
SelfSync: A Dynamic Round-Trip Engineering Environment

Ellen Van Paesschen
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2

Brussel, Belgium

evpaessc@vub.ac.be

Wolfgang De Meuter
Laboratoire d’Informatique

Fondamentale de Lille
Université des Sciences et

Technologies de Lille
59655 Villeneuve d’Ascq

Cédex, Lille, France

Maja D’Hondt
Laboratoire d’Informatique

Fondamentale de Lille
Université des Sciences et

Technologies de Lille
59655 Villeneuve d’Ascq

Cédex, Lille, France

Categories and Subject Descriptors: D.2.2 Software
Engineering, Design Tools and Techniques [CASE, OO de-
sign methods, evolutionary prototyping], D.2.13 Software
Engineering, Reusable Software, D.2.6 Software Engineer-
ing, Programming Environments.

General Terms: Design, Experimentation.

Keywords: Model-driven Engineering (MDE), Round-Trip
Engineering, dynamic languages, prototype-based program-
ming, rapid prototyping, role modeling.

Extended abstract
Model-Driven Engineering (MDE) advocates the generation
of software applications from models, which are views on
certain aspects of the software. We focus on a particular
setup which consists of a graphical data modeling view and
a view on an object-oriented implementation. In our Round-
Trip Engineering (RTE) tool SelfSync [3], [2], the entities of
the data modeling view and the corresponding implementa-
tion objects are one and the same resulting in a continuous,
highly dynamic synchronization between the two views.

SelfSync is the first prototype-based1 RTE environment
as it successfully combines prototypes and Extended Entity-
Relationship (EER) [1] diagrams. This environment is built
on top of the object-oriented prototype-based language Self
[6] and integrates a graphical drawing editor for EER dia-
grams. SelfSync realizes co-evolution between domain anal-
ysis objects in an EER diagram and Self implementation
objects.

A bidirectional link between domain analysis objects and
implementation objects is created by adding an extra view to
the model-view-controller (MVC) architecture of the Mor-
phic user interface in Self. The existing view of a Self out-
liner (i.e. the default graphical representation of implemen-

1Prototype-based languages can be considered object-
oriented languages without classes.

Copyright is held by the author/owner.
OOPSLA’05,October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

tation objects) is extended with an EER entity view in such
a way that both views represent the same underlying Self
object (the model). Both views are connected and synchro-
nized onto the level of attributes and operations.

Two-Phase Approach.Development in SelfSync consti-
tutes two phases. In the first, active modeling phase a user
draws an EER diagram while corresponding Self objects are
automatically created. In reality, these objects are the mod-
eled entities: drawing a new EER entity automatically re-
sults in an EER entity view being created on a new object.
Hence, we support incremental and continuous synchroniza-
tion per entity and per object : changes to an EER entity
are in fact changes to the outliner of an object and thus are
automatically propagated to the object via Self’s reflection
mechanism. Similarly, changes to an object, made via the
object’s outliner, are automatically propagated to the corre-
sponding EER entity. View-dependent information, such as
relationships constraints in the EER diagram and method
bodies in the Self objects, is preserved during changes and
subsequent synchronization.

The second phase of our approach is an interactive pro-
totyping process 2. This phase allows a user to create and
initialize ready-to-use objects from each implementation ob-
ject created in the previous phase, thus populating the appli-
cation. We use the term population object to distinguish the
objects that result from this phase with the implementation
objects that are created in the previous phase.

This phase cannot be supported in a fully automatic way,
because choices need to be made that depend on the prefer-
ences of the user of the program.

One Repository - Three Views.Performing the two-phase
approach described above results in a setup that consists
of one common repository, the actual Self code, and three
views on it:

• the EER view consists of all the information pertaining
to entities as well as inheritance between entities and
associations with multiplicities between entities

• the outliners on the implementation objects, which
show everything related to object-oriented programs;

2Note that a prototype is a special object in prototype-
based languages for supporting data sharing of several ob-
jects whereas prototyping is the activity of instantiating and
initializing a program into a ready-to-use, running system.



programmers can enrich the implementation objects
with additional attribute slots, fill in the method bod-
ies, create new implementation objects manually, etc.

• the outliners on the population objects, which contain
actual data for running the application

SelfSync synchronizes the three views, which is partly fa-
cilitated because the objects in the three views are actually
different views on the same Self code. On the other hand,
view-dependent information is not visible in all the views.
For example, multiplicities in EER diagrams are not visible
in the population objects but are nevertheless enforced by
SelfSync.

The crucial difference between SelfSync and other round-
trip engineering tools, such as the highly advanced Togeth-
erJ [7], is that SelfSync explicitly considers the third view,
i.e. the running application populated with objects, and
includes it in the round-trip engineering process. In other
approaches, only the implementation objects, which are typ-
ically class definitions, are synchronized with the modeling
view. Once the classes are instantiated into objects, which
we refer to as population objects, the synchronization with
the modeling view is no longer supported.

The Power of SelfSync.SelfSync has a number of typical
characteristics that enable advanced and dynamic round-
trip engineering between the EER diagram and the object-
oriented program in Self:

1. Multiplicity constraint enforcement. After the in-
teractive prototyping phase we ensure that the multi-
plicity constraints imposed by a one-to-one or one-to-
many relationship between two entities are satisfied at
all times. When two entities are in a relationship in
which the first one has a single reference (one or zero)
to the second one, the uniqueness of this reference is
enforced in the population objects in two ways. We
first ensure that all population objects that have been
derived from the first entity refer to at most one pop-
ulation object that has been derived from the second
entity. Secondly, we also ensure that only one pop-
ulation object derived from the second entity refers
to population objects derived from the first entity. If
two entities are in a one-to-one relationship, this is en-
forced in the two directions. Our system checks for
violation of these constraints, each time the slots of a
population object are updated.

2. Object dependency enforcement. Dependencies be-
tween entities in an EER diagram result in another
kind of enforcement of population objects derived from
these entities. In this case we ensure that when a popu-
lation object is deleted, all population objects it refers
to, that have been derived from an entity that depends
on the entity from which the deleted population object
is derived, are deleted also. Note that for the enforce-
ment to be actually performed, the population objects
that are candidates for deletion are not allowed to be
referenced by any other population object.

3. Method synchronization. The EER diagram used in
SelfSync is extended with operations. These oper-
ations are linked to the method bodies of the cor-
responding methods in the implementation objects.

First, the method bodies can be edited in the EER di-
agram, which is automatically synchronized with the
actual method bodies in the implementation objects,
and vice versa. Second, we also support the possibility
to “inject” behaviour before or after one or more se-
lected operations in the EER diagram. Again, this new
piece of code is automatically added in the beginning
or end of the method bodies of all selected operations
in the EER diagram. These code injections maintain
their identity: at any point in time the layers of differ-
ent code injections of an operation can be consulted.
Each of these injections can be removed locally or in
all operations where this specific injection was added.

4. Object generations Changing a method in an imple-
mentation object has repercussions on all population
objects that have been derived from it. Since we al-
low changing method bodies by manipulating the cor-
responding operations in the EER diagram, SelfSync
supports behavioural evolution of entire existing gen-
erations of population objects, steered from the EER
diagram.

5. Role modeling. We extended SelfSync’s EER model
with a modeling concept for roles [4]. Modeling a
role object results in corresponding implementation
objects being automatically created with the structure
of warped hierarchies [4], [5]. In these implementation
objects, an arbitrary number of roles can be added or
removed dynamically thanks to multiple inheritance
and dynamic parent modification. The technique is
based on meta-programming and Self’s state inheri-
tance mechanism called copy-down [6].

1. REFERENCES
[1] P. P. Chen. The entity-relationship model - toward a

unified view of data. ACM Trans. Database Syst.,
1(1):9–36, 1976.

[2] E. V. Paesschen, M. D’Hondt, and W. D. Meuter.
Rapid prototyping of eer models. In ISIM 2005, Hradec
Nad Moravici, Czech Republic, April 2005, Proceedings,
pages 194–209. MARQ, 2005.

[3] E. V. Paesschen, W. D. Meuter, and M. D’Hondt.
Selfsync: a dynamic round-trip engineering
environment. In Proceedings of the ACM/IEEE 8th
International Conference on Model-Driven Engineering
Languages and Systems (MoDELS’05), October 2-7,
Montego Bay, Jamaica, 2005.

[4] E. V. Paesschen, W. D. Meuter, and M. D’Hondt. Role
modeling in selfsync with warped hierarchies. In
Proceedings of the AAAI Fall Symposium on Roles,
November 3 - 6, Arlington, Virginia, USA, 2005 (to
appear).

[5] E. V. Paesschen, W. D. Meuter, and T. D’Hondt.
Domain modeling in self yields warped hierarchies. In
Workshop Reader ECOOP 2004, Oslo, Norway, June
2004, volume 3344 of Lecture Notes in Computer
Science, page 101, 2004.

[6] Self: http://research.sun.com/self/.

[7] Together: http://www.borland.com/together/.


