High-level Declarative User Interfaces

[Poster Abstract]

Sofie Goderis
Vrije Universiteit Brussel
Programming Technology Lab
Pleinlaan 2, B-1050 Brussel, Belgium

sgoderis@vub.ac.be

Categories and Subject Descriptors: D.2.2 Software
Engineering: Coding Tools and Techniques

General Terms: Design.

Keywords: Separation of Concerns, Declarative Program-
ming, User Interfaces.

1. PROBLEM DESCRIPTION

In order to survive in today’s highly dynamic marketplace,
companies must show a continuous and ever-increasing abil-
ity to adapt. This reflects on the adaptability requirements
for the supporting software systems. Evolving a software
system not only affects the source code responsible for the
core application, but also the user interface. Our knowledge
concerning software engineering tasks has grown consider-
ably during the last 20 years and code entanglement has
been tackled by several techniques such as aspect-oriented
software engineering and component based software engi-
neering. However few of these techniques have been applied
onto user interfaces, especially for the concern of Ul be-
haviour. Currently we still lack a clean way to separate
and couple the user interface (UI) logic and the underlying
application logic.

Adding application logic to a UI (e.g. the UI changes
because of some business logic) results in mixing UI and
application code. Adding UI logic (e.g. the UI changes
because of some Ul event), results in rather complex code to
check the Uls state and undertake the appropriate actions.
The code becomes even more complex when combining both
application and UI logic. This kind of entanglement makes
evolving and maintaining Uls hard.

2. SEPARATING USER INTERFACE AND
APPLICATION LOGIC

In order to solve the problem of entanglement between the
UI and the application, we apply the principle of separation
of concerns to Uls. There are several parts to consider,
namely the application logic, the Ul logic consisting of visu-
alisation and behaviour, and the Ul-application behaviour.
The application logic refers to everything that is not related
to the UI, such as the application code itself, its interactions
and the domain model. For instance in an e-business appli-
cation, this is calculating the price to pay on checking out or

Copyright is held by the author/owner.
OOPSLA’05, October 16-20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Theo D’Hondt
Vrije Universiteit Brussel
Programming Technology Lab
Pleinlaan 2, B-1050 Brussel, Belgium

tidhondt@vub.ac.be

determining if a discount is in place. The Ul logic consists of
visualisation and UI behaviour and interactions within this
concern. Visualisation is what the Ul looks like and what
widgets are provided. Behaviour specifies how widgets re-
late to and influence each other. For example as long as the
paying method has not been chosen, the proceed button is
disabled. The Ul and application concern interact with each
other. This interaction describes how the Ul concern hooks
into the application. For instance creating the actual order
and invoice because the user has clicked on the ’checking-
out’ button. This research focuses on the UI interactions
and the interaction of the Ul with the application.

3. DECLARATIVE USER INTERFACES

Current solutions to achieve a separation of concerns for
Uls, only offer partial solution. The model-view-controller
pattern [3] for instance only focusses on the interactions be-
tween the application and the UI, but neglects interactions
within the UL And user interface builders allow specifying a
Uls visualisation and limited behaviour [4, 5, 1]. Especially
when constructing more advanced and dynamic Uls, both
approaches lack potential to avoid writing of complex code.

The goal we set in mind for separating Ul logic from ap-
plication logic, is to write down these concerns declaratively
such that the UI is specified on a higher level. One needs
to specify the UI logic and it has to be possible to gener-
ate certain parts of Ul actions and interactions. We want
the programmer to get rid of the burden of maintaining if-
statements and call-back implementations (i.e. calling the
application code from within the UI). Currently many of
these issues are taken care of by ad hoc systems developed
by the programmers on a need-by basis. We on the contrary
want to provide a general solution that helps the program-
mer in creating Ul logic. Therefore we use declarative pro-
gramming as a means to express Ul concerns and thereby
offer a complete solution to tackle the UI - application en-
tanglement.

Declarative programming describes and manipulates pro-
grams that deal with other programs in a declarative way.
Logic facts are used to write down data or knowledge, while
rules are used to reason about these facts and derive new
facts. Declarative programming describes what the code
does in contrast to how it is done.

3.1 Ul visualisation

Low level UI visualisation describes for instance what a
text field and a label look like while on a higher level one
specifies what an input group for a user’s name looks like.
A more general visualisation is specifying that labels with
certain properties should be positioned above an input field
instead of next to it. The specification for the visualisation
concern thus describes the visual components of a Ul by
means of facts and rules where different rule sets describe
different levels of specifications, going from a low-level Ul
description to a higher-level description. By use of declara-
tive rules, more general visualisations can be described.

Although the positioning of UI components is part of the
UI visualisation, it can be influenced by the application. For
instance when a user is younger than 18, the credit-card pay-
ment option is disabled and the Ul components related to
this payment option are removed from the UI. Therefore the
UI visualisation for a youngster is different from the one for
an adult. This means the visualisation has to change during
its use and components have to be repositioned. There-
fore an enhanced mechanism for automatically laying-out
the components is required. A layout relation is for instance
that a certain component has to positioned to the left of an-
other component. Typically this can be transformed into
a linear constraint equation by using the components’ co-
ordinates. A declarative reasoning mechanism is useful to
perform this transformation. A linear equation constraint
solver then resolves these layout relations and achieves au-
tomatic laying-out.

3.2 Ul behaviour : Interactions at the Ul level

A possible interaction at the Ul level is disabling a ‘checking-

out’ button as long as not all the required buying fields are
filled out. Another example is specifying a default behaviour
for a new-edit-save buttons group where the save and edit
button are always disabled when a new button is enabled,
such that this specification can be reused in different Uls.
These kind of interactions between Ul components are in-
evitable when creating Uls. A UI resides in a certain state,
and certain actions or events will change that state. Often
programmers express this behaviour by means of statecharts
[2] which are then implemented manually into the applica-
tion code, resulting once more in entangled code. Expressing
statecharts is a declarative process that can be done by the
use of facts and rules which in their turn can be translated
into actual Ul actions. Reusing a set of facts and rules allows
for reusing certain states or default component behaviours.

If for a certain kind of user a business model requires
extra data input, the UI behaviour changes because an ex-
tra Ul form is added to the flow of the application. Also
the visualisation is changed because some new buttons (e.g.
previous and next) are added to existing parts of the UL
These runtime adaptations require dynamic interactions and
the problem solving mechanism needs to react to these new
facts only when a certain event happens. From a declarative
point of view this means that, when a new fact is known (i.e.
something happened), new conclusions and facts have to be
inferred. Consequently using a forward chainer, and thus
data-driven reasoning, is appropriate.

3.3 UI behaviour : Interactions between Ul
and application

Consider specifying that clicking the ‘checking-out’ but-
ton means an invoice is created and the delivery process is
started. This UI event (i.e. clicking the button) triggers
certain application events, thus both are linked together.
Once more, how UI actions relate to application actions is
described declaratively. Expressing that the Ul has to be
adapted because a regular client gets an extra reduction for
Christmas, uses a combination of several business rules to
influence the UI logic. The advantage of a declarative ap-
proach is that it allows to write such rules that reason about
the underlying application model.

A Ul is only useful if it is linked with an underlying ap-
plication. This linking involves code generation (e.g. the if
statement for the last example), but also code ‘adaptation’
(e.g. injecting this code) at the application level. We con-
sider aspect oriented programming to tackle this problem.

3.4 Declarative Ul Specification Framework

Combining the previous three levels of specifications, leads
to a declarative user interface specification framework that
will aid the programmer when developing the Ul logic. Rules
available in the framework can be reused, for instance the
rules specifying how to create a Smalltalk label widget, or
the rules to solve layout relations. This is especially inter-
esting when reusing pre-defined layout strategies that put
components in one column or multiple columns, or rows,
labels on top of input fields, Unless the programmer
wants to use a different specific specification (e.g. XML), a
different layout strategy, a different reasoning mechanism,
and so on, the programmer does not need to extend the
framework with new rules or reasoning mechanisms.

We are implementing the declarative Ul specification frame-
work together with the necessary declarative reasoning mech-
anisms. As a starting point we use a declarative meta pro-
gramming language (called SOUL [6]) which has been im-
plemented on top of Smalltalk. It contains a primitive con-
struct for evaluating Smalltalk expressions as part of logic
rules. This allows SOUL clauses to reason about Smalltalk
source code as well as executing a piece of Smalltalk code as
part of a logic rule. We use SOUL to specify Uls by means
of facts and rules, while the application logic is implemented
in Smalltalk. SOUL’s reasoning mechanism uses the UI
facts and rules to generate an actual Smalltalk UI.

4. REFERENCES

[1] I. Chattopadhyaya. Gtk+ programming with glade.
Developer IQ) magazine, July 2002.

[2] 1. Horrocks. Constructing the User Interface with
Statecharts. Addison Wesley Professional, 1999.

[3] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view-controller user interface paradigm in
smalltalk-80. JOOP, August/September 1988.

[4] B. A. Myers. Separating application code from
toolkits : Eliminating the spaghetti of call-backs. In
UIST’91, 1991.

[5] VisualWorks. Gui developer’s guide. Technical report,
Cincom Systems, Inc, 2002.

[6] R. Wuyts. A logic meta-programming approach to
support the co-evolution of Object-Oriented design and
implementation. Phd thesis, VUB, 2001.

