
Abstractions for Context-aware Object References

Tom Van Cutsem∗ Jessie Dedecker∗ Stijn Mostinckx† Wolfgang De Meuter
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2 - 1050 Brussels - Belgium

{tvcutsem,jededeck,smostinc,wdmeuter}@vub.ac.be

ABSTRACT
Within the domain of pervasive, mobile computing, we consider
context-awareness in terms of the set of available services in di-
rect proximity to a mobile device. We seek new programming lan-
guage constructs to represent and influence such contextual infor-
mation more expressively. One important aspect is the discovery
and addressing of available, proximate, services. To this end, we
investigate abstractions based on object references, which we term
ambient references: references which point into the hardware envi-
ronment surrounding the program.

1. INTRODUCTION
We focus on ubiquitous computing in the form of pervasive wire-
less networks composed of mobile devices. Today, these devices
are PDAs or cell phones, but in the future such pervasive wireless
networks may include smart wristwatches or intelligent television
screens, as e.g. envisioned by Weiser [7]. Applications running
on devices roaming in such hardware environment must clearly be
context-aware: devices move about constantly and in doing so di-
rectly influence their surrounding context.

In this paper, we consider only a small subset of potential context
information, to wit the physical location of devices. This physical
location directly relates to the proximate set of available services
offered by other devices in the environment. Such a “proximate
set” is dynamically demarcated by the limited range of the wireless
network connections. We consider each device to host an object or
component system, where some objects or components are made
available to peer devices as services.

Our goal is to build programming language abstractions forad-
dressingthe services located on remote devices. As a concrete ex-
ample, consider a printer with a built-in printing service program.

∗Research Assistant of the Fund for Scientific Research Flanders,
Belgium (F.W.O.)
†Author funded by a doctoral scholarship of the Institute for the
Promotion of Innovation through Science and Technology in Flan-
ders (IWT-Vlaanderen)

When the user declares that he wants to print a file from his PDA,
and he is in close proximity to the printer, an appropriate service
discovery algorithm should bring the PDA’s objects in contact with
the printing service. In regular object systems, acquaintance re-
lations between objects are represented as object references (i.e.
“pointers”). We therefore seek to explore abstractions for object
references which can denote remote objects on a context-sensitive
basis. The goal of such references is to both discover remote ob-
jects and to become a reference (i.e. a communication channel) to
them. We name such object referencesambient references.

2. AMBIENT REFERENCES IN A NUTSHELL
Recall the problem of finding a suitable printing service in the envi-
ronment in order to print a file from a mobile device. The problem
can be decomposed in two tasks:discoveringa printing service
and, if one is successfully found,communicatewith this printing
service. These two aspects are reflected in our notion of an am-
bient reference: an ambient reference discovers a suitable service
automaticallyandbecomes a representative of (i.e. a proxy to) the
service which can be sent messages. As an example, the printer
problem can be solved using an ambient reference in pseudocode
as follows:

aPrinter = ambient Printer;
aPrinter.print(aDocument);

The expressionambient Printer literally means “find me an
object in the ambient offering a Printer service”. Messages can be
sent to the ambient reference even if a suitable printer has not yet
been discovered. We will go into more detail on how services are
denoted in the following section.

3. ASPECTS OF DISCOVERY AND COM-
MUNICATION

We consider two aspects of ambient references: how they denote
remote objects and how messages sent to those objects are evalu-
ated.

Discovery
It is important for objects to denote other objects on a loosely-
coupled, device-independent, intensional basis, rather than through
the use of a fixed global address or URI. As the environment sur-
rounding a mobile device is changing constantly, and services ap-
pear and disappear unheraldedly, it becomes infeasible to know the
exact address of a service upfront. For the purposes of this pa-
per, we consider an intensional description of an object to be its



interface (which need not necessarily be aligned with a static type
description as in Java). In the printer example shown previously,
we considerPrinter to denote a function selecting only objects
implementing a certainPrinter interface.

Communication
Ambient references can be sent messages just like normal object
references. Messages sent via ambient references are handled asyn-
chronously: the sender will not wait for the message to be pro-
cessed by the receiver. Our reasons for adopting asynchronous,
non-blocking message passing are threefold:

• Because remote method invocation is much slower than lo-
cal method invocation, especially in wireless networks, the
asynchrony can be used to overlap execution of sender and
receiver, which better hides network latency.

• Asynchronous message passing decouples sender and receiver
in time: a message can be sent to a receiver even when it is
not online (connected) at the time the message is sent [6].
This is made possible by decoupling message sending from
message delivery: messages which cannot be transmitted im-
mediately are stored in an outgoing message queue internal
to the ambient reference.

• As a consequence of decoupling message delivery from mes-
sage sending, a sender object will not have to synchronise
with (i.e. wait for) its remote communication partner for ev-
ery message send, which increases the overall responsiveness
of the system. Blocking communication more easily leads to
unresponsive (and possibly deadlocked) systems.

An important aspect of distributed communication isfailure. Note
that, because of asynchronous, non-blocking message passing, the
unavailability of the receiver is not considered a failure or an ex-
ception: the message is kept until the receiver becomes available.
This design decision is founded on the observation that disconnec-
tions in pervasive networks are commonplace due to the volatile,
wireless connections. If necessary, failures can be induced using
timeouts. A description of the necessary language constructs to
gracefully handle these failures is outside the scope of this paper.

Asynchronous message sends are usually not attributed any return
value, which requires the use of “callback” methods in order to pro-
cess results. Such programming idioms clutter the code, which is
why we adopt the use offuturesor promises[3, 8, 5]. An asyn-
chronous message send always immediately returns a future ob-
ject, which is a placeholder for the real return value. Once the real
value is computed, it can be extracted from the future object by the
sender.

4. DESIGN DIMENSIONS
We decompose the design space of ambient references along two
dimensions:cardinality andpropensity. The cardinality of an am-
bient reference is the number of objects the reference denotes. We
distinguish between mono-ambient references and multi-ambient
references. The former resemble classic object references and de-
note at most one object, the latter resemble object groups or collec-
tions and refer to an arbitrary number of objects.

The propensity of an ambient reference can be either weak or strong.
The referent(s) of a weak ambient reference can change over time,

whereas the referent(s) of a strong ambient reference are fixed.
Conceptually, one should think about a strong ambient reference as
denoting a well-defined set of objects, whereas weak ambient ref-
erences denote a cloud of objects, whose boundaries are vague and
change constantly. This “cloud” is delimited by the wireless com-
munication range of the mobile device. That is, a weak ambient
reference can only refer to objects which are in physical proximity
to the device. Hence, the difference between weak and strong am-
bient references can be characterised by the topology of the objects
they denote: a strong ambient reference defines a logical topology
between objects regardless of physical properties of the environ-
ment, whereas a weak ambient reference defines a physical topol-
ogy, constantly changing in unison with the environment.

An ambient reference supports operations similar to ordinary object
references: it can be sent messages, it can be bound to variables,
passed as an argument, etc. In addition, we envision an extra oper-
ator, namedsnapshot , which allows the programmer to change
the propensity dimension of an ambient reference. The expression
snapshot(weakRef) returns a strong version of a weak ambi-
ent reference. Conceptually, it allows one to take a snapshot of the
– continuously changing – environment. The use of this operator is
detailed in the following section.

5. A TAXONOMY OF AMBIENT REFER-
ENCES

Our decomposition gives rise to four kinds of ambient references:
weak and strong mono-ambient references and weak and strong
multi-ambient references. We now explore the design space of am-
bient references and identify tentative abstractions for each kind of
reference in the hardware context of pervasive computing.

5.1 Weak Mono-ambient References
A weak mono-ambient reference denotes at most one object which
is proximate to (i.e. in communication range with) the host de-
vice. Figure 1 illustrates mono-ambient references. The white ob-
ject holds an ambient reference which matches a certain interface
(denoted by an endpoint with an abstract shape). Objects to the
left of the dotted line are in the ambient reference’s communication
range. The figure on the left describes an initial situation where a
weak ambient reference is created which is unbound (shown dan-
gling): there are no proximate objects offering the required service.
On the right of the figure, a situation is described where a matching
object is within communication range. The ambient reference be-
comes bound, but remains weak (denoted by the squiggled line): it
can rebind to other matching objects and becomes unbound again
should the referent object move out of range.

Unbound Weak Mono-ambient Reference Bound Weak Mono-ambient Reference

Figure 1: Unbound (left) and Bound (right) Weak Mono-
ambient References

Note that messages can be sent to the ambient reference at any time.
If the ambient reference is unbound, any messages sent to it are
enqueued and delivered when the reference becomes bound.



We consider ambient references to be typically used for discover-
ing such services as “a proximate printer”, “a proximate projection
screen”, “a proximate mail server”, etc. The printer example in
section 2 illustrated the use of a weak mono-ambient reference.

5.2 Strong Mono-ambient References
Weak references are ideal to discover proximate objects, but they
are less interesting for sustaining interactions with such objects. A
bound weak reference can become unbound at any point in time
and be rebound to another object. As such, subsequent messages
sent to a weak reference can be received by different objects, which
is not always desirable. Strong references provide a solution to this
problem: once a strong reference is bound, it remains bound to
the same object, even if this object moves out of range. Figure 2
illustrates strong mono-ambient references.

Figure 2: Connected (left) and Disconnected (right) Strong
Mono-ambient References

The left-hand side of the figure describes a situation where a strong
reference is bound to a proximate object. The interesting difference
with weak references is shown on the right-hand side: the reference
remains bound even though the object is no longer proximate. The
programmer is not obliged to consider the state of connectedness
of the strong reference: messages sent to a disconnected reference
will be transmitted whenever the object becomes proximate again.

In order to create strong ambient references, thesnapshot oper-
ator is used. Applyingsnapshot to a weak mono-ambient refer-
ence creates a strong mono-ambient reference, which is bound to
the object the weak ambient-reference is bound to. If the weak ref-
erence is unbound at that time, the strong reference will be bound
to the first object subsequently bound to the weak reference.

As an example, consider the printing service again. Imagine one
were to send not one, but a batch of documents to the printer. If it
is desirable that all documents are printed by the same printer, this
can be achieved with a strong mono-ambient reference as follows
(presuming the variablebatch denotes a queue of documents):

aPrinter = snapshot(ambient Printer);
foreach document in batch {

aPrinter.print(document);
}

5.3 Weak Multi-ambient References
Multi-ambient references are characterised by the fact that they rep-
resent sets of objects. These sets are described intensionally (i.e.
one does not explicitly list all members of the set). Note that, since
an empty set is a valid set, a multi-ambient reference can never
really be “unbound”. If the set is empty, messages sent to the refer-
ence are lost. The left-hand side of figure 3 depicts a weak multi-
ambient reference. The reference consists of a volatile set of all
matching proximate objects.

Figure 3: Weak (left) and Strong (right) Multi-ambient Refer-
ences

Weak multi-ambient references are not “collections” of objects in
the typical object-oriented sense. No constructs are provided to
test for set membership, to add or delete objects or to iterate over
the objects referred by the multi-ambient reference. Weak multi-
ambient references form an ideal abstraction for “shouting” infor-
mation to proximate devices. One can imagine exhibits in a mu-
seum to “shout” a digital description of themselves to the PDAs of
passing visitors. Similarly, base stations in airports or railway sta-
tions could broadcast information like departure times and delays to
the PDAs of interested travellers. Weak multi-ambient references
are directly geared towards expressing such behaviour1:

travellers = ambient* Traveller;
travellers.announce(delays);

5.4 Strong Multi-ambient References
Although weak multi-ambient references are fine for broadcast-
ing and discovery, like their mono-ambient cousins, they are not
suitable for stable interactions. The final type of ambient refer-
ence covers such multicast interactions. The right-hand side of
figure 3 illustrates the major difference with weak multi-ambient
references: the set of referents denoted by a strong multi-ambient
reference is maintained regardless of the communication range of
devices. Whereas the set intensionally described by weak multi-
ambient references only consists of proximate objects, this is no
longer the case for strong ambient references. As to be expected, a
strong multi-ambient reference can be created by taking a snapshot
of a weak multi-ambient reference.

In contrast to the weak reference, the strong referencedoesdenote
a collection of objects. Because the set of objects belonging to the
strong reference is well-defined, it makes sense to allow e.g. an
enumeration of the referents of a strong multi-ambient reference.
A useful idiom is the creation of a weak multi-ambient reference
which can be inspected by regularly enumerating a snapshot of the
reference. For example, the following code can be used to “list
all proximate printers” by invoking thelist method on an object
holding a weak multi-ambientPrinter reference:

printers = ambient* Printer;
method list() {

foreach printer in snapshot(printers) {
doSomethingWith(printer);

}
}

Strong multi-ambient references are very similar to classical ob-
ject group abstractions used to implement chat services, distributed

1We use an asterisk to denote a multi-ambient reference.



whiteboards, etc. It is, however, important to recall that messages
sent to the group are handled asynchronously and can be sent even
when not all group participants are present. As for the return value
of such multicast asynchronous message sends, we are looking into
“multifutures” which are adaptations of futures able to collect mul-
tiple return values.

6. VALIDATION AND RELATED WORK
We are currently experimenting with ambient references in a small
prototype programming language called AmbientTalk [2], specif-
ically designed for ubiquitous computing. The language is based
on the actor paradigm for concurrent object-oriented programming
[1]. We have validated the design of mono-ambient references by
building a small instant-messaging application where the different
peers discover and communicate with one another using mono-
ambient references2. The ambient references allow the instant mes-
senger to be deployed in ad hoc networks without any infrastruc-
ture, and make peer communication resilient to disconnections.

Our notion of an ambient reference is very similar to that of ahan-
dle in the many-to-many invocations (M2MI) paradigm [4]. M2MI
handles use Java interfaces to denote other objects in a loosely
coupled fashion and also employ asynchronous message passing.
M2MI distinguishes betweenunihandles, multihandlesandomni-
handles. Roughly speaking, unihandles resemble strong mono-
ambient references, while multi- and omnihandles resemble strong
and weak multi-ambient references respectively. An omnihandle
represents all objects in communication range implementing the
handle’s interface. A message sent to an omnihandle means “every
object out there that implements this interface, call this method” [4].

Although M2MI was of great influence to the design of our ambient
references, there are some important differences. First, M2MI of-
fers no delivery guarantees: if a message is sent to an object which
is not in communication range at that time, the message is lost.
Hence, message sending and delivery are not decoupled as is the
case with ambient references. The consequence is that the respon-
sibility of guaranteed message delivery is passed on to the appli-
cation itself. A second difference is that messages sent to M2MI
handles do not return a value, requiring the use of callbacks as ex-
plained previously. Third, the construction of uni- and multihandles
differs from the creation process of strong ambient references. In
M2MI, objects must be explicitly attached to a handle, i.e. the set
denoted by such a handle is explicitly enumerated. Strong ambi-
ent references dynamically “discover” their set content by taking a
snapshot of a weak reference. In M2MI, there is no notion of such
“snapshots”.

2Our programming language platform showcasing this instant mes-
senger has been accepted for demonstration at the OOPSLA ‘05
conference.

7. POSITION STATEMENT
Ubiquitous computing requires programming language constructs
that abstract from the complex hardware environment while re-
maining translucent enough to deal with the inescapable issues of
distributed computing. When objects are distributed among mo-
bile devices connected in a volatile network, it is no longer trivial
to discover and communicate with remote parties. We advocate
that object references ought to be augmented with context infor-
mation: they should become “aware” of the hardware constellation
surrounding their host device. Rather than identifying one such
new kind of object reference, we have identified a number of de-
sign dimensions whose combinations give rise to different kinds of
references, each suitable for a different kind of collaboration.

8. REFERENCES
[1] AGHA, G. Concurrent object-oriented programming.

Communications of the ACM 33, 9 (1990), 125–141.

[2] DEDECKER, J., VAN CUTSEM, T., MOSTINCKX, S., DE

MEUTER, W., AND D’H ONDT, T. AmbientTalk: A Small
Reflective Kernel for Programming Mobile Network
Applications. Tech. rep., Vrije Universiteit Brussel, 2005.

[3] HALSTEAD, JR., R. H. Multilisp: a language for concurrent
symbolic computation.ACM Trans. Program. Lang. Syst. 7, 4
(1985), 501–538.

[4] K AMINSKY, A., AND BISCHOF, H.-P. Many-to-many
invocation: a new object oriented paradigm for ad hoc
collaborative systems. InOOPSLA ’02: Companion of the
17th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications(New
York, NY, USA, 2002), ACM Press, pp. 72–73.

[5] L ISKOV, B., AND SHRIRA, L. Promises: linguistic support
for efficient asynchronous procedure calls in distributed
systems. InProceedings of the ACM SIGPLAN 1988
conference on Programming Language design and
Implementation(1988), ACM Press, pp. 260–267.

[6] M ASCOLO, C., CAPRA, L., AND EMMERICH, W. Mobile
Computing Middleware. InAdvanced lectures on networking.
Springer-Verlag New York, Inc., 2002, pp. 20–58.

[7] WEISER, M. The computer for the twenty-first century.
Scientific American(september 1991), 94–100.

[8] Y ONEZAWA, A., BRIOT, J.-P.,AND SHIBAYAMA , E.
Object-oriented concurrent programming in ABCL/1. In
Conference proceedings on Object-oriented programming
systems, languages and applications(1986), ACM Press,
pp. 258–268.


