
Rapid Prototyping of Extended Entity-Relationship Models

Ellen Van Paesschen?

evpaessc@vub.ac.be

Maja D’Hondt??

mjdhondt@vub.ac.be

Wolfgang De Meuter?

wdmeuter@vub.ac.be

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel, Belgium

Abstract: The entity-relationship model is considered to be the standard for conceptual design of
data in information systems and relational databases. Extended entity-relationship models provide
extra concepts such as generalization, dependency and classification. In the context of object-
oriented software development, such models are able to represent part of the functionality whereas
more operational functionality is implemented in the object-oriented language. In the resulting
object-oriented program, however, the original data model is often lost and the relationship and
dependency constraints are not enforced. We propose an approach which consists of an active
modeling phase and an interactive prototyping phase. The overall result is a model in which the
elements have active links to fully operational implementation objects, which in turn are actively
constrained by the model. We have developed a system that supports the manual steps in these
two phases and fully implements the (semi-)automatic steps.

Keywords: Rapid prototyping, Extended ER models, object-orientation

1 Introduction

Nowadays, the entity-relationship model [3] is considered to be the standard for the con-
ceptual design of the data in information systems and relational databases. The reason for
this is twofold. On the one hand, the graphical format of entity-relationship diagrams is
an intuitively understandable platform for both database or system users and developers,
thus facilitating communciation between them. On the other hand, entity-relationship
modeling is the starting point of a systematic development process for relational databa-
ses: there exists a clear, nearly one-to-one mapping between an entity-relationship diagram
and a relational database schema [2].

Many extensions have been proposed to the original entity-relationship model [25].
In the context of object-oriented conceptual modeling, adding the generalization concept
[20] was the most significant extension. This model is often referred to as the extended
entity-relationship model (EER) [7]. Other EER modeling concepts are dependency, spe-
cialization, classification, and aggregation.

? Programming Technology Laboratory
?? System and Software Engineering Laboratory



During object-oriented software development, an EER model is only able to represent
part of the functionality. In this case, the object-oriented program is the most complete
model for the other, more operational, functionality, which can be implemented in method
bodies for example. However, the original data model is often lost in the object-oriented
program. Moreover, the relationship and dependency constraints modeled in the EER
diagram are not enforced in the object-oriented program.

We propose to install and maintain an active link between EER models and object-
oriented programs. More specifically, our approach consists of an active modeling phase
and an interactive prototyping phase. The first phase ensures that drawing EER modeling
elements results in implementation objects being created that are continuously synchro-
nized with changes to the model. Due to the “live” character of the link between model and
code, code added to the implementation objects is preserved when the corresponding mod-
eling element is changed. The second phase interactively converts these implementation
objects into ready-to-use objects on which the modeled constraints are automatically en-
forced. This is entirely in line with the future directions for conceptual and EER modeling
formulated by the inventor of EER models, Chen [4]. These directions include executable
active EER models, interactive modeling and computing and of course visual modeling.

We have developed a system that supports the manual steps in these two phases, such
as EER modeling, and fully implements the (semi-)automatic steps. As such, our system
supports rapid prototyping of models.

This paper is organized as follows: in section 2 we start with EER modeling and our
notation for all the modeling elements it provides. Next, active modeling, the interac-
tive prototyping phase and how the modeled constraints are automatically enforced in
the resulting implementation, are described. Note that we introduce our approach in an
implementation-independent way: we describe it in terms of implementation objects, with-
out specifying the object-oriented programming language’s object grouping mechanism,
for example, which can be either class-based or prototype-based. For our choice of im-
plementation environment we refer to section 3. Section 4 summarizes related work while
section 5 includes a conclusion and the future research directions.

2 Prototyping EER Models

Currently there is no real standard notation for EER diagrams. Most of the differences
between notations concern how relationships are specified and how attributes are shown.
In almost all variations, entities are depicted as rectangles with either pointed or rounded
corners. The EER notation we use combines existing approaches: Chen’s boxes [3], the
relations of the crow’s feet notation and the cardinalities of [7]. Additionally, the order of
cardinalities is reversed, as in the Object Modeling Technique (OMT). Different colours
denote the differences between entities and weak entities, and between simple, primary and
derived attributes. We want to stress the fact that our new combined notation is merely
a consequence of our choice of development platform (cfr. section 3). In figure 1 a small
banking information system is modeled. A Customer for example, has a primary attribute
customerID, and simple attributes customerName, customerStreet, and customerCity.
Customer is in a many-to-many relation with Loan (role borrows) and with Account (role
accounts), and in a many-to-one relation with Employee (role banker). Payment is a weak
entity that is dependent of Loan. An Account can be specialized into a SavingsAccount

or a CheckingsAccount.



Fig. 1: EER diagram for a small banking information system

Other concepts that are not present in the example but provided by our approach
include aggregation and categorization.

2.1 Active Modeling

In this first phase of our approach, the user develops an EER model in a graphical way.
Since we fully support all the typical EER modeling elements, the user can simply employ
a standard EER modeling methodology to construct the model. The contribution of our
approach, however, is that in the background an object-oriented program is automati-
cally created that reflects the EER model being constructed. More specifically, our EER
modeling tool is implemented in the same object-oriented programming language, which
means that EER modeling elements are represented as objects, which we refer to as entity
objects. Based on these entity objects, corresponding objects are created that implement
all the modeled attributes, roles and relations. We refer to such objects as implementa-
tion objects. While the user iteratively and incrementally adapts the EER model until
it represents the intended system or domain at the conceptual level, the corresponding
implementation objects are automatically updated. As such, the EER model becomes an
active model with a live link to the corresponding object-oriented implementation. After-
wards, additional behaviour that cannot be expressed in EER models can be added to the
ready-to-use implementation objects. For example, some behaviour is simply implemented
as a method on an implementation object in the object-oriented programming language.
More importantly, if the EER model is changed, this additional code is preserved in the
implementation objects.

In order to achieve this, a set of mappings from entity objects to implementation
objects has to be employed, as described in table 1. Note that implementation objects
are often extended with extra information. This is necessary because the information is
required in the interactive prototyping phase described in the next section.

2.2 Interactive Prototyping

The second phase of our approach is a semi-automatic, interactive prototyping process.
When the EER model is complete our system has — based on the mapping in table 1
— created implementation objects containing extra information about the structure of



User action on EER model Automatic action on implementation
Create new (weak) entity object Create new corresponding implementation object
Add/remove primary/simple/derived Add/remove corresponding attribute
attribute in entity object in corresponding implementation object
Change name of attribute or entity object Change name of corresponding attribute

or implementation object
Add 1-to-1 relationship between Add attribute 1 to 1 relation name1 name2
two entity objects to each corresponding implementation object

that contains the other object
Add extra constraint information to the objects

Add 1-to-n relationship between Add attribute 1 to n relation name1 name2
two entity objects to each corresponding implementation object

that contains the other object
Add extra constraint information to relevant object

Add m-to-n relationship between Add attribute m to n relation name1 name2
two entity objects that contains the other implementation object
Add role to relation in Add attribute role in m to n relation name1 name2
entity object to corresponding implementation object

that contains the name of the role
Add specialization from child entity object Let child implementation object inherit from
to parent entity object parent implementation object

Add extra specialization information to child
Add categorization to entity object Add extra categorization information to

corresponding implementation object
Add aggregation to two entity objects Create aggregation implementation object which

refers to corresponding implementation objects
Make weak entity object dependent of Add extra dependency information to
to entity object corresponding weak implementation object

Tab. 1: Mapping from entity objects that represent EER modeling elements to implemen-
tation objects expressed in an object-oriented programming language

the corresponding entity objects. However, this information cannot be present in objects
that are manually implemented. Therefore, we provide a strategy for creating ready-to-
use implementation objects that do not contain this extra information but still adhere to
the structure of the original entity objects. This strategy cannot be supported in a fully
automatic way, because choices need to be made that depend on the preferences of the
user of the program.

The strategy for creating ready-to-use implementation objects can be summarized by
the following steps. Whenever we use the word object, we mean implementation object.

1. Create a new object based on an existing object.
2. For each categorization, ask the user into which parent object the new object needs to

be categorized. Let the new object inherit the selected parent object. After implement-
ing the categorization, it’s no longer necessary to keep this information explicitly in
the object. Therefore, we remove this categorization information from the new object.

3. For each specialization, ask the user into which child object the new object should be
specialized. Add a reference in the new object to child object. Remove this specializa-
tion information from the new object.

4. For each relationship in which a new object has a single reference to another object,
add an attribute to the former object representing the reference. Ask the user whether



to establish the actual reference. If so, initialize the attribute with a reference to the
other object. If the new object is weak, its attribute has to be initialized with an actual
reference. If a role name is present, rename the attribute to the role name. Remove the
original attribute 1 to ... relation name1 name2 that was added during the active
modeling phase in the new object.

5. For each relationship in which a new object has multiple references to other objects, add
an attribute to the former object representing these references. Ask the user a default
value for the number of actual references. Initialize the attribute with a reference to
a container object of the required size. If the new object is weak, its attribute has to
contain at least one actual reference. If a role name is present, rename the attribute
to the role name. Remove the original attribute ... to n relation name1 name2 that
was added during the active modeling phase in the new object.

2.3 Constraint Enforcement

After the interactive prototyping phase, ready-to-use implementation objects still contain
some hidden information. This information is used to ensure that they satisfy two kinds of
constraints at all times : (1) constraints related to dependencies between normal and weak
implementation objects and (2) constraints about relationships between implementation
objects. We explain below how both kinds of constraints are enforced.

– Enforcing Dependents: If an implemenation object is deleted, all the weak imple-
mentation objects that depend on it are deleted as well.

– Enforcing Relationships: When two implementation objects have a relationship in
which the first one has a single reference (one or zero) to the second one, the uniqueness
of this reference is enforced in two ways. First of all, our system ensures that no other
attribute of the first object has a reference to another object of the second object’s
type. Secondly, we also ensure that only one object of the second object’s type refers
to the first object. If two implementation objects are in a 1-to-1 relationship, this is
enforced in the two directions.

3 Implementation

As a development platform we selected the object-oriented prototype-based programming
environment Self [28]. Prototype-based languages (PBLs) [16] can be considered object-
oriented languages without classes. Self is closely related to the syntax and semantics of
Smalltalk [9] but Self has no classes. The most interesting feautures of PBLs are creation
ex nihilo, cloning, dynamic inheritance modification, delegation with late binding of the
self variable, dynamic parent modification, and traits objects.

Self is a textbook example of a PBL and moreover, includes a mature programming
environment. In the GUI, implementation objects are visually represented with pluggable
outliners, constructed with morphs of the Morphic framework. This minimizes the distance
between design and implementation: a developer can recognize the graphical design model
in the visual representation of the implementation objects. Therefore, Self is considered to
be an ideal candidate for extension with a conceptual analysis level: we made it possible
to draw EER diagrams in the Self environment. Figure 1, contains in fact a screendump
of the application. However, we consider the actual implementation details to be out of
the scope of this paper. For more details on standard modeling and (multiple) inheritance
in Self we refer to [26, 27, 28].



4 Related Work

Since the late eighties, it has been encouraged to combine (E)ER models and object-
orientation (OO) [5, 21]. The (E)ER model is usually mapped onto objects to be used in
object-oriented databases, and not onto “real” programming objects. However, there is no
difference between these objects at the design level. Various approaches and techniques
exist for translating EER into object-orientation. In [15] the gap between the ER and
the OO model is bridged by introducing the category type and the possibility to define
relations between types. Both [19] and [22] apply a set of mapping rules to transform
EER diagrams into OO schemas. In [18] EER schemas are transformed into OO schemas
by using a clustered form of the EER schema to improve understandability and to reduce
complexity of conceptual schemas. In [8] a default mapping between EER diagrams and
OMT diagrams is provided, i.e. from entity objects to design objects. These guidelines
are then used to create or re-engineer object-oriented databases, but are also suitable to
develop implementation objects. [17] introduces evolutionary ER schemas: the original
ER schema is mapped to a version derivation graph which is in his turn mapped onto
an object-oriented data model. In [11] clear steps are described to map an EER diagram
into an object model, in order to re-engineer an existing database into an object-oriented
database. In [10] a formal transformation scheme is provided to map ER schemas onto an
object-oriented specification language, to be used for object-oriented databases. In [14] a
formal calculus to tranform ER schemas into object schemas is defined.

Few of the approaches support automated mappings from (E)ER to objects. If they
do, these applications generate a corresponding group of objects for an entire model or
apply complex change management techniques for generating a selection of a model. This
is opposed to our approach, which supports incremental generation per-object : one object
is generated or synchronized for one EER entity.

Moreover, when mapping conceptual models in the (E)ER format to (design) objects,
each object usually needs its own constructor and destructor method, with specific code
for the dependency and relationships constraints [8]. Therefore, constraint enforcement
is only supported at object creation time whereas in our approach it is supported at
run time. Moreover, the methods responsible for creating (copy) and deleting (delete)
implementation objects are generic, and shared by all implementation objects that were
ever created for a corresponding entity object.

The SUPER system [6], based on the ERC+ model [24] (an object-based extension of
the ER model), is claimed to supports definition, manipulation, and evolution of databa-
ses. Similar tools for visual data manipulation of object-oriented databases almost always
involve a formal translation or compilation step to connect the conceptual view to the real
objects. OdeView [1] for example, uses dynamic linking: every time an object needs to be
displayed, dynamically loads the object file containing the appropriate display function.

To our knowledge, none of these tools implements an active link until the level of
individual objects and attributes: often, when we change an attribute’s name in the (E)ER
diagram, the corresponding objects are not automatically updated but a new mapping will,
in the best case scenario, provide the existing object with a new attribute. In our approach,
there is no new attribute generated: the existing one is simply renamed. Moreover, to our
knowledge, none of them allow the user to configure the objects interactively at runtime,
solely based on the the static structure of the underlying EER model.



5 Conclusion and Future Work

In this paper we introduced a two-phase approach to actively link EER modeling ele-
ments to implementation objects. In a first phase a user draws an EER diagram while
corresponding implementation objects are automatically generated. Modeled entities and
corresponding implementation objects are continuously synchronized, but code added
to the implementation objects is preserved during model changes. In the second phase,
ready-to-use programming objects are created interactively: the user configures objects,
at run time, based on the static structure of the underlying EER model. Moreover, de-
pendency and relational constraints are enforced at runtime during the life time of the
implementation objects. This approach has successfully been implemented in a prototype-
based object-oriented environment, in which we integrated a grahical editor to draw EER
diagrams.

For the moment, the EER entity object is bidirectionally linked to its corresponding
implementation object. It is our intention to decrease this gap between EER and code by
letting the EER objects really become the implementation object. This means that the
EER entity is the visual representation of the implementation object in the background.

We will also extend the interactivity during the creation process. For mapping “is-
a”, 1-to-1, 1-to-n, and m-to-n relations at the conceptual level to real code, there exist
a variety of implementation techniques. For example, there exist a series of patterns to
implement different kinds of 1-to-1, 1-to-n, and m-to-n relations to code [23, 12]. We will
offer the prototyper the choice of implementation technique while configuring the system.

Finally we might extend this forward engineering application with reverse engineering:
changing the generated objects will influence the corresponding EER entities. In this
way, we can implement a round-trip engineering [13] process between EER diagrams and
prototypes systems.

Bibliography

1. Agrawal, R., Gehani, N.H., Srinivasan, J.: OdeView: The Graphical Interface to Ode, in
Proc. of ACM SIGMOD ’90, Int’l Conf. on Management of Data, pp. 34-43, Atlantic City,
1990

2. Batini, C., Ceri, S., Navathe, S.: Conceptual Database Design, an Entity-Relationship Ap-
proach. Benjamin and Cummings Publ. Co., Menlo Park, California, 1992

3. Chen, P.: The Entity Relationship Model - Toward a Unified View of Data. Massachusetts
Institute of Technology, 1976

4. Chen, P., Thalheim, B., Wong, L.: Future Directions of Conceptual Modeling. Conceptual
Modeling, 1997

5. Chen, P.: ER vs. OO. In Proceedings of the 11th Internaltional Conference on Entity-
Relationship Approach, 1992

6. Dennebouy, Y., Andersson, M., Auddino, A., Dupont, Y., Fontana, E., Gentile, M., Spac-
capietra, S.: SUPER: visual interfaces for object + relationship data models. Journal of
visual languages and computing, 6(1), p. 27 - 52, 1995

7. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addison-Wesley World Stu-
dent Series, 3rd edition, 2000

8. Fong, J.: Mapping extended entity-relationship model to object modeling technique, in ACM
SIGMOD RECORD, Vol. 24, No.3, pp. 18-22, 1995

9. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation. Addison-
Wesley, 1983



10. Gogolla, M., Herzig, R., Conrad, S., Denker, G., Vlachantonis, N.: Integrating the ER Ap-
proach in an OO Environment. In R. Elmasri, V. Kouramajian, and B. Thalheim, editors,
Proc. 12th Int. Conf. on Entity-Relationship Approach (ER’93), pages 382–395

11. Gogolla, M., Huge, A.K., Randt, B.: Stepwise Re-Engineering and Development of Object-
Oriented Database Schemata, in International Workshop on Database and Expert Systems
Applications, Vienna, Austria (1998)

12. Génova, G., Ruiz del Castillo, C., Llorns, J.: Mapping UML Associations into Java Code,
Journal of Object Technology, 2(5): 135-162, 2003.

13. Henriksson, A., Larsson, H.: A Definition of Round-trip Engineering, Technical Report,
Department of Computer and Information Science, Linkopings Universitet, Sweden, 2003

14. Herzig, R., and Gogolla, M.:Transforming conceptual data models into an object model.
In Proceedings of the 11th international conference on entity relationship approach held in
Karlsruhe, Germany, edited by G. Pernul and A. Tjoa, 280–98, 1992

15. Kilian, M.: Bridging the Gap between O-O and E-R. In T.J. Teorey, editor, Proc. 10th Int.
Conf. on ER-Approach, pages 445458, 1991

16. Lieberman, H.: Using prototypical objects to implement shared behavior in object oriented
systems. In Meyrowitz, N., ed.: Proceedings of the Conference on Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA). Volume 22, p. 214 - 223, 1987

17. Liu, C.T., Chang, S.K., Chrysanthis, P.K.: Database Schema Evolution using EVER Dia-
grams. In Proc. of Intl. Workshop on Advanced Visual Interfaces, 1994

18. Missaoui, R., Gagnon, J-M., Godin, R.: Mapping an Extended Entity-Relationship Schema
into a Schema of Complex Objects. In M.P. Papazoglou, editor, 14th Int. Conf. OOER,
LNCS 1021, pages 204215, Berlin, 1995. Springer.

19. Nachouki, J., Chastang, M., Briand, H.: From Entity-Relationship Diagram to ObjectOri-
ented Database. In Teorey, T., editor, Proc. 10th Int. Conf. ER-Approach, pages 459474,
1991

20. Navathe, S., Cheng, A.: A methodology for database schema mapping from extended entity
relationship models into the hierarchical model. In The Entity-Relationship Approach to
Software Engineering, G. C. Davis et al., Eds. Elsevier North-Holland, New York, 1983

21. Navathe, S., Pillalamarri, M.: OOER: Toward Making the E-R Approach Object-Oriented.
In Proceedings of the 8th Internaltional Conference on EntityRelationship Approach, 1989

22. Narasimham, B., Navathe, S., Jayaramam, S.: On Mapping ER and Relational Models into
OO Schemas. In R.A. Elmasri, V. Kouramajiam, and B. Thalheim, editors, Proc. 12th Int.
Conf. on ER-Approach, pages 402413, Arlington, Texas, 1993

23. Noble, J.: Some Patterns for Relationships, in Proceedings of Technology of Object-Oriented
Languages and Systems (TOOLS Pacific 21), Melbourne, 1996. Prentice-Hall.

24. Parent, C., Spaccapietra, S.: About Complex Entities, Complex Objects and Object-
Oriented Data Models, in Information Systems Concepts - An In-depth Analysis, E. D.
Falkenberg, P. Lindgreen eds., pp. 347-360, North-Holland, 1989

25. Teorey,T.J., Yang, D., Fry, J.P.: A Logical Design Methodology for Relational Databases
Using the Extended Entity-Relationship-Model. ACM Computing Surveys 18, 197-222, 1992

26. Ungar, D., Smith, R.: Self: The Power of Simplicity. In: Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA).
Volume 22., ACM Press, 1987

27. Van Paesschen E., De Meuter, W., D’Hondt, T.: Domain Modeling In Self Yields Warped
Hierarchies, in proceedings of the ECOOP 2004 Workshop on Mechanisms for Specialization,
Generalization and Inheritance, Oslo, Norway, June 14-18, 2004.

28. Self Home Page: http://research.sun.com/research/self/.


