
Role Modeling in SelfSync with Warped Hierarchies

Ellen Van Paesschen
Programming Technology Lab

Wolfgang De Meuter
Programming Technology Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel

Email: {evpaessc,wdmeuter,mjdhondt}@vub.ac.be

Maja D’Hondt
System Software Engineering Lab

Abstract

In object-oriented software engineering roles are con-
sidered both classifications and instances. To reduce
the gap between the conceptual modeling of roles and
a corresponding implementation, we propose a new
role modeling concept based on warped inheritance hi-
erarchies. We integrated this new modeling concept
in our prototype-based object-oriented round-trip engi-
neering environment SelfSync. In this way it is possi-
ble to model roles in an Extended Entity-Relationship
diagram while the corresponding implementation ob-
jects are automatically created and synchronized with
the conceptual model. We apply constraint enforcement
during the lifetime of role objects, based on dependency
and role combinations.

Introduction
There exist various view points on roles in object-oriented
software engineering. In this paper, we merge the perspec-
tives on roles asdynamic multiple classificationsof objects,
and asinstances to be adjoinedto the objects that perform
the role.

The role as amodeling conceptcannot be emulated by any
of the better established conceptual or object-oriented mod-
eling constructs. The challenge of defining a suitable role
modeling concept is to integrate it into existing modeling
frameworks causing as little redefinition as necessary, while
capturing as much of its semantics as possible (Steimann
2000).

Due to the fact that roles are considered both special-
izations and generalizations of the entities performing the
role (Steimann 2000), the role modeling concept can be
mapped to thesubtype-supertype paradox(Cockburn 1999).
A typical example of this problem is the circle-ellipse case
where state and behavior do not follow the same specializa-
tion/generalization hierarchical setup.

We introduce the modeling concept ofwarped inheritance
hierarchies(Paesschen, Meuter, & D’Hondt 2004) to allevi-
ate the difficulties during the conceptual modeling of roles,
caused by the subtype-supertype paradox. These warped hi-
erarchies are based on a separation between state and behav-
ior inheritance in the prototype-based language Self (Un-

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

gar & Smith 1987). Implementing warped hierarchies ap-
plies parent sharing, multiple inheritance and dynamic par-
ent modification. Moreover, using prototypes and delegation
brings significant advantages for modeling roles: there is no
difference between roles as classifications and as instances,
and roles can be added and removed dynamically.

The warped hierarchy modeling concept was integrated
in the Extended Entity-Relationship model (Chen 1976) of
our round-trip environmentSelfSync(Paesschen, Meuter, &
D’Hondt 2005; Paesschen, D’Hondt, & Meuter 2005) that
was built on top of Self. In this way, roles are modeled in
SelfSync while a corresponding implementation is automat-
ically created that combines both generalization and special-
ization between roles and the objects that perform them.

This paper is structured as follows. We start with mapping
conceptual modeling of roles to the subtype-supertype para-
dox. Next we introduce the concept of warped inheritance
hierarchies in the prototype-based language Self. We de-
scribe how these warped hierarchies were integrated in our
round-trip engineering environment SelfSync. Our approach
is evaluated based on a number of characteristics (Steimann
2000) shared by most role-related research and we provide
a comparison to related approaches. Finally, a conclusion is
presented.

The Subtype-Supertype Paradox in Role
Modeling

In this section we relate the conceptual model of roles in
general to thesubtype-supertype paradoxthat deals with a
reverse specialization setup between state and behavior.

Usually, domain modeling concepts can easily be mapped
to object-oriented programming languages. The state-of-
the-art in both modeling and programming languages is
dominated by the class-based paradigm. Furthermore, the
current standard for modeling is the Unified Modeling Lan-
guage (Fowler & Scott 2000) which is targetted to classes
as well. During conceptual modeling modeled entities cor-
respond to a class and taxonomies of entities give rise to
class-hierarchies. However, there exists a number of occa-
sions where this straightforward approach results in a setup
in which the entities follow the standard hierarchical tax-
onomies but in which the corresponding implementation de-
mands exactly the reverse hierarchy.



For example, from a real world (domain model) perspec-
tive, a circle reallyis-a kind of ellipse with itsradiusbeing
both the major semi-axisa as well as the minor semi-axisb
used in ellipses. Therefore, circles should be implemented
as specializations of ellipses. In a class-based language the
circle type is implemented with inheritance: as a sub-
class of theellipse type. However, this results in ineffi-
cient code since acircle will not use all instance vari-
ables inherited fromellipse because both its axes are
equal by definition. In general there exist two main diffi-
culties. First, the state ofcircle is less specialized than
the state ofellipse (i.e. contains less attributes) while
the behavior ofcircle is more specialized than the behav-
ior of ellipse (i.e. contains more methods). Second, cir-
cles can receive messages intended for ellipses, transforming
them dynamically into ellipses, and vice versa. For instance,
when acircle receives astretch message that largens
the width of anellipse , a circle would become an
ellipse but be of classcircle .

The above example illustrates a fundamental problem in
class-based software modeling: conceptual subtypes are not
always implementation subtypes. This is refered to as the
subtype-supertype paradox.

Another instance of this problem is the conceptual model-
ing of roles (Fowler 1997). Consider the following example.
In a company, a person can (at most) have two roles: either
that of a salesman or of an engineer, and at the same time, a
manager role. In a class-based design, this setup is modeled
as illustrated in figure 1. In this UML class diagram, mul-
tiple classification is used to express the two possible roles
of a person, while dynamic classification denotes the mutual
exclusiveness of the salesman and the engineer roles.

Figure 1: A person and the roles manager, salesman and
engineer

Conceptually, the roles a person can perform are sub-
types ofperson : an engineer is-a kind of person .
More specifically the behavior of a role type is more spe-
cialized than that of theperson type, e.g. apay method
in engineer is more specialized than thepay method in
person .

However, also in role modeling conceptual subtypes are
not always implementation subtypes, especially when a per-
son can perform multiple roles. When for example both

engineer and manager are subclassed fromperson
how to model a person that is both manager and engineer?
Instantiating themanager class causes theengineer
class to be invisible and vice versa. Creating combination
classes is not feasible: persons can often change dynami-
cally between a large set of roles. Alternatively, roles are
modeled with aggregation (Fowler 1997): a set of roles is
held by an instance variable in theperson class. By dele-
gating the messages ofperson to its roles, polymorphism
is simulated.

Some of the problems described above can be solved
when we consider a person that performs multiple roles as an
(implementation) subtype of these roles: the state of a per-
son is extended with the attributes of the roles it performs.
For example when a person becomes an engineer it is ex-
tended with the state (attributes) of theengineer type.
When this person-that-is-an-engineer later becomes also a
manager, all attributes of themanager type are added into
this object. However reversing the subclass hierarchy is not
an option since this would mean that it is no longer possible
to override the behavior of a person by the more specialized
behavior of a specific role.

Therefore roles are considered both subtypes (at the level
of behavior) and supertypes (at the level of state) (Steimann
2000). Mapping roles to a class-based setup cannot be done
straightforwardly since classes contain both state and behav-
ior and they both have to follow the inheritance hierarchy of
the class.

Additionally roles add an extra difficulty to the subtype-
supertype problem since they can be added or removed dy-
namically, and a person can have multiple roles implement-
ing overloaded method.

Warped Hierarchies in Self
In this section we discuss a solution to the subtype-supertype
paradox by mapping conceptual subtypes to a corresponding
implementation based onwarped hierarchies. As opposed
to class-based languages, theprototype-based language Self
is suitable thanks tomultiple inheritance and the separation
between state inheritance and behavior inheritance.

A Prototype-based Programming Environment
In general, prototype-based languages (PBLs) (Lieberman
1986) can be considered object-oriented languages without
classes. Self (Ungar & Smith 1987; Smith & Ungar 1995)
is closely related to the syntax and semantics of Smalltalk
(Goldberg & Robson 1983) but Self has no classes. Objects
in Self are either created ex-nihilo or cloned from a proto-
type. Self implements a delegation mechanism (Lieberman
1986) that respects the late binding of theself variable.
In other words method lookup is recursively delegated to all
parents and the appropriate method is called in the context
of the original receiver. Dynamic inheritance allows Self ob-
jects to change their parents at run-time. As do most PBLs,
Self supports parent sharing (Chamberset al. 1991). Finally,
a specific feature of Self is child sharing (multiple inheri-
tance) that occurs when two or more parent objects share
the same child object. When modeling knowledge parent
and child sharing are constantly combined.



Multiple Inheritance in Self
When modeling an object in Self, the state is contained in
a prototypewhile the behavior (shared by all objects of this
type) is typically gathered in atraits object (Smith & Ungar
1995) that stores shared behavior, to be inherited by the pro-
totype and all its clones. Prototypes and clones inherit from
a traits object through parent pointers. In this way copying
behavior every time an object is cloned is avoided because it
resides in a single shared traits object: i.e. a kind of highly
dynamic class-based programming in a PBL.

Analoguously, inheritance is separated between state and
behavior: 1) the child prototype inherits from the parent pro-
totype (state inheritance), and 2) the child’s traits object in-
herits from the parent’s traits object (behavior inheritance).
Since both child and parent prototype inherit from their re-
spective traits objects (behavior inheritance), this setup re-
sults in a multiple inheritance structure that is a “diamond”
1, see figure 2. Self avoids ambiguity caused by overloaded

Figure 2: Separation between state and behavior inheritance
in Self

methods by performing state inheritance via acopy-down
(Self-website 2003) of the parent prototype. This mecha-
nism is usually applied at cloning time: a new clone (the
child prototype) is created and (part of) the state of the re-
ceiver (the parent prototype) is copied into it. A copy-down
link ensures that changes to the parent prototype are prop-
agated to the child prototype, similar to subclassing. E.g.
when, at any point in its life time, a new attribute is added
in the parent object, it is also added to the child prototype.
For more details, including an elaborated example we refer
to (Paesschen, Meuter, & D’Hondt 2004).

Warped Hierarchies
We propose a solution to tackle the subtype-supertype para-
dox with two separate “warped” specialization hierarchies:
one for state and its reverse for behavior. Thanks to the sep-
aration of state and behavior in prototypes and traits, Self al-
lows us to model these hierarchies and implement them with
state and behavior inheritance, and dynamic parent modifi-
cation.

For example, initially theellipse prototype is cre-
ated by copying down thecircle prototype through copy-
down (and extended with an extra attribute for a major semi-
axis value), while the traits of a circle inherits the traits of

1Whenever an object C inherits from both objects A and B,
whereby A and B inherit from a common object T, one speaks
about a diamond.

an ellipse through behavior inheritance, with parent point-
ers, see figure 3. More specifically, we reversed the direc-
tion of the state inheritance hierarchy between thecircle
andellipse prototypes. Thanks to the late binding of the

Figure 3: Warped inheritance hierarchies of circle and el-
lipse

self variable, the correct state is accessed when executing
methods (e.g,area , circumference ) - and thus poly-
morphism is ensured.

To tackle the problem of dynamic type changes, we com-
bine dynamic copy-down and its reverse2, mechanism to-
gether with dynamic parent modification.

For example, when a clone of circle is stretched to an
ellipse, dynamically3 the state of theellipse prototype
(i.e., the one additional attribute to contain the extra axis
value) is copied down into this circle object that now inher-
its the traits of an ellipse instead of the traits of circle.

Vice versa, an ellipse clone whose major semi-axis is
stretched to the same value as its minor semi-axis, becomes
a circle clone. The state that is not copied down from the
circle prototype is removed from its prototype and the
inherited traits of ellipse are replaced by the traits of circle.

For roles, the situation is similar but slightly more com-
plicated. Based on the example in the previous section, the
initial setup contains aperson prototype that inherits from
traits person , and a set of role prototypes (such as
manager , engineer ) inheriting from their traits (such as
traits manager , traits engineer ), that in their
turn all inherit fromtraits person , see figure 4.

Figure 4: Warped inheritance hierarchies of person and roles

A person (i.e., a clone of theperson prototype) that (dy-
namically) starts performing a role is implemented by dy-

2Removing the attributes that were copied down from an argu-
ment prototype from the reciever.

3With the help of Self’s reflective meta-programmingmirror
mechanism.



namically copying down the state of this role’s prototype
into the person prototype. Next, we remove the inheri-
tance link to the person’s traits since this behavior is already
inherited via the role prototype. Due to multiple inheritance
in Self an arbitrary number of roles can be added dynami-
cally. When a person (dynamically) stops performing a role,
the copied down state of the role prototype is removed from
the person object. When there are no more roles left, the
person object again inherits the traits ofperson .

To ensure polymorphism the dynamic multiple inheri-
tance diamond in aperson object that inherits state from
two or more role prototypes needs to be intercepted. The
person object then inherits the traits of all these roles that
in their turn inherit fromtraits person . When two
roles override the same method in their traits, sending the
corresponding message toperson causes ambiguity. One
possibility is to combine the overloaded methods from the
view point of person . When we send a message such as
pay to person , she should get payed for each role. We au-
tomatically and sequentially resend the message to the traits
of the roles she performs.

We also support role-specific behavior, defined in the role
in whose context the person currently is viewed. For in-
stance, sending the messagelunch to person , might re-
sult in the specific behavior of having lunch with a friend
and not, for example, with the boss and some clients of a
company. To achieve this the inheritance link to the de-
sired behavior (traits of a role) is temporarily (dynamically)
switched on or off.

Alternative approaches include disambiguating tech-
niques based on lattices that prioritize certain ambiguous
methods (Burger 2005) and select the most suitable method
to be called.

SelfSync
In this section we describe how the concept of warped hi-
erarchies to model roles is integrated in our round-trip en-
gineering environment SelfSync. SelfSync is an extension
of Self that allows modeling Extended Entity-Relation di-
agrams while a corresponding implementation is automat-
ically created and subsequently synchronized with the dia-
grams and vice versa.

A Two-Phased Approach
SelfSync supports a two-phased approach, which we present
in detail in (Paesschen, Meuter, & D’Hondt 2005; Paess-
chen, D’Hondt, & Meuter 2005) and briefly summarize
here. In the firstactive modelingphase a user draws an
Extended Entity-Relationship (EER) diagram while corre-
sponding Self objects — prototypes and traits — are auto-
matically created. In reality, the Self objectsare the modeled
entities: drawing a new EER entity automatically results in
a graphical EER entity view being created on a new Self
object. Hence, we support incremental and continuous syn-
chronizationper entityandper object: changes to an EER
entity are in fact changes to a view on one object and thus
automatically propagated to the object via Self’s reflection
mechanism. Similarly, changes to an object are automat-

ically propagated to the corresponding EER entity. View-
dependent information, such as relationships constraints in
the EER diagram and method bodies in the Self objects, is
preserved during changes and subsequent synchronization.

The second phase of our approach is aninteractive pro-
totyping process4. This phase allows a user to clone and
further initialize the prototypes and traits created in the pre-
vious phase into ready-to-use objects. As we explain below
an interactive conversation with the programmer will make
objects adhere to the structure and relationship constraints
imposed by the EER model.

The Role Modeling Concept
We extended SelfSync with a modeling concept to model
roles that automatically creates warped hierarchies. There-
fore we added a new kind of relationship to the EER diagram
format denoting that the one entity can play the role of the
other entity5.

In the active modeling phase the example diagram de-
scribed in the first section was drawn in SelfSync, as illus-
trated in figure 5. As a result, corresponding implementation

Figure 5: Role modeling example in SelfSync

objects are automatically created and synchronized during
modeling. The setup of the implementation objectsperson
andmanager are shown in figure 6. Notice that there is be-
havior inheritance between the traits of a manager and the
traits of a person. The state inheritance is realized in the
next phase.

The interactive prototyping phase for this example con-
sists of two possible cases: 1) creating a new person object
and letting it perform different roles that are allowed to be

4Note that the termprototypingis used here to denote the activ-
ity of instantiating and initializing a program into a ready-to-use,
running system.

5SelfSync also supports roles as named places, i.e. the labels on
relationships between the entities in the EER diagram. For more
details we refer to (Paesschen, D’Hondt, & Meuter 2005).



Figure 6: Automatically created implementation objects for
person and manager

combined and 2) simply creating a new stand-alone role ob-
ject that is dependent of an existing person object.

We first focus on the first case while the second one is
discussed later on. When creating a new person object, the
user will be asked for each set of allowed roles (as dictated
by the diagram), whether to let this object perform one of
the roles. In the case of our example, a new person object
can perform at most two roles: 1) the role of a manager (or
not) and 2) the role of an engineer or a salesman or neither.
For example we can create a person that is both a manager
and a salesman, see figure 7. Based on the warped hierar-

Figure 7: Interactive creation of a salesman-manager person
object

chies, this new person object automatically inherits the state
of both thesalesman and themanager prototypes (re-
versed state inheritance), and inherits the behavior of both
traits manager andtraits salesman (real-world
behavior inheritance).

During the lifetime of this new person object roles can
be added or removed dynamically. For example, we can
dynamically delete the manager role from the salesman-
manager object. In that case, automatically, the copied-
down state from themanager prototype is deleted from
the person prototype, and the behavior inheritance of
traits manager is removed, see figure 8.

Constraint Enforcement
Role Combinations We enforce the allowed combination
of roles at two levels. First, during the first case of inter-
active prototyping, the creation of a new person object is
guided based on how we modeled the different roles in the

Figure 8: Removing the manager role from the salesman-
manager person object

EER diagram. In our example, we explicitly modeled two
classifications: one for a manager role and one for either
a salesman or an engineer role. Based on this knowledge,
for each classification we are forced to select at most one of
the allowed roles. This implies that newly created objects
always satisfy these exclusiveness constraints.

Second, during the lifetime of person objects, it is possi-
ble that certain roles are dynamically added thereby possi-
bly violating one of the exclusiveness constraints. Therefore
we provide a mechanism that automatically checks whether
adding a new role is allowed based on the roles the person
object already performs. When an illegal role is added dy-
namically, SelfSync automatically generates a warning.

Lifetime Dependency The second case of interactive pro-
totyping is to create one new stand-alone role object, for ex-
ample a manager object. During its lifetime it is likely that
this object will - in one way or another - be associated with a
person object (without state inheritance). Intuitively we can
state that a role object is dependent of the person associated
with it: when the person object is deleted, all its roles should
follow. Therefore, when a person prototype is deleted, Self-
Sync automatically deletes all the role prototypes associated
with it. Notice that in the first case of interactive prototyp-
ing where a person object inherits the state of its roles, this
enforcement is trivial.

Discussion
In this section we discuss the consequences of our choice of
object-oriented paradigm, inheritance mechanism and typ-
ing system.

Using prototypes merges the views of roles as dynamic
classifications and as instances to be adjoined to the objects
performing them. In class-based languages, a role has to be
either a class or an instance, while with prototypes all roles
– prototypes as well as clones – are objects. In this way the
same role object can be used as both a modeled entity and a
run-time implementation object.

With delegation control remains in the receiver that for-
wards method lookup. In this way, messages sent to an ob-
ject that performs roles are found in one of the traits of the
roles it inherits at run-time (i.e. dynamic inheritance). Next
the method is called in the context of the receiver. With
(static) inheritance used in class-based languages an object



can only perform the role it is assigned at creation time.
Next to prototypes and delegation, dynamic typing is a

third factor that facilitates role modeling: objects can start or
stop performing an arbitrary number of roles at any point in
time. In statically typed languages it is necessary at creation
time to know which roles an object will perform at run-time.

Evaluation
Steimann (Steimann 2000) defines 15 - sometimes con-
flicting - characteristics based on the leading literature on
roles and categorizes a large set of existing role-oriented ap-
proaches to them. We compare the role modeling concept in
SelfSync to the same characteristics:

1. A role comes with its own properties and behaviour.Yes,
SelfSync allows roles to be modeled as stand-alone enti-
ties that are automatically mapped to a prototype and a
corresponding traits object in Self.

2. Roles depend on relationships.Yes, a modeled role is
linked to the object performing the role, through a specific
role relation added to the EER model in SelfSync.

3. An object may play different roles simultaneously. Yes,
see the warped hierarchies concept.

4. An object may play the same role several times, simulta-
neously.Possibly, SelfSync can easily be extended with
an aliasing mechanism, in such a way that state inheri-
tance of the same role object results in different states. For
example, in our example, copying-downbudget1 and
budget2 when a person performs twice the role of man-
ager. Alternatively the state of the roles can be copied into
different slots of person implying that the homonymous
attributes are accessed with a prefix, e.g.manager1
budget .

5. An object may acquire and abandon roles dynamically.
Yes, see the warped hierarchies concept.

6. The sequence in which roles may be acquired and relin-
quished can be subject to restrictions.Yes, SelfSync en-
forces constraints, possibly about allowed role combina-
tions.

7. Objects of unrelated types can play the same role.Yes
this is possible in SelfSync.

8. Roles can play roles.Yes, this is possible and in a straight-
forward manner, as opposed to class-based languages
where this characteristic is complicated by the distinction
between classes and instances. In SelfSync all roles are
objects.

9. A role can be transferred from one object to another.Yes,
SelfSync automatically adds the state and the behavior of
a role into the object that performs the role. This state and
behavior can be removed and transferred automatically to
another object.

10. The state of an object can be role-specific, suggesting that
each role played by an object should be viewed as a sepa-
rate instance of the object.No, SelfSync gathers the state
of all roles in the same object.

11. Features of an object can be role-specific: attributes and
behaviour of an object may be overloaded on a by-role
basis. Yes, we can address specific behavior of a certain
role due to dynamic parent modification. But we can-
not overload attributes when we copy all attributes in the
same object. Alternatively we can copy the overloaded
attributes and methods in separate slots, see item 4.

12. Roles restrict access.No, also caused by the fact that
Self’s encapsulation is not enforced: visibility declara-
tions have merely a documentational purpose.

13. Different roles may share structure and behaviour.Yes,
we can model generalization between different roles in
the EER model of SelfSync.

14. An object and its roles share identity : “a role is a mask
that an object can wear”.Yes, see the warped hierarchies
concept.

15. An object and its roles have different identities, related
to the counting problem.This is not covered in our ap-
proach.

As shown, SelfSync’s warped hierarchies implement a full-
fledged role modeling concept. Its expressiveness is compa-
rable to most other role-oriented approaches. We succeeded
in integrating a new role modeling concept in our object-
oriented prototype-based modeling environment SelfSync
that moreover provides automatic support for the mapping
between roles at the conceptual level and their correspond-
ing implementation, without suffering from the complica-
tions caused by the subtype-supertype problem. Hence,
SelfSync is a round-trip engineering tool in which imple-
mentation objects as well as their corresponding EER dia-
gram are continuously synchronized by a bidirectional ac-
tive link, even when these objects are the subjects of dynam-
ically changing roles.

Related Work
There exist various approaches that handle the paradoxical
situation that roles are both super- and subtypes. For an in-
depth discussion and more related approaches we refer to
(Steimann 2000). We summarize the four approaches that
are most relevant to our work.

The category concept (Elmasri, Weeldreyer, & Hevner
1985) concept is defined as the subset of the union of a
number of roles (types). As in our approach the Entity-
Relationship diagram was extended: relationships are not
defined on entity types, but on categories.

In (Bock & Odell 1998) roles are considered temporal
specializations: statically, a manager is a specialization of a
person. However, when a particular person object becomes a
manager, its type is changed from person to the subtype em-
ployee thereby inheriting all aspects of its new role. In this
way reversed specializations, similar to warped hierarchies,
are realized temporarily.

(Snoeck & Dedene 1996) also separate between static and
dynamic type hierarchies: state sharing, behaviour sharing,
as in Self, and subset hierarchies are combined into a new
specialization modeling concept.



In (Jodlowskiet al. 2004) delegation is used to implement
dynamic roles that “import” state and behavior from their
parent objects.

The role modeling concepts in the approaches described
above provide suitable alternatives for warped hierarchies.
However, to the best of our knowledge, none of them is inte-
grated in an object-oriented modeling environment that sup-
ports automatic synchronization between the modeled roles
and a corresponding implementation.

Conclusion
Role modeling is a specific instance of the subtype-
supertype paradox where the state of objects is more gen-
eral while the behavior of these objects is more specific. We
were able to map this subtype-supertype problem to warped
hierarchies in the language Self, thanks to the separation be-
tween state and behavior inheritance, and dynamic parent
modification.

We extended our prototype-based round-trip engineering
environment SelfSync with a role modeling concept at the
level of the Extended Entity-Relationship model. In this
way modeling roles automatically results in a correspond-
ing implementation of warped hierarchies. On these imple-
mentation objects we enforce constraints about allowed role
combinations and life-time dependencies of role objects.

References
Bock, C., and Odell, J. 1998. A more complete model of re-
lations and their implementation: Roles.JOOP11(2):51–
54.

Burger, T. 2005. Formalism for the systems with roles.
In Stefan, J., ed.,ISIM 2005 - Information System Imple-
mentation and Modeling. Eight International Conference,
Hradec Nad Moravici, Czech Republic, April 2005, Pro-
ceedings. MARQ.

Chambers, C.; Ungar, D.; Chang, B.-W.; and Holzle, U.
1991. Parents are shared parts of objects: Inheritance and
encapsulation in SELF.Lisp and Symbolic Computation
4(3):0–.

Chen, P. P. 1976. The entity-relationship model - toward
a unified view of data.ACM Trans. Database Syst.1(1):9–
36.

Cockburn, A. 1999. Constructive deconstruction of
subtyping. Humans and Technology (online article at
http://alistair.cockburn.us/crystal/articles/cdos/constructive
desconstructionofsubtyping.htm).

Elmasri, R.; Weeldreyer, J.; and Hevner, A. 1985. The
category concept: an extension to the entity-relationship
model.Data Knowl. Eng.1(1):75–116.

Fowler, M., and Scott, K. 2000.UML distilled (2nd ed.):
a brief guide to the standard object modeling language.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc.

Fowler, M. 1997. Dealing with roles. Technical report,
Department of Computer Science, Washington University.

Goldberg, A., and Robson, D. 1983.Smalltalk-80: the
language and its implementation. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.
Jodlowski, A.; Habela, P.; Plodzien, J.; and Subieta, K.
2004. Dynamic object roles – adjusting the notion for flex-
ible modeling. InIDEAS, 449–456.
Lieberman, H. 1986. Using prototypical objects to imple-
ment shared behavior in object-oriented systems. In Mey-
rowitz, N., ed.,Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA), volume 21-11, 214–223. New York, NY:
ACM Press.
Paesschen, E. V.; D’Hondt, M.; and Meuter, W. D. 2005.
Rapid prototyping of extended entity relationship models.
In Stefan, J., ed.,ISIM 2005 - Information System Imple-
mentation and Modeling. Eight International Conference,
Hradec Nad Moravici, Czech Republic, April 2005, Pro-
ceedings, 194–209. MARQ.
Paesschen, E. V.; Meuter, W. D.; and D’Hondt, T. 2004.
Domain modeling in self yields warped hierarchies. In
Malenfant, J., and Ostvold, B. M., eds.,ECOOP 2004
Workshop Reader: ECOOP 2004 Workshops, Oslo, Nor-
way, June 14-18, 2004, Final Reports, volume 3344 ofLec-
ture Notes in Computer Science, p. 101. Springer-Verlag.
Paesschen, E. V.; Meuter, W. D.; and D’Hondt, M. 2005.
Selfsync: a dynamic round-trip engineering environment.
In Proceedings of the ACM/IEEE 8th International Con-
ference on Model-Driven Engineering Languages and Sys-
tems (MoDELS’05), October 2-7, Montego Bay, Jamaica.
Self-website. 2003. Website: http://research.sun.com/self/.
Smith, R. B., and Ungar, D. 1995. Programming as an ex-
perience: The inspiration for self.Lecture Notes in Com-
puter Science952:303–??
Snoeck, M., and Dedene, G. 1996. Generaliza-
tion/specialization and role in object oriented conceptual
modeling.Data Knowl. Eng.19(2):171–195.
Steimann, F. 2000. A radical revision of UML’s role con-
cept. In Evans, A.; Kent, S.; and Selic, B., eds.,UML
2000 - The Unified Modeling Language. Advancing the
Standard. Third International Conference, York, UK, Oc-
tober 2000, Proceedings, volume 1939 ofLNCS, 194–209.
Springer.
Ungar, D., and Smith, R. B. 1987. Self: The power of
simplicity. In OOPSLA, 227–242.


