Flexible Object Encapsulation
for Ambient-Oriented Programming

Wolfgang De Meuter'2 Eric Tanter® Stijn Mostinckx?
Tom Van Cutsem? Jessie Dedecker?

! Laboratoire d'Informatique Fondamontale de Lille
Université des Sciences et Technologies de Lille, France

2 Programming Technology Lab
Vrije Universiteit Brussel, Belgium

3 Center for Web Research, DCC
University of Chile, Chile

{wdmeuter,smostinc,tvcutsem,jededeck }@vub.ac.be , etanter@dcc.uchile.cl

ABSTRACT a mobile device equipped with wireless technology and are demar-
In the emerging field of Ambient Intelligence (Aml), software is cated dynamically as users move around. Mobile networks turn
deployed in wireless open networks of mobile devices. Such open the applications running on mobile devices from mere isolated pro-
networks require stringent security measures as unknown and un-grams into smart applications that can cooperate with their envi-
trusted hosts may join the network. In an object-oriented language, ronment. As such, mobile networks take us one step closer to the
where objects are distributed and moved across the network, it thusworld of ubiquitous computing envisioned by Weiger|[29]: a world
becomes important to be able ¢éaforceobject encapsulation. In where (wireless) technology is gracefully integrated into the every-
contemporary object-oriented programming languages, powerful day lives of its users. Recently, this vision has been terAmelient
operations such as object extension (inheritance), cloning and re-Intelligence(Aml for short) by the European Council’s IST Advi-
flection, are typically provided via omnipotent language operators sory Group|[[13].

that fail to uphold object encapsulation, because they can be ap-

plied without the explicit consent of the concerned object. This Although low-level technologies for programming software for mo-
paper formulates a language design princiggtreme encapsula- bile networks have matured, current programming languages lack
tion—that precludes the use of such harmful operators, and proposesabstractions to deal with the specificities of mobile networks. This
a corresponding language featumaethod attributes that makes has led some of the authors to propose a henbient-Oriented

it possible to provide the flexibility of object extension, cloning Programmingparadigm[[9] 5] (AmOP for short), which consists
and reflection without compromising on object encapsulation. Al- of programming languages that incorporate the specificities of mo-
though some existing object-based languages can be said to supbile networks at the very heart of their basic computational steps.
port extreme encapsulation, our contribution is to support it in a We identify three axes of programming language design for Aml:
delegation-based, prototype-based language named ChitChat. concurrency, distribution, and the object model. Some of the au-
thors have already proposed language abstractions for the two first
axes|[5| 8]. This paper focuses on the third axis, the object model,

1. INTRODUCTION .) ~ . which specifies what objects are and which operations are sup-
Software development for mobile devices has become a major is- ported by the language.

sue with the advent ahobile networksMobile networks surround

2 . - In mobile computing applications for Ambient Intelligence, de-
*E. Tanter is financed by the Milenium Nucleous Center for Web puting app 9

Research, Grant P01-029-F, Mideplan, Chile, and the ITCC Chile- vices form ad hoc networks with other devices that are dynami-
Korea. S. Mostinckx is funded by a doctoral scholarship of the cally discovered in the environment. Since every encountered de-

Institute for the Promotion of Innovation through Science and Vice cannot necessarily be trusted, proper security measures are re-

Technology in Flanders (IWT-Vlaanderen). T. Van Cutsem and J. quired when objects are interchanged. As stated by \étedl,,

Dedecker are research assistants of the Fund for Scientific Researcln object that is copied or moved should be protected from abuse

Flanders, Belgium (F.W.O.). by malicious objects in the new host, and a host should be able to
hand out access to its resources on a very selective basis, in order
to protect it from malicious objects [28]. Our approach to improve
the security of object-oriented applications is based on the prin-
cipled use of object encapsulation [22]. We propose a language
design principle, nameextreme encapsulatiomo ensure that the
integrity of objects can be upheld at any time.

Most contemporary object-oriented languages are, however, incom-
patible with the extreme encapsulation principle, because they typ-

ically provide possibly harmfubperationssuch as object exten- have a different concrete class [25]. Because of these independent
sion, cloning or reflection, vilanguage operatorghat can be ap- changes to class copies, the implicit object-class relation becomes
plied to objects without their explicit consent. Extreme encapsula- explicitly detectable.
tion can be trivially achieved if these operations are simply abol-
ished from the language. However, this would severely restrict the Object-based distributed programming languages will, of course,
language because the harmful operations have real practical valuesuffer from the consequences of code duplication as well. The dif-
This paper therefore proposes a language feature that makes it posference lies in the way programmers can deal with the problem.
sible to provide these operations without resorting to omnipotent, Most existing class-based languages do not offer programmers the
encapsulation-breaching operators. Indeed, we reconcile object ex-means to deal with multiple copies of the same class, because of the
tension, cloning and reflection with extreme encapsulation through implicitness of the instance-of link. In delegation-based prototype-
the introduction ofmethod attributes methods can be annotated based languages such as Self, where an implicit instance-class link
with attributes leading to different evaluation semantics, allowing is modelled by an explicit prototype-traits link, the programmer is
them to replace the harmful language operators. able to intervene. As an extreme case, dSelf [25], a distributed ex-
tension of Self, allows the prototype and its traits to be physically
We proceed as follows: in Sectiph 2 we present general consider-distributed such that prototypes can share traits across the network
ations of object-oriented languages for open networks, which mo- and avoid copying altogether, if this is desirable.
tivate the use of an object-based language, and identify the dif-
ferent operations that a full-fledged object model should support. Strengthened by the observation that existing distributed program-
Sectior B analyzes the conflicts between these operations and thening languages such as Emergld][14], Oblif [4], dSel [25] and
preservation of object encapsulation. Then, in Se¢fjon 4, we formu- E [21] are all classless, we state that object-based object models are
late the principle okextreme encapsulatiaiiat AmOP languages a solid basis to develop robust software for Ambient Intelligence.
should respect. We present our model of extremely-encapsulated

prototypes in Sectidn 5, explaining and illustrating how method at- 2 2 Fundamental Characteristic Operations of
tributes allow for the provision of object extension, cloning and "

reflection without compromising on extreme encapsulation. Sec- O_OP)))
tion[§ discusses related work, and Secfipn 7 concludes with per- This section establishes the basic operations of a full-fledged ob-
spectives for future research. ject model, which guide our analysis of the encapsulation problems

in existing object-oriented languages. Fundamental to any object-
oriented language is the notion of message sending: the ability of
2. OBJECT-ORIENTED LANGUAGES FOR objects to send each other polymorphic messages that are imple-
OPEN NETWORKS mented by a corresponding method implementation, encapsulated
In this section we first argue in favor of object-based programming in a receiver object. Additional important object-oriented concepts
languages in the context of Ambient-Oriented Programming. We such as incremental specification of abstractions and object cre-
then identify the main features of object-oriented languages that ation differ depending on whether the language is class-based or
characterize a full-fledged object model. prototype-based. In order to unify these concepts from both sub-
paradigms, we reuse terminology from an influential taxonomy pa-

. per, The Treaty of Orland17]], where Lieberman, Stein and Un-
2.1 ObJeCt_based Languages for Open Networks gar characterize these concepts based on two fundamental mecha-

The ﬁeld of object-oriented languages is separated into two kinds nisms:empathyandtemplatesIn addition, we consider the notion
of object models: those based on classes and those based solelyt ¢ompytational reflectior T18], since it is encountered in most
on objects. Representatives of the former are Smalltalk [11] and ot re object-oriented languages.

Java [12]. Languages employing a pure object-based design are

Self [27] and earlier versions of Javascript. In this paper, we ar-

gue in favor of object-based models to program distributed objects. Templates refer to the entities from which new objects can be

Conceptually, this model is simpler than its class-based counterpart spawned by a so-called “cookie-cutting” mechanism. In a
since one only has to deal with a single kind of entities, namely ob- class-based language, classes act as templates, and object
jects. As a consequence, all language features investigated in this creation is done by instantiating these classes. In a prototype-
paper —extension, cloning and reflection— are directly defined upon based language one can employ any object as a template, by
objects. simply cloning the existing object.

Another argument in favor of object-based languages is that ob- Empathy refers to the ability to share behavior between templates,
jects do not implicitly depend on a class structure. In distributed as to specify abstractions in an incremental fashion. Class-
programming, this dependency requires a class-based language to based languages achieve this structural reuse through class-
replicate classes over different hosts in the network when objects based inheritance. In a prototype-based language this reuse
are passed as parameter or return value during a remote method in- is typically achieved through delegation between an object
vocation. Such extensive class copying among hosts is problematic and its parent$ [16].

because, from a conceptual point of view, there ought to be only
one single version of a class on the network, containing the class Reflection refers to the ability for a program to consult and modify

variables and method implementations shared by all instances. This its own high-level structure. In an object-oriented language,
sharing relation between the instances is established at object cre- this typically implies that an object can acquire access to a
ation time and remairisplicit throughout their lifetime. However, reified version of both its data and method slots. Most ma-
when each host has its “own” copy of the class, the copies may ture programming languages incorporate a form of reflection
evolve independently, such that two instances of the same concep- for e.g.debugging, implementing language extensions, pro-

tual class may unexpectedly exhibit different behavior because they viding object serialization, etc.

These operations are fundamental to object-oriented programming,3.2 Conflicting Operation: Cloning

which is why languages usually provide the programmer with ex- Most object-oriented languages, either class-based or prototype-
plicit language operators that enable the application of these op-based, make it possible tdoneobjects. In a prototype-based lan-
erations on objects or classes. Whereas none of ihgsetions guage, cloning is essential as it is the fundamental operation to both
breaches the encapsulation of objguts se their corresponding create new objects as well as new abstractions. Cloning objects
languageoperatorsusually do. A notable exception is the message without their explicit consent can be a severe security breach. For
sending operator, which allows the receiver object to decide how it instance, Oblig[[4] provides elone operator that allows an ob-
responds to the message. The encapsulation problems engendergdct to clone any object it refers to. In pseudocode, an olgjeict

by the other operators are illustrated in the following section. can be cloned as follows:

3. LANGUAGE OPERATIONS COMPROMIS- clonedobj = clone(ob):
ING ENCAPSULATION

The main motivation for our work on encapsulation for Ambient-

Oriented programming is that |anguage operators in Contemporarycarde”i recognizes that such an unrestricted Cloning in Obllq is po-
programming languages can breach object encapsulation. In thistentially hazardous and thus also providgwatect — operator to
section, we discuss how ill-designed object extension, cloning and fully encapsulate an object: a protected object is shielded from the

reflection operators threaten the encapsulation of objects. external application of operators such as cloning, they can only be
applied by the object itself. We will return to Obliq in Sect[on]6.2.

3.1 _ Con_flict_ing Operation: E_XteUSion _ Abetterimplementation of the clone operation consists of introduc-
Sectiorf 2.2 pinpointed empathy, the ability to incrementally specify ing clone methods instead of an exterr@bne operator. The
abstractions, as an essential characteristic of object-oriented lan-dea is that, upon receipt ofdone message, an object by default
guages. Unfortunately, empathy can only be achieved at the costreturns a clone of itself. An object can refuse to be cloned or inter-
of breaching the encapsulation of the object or class that is beingvene in the cloning process leyg.overriding theclone method.
extended[[22]. Cloning an object is then achieved by executing:

Delegation-based prototype-based languages often emphasize flex-
ibility, which hampers the introduction of proper object encapsula- clonedObj = obj.clone();
tion. In contrast with class-based inheritance where private instance
variables of the superclass remain inaccessible to the subclass, child
prototypes can access their parent's private state. This allows for The language Self [27] employs this scheme of cloning objects
some expressive programming pattefns [16]. The problem is that by sending thentlone messages. Objects which delegate to the
in languages employing delegation, such as Self, any object cancloneable trait automatically inherit the default cloning behav-
freely designate another object as its parent, thereby breaching thgor. In the case of Java, for an object to be publicly cloneable, its
parent’s encapsulation. class must implement th&loneable interface and override the
clone method (which is protected) with a public method.
Some object-based languages —not featuring prototype-based dele-
gation— have attempted to reconcile an object extension mechanismAlthough these solutions make it somehow possible to protect ob-
with encapsulation: jects from being unexpectedly cloned, there remains a fundamental
problem that stems from the use of a cloning operator: the clone
initialization has to be done by the object creating the clone, which
o E [21]] achieves encapsulation by not providing built-in sup- requires access to the clone’s private state. This often requires mu-
port for inheritance. Instead E&xtends keyword speci- tator methods to make the state accessible, which defeats an ob-
fies that an object simplorwardsmessages it does not un- ject’s encapsulation. For example:
derstand to a parent object, whose state remains private to
itself. Hence, E sacrifices private state sharing via common

parents in favor of encapsulation. We will discuss E in more Cloneggreg!‘igarg =thrctja'(\jlitC%rd.(clo)ne();
details in Sectioh B]3. clonedCreditCard.setCardNumber(...);
08l clonedCreditCard.setCardHolder(...);

e Obliq [4] introduces a particular extension mechanism, by clonedCreditCard.setExpiryDate(...);

embedding the clones of two or more objects in a new object.
The resulting object therefore exhibits an extended behavior
resulting from the combination of the original objects. This
extension mechanism strongly relies on cloning, discussed in
the following section.

In other words, cloning operators must usually be employed in con-
junction with external updates of the state of the clone object: this
can be a severe breach of object encapsulation, as it may require
otherwise unnecessary mutator methods to be publicly provided.

Incremental specification of objects is an essential ingredient of an 3.3 Conflicting Operation: Reflection

object-oriented language. However, existing languages often im- Most mature object-oriented languages also provide reflective pro-
plement extension using operators external to the object, such thatvisions, which can be used to access the state of an object in metapro-
the encapsulation of the object under extension is breached. In or-grams. This is typically used for marshaling arguments of a remote
der to reconcile extension with flexible object encapsulation, ob- invocation, debugging a program, or even for building the IDE of
jects should explicitlycooperateto be extended. the language. Typically, a reflective API is the major hindrance to

preserving encapsulation, because it allows one to breach the in-4. -
i lation, b it all to breach the in4. THE EXTREME ENCAPSULATION PRIN
tegrity of an object. CIPLE

e bi btai ificati facl The existence danguage operatorthat allow programmers to ex-
Fc;r examlp &, in Java, t?nylo Ject can g taln_abrlel |c§1t|on| 0T a clasStang, clone or reflect upon any object, without requiring the explicit
.(0 typeC asls)usingt ecgss pfeu oh-va.rla ebls:nce a'sisbl consent of the object, is the source of encapsulation breaches. In
Is not a real message send, any class that is publicly avallable Canye context of ubiquitous computing, it is crucial that both mobile
be accessed through the reflectlo_n API, thereby revealing its fleldsObjects and hosts can protect themselves and avert encapsulation
and methods. The use of a security manager based on access Coleaches. To ensure object confidentiality and integrity, we de-

trol lists (ACLs) solves the issue of controlling reflection, but in a fine a general language design principle, cabatteme encapsu-
coarse-grained and rigid manner; as argued in [19], security basedlation 5l '

on object capabilitieg(in essence, unforgeable object references)
offers both fine granularity and flexibility.

Extreme Encapsulation — An object can designate some of its in-
ternal state and operations to be private enfibrcethis prop-
erty. To be able to uphold this principlenguage operators
which manipulate an object or claagthout its explicit inter-
ventionare to be prohibited.

Mirror-based reflectiorf3] is essentially compatible with capabili-
ties. The idea of mirrors is that metalevel facilities are not accessed
from an object or class directly, as is the case in the Java language
for instance, but rather that such facilities are exposed by special
objects callednirrors. Hence, in this model, the ability to reflect
upon an object coincides with the notion of having a reference to
(a capability for) a mirror object. This means that reflective access
to an object can be regulated depending on the kind of mirrors that
are handed out to other objects.

To proponents of object-oriented programming, following this prin-
ciple may seem like common sense, as encapsulation is one of the
hallmarks of object-oriented programming. However, when look-
ing at contemporary object-oriented languages, we cannot help but
notice that most of them break this principle as illustrated in sec-
tion[3. The ones that do not violate the principle, such as pure actor
languages, only do so by disabling language operators entirely, but
this often leads to software engineering restrictions.

Bracha and Ungar state a number of design principles to which
mirror-based reflective systems should adhere. One such principle
is stratification the principled separation of base-level and meta-
level concerns. One advantage of such stratification is that reflec-
tive code can easily be withdrawn from the application when it is
not needed. Doing so can considerably reduce the footprint of an
application, and so this principle is highly relevant in the context
of embedded and ubiquitous computing, where small platforms are
the rule.

Given the extreme encapsulation principle, the prime question that
arises is how it can be reconciled with the demands of a rich object
model characteristic af.g. a prototype-based language, requiring
object extension, cloning, and reflection. In each of these cases, the

However, the mirror design as presented(in [3] is not compatible extreme encapsulation principle has its specialized formulation:

as such with object encapsulation. The incompatibility stems from
the fact that an object is not involved at all in the process of giving

a mirror to itself: rather, a mirror factory is queried: Extension Protection — An object can decidfor itselfwhether or

not it may be extended, and under which restrictions. Failing
to do so would allow malicious extensions to posses state and

mirror = MirrorFactory.getMirror(obj) behavior they are not entitled to have.

Cloning Protection — An object can decidéor itself whether or
not it may be cloned, and under which restrictions. Failing
to do so would allow malicious objects to make uncontrolled
amounts of clones, which would amplify their capabilities.

This is very similar to the external cloning operator sketched in the
previous section. Ideally, an object should have precise control over
what mirror is handed out to whom. In particular, it is important
that an object is able to hand over a read-only mirror to untrusted
clients, and a read-write mirror to trusted ones. Such choices can
only be made by actively involving the object in the process of
mirror acquisition.

Reflection Protection — An object can decidfor itself how much
of itself it exposes at the metalevel. Failing to do so would
allow malicious meta-programs to circumvent an object’s in-
terface completely, exposing an object’s implementation at

. the meta-level.

3.4 Conclusion

We have shown how language operators that allow for object ex-

tension, cloning and reflection can breach object encapsulation. Therefore, the main point of the extreme encapsulation principle is

These encapsulation problems are most severe for delegation-baseghat even though operations such as extension, cloning and reflec-

prototype-based languages, as delegation gives access to paremfon are to be provided, they should be so in a way dwtively

state and cloning is fundamental to the language paradigm. involvesthe concerned object, rather than being offered as omnipo-

tent language operators. In other words, the extreme encapsulation

The recurring cause of the encapsulation breaches is that the objecprinciple states that:

which is subject to an operation has no means to intervene in the

execution of that operation. Objects cannot restrict their extensions,

their clones or their mirrors. This observation has lead us to rethink Any operation in a programming language —including

the design of such language operations. The foundations of the extension, cloning, and reflection— should happen through

resulting object model are the topic of the following section. message passing, and message passing alone.

These design principles actually raise the issue of how to imple- The essence of the evaluation rule is that an object is first queried
ment a language where message passing alone can be used for trder a suitable method corresponding to the received message, and
ditional communication between objects, as well as for extending, then the method is applied to the receiver object. We distinguish
cloning and reflecting upon objects. Our solution to this issue is to self-sends from other message sends, because self-sends may query
consider different interpretation semantics for methods, depending an object for both private and public slots, while external sends may
on their associatehethod attributeas explained and illustrated in ~ only query an object for public slots. Message sends are evaluated

the remainder of this paper. as follows:
5. METHODATTRIBUTES FOR EXTREMELY-
ENCAPSULATED PROTOTYPES eval(message(rcvexp, selector), sel f) =

let recv = eval(rcvexp, self) in

lookup,, (recv, selector) if recv = sel f
lookup,,,,, (recv, selector) otherwise
apply (meth, recv)

Our proposal to reconcile extreme encapsulation with a rich object
model hinges on the introduction ofethod attributeso specialize let meth = {
the way methods are evaluated. Each specialization plays the role

of a language operator, which is guaranteed only to operate on the
provider of the method and not on some external object. Before
detailing how method attributes are incorporated in an experimental . . .
prototype-based programming language, called ChitChat, we give Due to the introduction of method attributespply becomes a

a language-neutral explanation of method attributes through the useP°!ymorphic operationthere is no longer one single semantics for
of a semi-formal model based on simple evaluation rules. method application Each attribute modifies the method applica-
tion process. Thereforepply dispatches on each attribute of the

51 Method Attributes method, giving rise to the following evaluation rules:

We employ a semi-formal object-oriented language model that sup-
ports three operations: object extenside.(delegation), object
cloning and mirror-based reflection| [3]. In order to support these
operations while maintaining extremely encapsulated objects, three
method attributes are introduceckeate , clone andmirror
Methods can be annotated with one or more of these attributes
resulting increate methodsclone methodsmirror methodsor a
combination thereof.

in

apply (create(method), sel f) = apply(method, extend(self))
apply (clone(method), sel f) = apply (method, clone(sel f))
apply (mirror(method), sel f) = apply (method, reflect(sel f))
apply (basic_method(body), sel f) = eval(body, sel f)

"Method attributes actuallghangethe receiver of the method invo-
cation:

Attributed methods have a specialized evaluation semantics when o a create method applies on artensionof the original re-

they are invoked: they may perform some operations on the re- ceiver, obtained by application of tietend operator;
ceiver both before and after the evaluation of the method body, but

most importantlythey can modify the context in which the method e a clone method applies onclone of the original receiver,
body is evaluated In other words, an attributed method may be obtained by application of thelone operator;

evaluated in another object than the one that receives the message.)))))

e a mirror method applies on mirror object reflecting upon
Without loss of generality, we do not consider method arguments as the original receiver, obtained by application of treflect
they are not fundamental to the understanding of method attributes. operator.
In the same vein, lexical environments are omitted from our semi-
formal model as the interaction between lexical scoping and object-
oriented concepts is well understodd [1]. When considering the
abstract grammar for a language supporting method attributes, two
language constructs are particularly important, namely the invoca-
tion and declaration of methods:

The essence of method attributes is that they enable operators such
asextendandclone—which are usually explicit in an object-oriented
language — to bd&iddenin the semantics of method application,
such that it can bguaranteedthat they are applied exclusively

to self . Hence, an object can give up on its encapsulation only

if it explicitly decides to do so by implementing a method with
send = message(receiver, selector) the proper method attribute. If the operators were explicit in the
method ::= create(method) language, any object could apply them to any other object, which

i %?r?gr((rpn%&%?) would lead to uncontrolled breaches of encapsulation as discussed

| basic_method(body) in Sectior(8.

5.1.1 Evaluation rules 5.1.2 Semantics of operators

Typically, an evaluation rule takes an abstract grammar element andEach of the evaluation rules for the method attributes relies on a
an evaluation environment. The environment holds relevant infor- special operatoreiktend, clone andreflect) that acts uporself

mation such as the current scope, the cursait , etc. How- and returns an alternative object. In order to describe the behav-
ever, as explained above, for the purposes of explaining method at-ior of these operators, the structure of objects upon which opera-
tributes, only theself binding will be considered. Objects in our tors act is defined as follows: an object is represented as a triple
model are composed of slots, which can be marked either private (vars, meths, parent) consisting of the its state, behavior and
or public. delegation link.

The evaluation of a message send is based on the intuitivg, Variables and methods are represented as simple association lists
o lookup (read: apphafterlookup) scheme of MOOSTRAP [20]. of name=value pairs. All objects ultimately derive from a prede-

finedroot object. The three operators used above are defined as this.withdraw = function(sum) {

follows: if (this.balance < sum) {
alert("insufficient funds");
_ Ise {
(1) extend(self) = (] . ,self) }els - R
(2) clone({(vars, meths, par)) = {copy(vars), meths, par) this.balance = this.balance - sum;
(3) reflect(self) = ([meta= reify(self)] ,[] ,root) L

I3
Extending yields an empty object whose parent is the original re- account = new BankAccount(20);
ceiver (1). Cloning yields an object in which the state of the original
receiver is copied, and which shares the method implementations
and parent of the original receiver (2). Finally, tteélect operator create.BankAccount(amount) :: {
yields a mirror, which is an empty object extendiogt , with an balance : amount;

extra variable calledheta that refers to aeificationof the original deposit(sum) :: {

receiver (3). Such a reification offers introspective and intercessive balance = balance + sum;
facilities to inspect and modify the object at the metalevel. We will };

give examples of such facilities in Sectjon]5.5. withdraw(sum) :: {

if (balance < sum,
error(“insufficient funds"),

In summary, the crux of method attributes is that they ensure that balance := balance - sum)

possibly harmful operations on an object can only be applied to the
provider of an attributed method. Attributes modify the receiver 1y
in which the attributed method body will be applied. They only
allow for controlled encapsulation breaches: an object can only be account : root.BankAccount(20);
extended, cloned or reflected upon if it implements a method with
the corresponding method attribute.
Because JavaScript aims for flexibility, it allows for all slots of its
5.2 ChitChat: Extremely Encapsulated Pro- objects to be read and modified by external objects. Moreover,
new fields can be added to existing JavaScript objects. In contrast,
totypes))) ChitChat allows its objects to enforce the privacy of variables and
The model explained so far has been applied to an experimental,methods. In ChitChat, private variables and methods are defined
distributed prototype-based language ChitChat, whose virtual ma- ysing: , whereas public variables and methods are defined using

chine is implemented in Java. ChitChat is a proof by construc- :: Pprivate variables and methods cannot be accessed by external
tion that extreme encapsulation can be reconciled with full-fledged gpjects.

object-orientation thanks to the model of method attributes explained

in the previous sectifh The object model of ChitChat, as presented up to now, adheres to
the extreme encapsulation principle, as the encapsulation of private

Because the syntax of ChitChat is very close to that of Javascript, yariables and methods can be enforced. However, we have yet to

we exploit their syntactic resemblance by showing how a simple expjain how the addition of object extension, cloning and reflection

BankAccount object is created in both of these languages. The can pe achieved without violating this principle. This is the topic

object consists of one variableglance) and two methodsde- of the following sections.

posit andwithdraw). The Javascript code is shown first, while

the ChitChat version is shown immediately below it. The JavaScript

code features a so-callabnstructor functionthat describes the 3.3 Create m_ethods]

structure of 8ankAccount object. A concretaccount object In the previous section we have illustrated how create methods are

is created by simply calling this function. In ChitChat, the equiv- Used to create new objects. Conceptually, new objects are but ex-
alent object structure can be created by definingeate method ~ tensions of theoot . Create methods can also be used to create

(i.e.a method annotated with tiegeate ~ attribute). In the exam- ~ extensions from objects other than th@dt . To uphold exten-

ple, this method is associated with the top-lexat object be- ~ Sion protection (Secf]4), an object should itself provide a create

cause it is declared in the top level. Aocount objectis created ~ Method, if it is to be extended. For instance, in order to extend

by invoking the create method on theot object as illustrated the BankAccount abstraction, a nested create method must be

on the last line. Note thateposit andwithdraw are normal, created to house the extension:

unattributed methods.

create.BankAccount(amount) :: {

function BankAccount(amount) { ... as before ... o
this.balance = amount; create.LimitedWithdrawAccount(limit) :: {
withdraw(sum) :: {
this.deposit = function(sum) { if(sum > limit, o
this.balance = this.balance + sum; error("withdrawal limit exceeded"),

IS super.withdraw(sum))

A slight difference between the semantics of method attributes }

outlined in Sectiof 5]1 and ChitChat is that, for convenience, at- }

tributed ChitChat methods always implicitly return the receiver ob- a : BankAccount(20).

ject in case it was changed: for instance, a create method always LimitedWithdrawAccount(5);

returns the newly-created extension. Without such a convenience,a.withdraw(10);

each attributed method would need to explicitly retseff . /I --> error: withdrawal limit exceeded

TheLimitedWithdrawAccount extension overrides theith- /* as before */

draw method to ensure that a client can only withdraw a limited ~ clone.new(newAmount) :: {
sum per transaction. Inside the body of this method, the extension balance := newAmount; }
can refer to its parent object usisgper . }

5.3.1 Unanticipated extension The assignment statement in the body of the clone method affects
In our model, all extension possibilities have to be anticipated, the balance variable of the clone instead of the variable of the
since they are expressed as nested create methods. This may seestiginal receiver. Clone methods can also be used to ensure that
to be a limitation, because in some cases, one would like to allow sensitive objectse-g.digital money— cannot be cloned with wrong

for unanticipated extension. Although we have argued that such ex-intents, for instance by requesting some certificates to be passed as
tensions are a potential breach of encapsulation, it is possible to ex-argument:

press them in ChitChat. In this case, an object explicitly sacrifices

its encapsulation for the sake of being extensible in any manner.

In essence, an object needs to implement a create method taking ®te.EMoney(amount) = .

quoted block of code as an argument and then evaluate this code: /, variables and methods */

the quoted code fulfills the role of the create method body, but can /C/Io%%%%%/c())p;?) F:)r?/a.t'(.a }QUe to

now be provided externally. copy(certificate) :: {
if(isValid(certificate),
doCopy(),
create.Person(aName) :: { error("invalid certificate")) } }

name : aName;
toString() :: { name };
create.extend(extensionCode()) :: {

extensionCode() } The clone methodloCopy is private (defined with: rather than

), and hence cannot be invoked by external objects. chipy

Ijoctor(aName) :: Person(aName).extend({ method is public and expects a certificate object as parameter: if
toString() :: { . the certificate is valid, thedoCopy is called, resulting in a clone
y "Dr. " + super.toString() } being returned to the caller, otherwise an error occurs.

Finally, it is easy to ensure in ChitChat that an object is never

In this example, @erson abstraction offers aextend create cloned: it sufficesiotto implement any clone method at all.

method that evaluates any piece of code in the environment of .
the extensicﬂ This makes it possible to add more specialized 5.5 Mirror methods

Person abstractions later on. In the exammetor Objects ChitChat offers facilities for reflective programming vrarror meth-
extendPerson objects, overriding theoString method. ods Recall that a mirror method is evaluated by first creating a mir-
ror of the receiver and evaluating the method bidthe context of

Such unanticipated extensions are still in accordance with the ex-the mirror. The return value of a mirror method is the mirror itself.
treme encapsulation principle, since the object itself explicitly grantsA mirror object is a special object that relates to its creator in the
extensibility. Extreme encapsulation does not prohibit encapsula- Sense that it has an implicitly initializedeta variable referring to

tion breaches, rather it prohibitmwantednes. a reification of its creator. An important rule is thatly mirrors
have access to the reification of their creatdfurthermore, this
54 Clone methods access is restricted by the creator of the mirror. Apart from this,

mirrors are normal objects: they can be sent messages and, if they

Clone methods allow an object to serve as a template for CI’eat_procure the possibilities to do so, they can be cloned, extended, etc.

ing new objects by copy, rather than serving as an extensible par-T, respect the principle of reflection protection, mirrors can only

ent by providing a preate method. .Whereas cloning itself may not be obtained via mirror methods explicitly defined by the object to
be a breach of object encapsulation, the use of a clone operator,

(e.g.clone(account)) implies that the correct re-initialization be mirrored.
of the clone should be performed by the object that clones the ac-
count g.g.the client). In order to perform such initialization, the
encapsulation of the clone would need to be broken (as explained in
Sectior[3.p). Clone methods provide a valuable alternative, since
the initialization code of the clone is specified in the body of the
clone method.

The interface of theneta variable determines the actualeta-
object protoco[15] that is available. This protocol depends on how
open the ChitChat interpreter is. Basic facilities include access to
the structure and behavior of an object. An open virtual machine
may expose more facilities: for instance, if the VM relies on refer-
ence counting for garbage collection, it may offer the possibilities
to notify a mirror each time the reference count of the base object
is increased or decreased. Here, we only mention a basic metalevel
API offering access to the behavior and structure of objects.

For instance, to allow secure cloning of bank accounts (where pri-
vate, instance-specific information should not be copied), the fol-
lowing clone method could be defined inside BenkAccount

create method:
5.5.1 Structural API

Themeta variable gives access to the different structural elements
create.BankAccount(amount) :: { of an object: variables, methods and the parent object. However, in
2When the formal parameter of a ChitChat method is affixed with ©rder to respect the stratification principle explained in Seffign 3.3,

parentheses, the argument passed is quoted. The details regardinggriables and methods are not returned as their direct metalevel im-
this quoting mechanism are explained|in [7]. plementation objects, but rather as mirrors to these objects. There

are different variants of mirrors, offering different degrees of acces- account.balanceListener(self.write)
sibility. For space reasons, we do not consider mirror access rights}

in this paper. More details on mirror methods can be foundih [24]. & : BankAccount(20);
a.withdraw(5);

. - A . . /I --> no storage update
A mirror giving access to the reification of a method is obtained ¢ - AccountSto?e(a)'p

by callingmeta.method(m) wheremis the name of the method a.deposit(2);

to be mirrored. Alternatively, one can useta.methods() to /I --> storage update
obtain an array of such mirror objects for all the methods of the
receiver.

An AccountStore object is used to store the balance of an ac-
count to disk. When created, this object invokes the mirror method
create.BankAccount(amount) :: { passing it as parameter theite method that should be invoked:
/* as before */ this method does the actual job of writing to the disk.
mirror.invoker() :: { meta.methods() }
As the example shows, mirror methods allow an object to decide
exactly which part of the interface of its reification should be ac-
cessible to other objects. In the example, an account object only
allows intervention upon state changes. The object also has control
over the design of the reflective interface exposed to clients (in the
examplebalanceListener). This makes it possible to cleanly
encapsulate implementation details: AszountStore does not
need to know that updates to the balance occur whiémdraw
ordeposit are called. Mirror methods hence completely satisfy
the constraintimposed by tieflection protectiomprinciple, as they
ensure that an object can precisely describe to what extent it wishes
to protect itself against metalevel operations.

When invoked, thenvoker mirror method returns a mirror of
the receiver bank account. The mirror has one methhods .
Since the mirrometa variable refers to a reification of the re-
ceiver,meta.methods() refers to the method table of the re-
ceiver. Hence, i is a bank accoung.invoker().methods()

returns the table of all the methodsaafOne can then use this table
to introspect and invoke methods arreflectively. An equivalent
APl is available for fields, vianeta.field(f) andmeta.fields()

This API satisfies the reflection protection principle: reflective ac-
cess to an object’s fields and methods requires the object’s explicit6 RELATED WORK

cooperation, as they can only be accessed via message passing. . X . .)
In this section we review related proposals to ameliorate object en-

. capsulation, in particular Agora [23], since it is the ancestor of
5.'5'2 Behavioral API . . ChitChat, and Obliq [4], as it introduces the notiorseff-inflicted
Mirror methods can also expose Fhe behavior qf an ObJeCt.' Mon- operations which achieves a level of object encapsulation similar
itoring the behavior of an object is made possible by registering t; extreme encapsulation. Finally, we discuss E [21], a modern dis-

listeners A mirror can register itself as a listener of meta-level . :
) ; . tributed prototype-based language that emphasizes language-level
events (method calls, field accesses) of its base object. P P guag P guag

security.
create.BankAccount(amount) :: { 6.1 Agora: Mixin Methods
* as before */) The foundations of the object model of ChitChat are the outcome
mirror.balanceListener(actionMethod) :: { of previous research on prototype-based object moge]$ [10, 6]. In

onReturn() :: {
balance : meta.field("balance");
actionMethod(balance.read())

particular, the predecessor of ChitChat, Agorz [23], first introduced
the use of so-callechixin methods to extend objects. Agora was

8 the first language to adhere to the extreme encapsulation princi-
meta.after(self, ple: since Agora objects implement their own mixin methods, they
["deposit”, "withdraw"], can determine for themselves whether and how much they can be
self.onReturn) extended. The mixin methods of Agora correspond to the create
} methods of ChitChat. The contribution of ChitChat is to extend this
} notion to other language operations like cloning and mirror-based

reflection. Furthermore, ChitChat specifically targets dynamic and
open networks by proposing a model for concurrency, distribution
and mobility. This model is not presented in this paper for space
reasons, but the interested reader can reférito [5].

The balanceListener mirror method above makes it possi-
ble to specify that an action has to be performed after changes
in the balance of the account object. More precisely, the mirror
registers itself as a listener to be notifiaffer invocations of the

deposit and withdraw methods, withmeta.after(..) . 6-2_ O_b”q:_ P_rotected ObjECtS)
The onReturn method of the mirror object is called for notifi- ~ Oblig [4] is a distributed object-based language with support for
cation: this method reflectively accesses the value db#tience mobility. Obliq provides four operations applicable to objects: field

field of the original account, and applies tetionMethod given selection (method invocation), field update (method overriding),

as parameter, passing it the current value of the balance. A usagecloning and aliasing. The operations are incorporated in the lan-

example of this mirror method is given below: guage in the form of operators which can be externally applied to
an object. The first operator corresponds to the message sending
operation of ChitChat. The field update operator allows for objects

create.AccountStore(account) :: { to be externally modified, as follows:
write(amount) :: {
/* write account balance on disk */
L 0.x := value

The cloning operator is used to create a new object by concatenat- def abstractCollection {
ing the clones of one or more objects. By cloning more than one to map(f) {
object, the operator encompasses extension of existing objects with # using self parameter

. . ' . . var it = self.iterator();
new behavior, as is shown in the following example: while(it. hasNext(){

f(it.next())
aColoredShape := clone(aColor, aShape) }

return abstractCollection }
Finally, aliasing is an operator which allows operations on an ob-
ject's field to be redirected to another object's field. There is no def makelist() {
such equivalent operation in ChitChat. Note that the field update, ~# child is explicitly passed as self
cloning and aliasing operators are potentially harmful as they can def list extends makeCollection(list) {

: ; : . : to iterator
be applied to objects without their cooperation. # retu(r)r{l a list iterator

In order to deal with the potential encapsulation breaches, Cardelli }
distinguishes two ways in which an object can be subject to one of ~ return list }
the four operators: they can be performed either as external opera-

tions on an object, or as internal operations throseli . When

a method operates on its own self, the operation is said gelfe
inflicted[4]. In order to exploit this important difference in operator
usage, objects can be declamwtected . A protected object
does not allow external update, cloning, and aliasing operations,

As can be seen in the code, thelf variable usually implicitly

managed by the language has to be explicitly passed around by the
programmer. It has to be noted that the inheritance scheme sim-
ulated by this pattern is similar to class-based inheritance because

but permits such operations when they are self-inflicted. In other there is no parent sharing: when the list is created, its parent is a

words, they are protected from changes made by external objects,newly-created and private collection object. But there is still a fun-
but they can still change themselves damental difference between E and real class-based inheritance: in

E, callingfoo() or self.foo() do not have the same seman-
Oblig’s protected objects and ChitChat's method attributes share tics (simply _calllngfoo() W'” not en_tall late binding ofself ,
the same goal: protecting an object from uncontrolled external hencedoo will be looked up in the environment of the parent only).
modifications, while still allowing the object to be modified if it
offers the possibilities to do so. ChitChat's notion akate
andclone methods can be expressed in Obliq by using the stan-
dard operators via self-sends. There is no equivalent in Obliq for
ChitChat'smirror methods, however.

The major contribution of ChitChat is to promote extreme encap-
sulation in a prototype-based language (featuring prototype-based
delegation that enables parent sharing). Furthermore, E does not
support cloning: new objects are always obtained by invoking gen-
erator functions, which are similar to the create methods of ChitChat.
. L With respect to reflection, E has a limited number of introspec-
6.3 E: Secure Distributed Prototypes) tive facilities. The native functiong.send andE.call can be

To the best of our knowledge, the only other well-known object- seq tg reflectively invoke public methods of E objects. Moreover,
oriented language for distribution that aims at strong encapsulation ¢ match can be used to trap messages that are not understood by
is the E programming languade [21]. E has many similarities with object, and as such supports the same metalevel programming
ChitChat, particularly with respect to its distribution model (not techniques enabled IgoesNotUnderstand in Smalltalk [11].
presented in this paper, but YVh'Ch can b? foundin .[5])- However, E By providing only this limited set of introspective facilities, E ad-
achieves strong encapsulation by adopting an object model that isperes to oureflection protectiorprinciple. This is achieved only
reduced to the bare minimum: in this sense itis not considered to bepecayse reflection is basically ruled out. Conversely, in ChitChat,
a prototype-based language, as it does not feature true delegation. g opject can unveil much more than only its public interface at the

. . . metalevel, but only if it wants to.
The object model employed by E is strongly rooted in the lambda

calculus. In essence, E objects are closures around lexical environ

ments. Additionally, E provides the necessary language constructs7' CONCLUSION
to support the use of public methods, message passing and privat
instance variables.

hen considering mobile computing applications in an Ambient
ntelligence context, the devices forming ad hoc wireless networks
are discovered dynamically as the user moves about. Dynamically
encountered devices cannot always be trusted, which is why un-

many object-oriented applications, it is less expressive than objecttrUSted objects can mingle with trusted ones in the mobile object

models employing classes or prototypes. This becomes apparen ystem. If mobile objects are to remain useful in this context,

when more advanced object-oriented features, such as delegatior‘f)ne must be at_)le _to shield objects from e?<ternal harm. We have
or inheritance, are required. E does not support prototype_basedexplored the principled enforcement of object encapsulation as a

delegation (with late binding ogelf), it only supports implicit ~ Mmeans to do so.
forwarding of messages to parents. Jimulatelate binding of
self , an E programmer must use the following pattern, whereby
code is explicitly parameterized withsalf variable:

Although the object model of E is sufficiently expressive to support

We have introduced thextreme encapsulatioprinciple, which
states that an object should remain in total control over all oper-
ations applied to it. This is achieved by providing all language
operations by means of message sending only. We have devised a
extensions should provide self prototype-based language, ChitChat, which provides a full-fledged
def makeCollection(self) { object model while respecting the extreme encapsulation princi-

ple. The key insight is a language feature calieethod attributes Reflective Kernel for Programming Mobile Network

which makes it possible for methods to have different interpretation Applications. Tech. rep., Vrije Universiteit Brussel, 2005.
semantics: create methods enable object extension with true dele- , i

gation, clone methods enable controlled object cloning, and mirror [10] D’HONDT, T., AND DE MEUTER, W. Offirst-class methods

methods enable selective reflective access to the state and behavior ~ 21d dynamic scop&STI - L'objet no. 9/ 2003. LMO 2003
(2003), 137-149.

of objects.

])))] [11] GOLDBERG, A., AND RoBsON, D. Smalltalk-80: The
In parallel with the design and implementation of ChitChat, we Language Addison-Wesley Longman Publishing Co., Inc.,
have constructed a distribution model specifically tailored towards 1989.

ubiquitous computing. This distribution model, called #mabi-

ent actor modeJ8] is an extension of the well-known actor model [12] GOSLING, J., Dby, B., AND STEELE, G. The Java

of computation[[2]. An interesting perspective for future research Language SpecificatioisOTOP Information Inc., 1996.
is the incorporation of method attributes in this distribution model,
thereby making it adhere to the extreme encapsulation principle. To
this end, we need to identify harmful operators that arise in concur-
rent and distributed programming languages and to convert them[14] JuL, E., LEvY, H., HUTCHINSON, N., AND BLACK, A.

[13] IST AbviSORY GRouPAmbient intelligence: from vision
to reality, September 2003.

into method attributes, exploring how this change in design bene- Fine-grained mobility in the Emerald systeACM
fits the development of applications for ubiquitous computing. Transactions on Computer Systemd §February 1988),
109-133.
Acknowledgements . I [15] KiczALES, G., DESRIVIERES, J.,AND BoBROW, D. G.
We thank the anonymous refer(_aes for _thelr valuable clarifications, The Art of the Metaobject ProtocdVIIT Press, Cambridge,
comments and critiques on earlier versions of the paper. MA, USA. 1991.
8. REFERENCES [16] LIEBERMAN, H. Using prototypical objects to implement
[1] ABADI, M., AND CARDELLI, L. A Theory of Objects shared behavior in object-oriented system<Cémference
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996. proceedings on Object-oriented Programming Systems,
Languages and Applicatior{4986), ACM Press,
[2] AGHA, G. Actors: a Model of Concurrent Computation in pp. 214-223.

Distributed SystemMIT Press, 1986.
[17] LIEBERMAN, H., STEIN, L., AND UNGAR, D. Treaty of

[3] BRACHA, G.,AND UNGAR, D. Mirrors: Design principles orlando. InAddendum to the proceedings on Object-oriented
for meta-level facilities of object-oriented programming Programming Systems, Languages and Applications
languages. IiProceedings of the 19th annual Conference on (Addendum]1987), ACM Press, pp. 43—-44.

Object-Oriented Programming, Systems, Languages and

Applications(2004), pp. 331-343 [18] MAES, P. Concepts and experiments in computational

reflection. INOOPSLA '87: Conference proceedings on

[4] CARDELLI, L. A Language with Distributed Scope. In Object-oriented Programming Systems, Languages and
Proceedings of the 22nd ACM SIGPLAN-SIGACT Applications(New York, NY, USA, 1987), ACM Press,
Symposium on Principles of Programming Languages pp. 147-155.

(1995), ACM Press, pp. 286-297. [19] MILLER, M., YEE, K., AND SHAPIRO, J. Capability myths

[5] DE MEUTER, W. Move Considered Harmful: A Language demolished. Tech. rep., Combex, Inc., 2003.
Design Approach to Mobility and Distribution for Open [20]

. . . . MULET, P.,AND COINTE, P. Definition of a reflective
Networks PhD thesis, Vrije Universiteit Brussel, 2004.

kernel for a prototype-based languagePhoceedings of the
1st JSSST International Symposium on Object Technologies

[6] DE MEUTER, W., D’HONDT, T., AND DEDECKER, J. -Vt
for Advanced Software, Kanazawa, Jap&nNishio and

Intersecting classes and prototypes5th International

Andrei Ershov Memorial Conference, PSI 2003, A. Yonezawa, Eds. Springer-Verlag, Berlin, 1993,
Akademgorodok, Novosibirsk, Rus&803), vol. 2890 of pp. 128-144.
Lecture Notes in Computer Scien&pringer. [21] OPENE PrOJECT E: Open Source Distributed Capabilities,

[7] DE MEUTER, W., D'HONDT, T., AND DEDECKER, J. Pico: 2005 nttp:/fwww.erights.org

Scheme for mere mortals. ECOOP Workshop&004), [22] SNYDER, A. Encapsulation and Inheritance in
J. Malgnfant and B. M.. QSIVO'Id, EdS., vol. 3344lafcture Object-oriented Programming Languagescmqference
Notes in Computer Scienc@pringer. Proceedings on Object-oriented Programming Systems,

[8] DEDECKER, J.,AND VAN BELLE, W. Actors for Mobile Languages and Applicatior{2986), ACM Press, pp. 38-45.

Ad-hoc Networks. Irinternational Conference on Embedded [23] STEYAERT, P.,AND DE MEUTER, W. A marriage of class-

and Ubiquitous Computing EUC20@August 2004), and object-based inheritance without unwanted children. In
L. Yang, M. Guo, G. Gao, and N. Jha, Eds., vol. 3207 of Proceedings of ECOOP '9gAugust 1995), vol. 952 of
Lecture Notes in Computer Scien&pringer-Verlag, Lecture Notes in Computer Scien&pringer, pp. 127-144.
pp. 482-494.

[24] TANTER, E. Mirror methods — reconciling reflection and
[9] DEDECKER, J., VAN CUTSEM, T., MOSTINCKX, S., DE extreme encapsulation. BECOOP Workshop on Object
MEUTER, W., AND D’HONDT, T. AmbientTalk: A Small Technology for Ambient Intelligen¢éuly 2005).

http://www.erights.org

[25] TOLKSDORF R.,AND KNUBBEN, K. Programming [27] UNGAR, D., AND SMITH, R. B. Self: The power of

Distributed Systems with the Delegation-based simplicity. In Conference proceedings on Object-oriented

Object-oriented Language dSelf. Rroceedings of the 2002 Programming Systems, Languages and Applicat{@887),

ACM Symposium on Applied Computifa®02), ACM Press, ACM Press, pp. 227-242.

pp. 927-931. .

[28] VITEK, J., ERRANO, M., AND THANOS, D. Security and

[26] UNGAR, D., CHAMBERS, C., CHANG, B.-W., AND Communication in Mobile Object Systems.Mobile Object

HOLZLE, U. Organizing programs without classessp Systems: Towards the Programmable Internet

Symb. Comput.,8 (1991), 223-242. Springer-Verlag: Heidelberg, Germany, 1997, pp. 177-200.

[29] WEISER, M. The computer for the twenty-first century.
Scientific Americatiseptember 1991), 94-100.

	Introduction
	Object-Oriented Languages for Open Networks
	Object-based Languages for Open Networks
	Fundamental Characteristic Operations of OOP

	Language Operations Compromising Encapsulation
	Conflicting Operation: Extension
	Conflicting Operation: Cloning
	Conflicting Operation: Reflection
	Conclusion

	The Extreme Encapsulation Principle
	Method Attributes for Extremely-Encapsulated Prototypes
	Method Attributes
	Evaluation rules
	Semantics of operators

	ChitChat: Extremely Encapsulated Prototypes
	Create methods
	Unanticipated extension

	Clone methods
	Mirror methods
	Structural API
	Behavioral API

	Related Work
	Agora: Mixin Methods
	Obliq: Protected Objects
	E: Secure Distributed Prototypes

	Conclusion
	References

