
SelfSync: A Dynamic Round-Trip Engineering
Environment

Ellen Van Paesschen1 - Wolfgang De Meuter2 - Maja D’Hondt2

1 Programming Technology Laboratory
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussel, Belgium
evpaessc@vub.ac.be

2 Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
59655 Villeneuve d’Ascq, Cédex, Lille, France
wdmeuter@vub.ac.be - maja.d-hondt@lifl.fr

Abstract. Model-Driven Engineering (MDE) advocates the generation
of software applications from models, which are views on certain aspects
of the software. In this paper, we focus on a particular setup which con-
sists of a graphical data modeling view and a view on an object-oriented
implementation, which can be either textual or graphical. A challenge
that arizes in the context of MDE is the notion of Round-Trip Engineer-
ing (RTE), where elements from both views can be manipulated and
thus need to be synchronized. We systematically identify four funda-
mental RTE scenarios. In this paper, we employ the framework of these
scenarios for explaining SelfSync, our approach and tool for providing
dynamic support for RTE. In SelfSync, the entities of the data model-
ing view and the corresponding implementation objects are one and the
same. Additionally, we present a comparison with related work accom-
panied by an extensive discussion.

1 Introduction

Model-Driven Engineering (MDE) advocates generating software applications
from models, which are views on certain aspects of the software. One commonly
found approach is to support one or more graphical modeling views on the one
hand and an implementation view on the other, which can be either textual,
i.e. the actual source code, or graphical. In this paper, we focus on a particular
setup which consists of a data modeling view and a view on an object-oriented
implementation.

An important issue that arizes in the context of MDE is the notion of Round-
Trip Engineering (RTE). Several definitions exist of RTE, but all boil down to
the following: when there exist at least two views on a software artefact, each
view can be used to manipulate the artefact and all the other views need to be
synchronized accordingly [1], [6], [12], [20]. RTE often considers a setup similar
to the one we outlined above. Therefore, the challenge in this setup is that both



the data modeling view and the object-oriented implementation (view) can be
manipulated and thus need to be synchronized. In this paper, we identify four
fundamental RTE scenarios that cover the range of possible changes to both
views.

We provide a very dynamic approach to RTE, where the entities of the data
modeling view and the corresponding implementation objects are one and the
same [17], [16]. This contrasts with other approaches, which usually employ a
synchronization strategy based on transformation [12], [20], [28]. In this paper,
we first present our approach and accompanying tool, SelfSync, in Section 2. We
then present the four identified RTE scenarios in Section 3. Next we show how
our approach and tool address these four scenarios in Sections 4 to 7. We present
and discuss related work in Section 8. Finally, we conclude in Section 9.

2 SelfSync

SelfSync supports data modeling in an Extended Entity-Relationship (EER) dia-
gram [4] and object-oriented programming in the prototype-based language Self
[21], [26]. In this section we elaborate on these two parts while introducing an
example (sections 2.1 and 2.2). We then explain how SelfSync is used to proto-
type applications rapidly (section 2.3). Finally, we describe the three views that
SelfSync synchronizes during Round-Trip Engineering (section 2.4).

2.1 EER Modeling

EER diagrams consist of the typical data modeling elements, similar to Class
Diagrams in the Unified Modeling Language (UML) [9]: entities (classes in the
UML), attributes and operations1 in entities, and association and inheritance
relations between entities. The associations can be 1-to-1, 1-to-many, and many-
to-many. There are some variants of the typical data modeling elements, such as
entities and weak entities, and simple, primary and derived attributes. The EER
notation we use combines existing approaches: Chen’s boxes [4], the relations of
the crow’s feet notation and the cardinalities of [7] 2. We use different colours
to denote the differences between entities and weak entities, and between sim-
ple, primary and derived attributes. We want to stress that our new combined
notation is merely a consequence of our choice of development platform.

In Figure 1 an EER model of a moderate banking system is shown. This
example is used throughout the paper. A Customer has a primary attribute
customerID and simple attributes customerName, customerStreet and custom-
erCity. Customer is in a many-to-many relation with Loan (role borrows) and
with Account (role accounts), and in a many-to-one relation with Employee
(role banker). Payment is a weak entity that is dependent of Loan. An Account
can be specialized into a SavingsAccount or a CheckingsAccount.

1 We extended the standard EER diagram with operations in addition to attributes.
2 The order of cardinalities is reversed, as in the Object Modeling Technique



Fig. 1. An EER diagram for a moderate banking system.

2.2 Self

The object-oriented implementation language we employ is the prototype-based
language Self. In general, prototype-based languages can be considered object-
oriented languages without classes. As such, a prototype is used for sharing data
between objects and new objects can be created by cloning a prototype. Self,
however, introduces another programming idiom, traits, which share behavior
among objects and let objects inherit from them, which allows for simulating
classes [3]. Note that in Self everything is an object, more specifically prototypes,
traits and cloned objects, which can again be prototypes.

The Self development environment provides support for visual programming
using outliners, graphical views on objects. Objects, attributes and methods can
be created and initialized using menus of the outliners. This is depicted in Figure
2 by the two boxes on the top left, labeled Self code and Self outliners.

Fig. 2. The setup of our tool for supporting Round-Trip Engineering.



2.3 Two-Phased Approach

We distinguish two phases when using SelfSync, which are typically but not
necessarily executed subsequently. For each phase we indicate how this setup
is implemented and provide terminology that is used in the remainder of this
paper.

In the first, active modeling phase a user draws an EER diagram while corre-
sponding Self objects are automatically created. In reality, these objects are the
modeled entities: drawing a new EER entity automatically results in an EER
entity view being created on a new object. Hence, we support incremental and
continuous synchronization per entity and per object : changes to an EER en-
tity are in fact changes to the outliner of an object and thus are automatically
propagated to the object via Self’s reflection mechanism. Similarly, changes to
an object, made via the object’s outliner, are automatically propagated to the
corresponding EER entity. View-dependent information, such as relationships
constraints in the EER diagram and method bodies in the Self objects, is pre-
served during changes and subsequent synchronization.

Our implementation strategy consists of generating per entity a prototype
for sharing the entity’s data and a traits object for sharing its behavior. This
results in the following setup, again depicted in Figure 2: the top right-hand box
in this figure is the EER diagram, whose entities are mapped to the corresponding
Self outliners. Each entity corresponds to a prototype-traits pair, bounded in a
dashed box. This is denoted by the arrow from the entity in the EER model
to the dashed box containing prototype and traits outliners. We refer to the
prototype-traits pair that implements a certain entity from the EER diagram as
an implementation object.

The second phase of our approach is an interactive prototyping process3.
This phase allows a user to create and initialize ready-to-use objects from each
implementation object created in the previous phase, thus populating the appli-
cation. With the notion of a population object we distinguish the objects that
result from this phase with the implementation objects that are created in the
previous phase.

This phase cannot be supported in a fully automatic way, because choices
need to be made that depend on the preferences of the user of the program. For
example, when an actual Customer object is created and initialized, our system
asks the user how many Account objects this Customer is to refer to, which can
be any number or unlimited.

2.4 One Repository - Three Views

Performing the two-phase approach described above results in a setup that con-
sists of one common repository, the actual Self code, and three views on it:

3 Note that a prototype is a special object in prototype-based languages for supporting
data sharing of several objects whereas prototyping is the activity of instantiating
and initializing a program into a ready-to-use, running system.



– the EER data modeling view: consists of all the information pertaining to
entities (attributes and operations) as well as inheritance between entities
and associations with multiplicities between entities

– a code-time implementation view: the outliners on the implementation ob-
jects, which show everything related to object-oriented programs; program-
mers can enrich the implementation objects with additional attribute slots,
fill in the method bodies, create new implementation objects manually, etc.
Note that relations in the implementation view are implicit since these occur
when a certain object has one or more objects as attribute.

– a run-time implementation view: (the outliners on) the population objects,
which contain actual data for running the application

SelfSync synchronizes the three views, which is partly facilitated because the
objects in the three views are actually different views on the same Self code.
On the other hand, view-dependent information is not visible in all the views.
For example, multiplicities in EER diagrams are not visible in the population
objects but are nevertheless enforced by SelfSync.

3 Round-Trip Engineering Scenarios

Round-Trip Engineering is especially crucial in the context of MDE, where mul-
tiple views of a software application can in principle be manipulated and the
other views need to be synchronized accordingly [1], [6], [12], [20]. When consid-
ering a graphical model as one view and the (graphical or textual) source code
as another, Round-Trip Engineering typically considers forward and a backward
activities. The former consists of changing the graphical model after which the
source code needs to be synchronized with the model. The latter denotes changes
to the source code and subsequent synchronization steps to the graphical model.

Based on the direction of synchronization we make a distinction between the
views the changes take place in: 1) the EER data modeling view and 2) the code-
time object-oriented implementation view both described at the end of Section
2.4. The data modeling view represents synchronization in the forward direction,
whereas the code-time implementation view represents the inverse. All elements
contained in these views can evolve, which we use in this paper as a collective
term for being created, changed or deleted.

Based on which kinds of elements evolve in a view, we make another dis-
tinction in Round-Trip Engineering: 1) changes to entities, attributes and oper-
ations in the data modeling view, and changes to implementation objects, data
and method slots in the code-time implementation view and 2) changes to as-
sociation and inheritance relations in the data modeling view, and changes to
relations between implementation objects in the code-time implementation view.

Each of the four scenarios corresponds to a particular direction of Round-
Trip Engineering and particular elements that are changed and subsequently
synchronized as summarized in Table 1:



Table 1. The four scenarios that cover synchronization between a graphical data mod-
eling view and an OO code-time implementation view.

Entities Relations

Data modeling view Scenario 1 Scenario 2

OO code-time implementation view Scenario 3 Scenario 4

scenario 1: changes to entities, attributes and operations in the data model-
ing view, which are synchronized in both the code-time and the run-time
implementation view

scenario 2: changes to association and inheritance relations in the data mod-
eling view, which are synchronized in both the code-time and the run-time
implementation view

scenario 3: changes to implementation objects, data and method slots in the
implementation view, which are synchronized in the data modeling view

scenario 4: changes to (implicit) relations in the implementation view, which
are synchronized in the data modeling view

Note that in scenario 1 and 2 when operations or relations in the data model
evolve, this can impact the population objects in the run-time implementation
view. In Figure 2 the four scenarios are situated in the different views of the
SelfSync architecture.

4 Scenario 1: Entity Evolution From Model To Code

We use the banking system EER model (see Figure 1) as an example. This
model is extended to support simple insurances. We illustrate the scenario with
the following steps:

1. Add two new entities insurance and insurer to the banking system model
2. Add a new attribute policyNr to insurance
3. Add a new attribute insuredObject to insurance
4. Add a new operation checkClaim to insurance

To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Add a new blank entity view to the EER diagram via the appropriate menu
and name it insurer. Synchronization steps: First, a new blank entity view
becomes graphically visual; since this is a new view on a new implementation
object, a new implementation object is automatically created. This newly
created implementation object contains no public data slots and an empty
traits object to contain methods. The implementation object is automatically
saved in the banking schema object. The name of the graphical entity view
in the diagram is changed to insurer, this is propagated automatically onto
the viewed implementation object.



2. Analoguously to step 1, the entity view insurance is added.
3. Next, we add a new attribute to the graphical entity view insurance via

the appropriate menu, and name it policyNr. Synchronization steps: First
a blank attribute (dark/light blue) becomes graphically visual inside the
insurance entity view. Automatically, a new data slot is added to the
insurance implementation object. The renaming is propagated to the imple-
mentation object by renaming the original data slot in the implementation
object. This implies that changes to the contents of the data slot in the
implementation object are not lost when the corresponding attribute in the
entity view is renamed.

4. Similarly, a new operation is added to the insurance entity view via the
appropriate menu, and is named checkClaim. Synchronization steps: First a
blank operation (red) becomes graphically visual inside the insurance entity
view. Automatically, a new method slot is added to the traits object of the
insurance implementation object. The renaming is propagated to the traits
object by renaming the original method slot. The body of the method can be
viewed and edited from inside the entity view: the changes are propagated
to the method body in the implementation object.

Deleting attributes and operations automatically results in deleting the corre-
sponding data or method slot in the implementation object. Deleting an entire
entity view automatically results in deleting the implementation object from the
banking schema object.

By adding, removing, renaming, and changing an operation to an entity
view, all run-time population objects that are created from the entity view’s
code-time implementation object, are affected. This is a consequence of adding
corresponding method slots in the traits object of the code-time implementation
objects, that are shared by the code-time implementation object as well as by
all its run-time population objects.

5 Scenario 2: Relationship and Specialization Evolution
From Model To Code

We use the banking system EER model (see Figure 1) as an example. This
model is extended to support simple insurances. We illustrate the scenario with
the following steps:

1. Specialize the entity employee into insurer in the banking system model
2. Add a new 1-to-n relation between the entities customer and insurance in

the banking system model

To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Add a new specialization to the EER diagram from the entity view insurer
to the entity view employee, via the appropriate menu. Synchronization



steps: Automatically, the insurer implementation object inherits from the
employee implementation object. Deleting the specialization in the EER
model automatically results in removing the inheritance between the two
implementation objects.

2. Add a new 1-to-n relationship between the entity views insurer and custom-
er, via the appropriate menu. Synchronization steps: Automatically a slot
called 1 to n relation insurer customer is added to both viewed imple-
mentation objects insurer and customer. This slot contains a reference to
the other partner entity object. Deleting the relationship in the EER model
automatically results in deleting the slot.

After the interactive prototyping phase a 1-to-1 or 1-to-n relationship be-
tween two entity views also results in satisfying the cardinality constraints im-
posed by these relations. When two entity views are in a relationship in which
the first one has a single reference (one or zero) to the second one, the unique-
ness of this reference is enforced in the run-time population objects in two ways.
First we ensure that all run-time population objects (i.e. the clones) of the first
code-time implementation object’s type (i.e. the prototype) have at most one ref-
erence to run-time population objects of the second code-time implementation
object’s type. Secondly, we also ensure that only one run-time population object
of the second code-time implementation object’s type refers to run-time popu-
lation objects of the first type. If two entity views are in a 1-to-1 relationship,
this is enforced in the two directions. Our system checks for violation of these
constraints, each time the slots of a run-time population object are updated.

Adding dependencies between two entity views results in another kind of
enforcement. In this case we ensure that when a run-time population object
is deleted, all run-time population objects whose corresponding entity view is
dependent of the entity view of the deleted run-time population object, are
deleted also.

Note that since the multiplicity and dependency information is stored in the
traits objects shared by both code-time implementation and run-time population
objects, changing relationships and multiplicities or dependencies in the EER
diagram affects also existing run-time population objects.

6 Scenario 3: Object Evolution From Code To Model

We use the banking system EER implementation as an example. When a new
code-time implementation objects is created it is installed in the schema object
and its entity view becomes visual. When an entire code-time implementation
object is deleted, the entity view automatically dissapears from the EER dia-
gram. The other cases are illustrated with the following steps:

1. Add a new attribute insurer to the implementation object insurance in
the banking system implementation

2. Rename the attribute insurer in the implementation object insurance to
myInsurer



3. Add a new method extendPolicy = (‘to be implemented’) to the im-
plementation object insurance

4. Change the body of extendPolicy in the implementation object insurance
to (numberOfInsuredObjects:(numberOfInsuredObjects + 1))

To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Add a new data slot to the insurance implementation object via the main
Self object menu and name it insurer. Synchronization steps: Automatically,
the insurance entity view in the EER model is extended with a new at-
tribute insurer. Note that deleting a data slot in an implementation object
automatically results in deleting the corresponding attribute in the entity
view.

2. Rename the insurer data slot in the insurance implementation object
to myInsurer by double-clicking it. Synchronization steps: Automatically,
the insurer attribute in the insurance entity view in the EER model is
renamed to myInsurer.

3. Add a new method slot extendPolicy = (‘to be implemented’) to the
implementation object insurance. Synchronization steps: Automatically,
the insurance entity view in the EER model is extended with a new method
attribute extendPolicy. When this method body is viewed or edited in the
insurance entity view in the EER model via the operation menu, the text
‘to be implemented’ becomes visible. Note that deleting a method slot in
an implementation object automatically results in deleting the corresponding
operation in the entity view.

4. Change the body of extendPolicy to (numberOfInsuredObjects:(number-
OfInsuredObjects + 1)) by clicking the method body symbol in the insur-
ance implementation object. Synchronization steps: When the method body
of the extendPolicy operation is viewed or edited in the insurance entity
view in the EER model via the operation menu, the new body (numberOfIns-
uredObjects: (numberOfInsuredObjects + 1)) becomes visible.

When these changes are applied to run-time population objects, the entity views
of the corresponding code-time implementation objects are not affected.

7 Scenario 4: Reference and Inheritance Evolution From
Code To Model

We use the banking system EER implementation as an example. We illustrate
the scenario with the following steps:

1. Change the contents of the attribute myInsurer in the implementation ob-
ject insurance to contain the insurer implementation object.

2. Create a new child of the implementation object insurance



To realize the entity evolution scenario, the following actions are performed
in SelfSync at code-time, by the user followed by our automated synchronization
mechanism:

1. Set the contents of the myInsurer data slot in the insurance implementa-
tion object to contain the insurer implementation object either via the ap-
propriate Self menu, a user action, or at run-time. Synchronization steps: Au-
tomatically, a one-to-one relationship link is drawn between the insurance
entity view and the insurer entity view in the EER model, given no 1-to-
1 link is drawn between them currently. This synchronization is performed
dynamically: when we manually remove the 1-to-1 link in the EER model,
it is automatically re-drawn, each time the Self system updates the slots of
the insurance implementation object and discovers that it (still) contains
a reference to the insurer implementation object

2. Create a new child of the implementation object insurance via the Self
main menu. Synchronization steps: Automatically, a new entity view is added
to the EER model. Simultaneously, a new implementation object has been
created, inheriting the slots of the insurance implementation object. Next
a new “is-a” link is drawn between the new entity view and the insurance
entity view in the EER model.

When these changes are applied to run-time population objects, the entity views
of the corresponding code-time implementation objects are not affected.

8 Related Work and Discussion

We situate our approach in the intersection of three domains: Round-Trip En-
gineering, visual programming and agile development. We discuss Borland’s To-
gether (section 8.1) and the Naked Objects approach (section 8.2), respectively,
as representatives for the first two domains. A concrete instance of agile modeling
and other related work can be found in Section 8.3. In Section 8.4 we compare
SelfSync to the related approaches.

8.1 Round-Trip Engineering

The state-of-the-art in RTE includes application such as Rational XDE [25],
Borland Together [28], and FUJABA [22]. One of the leaders in this domain is
Borland’s Together. This set of commercial tools provides support for modeling,
designing, implementing, debugging, and testing applications. The synchroniza-
tion mechanism between UML class diagrams and implementation is realized by
the LiveSource technology. More specifically, the implementation model (i.e. the
source code) is parsed and rendered as two views: a UML class diagram and in a
formatted textual form. LiveSource is in fact a code parsing engine. The user can
manipulate either view and even the implementation model. However, all user
actions are translated directly to the implementation model and then translated
back to both views. We discuss the relation to SelfSync in Section 8.4.



Other related work in RTE, is mostly concerned with characterizing RTE
rather than providing concrete tool support. In [1], RTE is described as a system
with at least two views that can be manipulated. Applying the inverse trans-
formation f−1 on a view that is transformed using f , should again yield the
same view. The Automatic Roundtrip Engineering [1] approach advocates the
automatic derivation of this inverse transformation function based on the orig-
inal transformation function. Our approach is based on Model-View-Controller
(MVC) [10]. Therefore, a change initiated in a view is not actually performed
in the view, but in the underlying implementation element, which results in the
relevant views being automatically updated.

In [20] RTE is connected to inconsistency handling. In SelfSync, MVC makes
inconsistency handling superfluous since no inconsistencies are introduces for the
same reasons explained above. The same work states that RTE is not merely
a combination of forward and backward engineering since there is not always a
one-to-one mapping between similar elements in different views. In contrast, we
deliberately assume such a mapping in order to automate the synchronization
bidirectionally.

8.2 Visual Programming

At the level of visual programming we compare SelfSync to the Naked Objects
[18], [24] approach that also applies MVC, but in one direction: from code to
model. Building a business system consists solely of defining the domain business
objects (i.e. code-time implementation objects) in Java, which immediately are
made visible to and manipulable by the user in a business object model. The
Naked Objects Java framework represents classes as icons and uses Java inter-
faces to determine the methods of any business object and render them visible
on the screen by means of a generic viewing mechanism.

With respect to run-time support, the user can visually create new business
objects, specify their attributes, add associations between them, or invoke meth-
ods on them. The ready-to-use objects are visually represented and automatically
created and updated in the Java program.

8.3 Other Related Work

In this section we describe other related work that is not discussed in detail but
included for completeness.

Since the late eighties, it has been encouraged to combine (E)ER models and
object-orientation (OO) [5], [15]. Various approaches and techniques exist for
translating EER into object-orientation [8], [14], [11], [13]. Such mappings can
be used in the domain of object-relational (O/R) mappers [29], [23], [27]. These
tools generate an object implementation from a data model such as (E)ER, and
possibly support synchronization of both models. Some of them generate code to
enforce constraints on relationships and dependencies between implementation
objects, based on the data model. However, these applications do not consider
behavior at the level of the datamodel.



Finally, since SelfSync allows rapid prototyping, we consider a concrete ex-
ample of agile modeling [2]. In this case the stress is less on synchronization and
more on rapid prototyping and testing. In [2] applying eXtreme programming to
modeling is realized by making UML diagrams executable. Different UML dia-
grams are translated into Petri-Nets and interpreted by a Petri-Net engine. This
engine can be seen as a UML Virtual Machine and contains a Java parser. The
precise evolution support in this case depends on the environment in which the
UML models are created and in which the UML Virtual Machine is integrated.
As is, as far as we know, no support for RTE is provided.

8.4 Discussion

The ensuing discussion compares SelfSync to the related work introduced above.
We distinguish four tracks: (1) UML versus EER, (2) forward RTE support
(scenarios 1 and 2), (3) backward RTE support (scenarios 3 and 4), and (4)
run-time RTE support.

UML versus EER. There is an almost religious discussion between the (E)ER
and the UML communities as to which approach is better. Typical claims are
that (E)ER modeling is more formally funded but that the UML is more open
[19], [9]. In our work, however, the use of EER does not exclude the transfer
of our conceptual results to an UML-based context. In this paper, we describe
Round-Trip Engineering on the data modeling level in terms of entities, at-
tributes and operations, and association and inheritance relations. These EER
modeling elements have equivalent modeling elements in Class Diagrams of the
UML.

Forward RTE Support. Forward RTE support, embodied by scenarios 1 and
2, is provided by Together’s LiveSource. Naked Objects only provides backward
RTE support and some run-time support. We first mention the similarities with
SelfSync, and then discuss the differences.

Similarities. Both LiveSource and SelfSync provide forward RTE support
when evolving the following data modeling elements: entities or classes, at-
tributes, operations, relations and specializations. In LiveSource this is supported
by first propagating the changes to the implementation model and then updat-
ing the views, i.e. the class diagram and the formatted source code. In SelfSync
this is supported because these data modeling elements and the corresponding
implementation elements are in reality the same. Although LiveSource uses Java
as implementation language, which is class-based, and SelfSync uses Self, orig-
inally a prototype-based language, this is not the fundamental difference here.
Indeed, a mapping needs to be devized between data modeling and implemen-
tation elements, whether this is entities on classes or entities on prototypes and
traits.

Differences. The only other support offered for cardinalities and dependencies
in Together is not inherent to LiveSource but a consequence of the fact that To-
gether supports the technology of Enterprise Java Beans (EJB), the component



model for J2EE. EJB 2.0’s container-managed persistence specification allows
fine-grained control over entity bean relationships. When we add an association
between two container-managed entity beans in a class diagram, parameters
such as relation name and multiplicities need to be supplied. Automatically a
new container-managed relationship is created. To the best of our knowledge,
the actual enforcement of cardinalities is only limited and only due to the static
typing that is provided by Java. In particular, an attribute cannot contain an
object of another type than declared with the attribute. Although we employ
a dynamically typed implementation language, we provide this level of enforce-
ment, and more. For example, we also ensure that only one population object of
a certain type refers to another population object if the latter is allowed to have
a single reference to the first type.

To enforce dependencies using EJB a cascade-delete XML tag is used in the
description of relationships: when the entity bean is deleted, all its dependents it
is in a relationship with, are deleted as well. The difference with SelfSync is that,
although we provide similar support for enforcing dependencies, we provide it in
the context of an RTE tool and not solely in the implementation technology.

Backward RTE Support. Backward RTE support, embodied by scenarios 3
and 4, is provided by Together’s LiveSource and Naked Objects. We first mention
the similarities with SelfSync, and then discuss the differences.

Similarities. LiveSource and SelfSync provide backward RTE support when
evolving the following object-oriented implementation elements: classes in the
class-based approaches and prototypes or traits in our prototype-based approach,
attributes, methods, references between classes or prototypes, and inheritance
between classes or traits. Naked Objects support the same except for references
and inheritance. In Together’s LiveSource and SelfSync the backward RTE sup-
port is enabled in an analogous way to the forward RTE support. Naked Objects’
support for backward RTE is similar to ours, i.e. through MVC, but an additional
compilation step of the changed Java code is necessary.

Differences. LiveSource and SelfSync do not differ in the kind of backward
RTE support provided, only in the internal strategy, as explained earlier. Naked
Objects, however, does not provide support for synchronizing evolving references
and inheritance in the Java code.

Run-time RTE Support. Run-time RTE support only makes sense in the
forward direction, more specifically changes to the data model are reflected in
the run-time population objects. It is nonsensical to automatically synchronize a
data model when changes are made to instantiated and initialized objects. Espe-
cially since most statically typed, class-based implementation languages such as
Java would restrict the possible changes that can be made based on the source
code. In dynamically typed languages or prototype-based languages (or both)
there are less restrictions to changing the run-time population objects, but even
in these cases it is undesirable to reflect them in the data model.



Only SelfSync provides full forward run-time RTE support. This means that
evolution of attributes, operations, relations, specializations, cardinalities and
dependencies are reflected in the run-time population objects. The main reason
SelfSync supports this is primarily due to the dynamic character of the imple-
mentation language, Self. Using another dynamically typed language, such as
Smalltalk, would allow us to achieve similar results. In a context where a stati-
cally typed implementation language is used, such as Java, one would have much
less flexibility in changing the data model (or even the source code directly) and
synchronizing the corresponding ready-to-use population objects. Another rea-
son why this is supported in SelfSync, is that Self separates state sharing and
behavior sharing.

In the Naked Objects approach there is only support at the level of adding
associations between instantiated business objects, which is reflected in the cor-
responding Java objects.

9 Conclusion

This paper presents three contributions with respect to Round-Trip Engineer-
ing (RTE) in a particular Model-Driven Engineering setup consisting of a data
modeling view and a view on an object-oriented implementation. First of all, we
identify and describe fundamental set of four Round-Trip Engineering scenarios.
These scenarios distinguish between direction, from model to code or vice versa,
and kind of elements that evolve, entity views and implementation objects and
their elements on the one hand, or relations between them on the other. A second
contribution is our tool, SelfSync, which provide very dynamic support for these
four RTE scenarios, not only at code-time but in relevant run-time situations
as well. This is a direct result of the entities of the data modeling view and
the corresponding implementation objects being one and the same in SelfSync.
Finally, we describe related work and present a comparison accompanied by an
extensive discussion.

References

1. U. Assman. Automatic roundtrip engineering. Electronic Notes in Theoretical
Computer Science, 82.

2. M. Boger, T. Baier, F. Wienberg, and W. Lamersdorf. Extreme modeling. pages
175–189, 2001.

3. C. Chambers, D. Ungar, B.-W. Chang, and U. Holzle. Parents are shared parts of
objects: Inheritance and encapsulation in SELF. Lisp and Symbolic Computation,
4(3):0–, 1991.

4. P. P. Chen. The entity-relationship model - toward a unified view of data. ACM
Trans. Database Syst., 1(1):9–36, 1976.

5. P. P. Chen. Er vs. oo. In Entity-Relationship Approach - ER’92, 11th International
Conference on the Entity-Relationship Approach, Karlsruhe, Germany, October 7-
9, 1992, Proceedings, volume 645 of Lecture Notes in Computer Science, pages 1–2.
Springer, 1992.



6. S. Demeyer, S. Ducasse, and S. Tichelaar. Why unified is not universal? In UML’99,
Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS,
pages 630–644. Springer, 1999.

7. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley
World Student Series, 3 edition, 1994.

8. J. Fong. Mapping extended entity relationship model to object modeling technique.
SIGMOD Record, 24(3):18–22, 1995.

9. M. Fowler and K. Scott. UML distilled: a brief guide to the standard object modeling
language. Addison-Wesley Longman Publishing, Boston, MA, USA, 2000.

10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, Mass., 1995.

11. M. Gogolla, R. Herzig, S. Conrad, G. Denker, and N. Vlachantonis. Integrating the
er approach in an oo environment. In Entity-Relationship Approach - ER’93, 12th
International Conference on the Entity-Relationship Approach, Arlington, Texas,
USA, December 15-17, 1993, Proceedings, volume 823 of Lecture Notes in Computer
Science, pages 376–389. Springer, 1993.

12. A. Henriksson and H. Larsson. A definition of round-trip engineering. Technical
report, Linkopings Universitet, Sweden, 2003.

13. R. Herzig and M. Gogolla. Transforming conceptual data models into an object
model. In ER’92, Karlsruhe, Germany, October 1992, Proceedings, volume 645 of
Lecture Notes in Computer Science, pages 280–298. Springer, 1992.

14. C.-T. Liu, S.-K. Chang, and P. K. Chrysanthis. Database schema evolution using
EVER diagrams. In Advanced Visual Interfaces, pages 123–132, 1994.

15. S. B. Navathe and M. K. Pillalamarri. Ooer: Toward making the e-r approach
object-oriented. In Entity-Relationship Approach: A Bridge to the User, Pro-
ceedings of the Seventh International Conference on Enity-Relationship Approach,
Rome, Italy, November 16-18, 1988, pages 185–206. North-Holland, 1988.

16. E. V. Paesschen, M. D’Hondt, and W. D. Meuter. Rapid prototyping of extended
entity relationship models. In ISIM 2005, Hradec Nad Moravici, Czech Republic,
April 2005, Proceedings, pages 194–209. MARQ, 2005.

17. E. V. Paesschen, W. D. Meuter, and T. D’Hondt. Domain modeling in self yields
warped hierarchies. In Workshop Reader ECOOP 2004, Oslo, Norway, June 2004,
volume 3344 of Lecture Notes in Computer Science, page 101, 2004.

18. R. Pawson and R. Matthews. Naked objects: a technique for designing more ex-
pressive systems. ACM SIGPLAN Notices, 36(12):61–67, Dec. 2001.

19. K.-D. Schewe. UML: A modern dinosaur? In Proc. 10th European-Japanese
Conference on Information Modelling and Knowledge Bases, Saariselkä (Finland),
2000. IOS Press, Amsterdam, 2000.

20. S. Sendall and J. Kuster. Taming model round-trip engineering. In Proceedings
of the Workshop on Best Practices for Model-Driven Software Development at
OOPSLA 2004, Vancouver, Canada, 2004.

21. D. Ungar and R. B. Smith. Self: The power of simplicity. In OOPSLA ’87, Orlando,
Florida, USA, pages 227–242, New York, NY, USA, 1987. ACM Press.

22. Fujaba: http://wwwcs.uni-paderborn.de/cs/fujaba/.
23. Llblgen: http://www.llblgen.com/.
24. Naked objects framework: http://www.nakedobjects.org.
25. Rational: http://www-306.ibm.com/software/awdtools/developer/rosexde/.
26. Self: http://research.sun.com/self/.
27. Simpleorm: http://www.simpleorm.org/.
28. Together: http://www.borland.com/together/.
29. Toplink: http://www.oracle.com/technology/products/ias/toplink/index.html.


