
customization of the language components. Hence the dependencies among the
language components become explicit and are removed from their implementations.
Consequently the impact of changes in the language (85 and 34 in Figure 1) is
isolated to the language specification and to individual identifiable components.

The composition of the program generators (DSL compilers) is realized with
Generative Logic Meta-Programming. GLMP features a grey-box composition model
of program generators that allows the specification of integration relationships
among the subparts of different program generators. This mechanism is vital for
adapting the generators so that they produce program parts; these can then be
combined into a single application with no undesired interferences that could break
their functionality (6s in Figure 1).

This research is performed in the context of the Advanced Media Project, a
collaboration between Vlaamse Radio- en Televisieomroep, Vrije Universiteit Brussel,
Universiteit Gent and IMEC.



Links:

http://prog.vub.ac.be/
http://prog.vub.ac.be/Publications/2004/vub-prog-tr-04-19.pdf
http://www.xmt.be/sake.html

Please contact:

Dirk Deridder

Vrije Universiteit Brussel, Belgium
E-mail: Dirk.Deridder@vub.ac.be



