
Ambient-Oriented Programming in AmbientTalk

Stijn Mostinckx∗ Tom Van Cutsem†

Jessie Dedecker† Wolfgang De Meuter Theo D’Hondt
Programming Technology Laboratory

Department of Computer Science
Vrije Universiteit Brussel, Belgium

smostinc | tvcutsem | jededeck | wdmeuter | tjdhondt@vub.ac.be

ABSTRACT
A new field in distributed computing, called Ambient In-
telligence, has emerged as a consequence of the increasing
availability of wireless devices and the mobile networks they
induce. Developing software for such mobile networks is
extremely hard in conventional programming languages be-
cause of new distribution issues related to volatile network
connections, dynamic network topologies and partial fail-
ures.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—distributed languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Frameworks

General Terms
Design, Languages

Keywords
ambient intelligence, mobile and ubiquitous computing, ac-
tors, language kernel

1. INTRODUCTION
Software development for mobile devices (such as smart

phones and PDA’s) is given a new impetus with the advent
of mobile networks. Mobile networks surround a mobile de-
vice equipped with wireless technology (such as Bluetooth
or WiFi) and are demarcated dynamically as users move
about. Mobile networks turn the applications running on
mobile devices from mere isolated programs into smart ap-
plications that can cooperate with their environment. As

∗Author funded by a doctoral scholarship of the “Institute
for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT Vlaanderen)”
†Research Assistant of the Fund for Scientific Research Flan-
ders, Belgium (F.W.O.)

Copyright is held by the author/owner.
OOPSLA’05,October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

such, mobile networks take us one step closer to the world
of ubiquitous computing envisioned by Weiser[8]; a world
where (wireless and pervasive) technology is gracefully in-
tegrated into the everyday lives of its users. Recently, this
vision has been termed Ambient Intelligence (AmI for short)
by the European Council’s IST Advisory Group.

Mobile networks bring about a number of new distribu-
tion issues not found in classical distributed applications [6].
We establish a new paradigm for distributed programming
languages that deal with these issues. After describing the
properties of such distributed programming languages in
general, we illustrate our own programming language called
AmbientTalk and hint at how it tackles the new issues.

The Problem: language abstractions for AmI
Mobile networks that surround a device have several prop-
erties that distinguish them from other types of networks.
First, each device in the network is an autonomous entity
with its own processing power. Hence, the natural concur-
rency of the distributed applications running on top of these
devices must be controlled. Second, connections are volatile
due to the limited communication range of the wireless tech-
nology. Third, networks of mobile devices can form in an ad
hoc fashion, which means that the network structure is dy-
namic (it may change at run-time) and open (devices may
join or leave the network unheraldedly). Communication
partners often have to be found in an ad hoc fashion, i.e.
without any predefined infrastructure.

Dealing with these low-level network concerns at the app-
lication-level clutters the code significantly and puts an ad-
ditional burden on software developers. Although low-level
system software and networking libraries (such as JXTA [3]
and M2MI [5]) tend to provide uniform interfaces to wire-
less network technologies, they do not alleviate the task of
developing application software for mobile networks. One
of the main reasons for this is that contemporary program-
ming languages lack abstractions that avoid the cluttering of
application and network-related code. Our goal is to factor
out useful abstractions or patterns for programming soft-
ware deployed in these types of networks and to integrate
them into a programming language as language constructs.

The Paradigm: ambient-oriented programming
We feel a new kind of programming paradigm is required
to deal with the new issues induced by distribution con-
cerns in mobile computing. That is why we describe a new
Ambient-Oriented Programming paradigm [2] (AmOP for

short) that consists of programming languages that explic-
itly incorporate potential network failures in the very heart
of their computational model.

For a language to be an ambient-oriented programming
language, it should:

offer non-blocking communication primitives. Concre-
tely, this means that messages between objects should
be sent asynchronously, and that no blocking receive

operation is available. This constraint ensures that
objects will not block waiting for their communication
partner for large periods of time, which may be the
case due to the volatile, high latency wireless network
connections.

be able to reify its communication state. Unreliable
communication is a chief concern in ad hoc mobile net-
works. It is therefore important for a language to en-
able objects to track the state of outgoing or incoming
messages: they should be able to act upon the delivery
or arrival of messages, to be informed about the failure
of a communication partner, to roll back their state in
the case of partial failures, etc. When objects are able
to act upon these events, the language has sufficiently
reified the object’s communication traces.

be able to reify its environment. An AmOP language
needs to offer primitives to both publish services or
objects to the external environment and to discover
them. This service discovery mechanism is preferably
peer-to-peer: it should rely on as little infrastructure
as possible. If objects can “sense” other objects on
remote devices in their direct environment, an appli-
cation can effectively reify the hardware environment
that surrounds it.

We have embedded these features in our own distributed
programming language called AmbientTalk.

The Language: AmbientTalk
AmbientTalk [1] is a first scion of the AmOP program-
ming language family described above. The power of Ambi-
entTalk lies in its simplicity and expressiveness. It offers the
programmer features to deal with the conceptual properties
of wireless networks without having to deal with their tech-
nological characteristics. The basis of AmbientTalk consist
of:

• A concurrent object-oriented model combining the power
of prototype-based programming as e.g. exemplified
by Self [7] and active objects based on the actor model
of computation [4].

• A system of first-class message queues (mailboxes) that
store an active object’s incoming and outgoing mes-
sages and which allow the acquisition of services from
and provision of services to the environment.

• Reflective properties such as a MOP and a language
extension facility which allow one to experiment with
new, reflectively implemented language constructs.

An AmbientTalk applications consists of plain, passive,
objects and active objects. The active objects are glob-
ally addressible and communicate with one another asyn-
chronously. They may provide services to other, remote,
active objects and they may require services from the en-
vironment. AmbientTalk is an ambient-oriented language:
it offers asynchronous message passing and non-blocking re-
ceive operations and its first-class mailboxes offer access to
incoming and outgoing messages and to other objects (ser-
vices) in the environment. Although the core set of lan-
guage primitives is very limited, a lot of more high-level
language constructs have been developed reflectively, includ-
ing future-type message passing, conditional synchroniza-
tion primitives and weak replication protocols.

More Information
AmbientTalk is presented in a demonstration at OOPSLA05.
A technical report describing the language in more detail is
available [1]. The AmOP paradigm is presented in more
detail in the OOPSLA05 Onward! presentation track [2].

2. REFERENCES
[1] Dedecker, J., Van Cutsem, T., Mostinckx, S., De

Meuter, W., and D’Hondt, T. Ambienttalk: A
small reflective kernel for programming mobile network
applications. Tech. Rep. VUB-PROG-TR-05-06,
Programming Technology Laboratory, Department of
Informatica, Vrije Universiteit Brussel, 2005.

[2] Dedecker, J., Van Cutsem, T., Mostinckx, S.,
D’Hondt, T., and De Meuter, W. Ambient-oriented
programming. In OOPSLA ’05: Companion of the 20th
annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applications.
San Diego, U.S.A. ACM Press. (2005), ACM Press.

[3] Gong, L. JXTA for J2ME extending the reach of
wireless with JXTA technology. Tech. rep., SUN
Microsystems,
http://www.jxta.org/project/www/docs/JXTA4J2ME.pdf,
2002.

[4] Hewitt, C. E. Viewing control structures as pattern
of passing messages. Artificial Intelligence: An
International Journal 8, 3 (June 1977), 323–364.

[5] Kaminsky, A., and Bischof, H.-P. Many-to-many
invocation: A new object oriented paradigm for ad hoc
collaborative systems. 17th Annual ACM Conference
on Object Oriented Programming Systems, Languages,
and Applications (OOPSLA 2002) (2002).

[6] Mascolo, C., Capra, L., and Emmerich, W. Mobile
computing middleware. In Advanced lectures on
networking, vol. 2497. Springer-Verlag New York, Inc.,
2002, pp. 20–58.

[7] Ungar, D., and Smith, R. B. Self: The power of
simplicity. In Conference proceedings on Object-oriented
programming systems, languages and applications
(1987), ACM Press, pp. 227–242.

[8] Weiser, M. The computer for the 21st century.
Scientific American 265, 3 (1991), 66–75.

