
A Survey of Aspect Mining Tools and Techniques

Andy Kellens1

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2
B-1050 Brussels, Belgium

akellens@vub.ac.be

Kim Mens
Département d’Ingénierie Informatique

Université catholique de Louvain
Place Sainte Barbe, 2

B-1348 Louvain-la-Neuve, Belgium
kim.mens@info.ucl.ac.be

abspect
Project IWT 040116 “AspectLab”
Workpackage 6 - Deliverable 6.2.a

June 30, 2005

1Ph.D. scholarship funded by the “Institute for the Promotion of Innovation
through Science and Technology in Flanders” (IWT Vlaanderen).



1 Introduction

Aspect-oriented software development (AOSD) tries to solve the problem of
separating the core functionality of a software system from concerns that
have a more system-wide behavior and that tend to cut across the chosen
decomposition of the software system. This problem is sometimes referred
to as the “tyranny of the dominant decompositon” [37]. To overcome this
prevalent decomposition [18], the AOSD paradigm provides new language
constructs which allow cross-cutting concerns to be written down in a new
kind of module named aspect.

Almost ten years after its initial conception, this technology has now
left the research lab and is starting to be adopted by industry, which poses
new interesting research problems. In particular, in order to apply aspect-
oriented techniques to legacy systems at use in industry, or to migrate those
systems to an aspect-oriented solution, there is a need for tools and tech-
niques that help in identifying the cross-cutting concerns in such systems
and refactoring them into aspects. The study and development of such ap-
proaches is the objective of the emerging research domains of ‘aspect mining’
and ‘aspect refactoring’ :

Aspect Mining is the activity of discovering, in the source code of a given
software system, those cross-cutting concerns that potentially could be
turned into aspects. We refer to such concerns as ‘aspect candidates’.

Aspect Refactoring is the activity of actually transforming the identified
aspect candidates into real aspects in the source code.

In this survey we focus only on the activity of aspect mining and report
on a number of different code-based techniques, tools and methodologies that
have been designed to aid a software engineer in identifying aspect candi-
dates in a legacy system. Apart from giving an introduction to the research
problem of aspect mining and its envisaged solutions, the contributions of
this survey are:

1. the definition and motivation of the problem of aspect mining ;

2. the identification of the key issues to be solved;

3. the presentation of an exhaustive list of existing aspect mining ap-
proaches;

4. a comparative taxonomy of these approaches;

1



5. the identification of important open problems remaining;

6. an exploration of links with other research domains;

7. the proposition of possible avenues for future research to improve the
state-of-the-art.

Points 1 and 2 are addressed in Section 2. Section 3 briefly summa-
rizes some known techniques and approaches, making an explicit distinc-
tion between manual approaches supported by advanced browsing tools and
more automated approaches that are often inspired by data mining, software
comprehension or program analysis techniques. Because the remainder of
the paper focusses on automated approaches only, Section 4 lists some re-
searchers working on a variety of automated aspect mining techniques and
Section 5 details these approaches. Section 7 then provides a comparative
taxonomy of these different techniques, based on a set of objective criteria
listed in Section 6. From this taxonomy, a list of open research problems are
distilled as well as a list of possible avenues for future research. Related work
from other research domains like data mining, software comprehension and
program analysis is discussed in Section 8. Section 9 concludes the paper.

2 Aspect mining

The industrial adoption of the object-oriented paradigm in the nineties lead
to a need for migrating legacy software systems to an object-oriented so-
lution and a subsequent boost in research on software reverse engineering,
reengineering, restructuring and refactoring. The same is currently happen-
ing for the aspect-oriented paradigm. To migrate legacy systems to AOSD
there is a need for advanced browsers that can help software engineers in
identifying the cross-cutting concerns in legacy systems or for more auto-
mated tools to discover such concerns, as well as a need to refactor the
discovered cross-cutting concerns into aspects.

The reasons for wanting to migrate a legacy system to an aspect-oriented
solution are multiple. In a system implemented using classic techniques,
there exist certain concerns which cannot be localized using the available
modularization mechanisms, but instead cut across the source code of the
system. As a consequence of the existence of these cross-cutting concerns,
the implementation of certain concerns is characterized by duplicated code,
scattering of the concern throughout the entire system and tangling of the
concern specific code with that of other concerns, making it harder to under-
stand, maintain and evolve the system. Using aspect-oriented technology,

2



these cross-cutting concerns can be modularized using language features like
pointcuts and aspects [26]. In the resulting system, the different concerns
are cleanly separated making the system easier to maintain and extend.

LEGACY system LEGACY systemAspect Mining BASE system

Aspect Aspect Aspect

Aspect 
Refactoring

Figure 1: Migrating a legacy system to an aspect-oriented system

As mentioned earlier and summarized in Figure 1, the process of migrat-
ing a legacy system into a system using aspects consists out of two steps: the
identification of aspect candidates and the refactoring of these candidates
into aspects. In this survey we investigate techniques and tools that focus
on identifying possible aspects. This is not a trivial task, due to the size and
complexity of current-day systems and the lack of explicit documentation
on the crosscutting concerns present in those systems. Therefore, a need
exists for approaches which (semi-) automatically aid a developer in mining
a legacy system for aspects.

As stated in the introduction, we define Aspect Mining as:

The activity of discovering, in the source code
of a given software system, those cross-cutting
concerns that potentially could be turned into
aspects.

Although most publications seem to agree on this definition and terminology,
some papers use the term aspect identification synonymously with aspect
mining (for instance [17] and [27]). We advocate usage of the latter term
in order to avoid confusion with research that aims at the identification of
aspects during requirements analysis [2, 32, 38] or architecture design [3],
who use the term aspect identification.

Although aspect mining is still in its infancy, we think a survey like this
one is relevant and necessary because

• many different researchers have started to work on aspect mining,

• using many different techniques.

• Though many techniques are promising, most are still premature.

3



• Some researchers [11] have identified the need for a combination of
different techniques.

3 Known techniques and approaches

Before going in-depth on the different aspect mining techniques and provid-
ing a taxonomy, we start out by taking a look of the two major kinds of
approaches we can recognize:

Dedicated browsers A first class of approaches consist out of advanced
special-purpose code browsers which aid a developer in manually navigating
the source code of a system to explore cross-cutting concerns. Although
the primary goal of these approaches is not to explicitly mine for aspects,
but rather to document and localize the cross-cutting concerns in order to
maintain and evolve a system, the dedicated browsers can be used to identify
possible aspects in a system.

A user of such a browsing approach starts out with a ‘seed’ of a concern,
a starting point in the code, and uses the browser to further explore this
concern. To do this the browser proposes other hotspots in the code which
might be related to the concern or provides the user with a query language
to manually traverse the concern. Examples of such approaches are Concern
Graphs [33], Intensional Views [29], Aspect Browser [15], (Extended) Aspect
Mining Tool [18][42],Prism [43], JQuery [20], . . .

(Semi-)automatic identification of aspect candidates Complemen-
tary to the dedicated browsers, there exist a number of techniques which
have as goal to automate the process of identifying aspects and which pro-
pose their user one or more aspect candidates. To this end, these techniques
reason about the source code of the system or data that is acquired by
executing or manipulating the code. All techniques seem to have at least
in common that they search for symptoms of cross-cutting concerns using
either techniques from data mining and data analysis like formal concept
analysis and cluster analysis, or more classic code analysis techniques like
program slicing, software metrics and heuristics, clone detection and pattern
matching techniques, dynamic analysis, and so on.

In this particular survey we focus only on the second kind of techniques
which semi-automatically assist a developer in the activity of identifying
cross-cutting concerns in an existing system.

4



4 Researchers

This subsection gives a brief overview of different researchers working on
automated aspect mining techniques, together with a brief description of
their current research interests. 1

BREU Silvia and KRINKE Jens use dynamic and static analysis to
detect recurring calling patterns and extract cross-cutting concerns from
them.

BRUNTINK Magiel and TOURWE Tom are involved in the Ideals
project, where they study how cross-cutting concerns can be reverse engi-
neered from large-scale industrial applications and how AOSD techniques
can improve the quality of such applications.

CECCATO Mariano and TONELLA Paolo combine the techniques
of dynamic analysis and formal concept analysis to mine non aspect-oriented
source code for potential aspects.

GYBELS Kris and KELLENS Andy explored heuristic-based aspect
mining techniques as well as the technique of inductive logic programming
to automatically uncover the pointcuts in a non aspect-oriented software.

MARIN Marius, MOONEN Leon and VAN DEURSEN Arie stud-
ied the technique of fan-in analysis to semi-automatically identify aspects in
Java source code that is not written in an aspect-oriented way.

MENS Kim and TOURWE Tom explore the technique of formal con-
cept analysis to mine Smalltalk or Java source code for potential aspects and
cross-cutting concerns, based on similarities in method and class identifiers.

SHEPHERD David has developed a framework (Timna) for combining
aspect mining analyses. He has also used code clone detection to identify
potential aspects.

1For an up-to date list of aspect mining and aspect refactoring researchers we re-
fer to the Aspect Identification and Refactoring portal : http://www.info.ucl.ac.be/

ingidocs/people/km/AIRPort/AIRPort.htm.

5

http://www.info.ucl.ac.be/ingidocs/people/km/AIRPort/AIRPort.htm
http://www.info.ucl.ac.be/ingidocs/people/km/AIRPort/AIRPort.htm


ZAIDMAN Andy uses datamining algorithms to uncover important classes
in a system’s architecture, that are prime candidates for the introduction of
aspects.

5 Approaches

Now that we have explained the research problem and identified the key
actors working on aspect mining, we take a closer look at different automated
aspect mining approaches that have been proposed the last few years.

5.1 Analyzing recurring patterns of execution traces

Breu and Krinke propose an aspect mining technique named DynAMiT [7],
which analyses program traces reflecting the run-time behaviour of a system
in search of recurring execution patterns. To do so, they introduce the notion
of execution relations between method invocations. Consider the following
example of an event trace:

B() {
C() {

G()
H()

}
}

A() {}

Breu and Krinke distinguish between 4 different execution relations: outside-
before (e.g. B is called before A), outside-after (e.g. A is called after B),
inside-first(e.g. G is the first call in C) and inside-last(e.g. H is the last
call in C). Using these execution relations, their mining algorithm identifies
aspect candidates based on recurring patterns of method invocations. If an
execution relation occurs more than once, and recurs uniformly (for instance
every invocation of method B is followed by an invocation of method A),
it is considered to be an aspect candidate. Of course, to ensure that the
aspect candidates are sufficiently crosscutting, there is an extra requirement
that the recurring relations should appear in different ‘calling contexts’.
Although this approach is inherently dynamic, the authors have repeated
the experiment using control-flow-graphs [25], a static technique, to calculate
the execution relations. Breu also reports on a hybrid approach [6] where
the dynamic information is complemented with static type information in
order to remove ambiguities and improve on the results of the technique.

6



5.2 Formal concept analysis of execution traces

Tonella and Ceccato [39] developed Dynamo, a mining technique which ap-
plies formal concept analysis (FCA) [13] to execution traces in order to
identify possible aspects. Formal concept analysis is a branch of lattice the-
ory which, given a set of objects and attributes describing those objects,
creates concepts which are maximal groups of objects that have common
attributes. When analyzing a system using Dynamo, an instrumented ver-
sion of the system is used to execute a number of use cases. The output
of this execution is a number of execution traces. These traces are then
be analyzed using the FCA algorithm: the use cases are the objects of the
FCA algorithm, while the methods which get invoked during the execution
of a use case are the attributes. Resulting concepts which are specific to
one particular use case, i.e. whose extent contain the trace for the given use
case only, are aspect candidates if the following two constraints hold:

• Scattering: The attributes (methods) of the concept belong to more
than one class.

• Tangling: Different methods from a same class are contained by more
than one use-case specific concept

5.3 Formal concept analysis of class and method names

Tourwé and Mens [40] propose an alternative aspect mining technique which
relies on formal concept analysis. Unlike the Dynamo approach which we
discussed previously, Tourwé and Mens’ DelfSTof tool analyses the source-
code of a system (experiments have been conducted on Smalltalk [40] and
on Java code [12]). Their approach performs an identifier analysis using the
FCA algorithm. The assumption behind this approach is that interesting
concerns in the source-code are reflected by the use of naming conventions
in the classes and methods of the system. As input to the FCA algorithm,
the classes and methods in the system are used as objects. As attributes,
the FCA algorithm takes as input substrings generated from the program
entities used as objects. For instance, a class named QuotedCodeConstant
is split up in the strings ‘Quoted’, ‘Code’ and ‘Constant’. Substrings with
little meaning, like ‘a’, ‘with’, . . . are discarded from the results. The result-
ing concepts consist out of maximal groups of program entities which share
a maximal number of substrings. After filtering out unimportant concepts,
a large number of concepts remain which need to be inspected manually.
Apart from being able to detect a number of programming idioms, design

7



patterns and certain refactoring opportunities [30], by restricting the con-
cepts to those that are crosscutting (i.e. the involved methods and classes
belong to at least two different class hierarchies) the same approach can be
used for aspect mining as well [40].

5.4 Natural language processing on source code

Similar to the previous technique, Shepherd et al. [36] propose a technique
that is based on the assumption that cross-cutting concerns are often imple-
mented by rigorously using naming and coding conventions. Their approach
uses natural language processing (NLP) information as an indicator for pos-
sible aspect candidates. They report on an experiment in which they use
a NLP technique called lexical chaining [31] in order to find groups of re-
lated source-code entities which represent a cross-cutting concern. Lexical
chaining takes as input a collection of words and outputs chains of words
which are strongly related. In order to create the chain, the algorithm uses
a semantical distance measure between two words. Shepherd et al. used
WordNet [10], a catalogue of semantical paths between words to use this
measure in combination with information about the part of speech of each
word. In order to mine for cross-cutting concerns, they apply the chaining
algorithm to the comments, method names, field names and class names of
the system they are analyzing. In order to identify the aspect candidates,
the user of their approach needs to manually inspect the resulting chains.

5.5 Detecting unique methods

Gybels and Kellens [16, 17] propose the use of heuristics to identify possible
cross-cutting concerns. They observe that, in pre-AOP days, cross-cutting
concerns were often implemented in an idiomatic way. Certain of these
idioms can be regarded as “symptoms” of aspect candidates. An example
of such an idiom is the implementation of a cross-cutting concern by means
of a single entity in the system which is called from numerous places in the
code (for instance, a ‘logging’ entity which is called from throughout the
code). To detect instances of this pattern, Gybels and Kellens propose the
“Unique Methods” heuristic which is defined as: “a method without a return
value which implements a message implemented by no other method”. After
calculating all the Unique Methods in a system, sorting them according to
the number of times a method is called, and filtering out irrelevant methods
(like for instance accessor and mutator methods), the user has to manually
inspect the resulting methods in order to find suitable aspect candidates.

8



Regardless of the simplicity of this approach, the authors demonstrated
the applicability of their technique by detecting typical aspects like tracing,
update notification and memory management in the context of a Smalltalk
image.

5.6 Hierarchical clustering of related methods

Shepherd and Pollock [35] report on an experiment in which they used ag-
glomerative hierarchical clustering [21] to group related methods. This tech-
nique starts by putting each method in a separate cluster and then recur-
sively merges clusters for which the distance between the methods is smaller
than a certain threshold. They implemented this technique as part of an
aspect-oriented IDE named AMAV (Aspect Miner and Viewer), which al-
lows for easy adaptation of the distance measure used by the algorithm. For
an initial experiment they used a simple distance measure opposite propor-
tional to the common substring length of the names of the methods. This
mining algorithm is used in combination with the viewing tool of the IDE
which not only lists all the clusters which were found, but also consists out
of a cross-cutting pane which displays the methods related to a cluster as
well as an editor pane, in which the class context of a particular method is
displayed.

He and Bai [19] propose another aspect mining technique based on cluster
analysis. They start from the assumption that if methods appear together in
a number of different modules, this may be a good indication that a hidden
cross-cutting concern is present. As input for the clustering algorithm, a
set of methods is given along with a distance measure based on the Static
Direct Invocation Relationship (SDIR) between the methods. This distance
measure is a representation of the dissimilarity of methods, based on wether
a method invokes another method in a different calling context.

5.7 Fan-in analysis

Marin et al. [27] noticed that many of the well-known cross-cutting concerns
are implemented using a technique which exhibits a high fan-in. They pro-
pose using a fan-in metric in order to discover cross-cutting concerns in the
source code. They define the fan-in of a method m as the number of distinct
method bodies which can invoke m. Because of polymorphism, a call to a
method m contributes to the fan-in of all methods refining m as well as all
methods which refine m. Their mining algorithm comprises:

9



• Calculating the fan-in metric for all the methods of the system that is
being analysed.

• Filtering the results: next to filtering accessor and mutator methods,
as well as utility methods like for instance toString(), the number
of considered methods is also limited by only considering the methods
with a fan-in value higher than a certain threshold.

• Manually analyzing the remaining methods.

The authors present an experiment in which cross-cutting concerns where
mined with a high precision: one third of all with high fan-in were seeds
leading to an aspect. Moreover, 60% of the remaining two thirds were
removed automatically. This technique seems most suited for finding aspect
candidates with a large footprint. Due to the use of a threshold, aspects
with a smaller footprint may be ignored by this approach.

5.8 Detecting clones as indicators of crosscutting concerns

As we already mentioned earlier, there exist a number of symptoms which
may be good indicators of cross-cutting concerns in the source code of a
system. One such symptom is ‘code duplication’: because the cross-cutting
concerns could not be cleanly modularized, certain parts of the implementa-
tion show high levels of duplicated code. Two techniques use this observation
to mine for aspect candidates.

1. A first technique, presented by Shepherd et al. [34] and implemented
as an extension to the Ophir framework, makes use of program de-
pendence graphs (PDG) to detect possible aspects. In a PDG, each
statement in the code is represented by a node; the edges of the graph
consist of control or data dependence relations between the statements.
By comparing PDGs [23, 24], this technique is able to identify code
duplication in the beginning of a method (i.e. aspect candidates for a
‘before’ advice). After filtering and coalescing the resulting PDGs, a
number of possible aspect candidates remains.

2. Bruntink et al. [8, 9] make use of three other clone detection tech-
niques, namely token-based [1], AST-based [4] and metrics-based clone
detection [28]. They applied these techniques to a large system written
in C in which different cross-cutting concerns where annotated by a
developer. In order to measure the effectiveness of the applied clone

10



detection techniques in order to find aspects, the results of the tech-
niques were compared with the manually documented cross-cutting
concerns.

5.9 Analysing execution traces with a webmining algorithm

Although this technique, presented by Zaidman and Demeyer [41] is not
explicitly reported as an aspect mining technique, the application of web-
mining techniques in order to identify “important” classes in a system is
certainly related to the other approaches discussed in this survey. Their
approach is based on the HITS [22] webmining algorithm. This algorithm
analyzes the hyperlinks in a number of webpages and identifies hubs (pages
which refer to many other pages) and authorities (pages which are referred
a from a large number of places). Zaidman et al. apply this algorithm to
dynamic information obtained by executing (part of) the software system
in which they want to identify the most important classes. As a result they
obtain a collection of classes in the system which are tightly coupled. Since
such classes play an important role in a software system, the authors argue
that the identified classes are ideal candidates to start exploration of the
system.

6 Criteria of Comparison

In Section 7 we will compare the different aspect mining approaches summa-
rized in the previous section, based on a number of different criteria which
are listed in this section.

Static versus dynamic. Does the technique take as input data which can
be obtained by statically analysing the source code, or dynamic infor-
mation which is obtained by executing the program, or both?

Lexical, structural and semantic What kind of semantic information
does the applied technique reason about? We can distinguish three
different semantic levels:

Lexical Lightweight reasoning about the program at a lexical level:
sequences of characters, regular expressions, and so on.

Structural Reasoning takes the structure of the program into ac-
count, for instance, parse trees.

11



Semantical Reasoning about annotated parse trees or source code
by taking into account the language semantics, for example: type
checking, binding of variables and function names to their defini-
tions, . . .

Note that the boundaries between these levels is not always as clear
as it depends strongly on the kind of information that is stored in the
program.

Tangling and scattering Cross-cutting concerns are characterized by high
tangling and scattering. Scattering means that the code correspond-
ing to an aspect or crosscutting concern is dispersed across the entire
system, instead of being located in a single module. Tangling means
that concern code is often intermixed with that of other concerns.
The studied techniques differ in whether they explicitly take scatter-
ing and/or tangling into account, or only implicitly (as a side-effect of
the results produced by the tecnique).

Incrementality Whereas some techniques offer a one step mining process
that tries to discover all possible aspects in a system at once other
techniques support a more incremental process where aspects can be
identified (and subsequently introduced) one at a time.

Scalability What is the size of systems that the technique can be applied
on? For some techniques there may be an upper limit in order to
still produce results in a reasonable amount of time, whereas other
techniques may only work on systems that have at least some minimum
size.

Symptoms What are the “symptoms of aspects” that the different tech-
niques try to exploit in order to mine for aspects? For example,
as cross-cutting concerns cannot be modularized cleanly using classic
techniques, some developers rigorously use certain naming conventions
for their crosscutting code. Code duplication is another symptom that
may indicate the presence of some aspects. So are particular modes of
invocation that are consistently used throughout the code. In general,
occurrences of such pre-AOP aspect idioms are the basis of quite a
number of different aspect mining techniques.

12



7 Taxonomy

Tables 2 and 3 compares the techniques we discussed in Section 5, based
on the criteria described in Section 6. To win some space we abbreviated
the names of the techniques used, as summarized by table 1.

Abbreviated name Short description of the technique Section
Execution patterns Analyzing recurring patterns of execution traces 5.1
Dynamic analysis Formal concept analysis of execution traces 5.2
Identifier analysis Formal concept analysis of class and method names 5.3
Language clues Natural language processing on source code 5.4
Unique methods Detecting unique methods 5.5

Clustering Hierarchical clustering of related methods 5.6
Fan-in analysis Fan-in analysis 5.7
Clone detection Detecting clones as indicators of crosscutting concerns 5.8

Web mining Analysing execution traces with a webmining algorithm 5.9

Table 1: List of techniques that were compared

static dynamic lexical structural semantic
Execution patterns - X - - X
Dynamic analysis - X - - X
Identifier analysis X - X - -
Language clues X - - - X
Unique methods X - - - X

Clustering X - X - X
Fan-in analysis X - - - X
Clone detection X - - X -

Web mining - X - - X

Table 2: A taxonomy of different automated aspect mining techniques (1)

As can be seen in table 2, most of the existing aspect mining techniques
focus on analyzing static information, i.e. the source-code of a system.
While the majority of the approaches are based on discovering aspects from
analyzing more semantical relations in a system, like for instance looking
for cross-cutting idioms, high fan-in, recurring method invocations, . . . there
also exists techniques based on the observation that cross-cutting concerns
are often characterized by duplicate code or rigorous use of coding and

13



scattering tangling incremental symptoms scalability
Execution patterns X - - Recurring invocations ?
Dynamic analysis - X X Scat/Tang ?
Identifier analysis X - - Nam. Conv. X?
Language clues X - - Nam. Conv. -
Unique methods X - X Idioms X/-

Clustering X - - Nam. Conv. X?
Fan-in analysis X - X High Scat. X
Clone detection X - - Code Dupl. -

Web mining X - - High coupling ?

Table 3: A taxonomy of different automated aspect mining techniques (2)

naming conventions.
From table 3 we can conclude that all approaches, except Dynamic Anal-

ysis, try to identify aspects based on the assumption that cross-cutting con-
cerns are often characterized by high levels of scattering. The fact how-
ever that cross-cutting concerns are often tangled with other concerns is
taken only into account by the Dynamic Analysis approach by Ceccato and
Tonella.

From the taxonomy, we distill a list of open research problems as well as
a list of possible avenues for future research (point 7).

Common benchmark We noticed that it is quite impossible to com-
pare the quality of the approaches we described above. Although some ap-
proaches provide a detailed analysis of their effectiveness, most techniques
are rather presented as a proof-of-concept in which it is demonstrated that
useful aspects are found. In order to get better insights into the strengths
and weaknesses of every approach, it might be advisable to validate the dif-
ferent techniques on a common case-study. JHotDraw [5] seems to be a good
candidate for being the common benchmark for aspect mining techniques.
In fact, Ceccato et al. [12] describe an experiment in which they use this
graphical framework in order to compare three different mining techniques:
Formal Concept Analysis of Execution Traces, Fan-in analysis and Identifier
Analysis using Formal Concept Analysis.

Scalability Complementary with the need for a common case-study is
also the need to validate the different techniques on large-scale systems. Al-

14



though a number of approaches have been validated on real-life systems,
most approaches describe the application of their technique on a small sys-
tem. Due to the size of industrial legacy systems, it is however imperative
that aspect mining techniques are proven to be capable of mining such sys-
tems.

Hybrid Techniques All techniques we discussed concentrate on iden-
tifying aspect candidates which exhibit one certain symptom which may
indicate the presence of a cross-cutting concern. If we however wish to find
all aspects in a system, this is a serious limitation. Using a hybrid approach
which combines a number of techniques which concentrate on different kinds
of aspect candidates may alleviate this problem.

Another possibility for hybrid techniques is looking at combinations of
aspect mining techniques based on source-code and techniques that identify
aspects during the early phases of the life cycle like requirements analysis [2,
32, 38] or architecture design [3].

8 Related research areas

The field of aspect mining is related to a number of other research fields,
with which a cross-fertilization might be beneficial:

Data mining A number of the aspect mining approaches we discussed
makes use of data mining algorithms like for instance cluster anal-
ysis, formal concept analysis, . . . in order to propose the user a num-
ber of aspect candidates. This does not come as a surprise, as in the
past data mining techniques have already been successfully applied
on large-scale data sets in order to retrieve groups of elements which
conceptually belong together. This research domain is however quite
extensive, containing other approaches which may be ideal candidates
for being used a the basis of an aspect mining technique.

Software Comprehension Aspect Mining is closely related to techniques
which aid a developer in comprehending a piece of software. While
the goal of Software Comprehension techniques is more general than
identifying cross-cutting concerns in legacy code, the results obtained
in this field can lead to interesting insights concerning aspect mining.

Program Analysis Over the years, a lot of program analysis techniques
have been developed like metrics, clone detection, slicing,Ê. . . While

15



these techniques have already been used in some aspect mining ap-
proaches, it might be interesting to also consider other techniques from
this research area.

Feature Exploration Greevy and Ducasse [14] present a metric-based ap-
proach for identifying features (i.e. user-triggered functional require-
ments) in a system. Although it is not the focus of the paper, the
authors remark that their technique is a suitable candidate for identi-
fying cross-cutting features.

9 Conclusion

In this paper we made a survey of semi-automated aspect mining techniques.
Each of them has its own strengths and weaknesses because it relies on differ-
ent assumptions and uses different underlying analysis techniques. Because
of this there seems a need for a more in-depth comparison of the results ob-
tained by each of the techniques, for example on a common benchmark. For
example, many techniques seem, at least partly, complementary, which sug-
gests the possibility of several useful combinations of existing techniques.
Of course, the best validation of the suggested aspect mining techniques
would be to show that the identified aspects can effectively be refactored
into aspects. Therefore, it is essential to investigate how to move from as-
pect identification to the actual refactoring of non aspect-oriented code into
aspects.

References

[1] B. Baker. On finding duplication and near-duplication in large software
systems. In 2nd Working Conference on Reverse Engineering, number
86-95. IEEE Computer Society Press, 1995.

[2] E. Baniassad and S. Clarke. Theme: An approach for aspect-oriented
analysis and design. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 158–167, Washington, DC,
USA, 2004. IEEE Computer Society.

[3] L. Bass, M. Klein, and L. Northrop. Identifying aspects using archi-
tectural reasoning. Position papers presented at Early Aspects 2004:
Aspect-Oriented Requirements Engineering and Architecture Design,

16



Workshop of the 3rd International Conference on Aspect-Oriented Soft-
ware Development, (Lancaster, UK, 2004).

[4] I. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier. Clone
detection using abstract syntax trees. In International Conference on
Software Maintenance. IEEE Computer Society Press, 1998.

[5] J. Brant. Hotdraw. Master’s thesis, University of Illinois, 1992.

[6] S. Breu. Towards hybrid aspect mining: Static extensions to dynamic
aspect mining. In 1st Workshop on Aspect Reverse Engineering, 2004.

[7] S. Breu and J. Krinke. Aspect mining using event traces. In Conference
on Automated Software Engineering (ASE), September 2004.

[8] M. Bruntink. Aspect mining using clone class metrics. In 1st Workshop
on Aspect Reverse Engineering, 2004.

[9] M. Bruntink, A. v. Deursen, R. v. Engelen, and T. Tourwé. An evalua-
tion of clone detection techniques for identifying crosscutting concerns.
In Proceedings of the IEEE International Conference on Software Main-
tenance (ICSM). IEEE Computer Society Press, 2004.

[10] A. Budanitski. Semantic distance in wordnet: an experimental,
application-oriented evaluation of five measures., 2001.

[11] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwe.
A qualitative comparison of three aspect mining techniques. In Proceed-
ings of the 13th International Workshop on Program Comprehension
(IWPC 2005), pages 13–22. IEEE Computer Society Press, 2005.

[12] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonello, and T. Tourwé.
A qualitative comparison of three aspect mining techniques. In Inter-
national Workshop on Program Comprehension (IWPC), 2005.

[13] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foun-
dations. Spring-Verlag, 1999.

[14] O. Greevy and S. Ducasse. Correlating features and code using a com-
pact two-sided trace analysis approach. In European Conference on
Software Maintenance and Reengineering, 2005. To appear in proceed-
ings of the 9th European Conference on Software Maintenance and
Reengineering.

17



[15] W. Griswold, Y. Kato, and J. Yuan. Aspect browser: Tool support for
managing dispersed aspects. In First Workshop on Multi-Dimensional
Separation of Concerns in Object-oriented Systems - OOPSLA 99, 1999.

[16] K. Gybels and A. Kellens. An experiment in using inductive logic pro-
gramming to uncover pointcuts
an experiment in using inductive logic programming to uncover point-
cuts. In First European Interactive Workshop on Aspects in Software,
2004.

[17] K. Gybels and A. Kellens. Experiences with identifying aspects in
smalltalk using ’unique methods’. In Workshop on Linking Aspect Tech-
nology and Evolution, 2005.

[18] J. Hannemann and G. Kiczales. Overcoming the prevalent decomposi-
tion in legacy code. In Workshop on Advanced Separation of Concerns,
International Conference on Software Engineering, 2001.

[19] L. He and H. Bai. Aspect mining using clustering analysis. Technical
report, Jilin University, 2004.

[20] D. Janzen and K. De Volder. Navigating and querying code without
getting lost. In International Conference on Aspect Oriented Software
Development 2003, 2003.

[21] S. Karanjkar. Development of graph clustering algorithms. Master’s
thesis, University of Minnesota, 1998.

[22] J. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-
nal of the ACM, 46(5):604–632, 1999.

[23] R. Komondoor and S. Horwitz. Using slicing to identify duplication in
source code. In 8th International Symposium on Static Analysis, pages
40–56. Springer-Verlag, 2001.

[24] J. Krinke. Identifying similar code with program dependence graphs. In
8th Working Conference on Reverse Engineering, pages 301–309. IEEE
Computer Society Press, 2001.

[25] J. Krinke and S. Breu. Control-flow-graph-based aspect mining. In 1st
Workshop on Aspect Reverse Engineering, 2004.

[26] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming.
Manning Publications, 2003.

18



[27] M. Marin, A. van Deursen, and L. Moonen. Identifying aspects us-
ing fan-in analysis. In Working Converence on Reverse Engineering
(WCRE), 2004.

[28] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic
detection of function clones in a software system using metrics. In In-
ternational Conference on Software Maintenance, pages 244–254. IEEE
Computer Society Press, 1996.

[29] K. Mens, B. Poll, and S. González. Using intentional source-code views
to aid software maintenance. In Proceedings of the International Confer-
ence on Software Maintenance (ICSM’03), pages 169–178. IEEE Com-
puter Society Press, 2003.

[30] K. Mens and T. Tourwé. Delving source-code with formal concept anal-
ysis. Elsevier Journal on Computer Languages, Systems & Structures,
2005. To appear.

[31] J. Morris and G. Hirst. Lexical cohesion computed by thesaural re-
lations as an indicator of the structure of text. Comput. Linguist.,
17(1):21–48, 1991.

[32] A. Rashid, P. Sawyer, A. M. D. Moreira, and J. Ara&#250;jo. Early as-
pects: A model for aspect-oriented requirements engineerin. In RE ’02:
Proceedings of the 10th Anniversary IEEE Joint International Confer-
ence on Requirements Engineering, pages 199–202, Washington, DC,
USA, 2002. IEEE Computer Society.

[33] M. P. Robillard and G. C. Murphy. Concern graphs: Fnding and
describing concerns using structural program dependencies. In Pro-
ceedings of the 24th International Conference on Software engineering,
pages 406–416. ACM Press, 2002.

[34] D. Shepherd, E. Gibson, and L. Pollock. Design and evaluation of an
automated aspect mining tool. In International Conference on Software
Engineering Research and Practice, 2004.

[35] D. Shepherd and L. Pollock. Interfaces, aspects and views. In Linking
Aspect Technology and Evolution (LATE) Workshop, 2005.

[36] D. Shepherd, T. Tourwé, and L. Pollock. Using language clues to dis-
cover crosscutting concerns. In Workshop on the Modeling and Analysis
of Concerns, 2005.

19



[37] P. Tarr, H. Ossher, W. Harrison, and J. S. M. Sutton. N degrees of
separation: Multi-dimensional separation of concerns. In International
Conference on Software Engineering, 1999.

[38] B. Tekinerdogan and M. Aksit. Deriving design aspects from canonical
models. In S. Demeyer and J. Bosch, editors, Workshop Reader of the
12th European Conference on Object-Oriented Programming, ECOOP
1998, Lecture Notes in Computer Science, pages 410–413. Springer-
Verlag, 1998.

[39] P. Tonella and M. Ceccato. Aspect mining through the formal concept
analysis of execution traces. In 11th IEEE Working Conference on
Reverse Engineering, 2004.

[40] T. Tourwé and K. Mens. Mining aspectual views using formal con-
cept analysis. In Source Code Analysis and Manipulation Workshop
(SCAM), 2004.

[41] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying web-
mining techniques to execution traces to support the program compre-
hension process. In 8th European Conference on Software Maintenance
and Reengineering (CSMR), pages 329–338. IEEE Computing Society,
2004.

[42] C. Zhang and H. Jacobsen. Extended aspect mining tool.
http://www.eecg.utoronto.ca/∼czhang/amtex.

[43] C. Zhang and H. Jacobsen. A prism for research in software modular-
ization through aspect mining. Technical report, University of Toronto,
2003.

20


	Introduction
	Aspect mining
	Known techniques and approaches
	Researchers
	Approaches
	Analyzing recurring patterns of execution traces
	Formal concept analysis of execution traces
	Formal concept analysis of class and method names
	Natural language processing on source code
	Detecting unique methods
	Hierarchical clustering of related methods
	Fan-in analysis
	Detecting clones as indicators of crosscutting concerns
	Analysing execution traces with a webmining algorithm

	Criteria of Comparison
	Taxonomy
	Related research areas
	Conclusion

