
Pitfalls in unanticipated dynamic software

evolution

Peter Ebraert1⋆, Yves Vandewoude2∗, Theo D’Hondt1 and Yolande Berbers2

1 Programming Technology Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050
Brussel, Belgium

2 KULeuven Department of Computer Science, Celestijnenlaan 200A, B-3001
Leuven, Belgium

Abstract. The authors of this paper have all developed a framework
that allows runtime adaptation of software systems. Based on our ex-
periences, we wish to summarize common pitfalls concerning dynamic
software evolution. Systems for dynamic adaptation typically follow a
certain process which is used as a starting point in this paper. The prob-
lems that occur in the different steps of this evolution process are given
and a suggestion is made on how these problems can be tackled. The
reader will notice that the solution to most of the pitfalls lies in the use
of reflection, meta-data and meta-object protocols. We conclude that re-
flection or meta-object protocol manipulations are indispensable in the
process of dynamic software evolution and that better language support
is needed.

1 Problem Statement

Lehman [1] defines software evolution as the collection of all programming activ-
ities intended to generate a new version from an older and operational version.
The problem of software evolution occurs after the initial delivery of the soft-
ware and typically deals with bugfixes and the addition, change or removal of
functionality to the system. Different sources estimate that evolution is respon-
sible for 50% [2] to 90% [3] of the total cost of software. The following quote by
Keith Bennet [4] perfectly describes the real difficulty of software evolution: its
unanticipated nature. “The fundamental problem, supported by 40 years of hard

experience, is that many changes actually required are those that the original

designers cannot even conceive of.”

In most of the cases, software evolution is performed on systems that are shut
down. However, there are some systems that can not be shut down because of
some specific reasons (such as safety or financial aspects). Well known examples
are web services, telecommunication switches, banking systems, airport traffic
control systems or military systems. Adapting such systems without halting them
is a challenging operation that encompasses many different problems. Those
problems are tackled in the field of dynamic software evolution.

⋆ Authors funded by a doctoral scholarship of the “Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT Vlaanderen)”



The following section starts with an overview of all difficulties that come
with the dynamicity of dynamic software evolution. Afterwards, it presents a
commonly accepted process that can be followed in order to cope with those
difficulties. Section 3 lists all the pitfalls that rise if one wants to follow the
process stated in section 2. In sections 4 and 5 we conclude that, in order to
resolve the pitfalls, both reflection and meta-data are indispensable and that
they can only be offered by languages with a fully reflective meta-object protocol.

2 Unanticipated dynamic software evolution

In his PhD report, Oriol states three main reasons that make unanticipated
dynamic software evolution such a hard undertaking: coping with active threads,
state transfer and uncertainty. In this section we first explain those three issues
and then then see how the most commonly accepted process for dynamic software
evolution handles those issues. Step by step, we discuss all the phases of this
process.

In an object oriented program, the execution state is typically represented
by the state of all the living objects (housed by instance variables), and the
state of the runtime stack. Changing an object oriented program while it is
active, means that parts of the objects may be modified during their execution
(a typical dynamic evolution mechanism). This could lead to inconsistent states
(states from which the program cannot finnish correctly). This is why active

threads must be taken care of, before a change is actually performed on a running
system.

Inconsistencies might also occur when a certain change requires us to replace
existing entities by new entities. When an old entity is replaced by a new one, we
must incorporate the state of the old entity into the new entity, for not ending
in an inconsistent state. The process of porting the state from an old entity to
a new one, is called state transfer.

The last reason in the uncertainty of applying a change to a running system.
As we are applying a change to a running system, we do not have a test-phase, in
which we verify that changing the program results in unwanted behavior. Below,
we enumerate 6 steps that overcome the three above mentioned issues. This is
why those steps form the typical process of dynamic software evolution.

1. Offline activities. Before a dynamic update is deployed, it must first be
implemented. Offline activities start by locating all structures or entities that
are affected by the changes. This problem is often referred to as dependency

finding. The new code is then implemented according to the renewed spec-
ifications of the system. In most cases, the design and source code of the
old version are present, since it is likely that new versions are implemented
by the owner of the old version. If this is not the case, an attempt must be
made to recover these from the software artefacts that are available (such
as the running system) using reengineering techniques. Finally, the correct
behaviour of the new version must be verified using either formal proofs or



extensive testing. In some cases, the deployment of the new version itself is
also tested by deploying it on a duplicate copy of the running system.

2. Addition of new code to the running system. The complexity of intro-

ducing new code into the running system strongly depends on the program-
ming language and environment used. It is easy for languages as SmallTalk
or CLOS, harder for statically typed languages as Java or C# (since code
can not easily be reloaded), and very hard for languages that are compiled
to native code such as C or Assembly.

3. Deactivation of affected entities. Dynamic adaptation of an active sys-
tem entity can result in inconsistencies that may lead the application to an
erroneous state. Program consistency can be preserved by deactivating all
entities or structures within the application that are affected by the change.

4. Transformation of affected entities. This phase consists of the actual
transformation from the old version to the new version and is composed of
transforming behavior and porting state. In class based languages, behav-
ior is captured in method definitions and in the inheritance hierarchy. As
such, behavior transformations boil down to class based modifications. The
most difficult part of this phase however, is the transformation of runtime
state that is contained in variables throughout the system to preserve state

consistency.
5. Online verification of new code. Once the transformation has completed,

we wish to verify a number of conditions to guarantuee its correctness. This
is achieved by evaluating a number of conditions and invariants on the new
code version. If these checks fail, a rollback mechanism must make sure that
the previous state is restored.

6. (Re)activation of the halted entities. The last step consists of reacti-
vating all the entities that were deactivated earlier in the process.

Relating to the issues identified by oriol, steps 3 and 6 are present to cope with
active threads, step 4 deals with state transfer and the tests in steps 1 and 5
are present to lower incertainty. In the next section, we discuss common pitfalls
that occur in this process and suggest possible solutions.

3 Pitfalls

3.1 Dependency finding and reengineering

In order to implement a new version of a software system, it is crucial to obtain
its architecture and design if not already present. This information is required
for the identification of all the entities that have some relation with the evolving
part of the software. In addition, we need it for providing new source code that
will fit in the existing system.

Recovering the design of an application has to be done by using both static
and dynamic information. Static information describes the structure of the soft-
ware as it is written in the source code, while dynamic information describes
what is really happening at runtime. It can be perfectly possible that structural



information shows that two classes are just a bit related, as there is only one
method call from one class to the other. However, it is possible that dynamic
information shows that the same call occurs continuously when running the ap-
plication, making the two classes very related. This explains why both dynamic
and static analysis result in more realistic design recovery.

Static information can be obtained by looking at the application’s imple-
mentation. Practically this can be done in two different ways; by looking at the
source code or by using introspection (= reflective capabilities of observing the
application).

Dynamic information can be gathered by monitoring the behavior of the
running application. This is typically done by using a layered approach. Imple-
mentations of this approach include the adaptation of the metaobject protocol in
such a way that all baselevel executions are intercepted and monitored. Another
implementation consists of the instrumentation of base-level entities with calls
to a monitor by means of intercession (= reflective capabilities of modifying the
application).

3.2 Introduction of new code.

Whereas safely introducing new code to a running system is a non-trivial accom-
plishment by itself for languages such as C or assembly [5, 6], modern languages
such as Java, Smalltalk or C# allow a programmer to add new code in a safe
and extremely convenient manner.

However, the ability to add new code to a running system is by itself not suf-
ficient for dynamic adaptation. Unanticipated software evolution almost always
includes modifications to existing code. Although this is not a problem for purely
dynamically typed languages such as Smalltalk, it is a much harder problem for
statically typed languages such as Java or C# (for a extensive discussion on the
influence of a programming language and its type system on runtime evolution
we refer to [7]). For statically typed languages, unloading or modifying code
which is already loaded is prohibited due to safety restrictions that are enforced
by the language model. For instance, Java ensures that all methods or fields
that are used also exist. Such a guarantee can not be given if class definitions
can change at runtime unless extensive and frequent runtime type checks are
added which would degrade runtime performance significantly. This is a sacrifice
designers of statically typed languages are not prepared to make.

In Java, the problem is partially circumvented using the classloader mecha-
nism. Since classes loaded by different classloaders are considered to be distinct
types, the classloader architecture also allows different versions of a class to be
used simultaneously. Such techniques are used by component runtime environ-
ments to (un)load different components independently. While this approach is
sufficient for loading modified code into the system, it causes some important
problems related to dynamic adaptation: an object of version n + 1 can not be
assigned to a variable of version n. This problem is called the version barrier
[8], and is especially relevant for state transfer between different versions of an



application. As we will see in the section 3.4, reflection and meta-data will play
a vital role in solving these problems.

3.3 Program consistency and deactivation.

It is clear that for a dynamic update to succeed, arbitrary changes to the software
can not be allowed. For example, online software replacement may not be feasible
if the new version of the program is an entirely different program. It is vital
that a runtime change preserves program consistency. An informal definition
of a consistent application state is a state from which the program continues
execution in a correct manner rather than progressing towards an error state.
An application can be seen as moving from one consistent state to the next.
Since state is distributed throughout the system, different state structures can
be temporarily inconsistent with oneanother. It is vital that the application is in a
consistent state before runtime modifications are performed. Kramer and Magee
introduced the concept of quiescence in [9]. While their work was originally in the
field of distributed systems consisting of a set of distinct nodes, it can be applied
to dynamic adaptations of object-oriented or component-oriented applications
as well.

In order to ensure that no communication or method calls are active during
the modification of a certain entity, the entity must be deactivated. Any deac-
tivated entity will queue all incoming transaction request and postpone their
execution until the entity is reactivated. Different implementations are possible
to achieve this goal. In [10], a wrapper based approach is used. A wrapper is
added to each system entity that adds additional functionality for activation or
deactivation. Futures are returned to the caller as a return value. These futures
will be resolved when the entity is reactivated. Messages to futures result in fu-
tures themselves. This chain of futures continues until a side-effect occurs, after
which the application is halted until the entities are reactivated. In [11], commu-
nication between components is asynchronous and realised by sending messages
through connectors that are capable of queuing messages until the component
is reactivated. Since there are no return values, the concept of futures is not
required.

In the end, the implementation of a deactivation scheme strongly depends on
reflection: communication is reified into messages that can be queued until fur-
ther notice. The advantage of reflection is that it allows the addition deactivation
logic without modifying the components themselves.

3.4 State transfer and consistency.

Although deactivation is essential for dynamic software adaptation, it is not
sufficient by itself. True dynamic evolution requires that the state from the pre-
vious version is imported in the new version of the software. The assumption
of quiescence ensures that all state is contained in the instance variables of the



different objects that make up the application or component (assuming an ob-
ject oriented paradigm). Two possible approaches exist to achieve state transfer
between different versions:

Indirect: The old version exports its state in some abstract form which is
later interpreted by the new version. In some cases, the exported state can
be written to disk.

Direct: The new version directly interprets the state from the old version.

Although the first version seems more convenient at first, it has some major
disadvantages. First of all, in order for the exported state to be in an abstract

form, a generally accepted ontology must exist so that all parties can agree on
the semantics of this abstract state. Such an ontology only exists for certain
domains, severely limiting the practical approach of this technique. In addition,
this requires that each entity implements a state export function, even if it may
never be used. This lays a huge additional burdon on the programmer. The
second technique does not suffer from these restrictions. State is extracted using
either getters/setters, or, more likely, using reflection.

For statically typed languages, the presence of different application domains
or classloaders (see section 3.2) further complicates the adaptation, since com-
munication between different versions is strictly limited to known common types
(eliminating the ability to extract state using getter-methods and increasing the
dependency on reflection). The presence of such an architecture also results in a
cascading effect of changes, which eliminates the possibility of preserving large
(unchanged) portions of the application or component. Indeed, a type A which
has not changed by itself, but that contains a reference to a changed type B will
not be able to use the new version of B due to the version barrier. Transforming
objects of A to refer to the new version of B causes a cascading effect, since all
types referring to A would require changes as well. A solution to this problem
was proposed in [8], in which Sato and Chiba introduce Negligent Classload-
ers, which relax the version barrier under certain circomstances. An alternative
technique would be to change the classloader of unmodified types from the old
version to the classloader of the new version, allowing them to be integrated
in the object tree of the new version. Both solutions require virtual machine
adaptations.

It is unlikely that a generic solution can be developped without strongly
depending on both reflection and meta-data. Regardless of how the actual state
transition logic is generated, transferring state between different versions requires
information which is not always present in the sources of the different versions,
and therefore would need to be added using meta-data. Both the extraction
of the state from the old version, and its insertion in the new version require
reflective operations (the adaptation is unanticipated and its likely that the
running version does not have the required extraction functionality).



3.5 Verification and rollback.

Deepak Gupta has proven [12] that full automatic verification of the correctness
of an update is computationally undecideable. Therefore, the designer of the
update must include a number of checks with the new version. These checks can
either be executed before the transition, verifying that certain unwanted states
are not present, or after, to insure that the update was indeed succesfull. An
example of the a pre-condition that is commonly used for dynamic adaptations
is ensuring that a component is not involved in a transaction [13, 9]. As long
as the precondition is not satisfied, the update is delayed. After the update,
additional sanity checks can be executed on new version before it is reactivated.
Postconditions are also commonly used to verify the result of dynamic aspect
weaving (for example, in [14] the authors verify their aspect compositions using
postconditions). Reflective mechanisms are necessary, not only to extract these
conditions from the new version, but also to evaluate them. Indeed, it is likely
that these conditions will use state from the new version that can not be accessed
without reflection.

If one of the tests fails, a rollback is required to restore the original system.
Following the process that was described in section 2, the rollback will only have
to be applied on deactivated entities. This is achieved by maintaining of a copy
of the original entities that are to be restored during rollback. This copy can be
retrieved using introspection and restored using intercession.

4 Need for language support

As we have seen above, reflection and meta-object protocol manipulations are
indispensable for allowing dynamic software evolution. Our findings and other
peoples findings (at RAM-SE 2005) clearly indicate that more language support
is needed for easing dynamic software evolution. Current mainstream languages
(like C, C++, Java and C#) are not sufficient as their abilities towards reflection
and meta-protocol manipulations are too limited: mainly because of two reasons.

The first problem is the class-loading principle which loads classes in the
memory of the virtual machine at the time of their first useage. The problem
with classloading is that after a class is loaded into memory, no more changes
are allowed to these classes since object instances may already exist 3. Therefore,
changes made to the class after it has been loaded are not propagated at runtime.
This can be overcome by modifying the virtual machine [15–18] or changing
the classloader mechanism [8]. Although some of these techniques are indeed
capable of alleviating current limitations of languages such as Java and C#, these
modifications also changes the semantics of the original language and therefore
break compatibility with the mainstream version of the language.

The second problem lies in the expressiveness of the languages. In order to
apply meta-object manipulations of certain concepts of a program, we need those

3 Java Hotswap does allow some changes, but these changes are extremely limited in
scope.



concepts to be fully reified. Languages such as C, C++, C# and Java have a lot
of concepts which are not yet reified (for instance the method lookup). Because
of that, those concepts cannot be inspected or changed. As an alternative, we
propose languages with a full reflective meta-object protocol (with all concepts
fully reified). While full reflection might impose a runtime overhead, those lan-
guages offer more capabilities for meta-object manipulations and reflection, and
thus for dynamic software evolution. Examples of such languages are Smalltalk
and CLOS.

5 Conclusion

We start this paper by giving an overview of common difficulties that come with
dynamic software evolution. In particular these are related to state transfer,
active threads and uncertainty. A typical process of dynamic software evolution
is then presented that copes with these difficulties. However, in this process a
number of pitfalls show up. An explanation is given for each of these pitfalls and
a conceptual solution is suggested. Our conclusions confirm that both reflection
and meta-object protocol manipulations are indispensable in the field of dynamic
software maintenance. Taking into account the mainstream languages (Java, C,
C++ and C#), we claim that those languages are not well suited for dynamic
evolution as they have intrinsic problems that hinder it. We therefor suggest to
use languages like CLOS and Smalltalk.

References

1. Lehman, M., Ramil, J.: Towards a theory of software evolution - and its practical
impact. Invited Lecture, Proc. Intl. Symp. on Principles of Software Evolution
(2000) 2–11

2. Lientz, B., Swanson, E.: Software Maintenance Management: A Study of the Main-
tenance of Computer Application Software in 487 Data Processing Organizations.
Addison-Wesley (1980)

3. Erlikh, L.: Leveraging legacy system dollars for e-business. IEEE IT Pro (2000)
17–23

4. Bennet, K.H., Rajlich, V.: Software maintenance and evolution: A roadmap. Future
of Software Engineering. (2000)

5. Segal, M.E., Frieder, O.: On-the-fly program modification: Systems for a dynamic
updating. IEEE Software 10 (1993) 53–65

6. Hicks, M.: Dynamic Software Updating. PhD thesis, Department of Computer
and Information Science, University of Pennsylvania (2001)

7. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Influence of type systems
on dynamic software evolution. Technical Report CW410, KULeuven, Belgium
(2005)

8. Sato, Y., Chiba, S.: Negligent class loaders for software evolution. In Cazzola, W.,
Chiba, S., Saake, G., eds.: ECOOP’2004 Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE’04), Oslo, Norway, Fakultät für Informatik,
Universität Magdeburg (2004)



9. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Transactions on Software Engineering 16 (1990) 1293–1306

10. Ebraert, P., Mens, T., D’Hondt, T.: Enabling dynamic software evolution through
automatic refactorings. In: Proceedings of the Workshop on Software Evolution
Transformations (SET2004), Delft, Netherlands (2004)

11. Vandewoude, Y., Rigole, P., Urting, D., Berbers, Y.: Draco : An adaptive runtime
environment for components. Technical Report CW372, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (2003)

12. Gupta, D.: On-line Software Version Change. PhD thesis, Department of Computer
Science and Engineering, Indian Institute of Technology, Kanpur (1994)

13. Janssens, N., Michiels, S., Mahieu, T., Verbaeten, P.: Towards Hot-Swappable
System Software: The DIPS/CuPS Component Framework. In: Proceedings of the
Seventh International Workshop on Component-Oriented Programming, Malaga,
Spain (2002)

14. Klaeren, H., Pulvermüller, E., Rashid, A., Speck, A.: Aspect composition apply-
ing the design by contract principle. In: Proceedings of the Second International
Symposium on Generative and Component-Based Software Engineering, Erfurt,
Germany (2000) 57–69

15. Malabarba, S., Pandey, R., Gragg, J., Barr, E., Barnes, J.F.: Runtime support for
type-safe dynamic java classes. In: Proceedings of the 14th European Conference
on Object-Oriented Programming. (2000)

16. Andersson, J., Ritzau, T.: Dynamic code update in Jdrum. In: Workshop on
Software Engineering for Wearable and Pervasive Computing, Limerick, Ireland
(2000)

17. Andersson, J., Comstedt, M., Ritzau, T.: Run-Time support for dynamic Java Ar-
chitectures. In: ECOOP’98 Workshop on Object-Oriented Software Architectures,
Brussels, Belgium (1998)

18. Ritzau, T., Andersson, J.: Dynamic deployment of java applications. In: Java for
Embedded Systems, London, United Kingdom (2000)


