
Flexible Object Encapsulation
for Ambient-Oriented Programming ∗

Wolfgang De Meuter1,2 Éric Tanter3 Stijn Mostinckx2

Tom Van Cutsem2 Jessie Dedecker2

1 Laboratoire d’Informatique Fondamontale de Lille
Université des Sciences et Technologies de Lille, France

2 Programming Technology Lab
Vrije Universiteit Brussel, Belgium
3 Center for Web Research, DCC

University of Chile, Chile

{wdmeuter,smostinc,tvcutsem,jededeck }@vub.ac.be , etanter@dcc.uchile.cl

ABSTRACT
In the emerging field of Ambient Intelligence (AmI), software is
deployed in wireless open networks of mobile devices. Such open
networks require stringent security measures as unknown and un-
trusted hosts may join the network. In an object-oriented language,
where objects are distributed and moved across the network, it thus
becomes important to be able toenforceobject encapsulation. In
contemporary object-oriented programming languages, powerful
operations such as object extension (inheritance), cloning and re-
flection, are typically provided via omnipotent language operators
that fail to uphold object encapsulation, because they can be ap-
plied without the explicit consent of the concerned object. This
paper formulates a language design principle –extreme encapsula-
tion– that precludes the use of such harmful operators, and proposes
a corresponding language feature –method attributes– that makes
it possible to provide the flexibility of object extension, cloning
and reflection without compromising on object encapsulation. Al-
though some existing object-based languages can be said to sup-
port extreme encapsulation, our contribution is to support it in a
delegation-based, prototype-based language named ChitChat.

1. INTRODUCTION
Software development for mobile devices has become a major is-
sue with the advent ofmobile networks. Mobile networks surround

∗É. Tanter is financed by the Milenium Nucleous Center for Web
Research, Grant P01-029-F, Mideplan, Chile, and the ITCC Chile-
Korea. S. Mostinckx is funded by a doctoral scholarship of the
Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen). T. Van Cutsem and J.
Dedecker are research assistants of the Fund for Scientific Research
Flanders, Belgium (F.W.O.).

a mobile device equipped with wireless technology and are demar-
cated dynamically as users move around. Mobile networks turn
the applications running on mobile devices from mere isolated pro-
grams into smart applications that can cooperate with their envi-
ronment. As such, mobile networks take us one step closer to the
world of ubiquitous computing envisioned by Weiser [29]: a world
where (wireless) technology is gracefully integrated into the every-
day lives of its users. Recently, this vision has been termedAmbient
Intelligence(AmI for short) by the European Council’s IST Advi-
sory Group [13].

Although low-level technologies for programming software for mo-
bile networks have matured, current programming languages lack
abstractions to deal with the specificities of mobile networks. This
has led some of the authors to propose a newAmbient-Oriented
Programmingparadigm [9, 5] (AmOP for short), which consists
of programming languages that incorporate the specificities of mo-
bile networks at the very heart of their basic computational steps.
We identify three axes of programming language design for AmI:
concurrency, distribution, and the object model. Some of the au-
thors have already proposed language abstractions for the two first
axes [5, 8]. This paper focuses on the third axis, the object model,
which specifies what objects are and which operations are sup-
ported by the language.

In mobile computing applications for Ambient Intelligence, de-
vices form ad hoc networks with other devices that are dynami-
cally discovered in the environment. Since every encountered de-
vice cannot necessarily be trusted, proper security measures are re-
quired when objects are interchanged. As stated by Viteket al.,
an object that is copied or moved should be protected from abuse
by malicious objects in the new host, and a host should be able to
hand out access to its resources on a very selective basis, in order
to protect it from malicious objects [28]. Our approach to improve
the security of object-oriented applications is based on the prin-
cipled use of object encapsulation [22]. We propose a language
design principle, namedextreme encapsulation, to ensure that the
integrity of objects can be upheld at any time.

Most contemporary object-oriented languages are, however, incom-
patible with the extreme encapsulation principle, because they typ-



ically provide possibly harmfuloperationssuch as object exten-
sion, cloning or reflection, vialanguage operatorsthat can be ap-
plied to objects without their explicit consent. Extreme encapsula-
tion can be trivially achieved if these operations are simply abol-
ished from the language. However, this would severely restrict the
language because the harmful operations have real practical value.
This paper therefore proposes a language feature that makes it pos-
sible to provide these operations without resorting to omnipotent,
encapsulation-breaching operators. Indeed, we reconcile object ex-
tension, cloning and reflection with extreme encapsulation through
the introduction ofmethod attributes: methods can be annotated
with attributes leading to different evaluation semantics, allowing
them to replace the harmful language operators.

We proceed as follows: in Section 2 we present general consider-
ations of object-oriented languages for open networks, which mo-
tivate the use of an object-based language, and identify the dif-
ferent operations that a full-fledged object model should support.
Section 3 analyzes the conflicts between these operations and the
preservation of object encapsulation. Then, in Section 4, we formu-
late the principle ofextreme encapsulationthat AmOP languages
should respect. We present our model of extremely-encapsulated
prototypes in Section 5, explaining and illustrating how method at-
tributes allow for the provision of object extension, cloning and
reflection without compromising on extreme encapsulation. Sec-
tion 6 discusses related work, and Section 7 concludes with per-
spectives for future research.

2. OBJECT-ORIENTED LANGUAGES FOR
OPEN NETWORKS

In this section we first argue in favor of object-based programming
languages in the context of Ambient-Oriented Programming. We
then identify the main features of object-oriented languages that
characterize a full-fledged object model.

2.1 Object-based Languages for Open Networks
The field of object-oriented languages is separated into two kinds
of object models: those based on classes and those based solely
on objects. Representatives of the former are Smalltalk [11] and
Java [12]. Languages employing a pure object-based design are
Self [27] and earlier versions of Javascript. In this paper, we ar-
gue in favor of object-based models to program distributed objects.
Conceptually, this model is simpler than its class-based counterpart
since one only has to deal with a single kind of entities, namely ob-
jects. As a consequence, all language features investigated in this
paper –extension, cloning and reflection– are directly defined upon
objects.

Another argument in favor of object-based languages is that ob-
jects do not implicitly depend on a class structure. In distributed
programming, this dependency requires a class-based language to
replicate classes over different hosts in the network when objects
are passed as parameter or return value during a remote method in-
vocation. Such extensive class copying among hosts is problematic
because, from a conceptual point of view, there ought to be only
one single version of a class on the network, containing the class
variables and method implementations shared by all instances. This
sharing relation between the instances is established at object cre-
ation time and remainsimplicit throughout their lifetime. However,
when each host has its “own” copy of the class, the copies may
evolve independently, such that two instances of the same concep-
tual class may unexpectedly exhibit different behavior because they

have a different concrete class [25]. Because of these independent
changes to class copies, the implicit object-class relation becomes
explicitly detectable.

Object-based distributed programming languages will, of course,
suffer from the consequences of code duplication as well. The dif-
ference lies in the way programmers can deal with the problem.
Most existing class-based languages do not offer programmers the
means to deal with multiple copies of the same class, because of the
implicitness of the instance-of link. In delegation-based prototype-
based languages such as Self, where an implicit instance-class link
is modelled by an explicit prototype-traits link, the programmer is
able to intervene. As an extreme case, dSelf [25], a distributed ex-
tension of Self, allows the prototype and its traits to be physically
distributed such that prototypes can share traits across the network
and avoid copying altogether, if this is desirable.

Strengthened by the observation that existing distributed program-
ming languages such as Emerald [14], Obliq [4], dSelf [25] and
E [21] are all classless, we state that object-based object models are
a solid basis to develop robust software for Ambient Intelligence.

2.2 Fundamental Characteristic Operations of
OOP

This section establishes the basic operations of a full-fledged ob-
ject model, which guide our analysis of the encapsulation problems
in existing object-oriented languages. Fundamental to any object-
oriented language is the notion of message sending: the ability of
objects to send each other polymorphic messages that are imple-
mented by a corresponding method implementation, encapsulated
in a receiver object. Additional important object-oriented concepts
such as incremental specification of abstractions and object cre-
ation differ depending on whether the language is class-based or
prototype-based. In order to unify these concepts from both sub-
paradigms, we reuse terminology from an influential taxonomy pa-
per,The Treaty of Orlando[17], where Lieberman, Stein and Un-
gar characterize these concepts based on two fundamental mecha-
nisms:empathyandtemplates. In addition, we consider the notion
of computational reflection [18], since it is encountered in most
mature object-oriented languages.

Templates refer to the entities from which new objects can be
spawned by a so-called “cookie-cutting” mechanism. In a
class-based language, classes act as templates, and object
creation is done by instantiating these classes. In a prototype-
based language one can employ any object as a template, by
simply cloning the existing object.

Empathy refers to the ability to share behavior between templates,
as to specify abstractions in an incremental fashion. Class-
based languages achieve this structural reuse through class-
based inheritance. In a prototype-based language this reuse
is typically achieved through delegation between an object
and its parents [16].

Reflection refers to the ability for a program to consult and modify
its own high-level structure. In an object-oriented language,
this typically implies that an object can acquire access to a
reified version of both its data and method slots. Most ma-
ture programming languages incorporate a form of reflection
for e.g.debugging, implementing language extensions, pro-
viding object serialization, etc.



These operations are fundamental to object-oriented programming,
which is why languages usually provide the programmer with ex-
plicit language operators that enable the application of these op-
erations on objects or classes. Whereas none of theseoperations
breaches the encapsulation of objectsper se, their corresponding
languageoperatorsusually do. A notable exception is the message
sending operator, which allows the receiver object to decide how it
responds to the message. The encapsulation problems engendered
by the other operators are illustrated in the following section.

3. LANGUAGE OPERATIONS COMPROMIS-
ING ENCAPSULATION

The main motivation for our work on encapsulation for Ambient-
Oriented programming is that language operators in contemporary
programming languages can breach object encapsulation. In this
section, we discuss how ill-designed object extension, cloning and
reflection operators threaten the encapsulation of objects.

3.1 Conflicting Operation: Extension
Section 2.2 pinpointed empathy, the ability to incrementally specify
abstractions, as an essential characteristic of object-oriented lan-
guages. Unfortunately, empathy can only be achieved at the cost
of breaching the encapsulation of the object or class that is being
extended [22].

Delegation-based prototype-based languages often emphasize flex-
ibility, which hampers the introduction of proper object encapsula-
tion. In contrast with class-based inheritance where private instance
variables of the superclass remain inaccessible to the subclass, child
prototypes can access their parent’s private state. This allows for
some expressive programming patterns [16]. The problem is that
in languages employing delegation, such as Self, any object can
freely designate another object as its parent, thereby breaching the
parent’s encapsulation.

Some object-based languages –not featuring prototype-based dele-
gation– have attempted to reconcile an object extension mechanism
with encapsulation:

• E [21] achieves encapsulation by not providing built-in sup-
port for inheritance. Instead E’sextends keyword speci-
fies that an object simplyforwardsmessages it does not un-
derstand to a parent object, whose state remains private to
itself. Hence, E sacrifices private state sharing via common
parents in favor of encapsulation. We will discuss E in more
details in Section 6.3.

• Obliq [4] introduces a particular extension mechanism, by
embedding the clones of two or more objects in a new object.
The resulting object therefore exhibits an extended behavior
resulting from the combination of the original objects. This
extension mechanism strongly relies on cloning, discussed in
the following section.

Incremental specification of objects is an essential ingredient of an
object-oriented language. However, existing languages often im-
plement extension using operators external to the object, such that
the encapsulation of the object under extension is breached. In or-
der to reconcile extension with flexible object encapsulation, ob-
jects should explicitlycooperateto be extended.

3.2 Conflicting Operation: Cloning
Most object-oriented languages, either class-based or prototype-
based, make it possible tocloneobjects. In a prototype-based lan-
guage, cloning is essential as it is the fundamental operation to both
create new objects as well as new abstractions. Cloning objects
without their explicit consent can be a severe security breach. For
instance, Obliq [4] provides aclone operator that allows an ob-
ject to clone any object it refers to. In pseudocode, an objectobj
can be cloned as follows:

clonedObj = clone(obj);

Cardelli recognizes that such an unrestricted cloning in Obliq is po-
tentially hazardous and thus also provides aprotect operator to
fully encapsulate an object: a protected object is shielded from the
external application of operators such as cloning, they can only be
applied by the object itself. We will return to Obliq in Section 6.2.

A better implementation of the clone operation consists of introduc-
ing clone methods instead of an externalclone operator. The
idea is that, upon receipt of aclone message, an object by default
returns a clone of itself. An object can refuse to be cloned or inter-
vene in the cloning process bye.g.overriding theclone method.
Cloning an object is then achieved by executing:

clonedObj = obj.clone();

The language Self [27] employs this scheme of cloning objects
by sending themclone messages. Objects which delegate to the
cloneable trait automatically inherit the default cloning behav-
ior. In the case of Java, for an object to be publicly cloneable, its
class must implement theCloneable interface and override the
clone method (which is protected) with a public method.

Although these solutions make it somehow possible to protect ob-
jects from being unexpectedly cloned, there remains a fundamental
problem that stems from the use of a cloning operator: the clone
initialization has to be done by the object creating the clone, which
requires access to the clone’s private state. This often requires mu-
tator methods to make the state accessible, which defeats an ob-
ject’s encapsulation. For example:

clonedCreditCard = aCreditCard.clone();
clonedCreditCard.setCardNumber(...);
clonedCreditCard.setCardHolder(...);
clonedCreditCard.setExpiryDate(...);

In other words, cloning operators must usually be employed in con-
junction with external updates of the state of the clone object: this
can be a severe breach of object encapsulation, as it may require
otherwise unnecessary mutator methods to be publicly provided.

3.3 Conflicting Operation: Reflection
Most mature object-oriented languages also provide reflective pro-
visions, which can be used to access the state of an object in metapro-
grams. This is typically used for marshaling arguments of a remote
invocation, debugging a program, or even for building the IDE of
the language. Typically, a reflective API is the major hindrance to



preserving encapsulation, because it allows one to breach the in-
tegrity of an object.

For example, in Java, any object can obtain a reification of a class
(of typeClass ) using the.class pseudo-variable. Since.class
is not a real message send, any class that is publicly available can
be accessed through the reflection API, thereby revealing its fields
and methods. The use of a security manager based on access con-
trol lists (ACLs) solves the issue of controlling reflection, but in a
coarse-grained and rigid manner; as argued in [19], security based
on object capabilities(in essence, unforgeable object references)
offers both fine granularity and flexibility.

Mirror-based reflection[3] is essentially compatible with capabili-
ties. The idea of mirrors is that metalevel facilities are not accessed
from an object or class directly, as is the case in the Java language
for instance, but rather that such facilities are exposed by special
objects calledmirrors. Hence, in this model, the ability to reflect
upon an object coincides with the notion of having a reference to
(a capability for) a mirror object. This means that reflective access
to an object can be regulated depending on the kind of mirrors that
are handed out to other objects.

Bracha and Ungar state a number of design principles to which
mirror-based reflective systems should adhere. One such principle
is stratification: the principled separation of base-level and meta-
level concerns. One advantage of such stratification is that reflec-
tive code can easily be withdrawn from the application when it is
not needed. Doing so can considerably reduce the footprint of an
application, and so this principle is highly relevant in the context
of embedded and ubiquitous computing, where small platforms are
the rule.

However, the mirror design as presented in [3] is not compatible
as such with object encapsulation. The incompatibility stems from
the fact that an object is not involved at all in the process of giving
a mirror to itself: rather, a mirror factory is queried:

mirror = MirrorFactory.getMirror(obj)

This is very similar to the external cloning operator sketched in the
previous section. Ideally, an object should have precise control over
what mirror is handed out to whom. In particular, it is important
that an object is able to hand over a read-only mirror to untrusted
clients, and a read-write mirror to trusted ones. Such choices can
only be made by actively involving the object in the process of
mirror acquisition.

3.4 Conclusion
We have shown how language operators that allow for object ex-
tension, cloning and reflection can breach object encapsulation.
These encapsulation problems are most severe for delegation-based
prototype-based languages, as delegation gives access to parent
state and cloning is fundamental to the language paradigm.

The recurring cause of the encapsulation breaches is that the object
which is subject to an operation has no means to intervene in the
execution of that operation. Objects cannot restrict their extensions,
their clones or their mirrors. This observation has lead us to rethink
the design of such language operations. The foundations of the
resulting object model are the topic of the following section.

4. THE EXTREME ENCAPSULATION PRIN-
CIPLE

The existence oflanguage operatorsthat allow programmers to ex-
tend, clone or reflect upon any object, without requiring the explicit
consent of the object, is the source of encapsulation breaches. In
the context of ubiquitous computing, it is crucial that both mobile
objects and hosts can protect themselves and avert encapsulation
breaches. To ensure object confidentiality and integrity, we de-
fine a general language design principle, calledextreme encapsu-
lation [5].

Extreme Encapsulation – An object can designate some of its in-
ternal state and operations to be private andenforcethis prop-
erty. To be able to uphold this principle,language operators
which manipulate an object or classwithout its explicit inter-
ventionare to be prohibited.

To proponents of object-oriented programming, following this prin-
ciple may seem like common sense, as encapsulation is one of the
hallmarks of object-oriented programming. However, when look-
ing at contemporary object-oriented languages, we cannot help but
notice that most of them break this principle as illustrated in sec-
tion 3. The ones that do not violate the principle, such as pure actor
languages, only do so by disabling language operators entirely, but
this often leads to software engineering restrictions.

Given the extreme encapsulation principle, the prime question that
arises is how it can be reconciled with the demands of a rich object
model characteristic ofe.g. a prototype-based language, requiring
object extension, cloning, and reflection. In each of these cases, the
extreme encapsulation principle has its specialized formulation:

Extension Protection – An object can decidefor itselfwhether or
not it may be extended, and under which restrictions. Failing
to do so would allow malicious extensions to posses state and
behavior they are not entitled to have.

Cloning Protection – An object can decidefor itself whether or
not it may be cloned, and under which restrictions. Failing
to do so would allow malicious objects to make uncontrolled
amounts of clones, which would amplify their capabilities.

Reflection Protection – An object can decidefor itself how much
of itself it exposes at the metalevel. Failing to do so would
allow malicious meta-programs to circumvent an object’s in-
terface completely, exposing an object’s implementation at
the meta-level.

Therefore, the main point of the extreme encapsulation principle is
that even though operations such as extension, cloning and reflec-
tion are to be provided, they should be so in a way thatactively
involvesthe concerned object, rather than being offered as omnipo-
tent language operators. In other words, the extreme encapsulation
principle states that:

Any operation in a programming language –including
extension, cloning, and reflection– should happen through
message passing, and message passing alone.



These design principles actually raise the issue of how to imple-
ment a language where message passing alone can be used for tra-
ditional communication between objects, as well as for extending,
cloning and reflecting upon objects. Our solution to this issue is to
consider different interpretation semantics for methods, depending
on their associatedmethod attribute, as explained and illustrated in
the remainder of this paper.

5. METHOD ATTRIBUTES FOR EXTREMELY-
ENCAPSULATED PROTOTYPES

Our proposal to reconcile extreme encapsulation with a rich object
model hinges on the introduction ofmethod attributesto specialize
the way methods are evaluated. Each specialization plays the role
of a language operator, which is guaranteed only to operate on the
provider of the method and not on some external object. Before
detailing how method attributes are incorporated in an experimental
prototype-based programming language, called ChitChat, we give
a language-neutral explanation of method attributes through the use
of a semi-formal model based on simple evaluation rules.

5.1 Method Attributes
We employ a semi-formal object-oriented language model that sup-
ports three operations: object extension (i.e. delegation), object
cloning and mirror-based reflection [3]. In order to support these
operations while maintaining extremely encapsulated objects, three
method attributes are introduced:create , clone andmirror .
Methods can be annotated with one or more of these attributes,
resulting increate methods, clone methods, mirror methodsor a
combination thereof.

Attributed methods have a specialized evaluation semantics when
they are invoked: they may perform some operations on the re-
ceiver both before and after the evaluation of the method body, but
most importantly,they can modify the context in which the method
body is evaluated. In other words, an attributed method may be
evaluated in another object than the one that receives the message.

Without loss of generality, we do not consider method arguments as
they are not fundamental to the understanding of method attributes.
In the same vein, lexical environments are omitted from our semi-
formal model as the interaction between lexical scoping and object-
oriented concepts is well understood [1]. When considering the
abstract grammar for a language supporting method attributes, two
language constructs are particularly important, namely the invoca-
tion and declaration of methods:

send ::= message(receiver, selector)
method ::= create(method)

| clone(method)
| mirror(method)
| basic_method(body)

5.1.1 Evaluation rules
Typically, an evaluation rule takes an abstract grammar element and
an evaluation environment. The environment holds relevant infor-
mation such as the current scope, the currentself , etc. How-
ever, as explained above, for the purposes of explaining method at-
tributes, only theself binding will be considered. Objects in our
model are composed of slots, which can be marked either private
or public.

The evaluation of a message send is based on the intuitiveapply
◦ lookup (read: applyafter lookup) scheme of MOOSTRAP [20].

The essence of the evaluation rule is that an object is first queried
for a suitable method corresponding to the received message, and
then the method is applied to the receiver object. We distinguish
self-sends from other message sends, because self-sends may query
an object for both private and public slots, while external sends may
only query an object for public slots. Message sends are evaluated
as follows:

eval(message(rcvexp, selector), self) ≡
let recv = eval(rcvexp, self) in

let meth =


lookupall(recv, selector) if recv = self
lookuppub(recv, selector) otherwise in

apply(meth, recv)

Due to the introduction of method attributes,apply becomes a
polymorphic operation:there is no longer one single semantics for
method application. Each attribute modifies the method applica-
tion process. Therefore,apply dispatches on each attribute of the
method, giving rise to the following evaluation rules:

apply(create(method), self) ≡ apply(method, extend(self))
apply(clone(method), self) ≡ apply(method, clone(self))
apply(mirror(method), self) ≡ apply(method, reflect(self))
apply(basic method(body), self) ≡ eval(body, self)

Method attributes actuallychangethe receiver of the method invo-
cation:

• a create method applies on anextensionof the original re-
ceiver, obtained by application of theextendoperator;

• a clone method applies on acloneof the original receiver,
obtained by application of thecloneoperator;

• a mirror method applies on amirror object reflecting upon
the original receiver, obtained by application of thereflect
operator.

The essence of method attributes is that they enable operators such
asextendandclone–which are usually explicit in an object-oriented
language – to behidden in the semantics of method application,
such that it can beguaranteedthat they are applied exclusively
to self . Hence, an object can give up on its encapsulation only
if it explicitly decides to do so by implementing a method with
the proper method attribute. If the operators were explicit in the
language, any object could apply them to any other object, which
would lead to uncontrolled breaches of encapsulation as discussed
in Section 3.

5.1.2 Semantics of operators
Each of the evaluation rules for the method attributes relies on a
special operator (extend, clone and reflect) that acts uponself
and returns an alternative object. In order to describe the behav-
ior of these operators, the structure of objects upon which opera-
tors act is defined as follows: an object is represented as a triple
〈vars, meths, parent〉 consisting of the its state, behavior and
delegation link.

Variables and methods are represented as simple association lists
of name=value pairs. All objects ultimately derive from a prede-



fined root object. The three operators used above are defined as
follows:

(1) extend(self) ≡ 〈[] , [] , self〉
(2) clone(〈vars, meths, par〉) ≡ 〈copy(vars), meths, par〉
(3) reflect(self) ≡ 〈[meta= reify(self)] , [] , root〉

Extending yields an empty object whose parent is the original re-
ceiver (1). Cloning yields an object in which the state of the original
receiver is copied, and which shares the method implementations
and parent of the original receiver (2). Finally, thereflect operator
yields a mirror, which is an empty object extendingroot , with an
extra variable calledmeta that refers to areificationof the original
receiver (3). Such a reification offers introspective and intercessive
facilities to inspect and modify the object at the metalevel. We will
give examples of such facilities in Section 5.5.

In summary, the crux of method attributes is that they ensure that
possibly harmful operations on an object can only be applied to the
provider of an attributed method. Attributes modify the receiver
in which the attributed method body will be applied. They only
allow for controlled encapsulation breaches: an object can only be
extended, cloned or reflected upon if it implements a method with
the corresponding method attribute.

5.2 ChitChat: Extremely Encapsulated Pro-
totypes

The model explained so far has been applied to an experimental,
distributed prototype-based language ChitChat, whose virtual ma-
chine is implemented in Java. ChitChat is a proof by construc-
tion that extreme encapsulation can be reconciled with full-fledged
object-orientation thanks to the model of method attributes explained
in the previous section1.

Because the syntax of ChitChat is very close to that of Javascript,
we exploit their syntactic resemblance by showing how a simple
BankAccount object is created in both of these languages. The
object consists of one variable (balance ) and two methods (de-
posit andwithdraw ). The Javascript code is shown first, while
the ChitChat version is shown immediately below it. The JavaScript
code features a so-calledconstructor functionthat describes the
structure of aBankAccount object. A concreteaccount object
is created by simply calling this function. In ChitChat, the equiv-
alent object structure can be created by defining acreate method
(i.e. a method annotated with thecreate attribute). In the exam-
ple, this method is associated with the top-levelroot object be-
cause it is declared in the top level. Anaccount object is created
by invoking the create method on theroot object as illustrated
on the last line. Note thatdeposit andwithdraw are normal,
unattributed methods.

function BankAccount(amount) {
this.balance = amount;

this.deposit = function(sum) {
this.balance = this.balance + sum;

};

1A slight difference between the semantics of method attributes
outlined in Section 5.1 and ChitChat is that, for convenience, at-
tributed ChitChat methods always implicitly return the receiver ob-
ject in case it was changed: for instance, a create method always
returns the newly-created extension. Without such a convenience,
each attributed method would need to explicitly returnself .

this.withdraw = function(sum) {
if (this.balance < sum) {

alert("insufficient funds");
} else {

this.balance = this.balance - sum;
}

};
};
account = new BankAccount(20);

create.BankAccount(amount) :: {
balance : amount;

deposit(sum) :: {
balance := balance + sum;

};
withdraw(sum) :: {

if (balance < sum,
error("insufficient funds"),
balance := balance - sum)

};
};

account : root.BankAccount(20);

Because JavaScript aims for flexibility, it allows for all slots of its
objects to be read and modified by external objects. Moreover,
new fields can be added to existing JavaScript objects. In contrast,
ChitChat allows its objects to enforce the privacy of variables and
methods. In ChitChat, private variables and methods are defined
using : , whereas public variables and methods are defined using
:: . Private variables and methods cannot be accessed by external
objects.

The object model of ChitChat, as presented up to now, adheres to
the extreme encapsulation principle, as the encapsulation of private
variables and methods can be enforced. However, we have yet to
explain how the addition of object extension, cloning and reflection
can be achieved without violating this principle. This is the topic
of the following sections.

5.3 Create methods
In the previous section we have illustrated how create methods are
used to create new objects. Conceptually, new objects are but ex-
tensions of theroot . Create methods can also be used to create
extensions from objects other than theroot . To uphold exten-
sion protection (Sect. 4), an object should itself provide a create
method, if it is to be extended. For instance, in order to extend
the BankAccount abstraction, a nested create method must be
created to house the extension:

create.BankAccount(amount) :: {
... as before ...
create.LimitedWithdrawAccount(limit) :: {

withdraw(sum) :: {
if(sum > limit,

error("withdrawal limit exceeded"),
super.withdraw(sum))

}
}

}
a : BankAccount(20).

LimitedWithdrawAccount(5);
a.withdraw(10);
// --> error: withdrawal limit exceeded



TheLimitedWithdrawAccount extension overrides thewith-
draw method to ensure that a client can only withdraw a limited
sum per transaction. Inside the body of this method, the extension
can refer to its parent object usingsuper .

5.3.1 Unanticipated extension
In our model, all extension possibilities have to be anticipated,
since they are expressed as nested create methods. This may seem
to be a limitation, because in some cases, one would like to allow
for unanticipated extension. Although we have argued that such ex-
tensions are a potential breach of encapsulation, it is possible to ex-
press them in ChitChat. In this case, an object explicitly sacrifices
its encapsulation for the sake of being extensible in any manner.
In essence, an object needs to implement a create method taking a
quoted block of code as an argument and then evaluate this code:
the quoted code fulfills the role of the create method body, but can
now be provided externally.

create.Person(aName) :: {
name : aName;
toString() :: { name };
create.extend(extensionCode()) :: {

extensionCode() }
};
Doctor(aName) :: Person(aName).extend({

toString() :: {
"Dr. " + super.toString() }

})

In this example, aPerson abstraction offers anextend create
method that evaluates any piece of code in the environment of
the extension2. This makes it possible to add more specialized
Person abstractions later on. In the example,Doctor objects
extendPerson objects, overriding thetoString method.

Such unanticipated extensions are still in accordance with the ex-
treme encapsulation principle, since the object itself explicitly grants
extensibility. Extreme encapsulation does not prohibit encapsula-
tion breaches, rather it prohibitsunwantedones.

5.4 Clone methods
Clone methods allow an object to serve as a template for creat-
ing new objects by copy, rather than serving as an extensible par-
ent by providing a create method. Whereas cloning itself may not
be a breach of object encapsulation, the use of a clone operator
(e.g.clone(account) ) implies that the correct re-initialization
of the clone should be performed by the object that clones the ac-
count (e.g. the client). In order to perform such initialization, the
encapsulation of the clone would need to be broken (as explained in
Section 3.2). Clone methods provide a valuable alternative, since
the initialization code of the clone is specified in the body of the
clone method.

For instance, to allow secure cloning of bank accounts (where pri-
vate, instance-specific information should not be copied), the fol-
lowing clone method could be defined inside theBankAccount
create method:

create.BankAccount(amount) :: {
2When the formal parameter of a ChitChat method is affixed with
parentheses, the argument passed is quoted. The details regarding
this quoting mechanism are explained in [7].

/* as before */
clone.new(newAmount) :: {

balance := newAmount; }
}

The assignment statement in the body of the clone method affects
the balance variable of the clone instead of the variable of the
original receiver. Clone methods can also be used to ensure that
sensitive objects –e.g.digital money– cannot be cloned with wrong
intents, for instance by requesting some certificates to be passed as
argument:

create.EMoney(amount) :: {
/* variables and methods */
// doCopy() is private due to :
clone.doCopy() : { ... };
copy(certificate) :: {

if(isValid(certificate),
doCopy(),
error("invalid certificate")) } }

The clone methoddoCopy is private (defined with: rather than
:: ), and hence cannot be invoked by external objects. Thecopy
method is public and expects a certificate object as parameter: if
the certificate is valid, thendoCopy is called, resulting in a clone
being returned to the caller, otherwise an error occurs.

Finally, it is easy to ensure in ChitChat that an object is never
cloned: it sufficesnot to implement any clone method at all.

5.5 Mirror methods
ChitChat offers facilities for reflective programming viamirror meth-
ods. Recall that a mirror method is evaluated by first creating a mir-
ror of the receiver and evaluating the method bodyin the context of
the mirror. The return value of a mirror method is the mirror itself.
A mirror object is a special object that relates to its creator in the
sense that it has an implicitly initializedmeta variable referring to
a reification of its creator. An important rule is thatonly mirrors
have access to the reification of their creator. Furthermore, this
access is restricted by the creator of the mirror. Apart from this,
mirrors are normal objects: they can be sent messages and, if they
procure the possibilities to do so, they can be cloned, extended, etc.
To respect the principle of reflection protection, mirrors can only
be obtained via mirror methods explicitly defined by the object to
be mirrored.

The interface of themeta variable determines the actualmeta-
object protocol[15] that is available. This protocol depends on how
open the ChitChat interpreter is. Basic facilities include access to
the structure and behavior of an object. An open virtual machine
may expose more facilities: for instance, if the VM relies on refer-
ence counting for garbage collection, it may offer the possibilities
to notify a mirror each time the reference count of the base object
is increased or decreased. Here, we only mention a basic metalevel
API offering access to the behavior and structure of objects.

5.5.1 Structural API
Themeta variable gives access to the different structural elements
of an object: variables, methods and the parent object. However, in
order to respect the stratification principle explained in Section 3.3,
variables and methods are not returned as their direct metalevel im-
plementation objects, but rather as mirrors to these objects. There



are different variants of mirrors, offering different degrees of acces-
sibility. For space reasons, we do not consider mirror access rights
in this paper. More details on mirror methods can be found in [24].

A mirror giving access to the reification of a method is obtained
by callingmeta.method(m) wheremis the name of the method
to be mirrored. Alternatively, one can usemeta.methods() to
obtain an array of such mirror objects for all the methods of the
receiver.

create.BankAccount(amount) :: {
/* as before */
mirror.invoker() :: { meta.methods() }

}

When invoked, theinvoker mirror method returns a mirror of
the receiver bank account. The mirror has one method,methods .
Since the mirrormeta variable refers to a reification of the re-
ceiver,meta.methods() refers to the method table of the re-
ceiver. Hence, ifa is a bank account,a.invoker().methods()
returns the table of all the methods ofa. One can then use this table
to introspect and invoke methods ona reflectively. An equivalent
API is available for fields, viameta.field(f) andmeta.fields() .

This API satisfies the reflection protection principle: reflective ac-
cess to an object’s fields and methods requires the object’s explicit
cooperation, as they can only be accessed via message passing.

5.5.2 Behavioral API
Mirror methods can also expose the behavior of an object. Mon-
itoring the behavior of an object is made possible by registering
listeners. A mirror can register itself as a listener of meta-level
events (method calls, field accesses) of its base object.

create.BankAccount(amount) :: {
/* as before */
mirror.balanceListener(actionMethod) :: {

onReturn() :: {
balance : meta.field("balance");
actionMethod(balance.read())

};
meta.after(self,

["deposit", "withdraw"],
self.onReturn)

}
}

The balanceListener mirror method above makes it possi-
ble to specify that an action has to be performed after changes
in the balance of the account object. More precisely, the mirror
registers itself as a listener to be notifiedafter invocations of the
deposit and withdraw methods, withmeta.after(..) .
The onReturn method of the mirror object is called for notifi-
cation: this method reflectively accesses the value of thebalance
field of the original account, and applies theactionMethod given
as parameter, passing it the current value of the balance. A usage
example of this mirror method is given below:

create.AccountStore(account) :: {
write(amount) :: {

/* write account balance on disk */
};

account.balanceListener(self.write)
}
a : BankAccount(20);
a.withdraw(5);
// --> no storage update
s : AccountStore(a);
a.deposit(2);
// --> storage update

An AccountStore object is used to store the balance of an ac-
count to disk. When created, this object invokes the mirror method
passing it as parameter thewrite method that should be invoked:
this method does the actual job of writing to the disk.

As the example shows, mirror methods allow an object to decide
exactly which part of the interface of its reification should be ac-
cessible to other objects. In the example, an account object only
allows intervention upon state changes. The object also has control
over the design of the reflective interface exposed to clients (in the
example,balanceListener ). This makes it possible to cleanly
encapsulate implementation details: theAccountStore does not
need to know that updates to the balance occur whenwithdraw
or deposit are called. Mirror methods hence completely satisfy
the constraint imposed by thereflection protectionprinciple, as they
ensure that an object can precisely describe to what extent it wishes
to protect itself against metalevel operations.

6. RELATED WORK
In this section we review related proposals to ameliorate object en-
capsulation, in particular Agora [23], since it is the ancestor of
ChitChat, and Obliq [4], as it introduces the notion ofself-inflicted
operations, which achieves a level of object encapsulation similar
to extreme encapsulation. Finally, we discuss E [21], a modern dis-
tributed prototype-based language that emphasizes language-level
security.

6.1 Agora: Mixin Methods
The foundations of the object model of ChitChat are the outcome
of previous research on prototype-based object models [10, 6]. In
particular, the predecessor of ChitChat, Agora [23], first introduced
the use of so-calledmixin methods to extend objects. Agora was
the first language to adhere to the extreme encapsulation princi-
ple: since Agora objects implement their own mixin methods, they
can determine for themselves whether and how much they can be
extended. The mixin methods of Agora correspond to the create
methods of ChitChat. The contribution of ChitChat is to extend this
notion to other language operations like cloning and mirror-based
reflection. Furthermore, ChitChat specifically targets dynamic and
open networks by proposing a model for concurrency, distribution
and mobility. This model is not presented in this paper for space
reasons, but the interested reader can refer to [5].

6.2 Obliq: Protected Objects
Obliq [4] is a distributed object-based language with support for
mobility. Obliq provides four operations applicable to objects: field
selection (method invocation), field update (method overriding),
cloning and aliasing. The operations are incorporated in the lan-
guage in the form of operators which can be externally applied to
an object. The first operator corresponds to the message sending
operation of ChitChat. The field update operator allows for objects
to be externally modified, as follows:

o.x := value



The cloning operator is used to create a new object by concatenat-
ing the clones of one or more objects. By cloning more than one
object, the operator encompasses extension of existing objects with
new behavior, as is shown in the following example:

aColoredShape := clone(aColor, aShape)

Finally, aliasing is an operator which allows operations on an ob-
ject’s field to be redirected to another object’s field. There is no
such equivalent operation in ChitChat. Note that the field update,
cloning and aliasing operators are potentially harmful as they can
be applied to objects without their cooperation.

In order to deal with the potential encapsulation breaches, Cardelli
distinguishes two ways in which an object can be subject to one of
the four operators: they can be performed either as external opera-
tions on an object, or as internal operations throughself . When
a method operates on its own self, the operation is said to beself-
inflicted[4]. In order to exploit this important difference in operator
usage, objects can be declaredprotected . A protected object
does not allow external update, cloning, and aliasing operations,
but permits such operations when they are self-inflicted. In other
words, they are protected from changes made by external objects,
but they can still change themselves.

Obliq’s protected objects and ChitChat’s method attributes share
the same goal: protecting an object from uncontrolled external
modifications, while still allowing the object to be modified if it
offers the possibilities to do so. ChitChat’s notion ofcreate
andclone methods can be expressed in Obliq by using the stan-
dard operators via self-sends. There is no equivalent in Obliq for
ChitChat’smirror methods, however.

6.3 E: Secure Distributed Prototypes
To the best of our knowledge, the only other well-known object-
oriented language for distribution that aims at strong encapsulation
is the E programming language [21]. E has many similarities with
ChitChat, particularly with respect to its distribution model (not
presented in this paper, but which can be found in [5]). However, E
achieves strong encapsulation by adopting an object model that is
reduced to the bare minimum: in this sense it is not considered to be
a prototype-based language, as it does not feature true delegation.

The object model employed by E is strongly rooted in the lambda
calculus. In essence, E objects are closures around lexical environ-
ments. Additionally, E provides the necessary language constructs
to support the use of public methods, message passing and private
instance variables.

Although the object model of E is sufficiently expressive to support
many object-oriented applications, it is less expressive than object
models employing classes or prototypes. This becomes apparent
when more advanced object-oriented features, such as delegation
or inheritance, are required. E does not support prototype-based
delegation (with late binding ofself ), it only supports implicit
forwarding of messages to parents. Tosimulatelate binding of
self , an E programmer must use the following pattern, whereby
code is explicitly parameterized with aself variable:

# extensions should provide self
def makeCollection(self) {

def abstractCollection {
to map(f) {

# using self parameter
var it := self.iterator();
while(it.hasNext()){

f(it.next())
}

}
}
return abstractCollection }

def makeList() {
# child is explicitly passed as self
def list extends makeCollection(list) {

to iterator(){
# return a list iterator

}
}
return list }

As can be seen in the code, theself variable usually implicitly
managed by the language has to be explicitly passed around by the
programmer. It has to be noted that the inheritance scheme sim-
ulated by this pattern is similar to class-based inheritance because
there is no parent sharing: when the list is created, its parent is a
newly-created and private collection object. But there is still a fun-
damental difference between E and real class-based inheritance: in
E, calling foo() or self.foo() do not have the same seman-
tics (simply callingfoo() will not entail late binding ofself ,
hencefoo will be looked up in the environment of the parent only).

The major contribution of ChitChat is to promote extreme encap-
sulation in a prototype-based language (featuring prototype-based
delegation that enables parent sharing). Furthermore, E does not
support cloning: new objects are always obtained by invoking gen-
erator functions, which are similar to the create methods of ChitChat.
With respect to reflection, E has a limited number of introspec-
tive facilities. The native functionsE.send andE.call can be
used to reflectively invoke public methods of E objects. Moreover,
E.match can be used to trap messages that are not understood by
an object, and as such supports the same metalevel programming
techniques enabled bydoesNotUnderstand in Smalltalk [11].
By providing only this limited set of introspective facilities, E ad-
heres to ourreflection protectionprinciple. This is achieved only
because reflection is basically ruled out. Conversely, in ChitChat,
an object can unveil much more than only its public interface at the
metalevel, but only if it wants to.

7. CONCLUSION
When considering mobile computing applications in an Ambient
Intelligence context, the devices forming ad hoc wireless networks
are discovered dynamically as the user moves about. Dynamically
encountered devices cannot always be trusted, which is why un-
trusted objects can mingle with trusted ones in the mobile object
system. If mobile objects are to remain useful in this context,
one must be able to shield objects from external harm. We have
explored the principled enforcement of object encapsulation as a
means to do so.

We have introduced theextreme encapsulationprinciple, which
states that an object should remain in total control over all oper-
ations applied to it. This is achieved by providing all language
operations by means of message sending only. We have devised a
prototype-based language, ChitChat, which provides a full-fledged
object model while respecting the extreme encapsulation princi-



ple. The key insight is a language feature calledmethod attributes,
which makes it possible for methods to have different interpretation
semantics: create methods enable object extension with true dele-
gation, clone methods enable controlled object cloning, and mirror
methods enable selective reflective access to the state and behavior
of objects.

In parallel with the design and implementation of ChitChat, we
have constructed a distribution model specifically tailored towards
ubiquitous computing. This distribution model, called theambi-
ent actor model[8] is an extension of the well-known actor model
of computation [2]. An interesting perspective for future research
is the incorporation of method attributes in this distribution model,
thereby making it adhere to the extreme encapsulation principle. To
this end, we need to identify harmful operators that arise in concur-
rent and distributed programming languages and to convert them
into method attributes, exploring how this change in design bene-
fits the development of applications for ubiquitous computing.

Acknowledgements
We thank the anonymous referees for their valuable clarifications,
comments and critiques on earlier versions of the paper.

8. REFERENCES
[1] A BADI , M., AND CARDELLI , L. A Theory of Objects.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[2] AGHA, G. Actors: a Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

[3] BRACHA, G., AND UNGAR, D. Mirrors: Design principles
for meta-level facilities of object-oriented programming
languages. InProceedings of the 19th annual Conference on
Object-Oriented Programming, Systems, Languages and
Applications(2004), pp. 331–343.

[4] CARDELLI , L. A Language with Distributed Scope. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(1995), ACM Press, pp. 286–297.

[5] DE MEUTER, W. Move Considered Harmful: A Language
Design Approach to Mobility and Distribution for Open
Networks. PhD thesis, Vrije Universiteit Brussel, 2004.

[6] DE MEUTER, W., D’HONDT, T., AND DEDECKER, J.
Intersecting classes and prototypes. In5th International
Andrei Ershov Memorial Conference, PSI 2003,
Akademgorodok, Novosibirsk, Russia(2003), vol. 2890 of
Lecture Notes in Computer Science, Springer.

[7] DE MEUTER, W., D’HONDT, T., AND DEDECKER, J. Pico:
Scheme for mere mortals. InECOOP Workshops(2004),
J. Malenfant and B. M. Østvold, Eds., vol. 3344 ofLecture
Notes in Computer Science, Springer.

[8] DEDECKER, J.,AND VAN BELLE, W. Actors for Mobile
Ad-hoc Networks. InInternational Conference on Embedded
and Ubiquitous Computing EUC2004(August 2004),
L. Yang, M. Guo, G. Gao, and N. Jha, Eds., vol. 3207 of
Lecture Notes in Computer Science, Springer-Verlag,
pp. 482–494.

[9] DEDECKER, J., VAN CUTSEM, T., MOSTINCKX, S., DE

MEUTER, W., AND D’H ONDT, T. AmbientTalk: A Small

Reflective Kernel for Programming Mobile Network
Applications. Tech. rep., Vrije Universiteit Brussel, 2005.

[10] D’H ONDT, T., AND DE MEUTER, W. Of first-class methods
and dynamic scope.RSTI - L’objet no. 9/ 2003. LMO 2003
(2003), 137–149.

[11] GOLDBERG, A., AND ROBSON, D. Smalltalk-80: The
Language. Addison-Wesley Longman Publishing Co., Inc.,
1989.

[12] GOSLING, J., JOY, B., AND STEELE, G. The Java
Language Specification. GOTOP Information Inc., 1996.

[13] IST ADVISORY GROUPAmbient intelligence: from vision
to reality, September 2003.

[14] JUL , E., LEVY, H., HUTCHINSON, N., AND BLACK , A.
Fine-grained mobility in the Emerald system.ACM
Transactions on Computer Systems 6, 1 (February 1988),
109–133.

[15] K ICZALES, G., DES RIVIERES, J.,AND BOBROW, D. G.
The Art of the Metaobject Protocol. MIT Press, Cambridge,
MA, USA, 1991.

[16] L IEBERMAN, H. Using prototypical objects to implement
shared behavior in object-oriented systems. InConference
proceedings on Object-oriented Programming Systems,
Languages and Applications(1986), ACM Press,
pp. 214–223.

[17] L IEBERMAN, H., STEIN, L., AND UNGAR, D. Treaty of
orlando. InAddendum to the proceedings on Object-oriented
Programming Systems, Languages and Applications
(Addendum)(1987), ACM Press, pp. 43–44.

[18] MAES, P. Concepts and experiments in computational
reflection. InOOPSLA ’87: Conference proceedings on
Object-oriented Programming Systems, Languages and
Applications(New York, NY, USA, 1987), ACM Press,
pp. 147–155.

[19] M ILLER , M., YEE, K., AND SHAPIRO, J. Capability myths
demolished. Tech. rep., Combex, Inc., 2003.

[20] MULET, P.,AND COINTE, P. Definition of a reflective
kernel for a prototype-based language. InProceedings of the
1st JSSST International Symposium on Object Technologies
for Advanced Software, Kanazawa, Japan, S. Nishio and
A. Yonezawa, Eds. Springer-Verlag, Berlin, 1993,
pp. 128–144.

[21] OPEN E PROJECT. E: Open Source Distributed Capabilities,
2005.http://www.erights.org .

[22] SNYDER, A. Encapsulation and Inheritance in
Object-oriented Programming Languages. InConference
Proceedings on Object-oriented Programming Systems,
Languages and Applications(1986), ACM Press, pp. 38–45.

[23] STEYAERT, P.,AND DE MEUTER, W. A marriage of class-
and object-based inheritance without unwanted children. In
Proceedings of ECOOP ’95(August 1995), vol. 952 of
Lecture Notes in Computer Science, Springer, pp. 127–144.

[24] TANTER, E. Mirror methods — reconciling reflection and
extreme encapsulation. InECOOP Workshop on Object
Technology for Ambient Intelligence(July 2005).

http://www.erights.org


[25] TOLKSDORF, R., AND KNUBBEN, K. Programming
Distributed Systems with the Delegation-based
Object-oriented Language dSelf. InProceedings of the 2002
ACM Symposium on Applied Computing(2002), ACM Press,
pp. 927–931.

[26] UNGAR, D., CHAMBERS, C., CHANG, B.-W., AND

HÖLZLE, U. Organizing programs without classes.Lisp
Symb. Comput. 4, 3 (1991), 223–242.

[27] UNGAR, D., AND SMITH , R. B. Self: The power of
simplicity. In Conference proceedings on Object-oriented
Programming Systems, Languages and Applications(1987),
ACM Press, pp. 227–242.

[28] V ITEK , J., SERRANO, M., AND THANOS, D. Security and
Communication in Mobile Object Systems. InMobile Object
Systems: Towards the Programmable Internet.
Springer-Verlag: Heidelberg, Germany, 1997, pp. 177–200.

[29] WEISER, M. The computer for the twenty-first century.
Scientific American(september 1991), 94–100.


	Introduction
	Object-Oriented Languages for Open Networks
	Object-based Languages for Open Networks
	Fundamental Characteristic Operations of OOP

	Language Operations Compromising Encapsulation
	Conflicting Operation: Extension
	Conflicting Operation: Cloning
	Conflicting Operation: Reflection
	Conclusion

	The Extreme Encapsulation Principle
	Method Attributes for Extremely-Encapsulated Prototypes
	Method Attributes
	Evaluation rules
	Semantics of operators

	ChitChat: Extremely Encapsulated Prototypes
	Create methods
	Unanticipated extension

	Clone methods
	Mirror methods
	Structural API
	Behavioral API


	Related Work
	Agora: Mixin Methods
	Obliq: Protected Objects
	E: Secure Distributed Prototypes

	Conclusion
	References 

